

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 16 (2015), No. 2, pp. 1105–1116 DOI: 10.18514/MMN.2015.1756

PI-PROPERTIES OF SOME MATRIX ALGEBRAS WITH INVOLUTION

TSETSKA RASHKOVA

Received 23 September, 2015

Abstract. We define the nilpotency index of the b-variables in second order matrix algebras with Grassmann entries and involution \flat . Identities of minimal degree are found for a concrete subalgebra of the matrix algebra $M_4(K)$. When it has an involution ϕ as well some of its ϕ -identities are given. For an analogue of this subalgebra over finite dimensional Grassmann algebras a new involution (b) is introduced and its (b) -identities are discussed.

2010 *Mathematics Subject Classification:* 16R10; 15A75; 16R50

Keywords: PI-algebras, matrix algebra over Grassmann algebras, algebras with involution ϕ , ϕ -variables, ϕ -identities

1. INTRODUCTION

The classical PI-theory (the theory of the polynomial identities) has its development for algebras with involution as well. The contributions of Amitsur [\[1\]](#page-10-0), Levchenko [\[9\]](#page-10-1), Rowen [\[14\]](#page-11-0), Wenxin and Racine [\[17\]](#page-11-1), Giambruno and Valenti [\[6\]](#page-10-2), Drensky and Giambruno [\[5\]](#page-10-3), Rashkova [\[11\]](#page-11-2), La Mattina and Misso [\[8\]](#page-10-4) are only a part of it.

In 1973 Krasovski and Regev $[7]$ described completely the T -ideal of the identities of the Grassmann algebra E and it was a natural step to investigate the PI-structure of algebras not only over fields (with any characteristic) but over algebras as well, especially Grassmann algebras [\[4,](#page-10-6) [12,](#page-11-3) [16\]](#page-11-4).

In the paper we consider mainly finite dimensional Grassmann algebras and special matrix algebras over them.

We recall the definition of the Grassmann algebra E as:

$$
E = K\langle e_1, e_2, \dots | e_i e_j + e_j e_i = 0, i, j = 1, 2, \dots \rangle,
$$

where K is a field of characteristic zero.

We cite basic propositions from [\[3](#page-10-7)[,7\]](#page-10-5). The notation $[x, y, z] = [[x, y], z] = [x, y]z$ $z[x, y]$ will be used.

c 2015 Miskolc University Press

Partially supported by Grant I 02/18 of the Bulgarian National Science Fund.

Proposition 1 ([\[7,](#page-10-5) Corollary, p. 437]). *The* T *- ideal of the Grassmann algebra* E *is generated by the identity* $[x, y, z] = 0$ *.*

Proposition 2 ([\[3,](#page-10-7) Lemma 6.1]). *For any* $n, k \geq 2$ *in the algebra E the identity* $S_n^k(x_1, ..., x_n) = 0$ *holds, where*

$$
S_n(x_1,...,x_n) = \sum_{\sigma \in Sym(n)} (-1)^{\sigma} x_{\sigma(1)}...x_{\sigma(n)}
$$

is the n*-th standard polynomial.*

Proposition 3 ([\[3,](#page-10-7) Lemma 6.6]). *The matrix algebra* $M_n(E)$ *does not satisfy the identity*

$$
S_m^n(x_1, \ldots, x_m) = 0
$$

for any m*.*

There are subalgebras of $M_n(E)$ however being counter examples of Proposition [3](#page-1-0) for concrete m.

We use the notation E' $n \choose n$ for a non unitary Grassmann algebra with generators $e_1,...,e_n.$

The existence of nilpotent elements of minimal nilpotency index both in finite dimensional Grassmann algebras and in matrix algebras over them was investigated in [\[12,](#page-11-3) [13\]](#page-11-5). We state some of the results needed:

Proposition 4 ([\[13,](#page-11-5) Proposition 13]). *The identity* $x^3 = 0$ *holds for the algebra* $E_{4}^{'}$ 4 *.*

Proposition 5 ([\[13,](#page-11-5) Proposition 16]). *The algebra* $M_2(E_4)$ satisfies the identity $X^4 = 0.$

In [\[13\]](#page-11-5) examples were given as well of subalgebras \mathfrak{A}_i , $i = 1, 2$ of $M_n(\mathfrak{R})$ such that the identities $x^{\tilde{4}} = 0$ and $[x, y, z] = 0$ in \Re imply the identity $X^4 = 0$ in \mathfrak{A}_i , $i = 1, 2$.

An involution ψ on the Grassmann algebras E_2 E_2' and E_3' σ_3 defines an involution ϕ on the corresponding 2×2 matrix algebra over any of them. In that case the classes of symmetric and of skew-symmetric to the involution ϕ matrices of nilpotency indices 2 and 3 were described in [\[12\]](#page-11-3).

In the present paper we continue the investigations started in $[12]$:

We define the nilpotency index of the \flat -variables in the considered algebras with involution $\phi = \flat$.

For a concrete subalgebra of the matrix algebra $M_4(K)$ identities of minimal degree are found. When additionally the algebra has an involution ϕ some of its ϕ identities are given.

For an analogue of this subalgebra over finite dimensional Grassmann algebras a new involution $\phi = (b)$ is introduced and some (b)-identities are discussed.

2. RESULTS

2.1. *PI-properties of involution second order matrix algebras with Grassmann entries*

We recall the definition of an involution on an algebra R : it is a second order antiautomorphism ψ such that $\psi(ab) = \psi(b)\psi(a)$ for all $a, b \in R$.

By R^- we denote the skew-symmetric due to the involution elements of R, namely z_1, \ldots, z_i, \ldots and by R^+ we denote the symmetric due to the involution elements y_1, \ldots, y_i, \ldots It is important to consider ψ -variables (symmetric and skew-symmetric) as the elements of R^+ form a Jordan algebra due to the multiplication $y_1 \circ y_2 =$ $y_1y_2 + y_2y_1$ and the elements of R^- form a Lie algebra due to the operation $[z_1, z_2]$.

Definition 1. Let $f = f(x_1,...,x_m) \in K\langle x_1,...,x_n \rangle$, the free associative algebra on *n* generators over K. We say that f is a ψ -identity in skew variables for the algebra R over K if $f(z_1,...,z_m) = 0$ for all $z_1,...,z_m \in R^-$. Accordingly f is a ψ -identity in symmetric variables for the algebra R over K if $f(y_1,...,y_m) = 0$ for all $y_1, ..., y_m \in R^+$.

We say that f is a ψ -identity if $f(z_1,...,z_i,y_{i+1},..., y_m) = 0$ for any $z_1,...,z_i \in$ R^- and any $y_{i+1},...,y_m \in R^+$.

We denote an involution on the basic field or algebra as ψ while ϕ will mean an involution on the corresponding matrix algebra.

If a ring R has an involution $\psi = *$ two involutions $\phi_1 = \sharp$ and $\phi_2 = \flat$ on $M_2(R)$ are defined as follows [\[15\]](#page-11-6):

$$
\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{\sharp} = \left(\begin{array}{cc} a^* & c^* \\ b^* & d^* \end{array}\right), \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{\flat} = \left(\begin{array}{cc} d^* & b^* \\ c^* & a^* \end{array}\right).
$$

It is known [\[2\]](#page-10-8) that two involutions play an important role in the Grassmann algebra: the involution ψ_1 acting on the generators e_i of E as $\psi_1(e_{2k}) = e_{2k-1}$, $\psi_1(e_{2k-1}) = e_{2k}$ and the trivial on the generators involution ψ_2 for which $\psi_2(e_i)$ = e_i for all e_i .

Here we consider the algebra $(M_2(E'_4, \psi_2), \nu)$ and continue some of the investiga-tions made in [\[12\]](#page-11-3) by finding the nilpotency index of the b-variables of $(M_2(E'_4, \psi_2), \flat)$.

Theorem 1. The algebra $(M_2(E'_4, \psi_2), \flat)$ satisfies the b-identity $Y^4 = 0$ in b*symmetric variables and the* \flat -*identity* $Z^3 = 0$ *in* \flat -*skew symmetric variables.*

Proof of Theorem [1.](#page-2-0) As Proposition [5](#page-1-1) holds we have to prove only that $Z^3 = 0$ in b-skew symmetric variables.

Let
$$
Z = \begin{pmatrix} y_1 & z_1 \\ z_2 & y_2 \end{pmatrix}
$$
. The condition $\phi_2(Z) = -Z$ means that $\psi_2(z_1) = -z_1$,
\n $\psi_2(z_2) = -z_2$, $\psi_2(y_1) = -y_2$ and $\psi_2(y_2) = -y_1$. Thus we get that
\n $z_1 = \alpha_5 e_1 e_2 + \alpha_6 e_1 e_3 + \alpha_7 e_1 e_4 + \alpha_8 e_2 e_3 + \alpha_9 e_2 e_4 + \alpha_{10} e_3 e_4$

 $+\alpha_{11}e_1e_2e_3+\alpha_{12}e_1e_2e_4+\alpha_{13}e_1e_3e_4+\alpha_{14}e_2e_3e_4;$ $z_2 = \beta_5 e_1 e_2 + \beta_6 e_1 e_3 + \beta_7 e_1 e_4 + \beta_8 e_2 e_3 + \beta_9 e_2 e_4 + \beta_{10} e_3 e_4$ $+\beta_{11}e_1e_2e_3+\beta_{12}e_1e_2e_4+\beta_{13}e_1e_3e_4+\beta_{14}e_2e_3e_4;$ $y_1 = \gamma_1 e_1 + \gamma_2 e_2 + \gamma_3 e_3 + \gamma_4 e_4$ $+\gamma_5e_1e_2+\gamma_6e_1e_3+\gamma_7e_1e_4+\gamma_8e_2e_3+\gamma_9e_2e_4+\gamma_{10}e_3e_4$ $+\gamma_{11}e_1e_2e_3+\gamma_{12}e_1e_2e_4+\gamma_{13}e_1e_3e_4+\gamma_{14}e_2e_3e_4+\gamma_{15}e_1e_2e_3e_4;$ $y_2 = -\gamma_1 e_1 - \gamma_2 e_2 - \gamma_3 e_3 - \gamma_4 e_4$ $+\gamma_5e_1e_2+\gamma_6e_1e_3+\gamma_7e_1e_4+\gamma_8e_2e_3+\gamma_9e_2e_4+\gamma_{10}e_3e_4$ + $\gamma_{11}e_1e_2e_3 + \gamma_{12}e_1e_2e_4 + \gamma_{13}e_1e_3e_4 + \gamma_{14}e_2e_3e_4 - \gamma_{15}e_1e_2e_3e_4.$

As in $z_i z_j$ the least degree of the summands is 4 we have $xz_j z_k = 0$, $z_j x z_k = 0$, $z_j z_k x = 0$ for any entry x of the matrix Z. As the least degree of the summands in $y_i z_j$ is 3 we get that $y_i z_j z_k = 0$. The least degree in y_i^2 is 3 and we have $y_i^2 z_j = 0$ and $z_i y_i^2 = 0$ as well. Thus for the matrix $Z^3 = (a_{ij})$ we get $a_{11} = a_{22} = 0$, $a_{12} =$ $y_1z_1y_2$ and $a_{21} = y_2z_2y_1$.

We consider the four summands of degree 3 (the minimal one) in y_1z_1 :

 $\alpha e_1 e_2 e_3 \rightarrow \alpha = \gamma_1 \alpha_8 - \gamma_2 \alpha_6 + \gamma_3 \alpha_5$ $\beta e_1 e_2 e_3 \rightarrow \beta = \gamma_1 \alpha_9 - \gamma_2 \alpha_7 + \gamma_4 \alpha_5$ $\gamma e_1 e_2 e_3 \rightarrow \gamma = \gamma_1 \alpha_{10} - \gamma_3 \alpha_7 + \gamma_4 \alpha_6$ $\delta e_1 e_2 e_3 \rightarrow \delta = \gamma_2 \alpha_{10} - \gamma_3 \alpha_9 + \gamma_4 \alpha_8.$

Now we define the coefficient of the only summand (of degree 4) in $a_{12} = y_1 z_1 y_2$. It is equal to

$$
-\gamma_4(\gamma_1\alpha_8-\gamma_2\alpha_6+\gamma_3\alpha_5)+\gamma_3(\gamma_1\alpha_9-\gamma_2\alpha_7+\gamma_4\alpha_5)
$$

$$
-\gamma_2(\gamma_1\alpha_{10}-\gamma_3\alpha_7+\gamma_4\alpha_6)+\gamma_1(\gamma_2\alpha_{10}-\gamma_3\alpha_9+\gamma_4\alpha_8)\equiv 0.
$$

The same is valid for $a_{21} = y_2 z_2 y_1$ as well. Thus Z^3 is the zero matrix. \Box

If we change the involution ψ_2 , considered in E'_4 , with the involution ψ_1 , the b-variables of $(M_2(E_4', \psi_1), \flat)$ do not have a lower nilpotency index, namely

Theorem 2. The algebra $(M_2(E'_4, \psi_1), \flat)$ satisfies the b-identity $A^4 = 0$ for A being any b-variable.

Proof of Theorem 2. We mach only the crucial steps of the proof.

In this case $\psi_1(e_1) = e_2(\psi_1(e_2) = e_1)$ and $\psi_1(e_3) = e_4(\psi_1(e_4) = e_3)$.

We have to consider only the case when $A = Z$ is a b-skew symmetric variable. The conditions $\psi_1(z_i) = -z_i$ and $\psi_1(y_1) = -y_2$ give that

$$
z_1 = \alpha_1(e_1 - e_2) + \alpha_3(e_3 - e_4) + \alpha_6(e_1e_3 + e_2e_4) + \alpha_7(e_1e_4 + e_2e_3)
$$

+
$$
\alpha_{11}(e_1e_2e_3 - e_1e_2e_4) + \alpha_{13}(e_1e_3e_4 - e_2e_3e_4);
$$

$$
z_2 = \beta_1(e_1 - e_2) + \beta_3(e_3 - e_4) + \beta_6(e_1e_3 + e_2e_4) + \beta_7(e_1e_4 + e_2e_3)
$$

1108

+ $\beta_{11}(e_1e_2e_3 - e_1e_2e_4) + \beta_{13}(e_1e_3e_4 - e_2e_3e_4);$ $y_1 = \gamma_1 e_1 + \gamma_2 e_2 + \gamma_3 e_3 + \gamma_4 e_4$ $+\gamma_5e_1e_2+\gamma_6e_1e_3+\gamma_7e_1e_4+\gamma_8e_2e_3+\gamma_9e_2e_4+\gamma_1e_3e_4$ $+\gamma_{11}e_1e_2e_3+\gamma_{12}e_1e_2e_4+\gamma_{13}e_1e_3e_4+\gamma_{14}e_2e_3e_4;$ $y_2 = -\gamma_2 e_1 - \gamma_1 e_2 - \gamma_4 e_3 - \gamma_3 e_4$ $-\gamma_5e_1e_2 + \gamma_9e_1e_3 + \gamma_8e_1e_4 + \gamma_7e_2e_3 + \gamma_6e_2e_4 - \gamma_{10}e_3e_4$ $-\gamma_{12}e_1e_2e_3-\gamma_{11}e_1e_2e_4-\gamma_{14}e_1e_3e_4-\gamma_{13}e_2e_3e_4.$

We follow the coefficient of $e_1e_2e_3$ in the entry $a_{11} = z_1z_2y_1 + y_1z_1z_2 + z_1y_2z_2$ of the matrix $Z^3 = (a_{ij})$. Forming z_1z_2 we find the coefficient of $e_1e_2e_3$ in the product $y_1(z_1z_2)$, namely $-(y_1 + y_2)(\alpha_1\beta_3 - \alpha_3\beta_1)$.

The same holds for the coefficient of $e_1e_2e_3$ in the products $z_1z_2y_1$ and in $z_1y_2z_2$. Thus Z^3 is not a zero matrix.

Taking into account the conditions on the entries of a \flat -symmetric matrix Y we see that the coefficient of $e_1e_2e_3$ in the entry b_{11} of the matrix $Y^3 = (b_{ij})$ is $3(\gamma_1 \gamma_2)(\alpha_1\beta_3-\alpha_3\beta_1).$ \Box

2.2. PI-properties of some fourth order matrix algebras

We define the 8-th dimensional matrix algebra $AM_4(K)$ as the algebra of the matrices of type

 $\begin{pmatrix} a_{11} & 0 & a_{13} & 0 \\ 0 & a_{22} & 0 & a_{24} \\ a_{31} & 0 & a_{33} & 0 \\ 0 & a_{42} & 0 & a_{44} \end{pmatrix}$, $a_{ij} \in K$. The following theorem holds:

Theorem 3. The algebra $AM_4(K)$ satisfies the Hall identity $[[X_1, X_2]^2, X_3] = 0$.

Proof of Theorem 3. For $X_1, X_2 \in AM_4(K)$ in $[X_1, X_2] = (c_{ij})$ we have $c_{33} =$ $-c_{11}$ and $c_{44} = -c_{22}$. The matrix $[X_1, X_2]^2 = (d_{ij})$ is a diagonal matrix with $d_{33} =$ d_{11} and $d_{44} = d_{22}$. Thus $[[X_1, X_2]^2, X_3] = 0$.

By the system for computer algebra *Mathematica* we see that $AM_4(K)$ satisfies the identity $S_4(X_1, X_2, X_3, X_4) = 0$ as well.

The n-th analogue of $AM_4(K)$ is the algebra $AM_{2n}(K)$. Its elements are of type (a_{ij}) with non-zero entries only among a_{ii} for $i = 1,..., 2n$, $a_{i,n+j}$ and $a_{n+j,j}$ for $j = 1, ..., n$. The two identities in $AM_4(K)$ hold in $AM_{2n}(K)$ as well.

It is known that in a matrix algebra over a field K of characteristic zero up to isomorphism there are two types of involutions - the transpose one t and the symplectic involution $*$, the latter defined on an even 2k order matrix algebra as

$$
\left(\begin{array}{cc} A & B \\ C & D \end{array}\right)^* = \left(\begin{array}{cc} D & -B^t \\ -C^t & A \end{array}\right),
$$

where A, B, C, D are $k \times k$ matrices.

We recall that the Hall identity $[[Y_1, Y_2]^2, Y_3] = 0$ is a \ast -identity of minimal degree in *-symmetric variables for the algebra $(M_4(K),*)$ [5].

Next we consider the matrix algebra $AM_4(K)$ with the symplectic involution $*$.

Theorem 4. The algebra $(AM_4(K), *)$ satisfies the *-identity $[Y_1, Y_2] = 0$ in *symmetric variables.

Proof of Theorem 4. From

$$
\begin{pmatrix}\n a_{11} & 0 & a_{13} & 0 \\
 0 & a_{22} & 0 & a_{24} \\
 a_{31} & 0 & a_{33} & 0 \\
 0 & a_{42} & 0 & a_{44}\n\end{pmatrix}^*
$$
\n
$$
= \begin{pmatrix}\n a_{33} & 0 & -a_{13} & 0 \\
 0 & a_{44} & 0 & -a_{24} \\
 -a_{31} & 0 & a_{11} & 0 \\
 0 & -a_{42} & 0 & a_{22}\n\end{pmatrix} = \begin{pmatrix}\n a_{11} & 0 & a_{13} & 0 \\
 0 & a_{22} & 0 & a_{24} \\
 a_{31} & 0 & a_{33} & 0 \\
 0 & a_{42} & 0 & a_{44}\n\end{pmatrix}
$$

we see that the *-symmetric elements of $(AM_4(K), *)$ are diagonal matrices.

As z^2 is *-symmetric we come to

Corollary 1. The algebra $(AM_4(K), *)$ satisfies the *-identity $[Z_1^2, Z_2^2] = 0$ in *-skew symmetric variables.

Now the matrix algebras considered will have entries that are elements of a Grassmann algebra. In the statements below we use Proposition 4. As it was proved in $[13]$ using the system for computer algebra Mathematica we give here its analytic proof.

Proof of Proposition 4. Without loss of generality we consider $x \in E'_4$ with summands of length 1 and 2 only (the other ones will give zeros either in x^2 or in x^3). **Thus**

$$
x = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 + \alpha_4 e_4 + \alpha_5 e_1 e_2 + \alpha_6 e_1 e_3
$$

+
$$
\alpha_7 e_1 e_4 + \alpha_8 e_2 e_3 + \alpha_9 e_2 e_4 + \alpha_{10} e_3 e_4.
$$

We define the coefficients of the four summands of length 3 in x^2 . They are:

 $\alpha e_1 e_2 e_3 \rightarrow \alpha = 2(\alpha_1 \alpha_8 - \alpha_2 \alpha_6 + \alpha_3 \alpha_5)$ $\beta e_1 e_2 e_4$ \mapsto $\beta = 2(\alpha_1 \alpha_9 - \alpha_2 \alpha_7 + \alpha_4 \alpha_5)$ $\gamma e_1 e_3 e_4 \rightarrow \gamma = 2(\alpha_1 \alpha_{10} - \alpha_3 \alpha_7 + \alpha_4 \alpha_6)$
 $\delta e_2 e_3 e_4 \rightarrow \delta = 2(\alpha_2 \alpha_{10} - \alpha_3 \alpha_9 + \alpha_4 \alpha_8).$

The coefficient of the only summand (which is of length 4) of $x³$ is proportional to

$$
-\alpha_1(\alpha_2\alpha_{10} - \alpha_3\alpha_9 + \alpha_4\alpha_8) + \alpha_2(\alpha_1\alpha_{10} - \alpha_3\alpha_7 + \alpha_4\alpha_6)
$$

$$
-\alpha_3(\alpha_1\alpha_9 - \alpha_2\alpha_7 + \alpha_4\alpha_5) + \alpha_4(\alpha_1\alpha_8 - \alpha_2\alpha_6 + \alpha_3\alpha_5) \equiv 0.
$$

1110

 \Box

 $1111\,$ \Box

The identity $[y, x, x] = 0$ and the linearization of $x^3 = 0$ lead to

Corollary 2. In $E_4^{'}$ the following identities hold:

$$
x2y + yx2 = 0, xyx = 0, xyz + zyx = 0,
$$

$$
xy2z = -zyxy = 0, y2xz = -zyxy = 0, zxy2 = -yxyz = 0.
$$

Theorem 5. The algebra $AM_4(E_4)$ is a nil algebra with nil index 4.

Proof of Theorem 5. For a matrix $A \in AM_4(E_4)$, where

$$
A = \left(\begin{array}{cccc} y_1 & 0 & z_1 & 0 \\ 0 & y_2 & 0 & z_2 \\ z_3 & 0 & y_3 & 0 \\ 0 & z_4 & 0 & y_4 \end{array}\right)
$$

and $A^3 = (a_{ij})$ we get

$$
a_{11} = z_1 z_3 y_1 + y_1 z_1 z_3 + z_1 y_3 z_3,
$$

\n
$$
a_{13} = y_1^2 z_1 + z_1 z_3 z_1 + y_1 z_1 y_3 + z_1 y_3^2,
$$

\n
$$
a_{22} = z_2 z_4 y_2 + y_2 z_2 z_4 + z_2 y_4 z_4,
$$

\n
$$
a_{24} = y_2^2 z_2 + z_2 z_4 z_2 + y_2 z_2 y_4 + z_4 y_4^2,
$$

\n
$$
a_{31} = z_3 y_1^2 + y_3 z_3 y_1 + z_3 z_1 z_3 + y_3^2 z_3,
$$

\n
$$
a_{33} = z_3 y_1 z_1 + y_3 z_3 z_1 + z_3 z_1 y_3,
$$

\n
$$
a_{42} = z_4 y_2^2 + y_4 z_4 y_2 + z_4 z_2 z_4 + y_4^2 z_4,
$$

\n
$$
a_{44} = z_2 y_2 z_2 + y_4 z_4 z_1 + z_4 z_2 y_4.
$$

Now we investigate the entries of $A^4 = (b_{ij})$:

$$
b_{11} = z_1 z_3 y_1^2 + y_1 z_1 z_3 y_1 + z_1 y_3 z_3 y_1 + y_1^2 z_1 z_3
$$

+ z_1 z_3 z_1 z_3 + y_1 z_1 y_1 z_3 + z_1 y_3^2 z_3

Applying Corollary 2 we simplify b_{11} and get $b_{11} = z_1 y_3 z_3 y_1 + y_1 z_1 y_3 z_3$. The identity $xyz = -zyx$ gives

$$
z_1 y_3 z_3 y_1 = -z_3 y_1 y_3 z_1 = y_3 z_1 y_1 z_3 = -y_1 z_1 y_3 z_3.
$$

Thus $b_{11} = 0$.

In an analogous way we investigate the other entries of $A⁴$:

$$
b_{13} = z_1 z_3 y_1 z_1 + y_1 z_1 z_3 z_1 + z_1 y_3 z_3 z_1 + y_1^2 z_1 y_3 + z_1 z_3 z_1 y_3 + y_1 z_1 y_3^2 + z_1 y_3^3
$$

According to Corollary 2 we have $b_{13} = 0$.

Now we consider

 $b_{22} = z_2 z_4 y_2^2 + y_2 z_2 z_4 y_2 + z_2 y_4 z_4 y_2 + y_2^2 z_2 z_4$ $+z_{2}z_{2}z_{2}z_{4}+y_{2}z_{2}y_{4}z_{4}+z_{4}y_{4}^{2}z_{4}.$

The same Corollary leads to $b_{22} = z_2y_4z_4y_2 + y_2z_2y_4z_4$. As

$$
z_2y_4z_4y_2 = -z_4y_2y_4z_2 = y_4z_2y_2z_4 = -y_2z_2y_4z_4
$$

we get $b_{22} = 0$.

Applying Corollary [2](#page-6-1) we get $b_{24} = b_{31} = 0$. In b_{33} we have to consider only the part $y_3z_3y_1z_1 + z_3y_1z_1y_3$. As

 $y_3z_3y_1z_1 = -y_1z_1z_3y_3 = z_3z_1y_1y_3 = -y_3y_1z_3z_1 = z_1y_1z_3y_3 = -z_3y_1z_1y_3$

we get $b_{33} = 0$.

The identities in Corollary [2](#page-6-1) immediately lead to $b_{42} = 0$, $b_{44} = 0$. Thus $A^4 =$ $\overline{0}$.

Now we consider the subalgebra $ASM_4(E)$ of the matrices of type

 $\sqrt{2}$ \mathbf{I} \mathbf{I} \mathbf{I} a 0 a 0 0 b 0 b $\begin{array}{ccc} c & 0 & c & 0 \\ c & 0 & d & 0 \\ 0 & d & 0 & d \end{array}$ $d \quad 0 \quad d$ λ \mathbf{I} \mathbf{I} A and prove that it is a PI-algebra.

Theorem 6. *The algebra ASM₄(E) satisfies the identity* $U[X, Y, Z] = 0$ *.*

Proof of Theorem [6.](#page-7-0) Let X, Y, Z be matrices from $ASM_4(E)$ denoting its entries by a_i , b_i , c_i , d_i for $i = 1, 2, 3$ respectively. We form the diagonal entries of $[X, Y] =$ (a_{ij}) , namely

$$
a_{11} = [a_1, a_2] + a_1c_2 - a_2c_1,
$$

\n
$$
a_{22} = [b_1, b_2] + b_1d_2 - b_2d_1,
$$

\n
$$
a_{33} = [c_1, c_2] + c_1a_2 - c_2a_1,
$$

\n
$$
a_{44} = [d_1, d_2] + d_1b_2 - d_2b_1.
$$

For the matrix $[X, Y, Z] = (b_{ij})$ we have modulo $[x, y, z] = 0$ for $x, y, z \in E$ that $b_{11} + b_{33}$

$$
= [a_1c_2 - a_2c_1, a_3] + ([a_1, a_2] + a_1c_2 - a_2c_1)c_3 - a_3([c_1, c_2] + c_1a_2 - c_2a_1)
$$

+ $[c_1a_2 - c_2a_1, c_3] + ([c_1, c_2] + c_1a_2 - c_2a_1)a_3 - c_3([a_1, a_2] + a_1c_2 - a_2c_1)$
= $[a_1c_2 - a_2c_1, a_3] + (a_1c_2 - a_2c_1)c_3 - a_3(c_1a_2 - c_2a_1)$
+ $[c_1a_2 - c_2a_1, c_3] + (c_1a_2 - c_2a_1)a_3 - c_3(a_1c_2 - a_2c_1)$
= $[a_1c_2 - a_2c_1, a_3] + [c_1a_2 - c_2a_1, c_3] + [a_1c_2 - a_2c_1, c_3] + [c_1a_2 - c_2a_1, a_3]$
= $[[a_1, c_2] + [c_1, a_2], a_3] + [[c_1, a_2] + [a_1, c_2], c_3] = 0.$

Analogously we get that $b_{22} + b_{44} = 0$. Thus $U[X, Y, Z] = 0$ for any matrix $U \in ASM_4(E)$. \Box

The analogue of $ASM_4(E)$ in the general case is the matrix algebra $ASM_{2n}(E)$. Its elements are of type (a_{ij}) , where $a_{ii} = a_{i,n+i}$ for $i = 1,...,n$ and $a_{jj} = a_{j,j-n}$ for $j = n+1, ..., 2n$. The algebra $ASM_{2n}(E)$ satisfies the same identity $U[X, Y, Z] = 0.$

For now we are able to find involutions in $M_n(E)$ for $n > 2$ only considering an involution in E. We generalize the case $n = 2$, namely

Proposition 6. The mapping (b) , defined as

$$
\begin{pmatrix}\na_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}\n\end{pmatrix}^{(b)}
$$
\n
$$
= \begin{pmatrix}\nA & B \\
C & D\n\end{pmatrix}^{(b)} = \begin{pmatrix}\n(D)^b & (B)^b \\
(C)^b & (A)^b\n\end{pmatrix} = \begin{pmatrix}\na_{44}^* & a_{34}^* & a_{24}^* & a_{14}^* \\
a_{43}^* & a_{33}^* & a_{23}^* & a_{13}^* \\
a_{42}^* & a_{32}^* & a_{22}^* & a_{12}^* \\
a_{41}^* & a_{31}^* & a_{21}^* & a_{11}^*\n\end{pmatrix}
$$

is an involution on $M_4(E, \psi = *)$.

Proof of Proposition 6. Considering in details the entries of the two matrices $(AB)^{(b)}$ and $(B)^{(b)}(A)^{(b)}$ we see that their corresponding entries are equal i.e. the mapping (b) is an involution.

We cover the following special case: Let E'_{3} be the non-unitary finite dimensional Grassmann algebra with generators e_1, e_2, e_3 and $AM(2)(E'_3)$ be the subalgebra of $AM_4(E'_3)$ defined by the matrices of type

$$
\left(\begin{array}{cccc}y_1 & 0 & z_1 & 0\\0 & y_2 & 0 & z_2\\z_3 & 0 & y_3 & 0\\0 & z_4 & 0 & y_4\end{array}\right)
$$

where y_i are even elements (of even length) of E'_3 , while z_i are odd elements (of odd length) of E'_3 , $i = 1, ..., 4$. We equip the algebra $AM(2)(E'_3, \psi_2)$ with the involution (b) as defined in Proposition 6 .

We characterize the (b)-symmetric elements Y_i and the (b)-skew symmetric elements Z_j of the algebra $(AM(2)(E'_3, \psi_2), (b))$.

Theorem 7. The algebra $(AM(2)(E'_3, \psi_2), (b))$ satisfies the (b)-identity $Y^3 = 0$ in (b) -symmetric variables.

Proof of Theorem [7.](#page-8-1) Let consider a (b)-symmetric element Y. Denoting for short $\int y_4^*$ $\begin{array}{cccc} * & 0 & z_2^* & 0 \\ 4 & 0 & z_2^* & 0 \end{array}$ $\begin{pmatrix} y_1 & 0 & z_1 & 0 \end{pmatrix}$

$$
\psi_2
$$
 as * in the equality $\begin{pmatrix}\n0 & y_3 & 0 & z_1^* \\
z_4 & 0 & y_2^* & 0 \\
0 & z_3 & 0 & y_1^* \\
z_4 & 0 & z_3^* & 0\n\end{pmatrix} = \begin{pmatrix}\n0 & y_2 & 0 & z_2 \\
z_3 & 0 & y_3 & 0 \\
z_4 & 0 & y_4\n\end{pmatrix}$ we get

the following conditions on the entries of $Y: \psi_2(y_4) = y_1, \psi_2(y_3) = y_2, \psi_2(z_2) =$ z_1 and $\psi_2(z_4) = z_3$.

Let $y_1 = s_1e_1e_2 + s_2e_1e_3 + s_3e_2e_3$. Then $y_4 = \psi_2(y_1) = -y_1$. For $y_2 = t_1e_1e_2 +$ $t_2e_1e_3 + t_3e_2e_3$ we get $y_3 = \psi_2(y_2) = -y_2$. Obviously $y_1^2 = y_2^2 = 0$.

As the entries are from E'_3 we could work with odd entries having summands of degree 1 only. Let $z_1 = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ and $z_3 = m_1 e_1 + m_2 e_2 + m_3 e_3$. Then $z_2 = \psi_2(z_1) = z_1, z_4 = \psi_2(z_3) = z_3$. Considering $Y^3 = Y^2 Y = (a_{ij})$ as

$$
\begin{pmatrix}\nz_{1}z_{3} & 0 & y_{1}z_{1} - z_{1}y_{2} & 0 \\
0 & z_{1}z_{3} & 0 & y_{2}z_{1} - z_{1}y_{1} \\
z_{3}y_{1} - y_{2}z_{3} & 0 & z_{3}z_{1} & 0 \\
0 & z_{3}y_{2} - y_{1}z_{3} & 0 & z_{3}z_{1} \\
z_{3} & 0 & -y_{2} & 0 \\
z_{3} & 0 & -y_{2} & 0 \\
0 & z_{3} & 0 & -y_{1}\n\end{pmatrix}
$$

we see that manipulating with the generators e_1, e_2, e_3 , probably nontrivial entries could be only

$$
a_{13} = a_{24} = z_1 z_3 z_1 = \beta_1 e_1 e_2 e_3
$$
, $a_{31} = a_{42} = z_3 z_1 z_3 = \beta_2 e_1 e_2 e_3$.

Applying Corollary 2 we get that both of them are zero.

Theorem 8. *The algebra* $(AM(2)(E'_3, \psi_2), (\flat))$ *satisfies the* (\flat) *-identity* $Z^3 = 0$ *in* (b)-skew symmetric variables.

Proof of Theorem [8.](#page-9-0) Using the same notations for the matrix entries of Z as in the previous theorem, in this case we have

$$
y_4 = -\psi_2(y_1) = y_1, y_3 = -\psi_2(y_2) = y_2,
$$

\n
$$
y_1^2 = y_2^2 = 0,
$$

\n
$$
z_2 = -\psi_2(z_1) = -z_1, z_4 = -\psi_2(z_3) = -z_3.
$$

In $Z^3 = Z^2Z = (b_{ij})$ nonzero could be only the entries $b_{13} = -b_{24} = z_1 z_3 z_1$ and $b_{31} = -b_{42} = z_3 z_1 z_3$. Corollary 2 proves they both are zero.

We consider the subalgebra $(AM(2)(E'_3, \psi_2), (b))$ instead of the algebra $(AM_4(E'_3, \psi_2), (b))$ itself as if $A^n = 0$ for a b-variable A of $(AM_4(E'_4, \psi_2), (b))$ we

have $n > 3$. Thus the algebras $(AM_4(E'_4, \psi_2), (b))$ and $AM_4(E'_4)$ have equal nil indices.

We give an example of another matrix algebra with involution (b) having lower nilpotency index of its (b) -skew symmetric variables:

Let $\overrightarrow{BM}(2)(E_3)$ be the algebra defined by the matrices of type

$$
\left(\begin{array}{cccc}y_1 & 0 & 0 & z_1\\0 & y_2 & z_2 & 0\\0 & z_3 & y_3 & 0\\z_4 & 0 & 0 & y_4\end{array}\right)
$$

, where y_i are even elements of E'_i ζ_3' , while z_i are odd elements of E_3' i'_{3} , $i = 1,..., 4$. We equip the algebra $BM(2)(E'_3, \psi_2)$ with the involution (b) as defined in Proposition [6.](#page-8-0)

Theorem 9. The algebra $(BM(2)(E'_3, \psi_2), (b))$ satisfies the (b) -identity $Y^3 = 0$ in (b)-symmetric variables and the (b)-identity $Z^2 = 0$ in (b)-skew symmetric variables.

Proof of Theorem [9.](#page-10-9) In the algebra $(BM(2)(E'_3, \psi_2), (b))$ any (b) -skew symmetric variable Z is a diagonal matrix and $Z^2 = 0$ as $y_i^2 = 0$ for $i = 1,..., 4$.

There is a package written in the system for computer algebra *Mathematica* [\[10\]](#page-10-10) for manipulating in finite dimensional Grassmann algebras. Using it a programme was written by the author giving an alternative way of confirming the validity of the corresponding theorems in the paper.

REFERENCES

- [1] S. Amitsur, "Identities in rings with involution," *Izrael J. of Mathematics*, vol. 7, pp. 63–68, 1969, doi: [10.1007/BF02771748.](http://dx.doi.org/10.1007/BF02771748)
- [2] N. Anisimov, "Codimensions of identities with the Grassmann algebra involution," *Mosc. Univ. Math. Bull.*, vol. 56, no. 3, pp. 25–29, 2001.
- [3] A. Berele and A. Regev, "Exponential growth for codimensions of some P.I. algebras," *J. Algebra*, vol. 241, pp. 118–145, 2001, doi: [10.1006/jabr.2000.8672.](http://dx.doi.org/10.1006/jabr.2000.8672)
- [4] O. Di Vincenzo, "On the graded identities of $M_{1,1}(E)$," *Israel J. Math.*, vol. 80, pp. 323–335, 1992, doi: [10.1007/BF02808074.](http://dx.doi.org/10.1007/BF02808074)
- [5] V. Drensky and A. Giambruno, "On the *-polynomial identities of minimal degree for matrices with involution," *Boll. Unione Math. Ital. A(7)*, vol. 9, no. 3, pp. 471–482, 1995.
- [6] A. Giambruno and A. Valenti, "On minimal *-identities of matrices," *Linear and Multilin. Algebra*, vol. 39, pp. 309–323, 1995, doi: [10.1080/03081089508818405.](http://dx.doi.org/10.1080/03081089508818405)
- [7] D. Krakowski and A. Regev, "The polynomial identities of the Grassmann algebra," *Trans. Amer. Math. Soc.*, vol. 181, pp. 429–438, 1973, doi: [10.2307/1996643.](http://dx.doi.org/10.2307/1996643)
- [8] D. La Mattina and P. Misso, "Algebras with involution and linear codimendion growth," *J. Algebra*, vol. 305, pp. 270–291, 2006, doi: [10.1016/j.jalgebra.2006.06.044.](http://dx.doi.org/10.1016/j.jalgebra.2006.06.044)
- [9] D. Levchenko, "Finite basis of identities with an involution for the second order matrix algebra (in Russian)," *Serdica Math. J.*, vol. 8, no. 1, pp. 42–56, 1982.
- [10] A. Mihova and T. Rashkova, "Usage of Mathematica in manipulating with Grassmann entries (in Bulgarian)," *Proc. of Ruse University, ser. 5.1*, vol. 41, pp. 22–27, 2008.

- [11] T. Rashkova, "Involution matrix algebras - identities and growth," *Serdica Math. J.*, vol. 30, no. 2-3, pp. 239–282, 2004.
- [12] T. Rashkova, "Nilpotency in involution matrix algebras over algebra with involution," *Mathematics and Education in Mathematics*, pp. 143–150, 2009.
- [13] T. Rashkova, "Matrix algebras over Grassmann algebras and their PI-structure," *Acta Universitatis Apulensis, Special Issue*, pp. 169–184, 2011.
- [14] L. Rowen, "A simple proof of Kostant's theorem and an analogue for the symplectic involution," *Contemp. Math.*, vol. 13, pp. 207–215, 1982.
- [15] S. Tumurbat and R. Wiegandt, "A-radicals of involution rings," *South Asian Bull. Math.*, vol. 29, no. 2, pp. 393–399, 2005.
- [16] U. Vishne, "Polynomial identities of $M_n(G)$," *Communs. in Algebra*, vol. 30, no. 1, pp. 443–454, 2002.
- [17] M. Wenxin and M. Racine, "Minimal identities of symmetric matrices," *Trans. Amer. Math. Soc.*, vol. 320, no. 1, pp. 171–192, 1990, doi: [10.1090/S0002-9947-1990-0961598-6.](http://dx.doi.org/10.1090/S0002-9947-1990-0961598-6)

Author's address

Tsetska Rashkova

University of Ruse, Department of Mathematics, 8 Studentska Str., 7017 Ruse, Bulgaria *E-mail address:* tsrashkova@uni-ruse.bg