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Abstract. We have posed a version of the Hyers-Ulam stability problem by substituting addi-
tion in the quadratic functional equation with the maximum operation, to be called maximum
preserving functional equations.
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1. INTRODUCTION

The stability problem was first posed by S. M. Ulam (see [32]) in the terms:
“LetG1 be a group and letG2 be a metric group with a metric d.:; :/.
Given � > 0, does there exist a ı > 0 such that if a function h WG1!

G2 satisfies the inequality d.h.xy/;h.x/h.y// < ı for all x;y 2G1;
then there is a homomorphismH WG1!G2 with d.h.x/;H.x// < �
for all x 2G1? ”

If the answer is affirmative, we say that the functional equation for homomorph-
isms is stable.

D. H. Hyers was the first mathematician to present the result concerning the sta-
bility of functional equations. He brilliantly answered the question of Ulam for the
case where G1 and G2 were assumed to be Banach spaces (see [17]).

Since then various problems of stability on various spaces have arisen. For ex-
ample: the stability of linear functional equation [5,6], quadratic and cubic functional
equations [12,21,24,26,27,31], Jensen and Cauchy-Jensen functional equations [20],
pexiderial functional equation [25, 29], non-Archimedean functional equation [19],
functional differential equation [22], derivations and linear functions [7, 23], entropy
equation [13–15], functional inequalities [11, 16, 18, 28]are some but not all.

N. K. Agbeko has studied the stability of maximum preserving functional equa-
tions motivated by the optimal average (see [1–4]). He has replaced addition opera-
tion with the maximum operation on a given Banach lattice.
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The functional equation f .xCy/Cf .x�y/D 2f .x/C2f .y/ is called a quad-
ratic functional equation. F. Skof [30] was the first person to prove the Hyers-Ulam
stability of the quadratic functional equation for functions f W E1! E2 where E1

and E2 are a normed space and a Banach space, respectively. P. W. Cholewa [8]
demonstrated that Skof’s theorem is also valid if E1 is replaced with an Abelian
group, G. I. Fenyö [10] improved that result by replacing the bound .1=2/ı with the
best possible one, .1=3/.ıCkf .0/k/. Some other generalized results are obtained
by S. Czerwik [9].

We used the technique of [3] and obtain following results about quadratic func-
tional equation.

2. MAIN RESULTS

Let us recall some necessary definitions.
If B is a Banach lattice, then BC stands for its positive cone, i.e.

BC D fx 2 B W x � 0g D fjxj W x 2 Bg:

Given two Banach lattices X and Y we say that a functional F W X ! Y is cone-
related if F.XC/D fF.jxj/ W x 2 Bg � Y C(see [3]).

Let X and Y be two Banach lattices and F W X ! Y be a cone-related functional,
we may have following properties:

I) Maximum Preserving Functional Equation: F.jxj_ jyj/
D F.jxj/_F.jyj/ for all members x;y 2X (see [3]).

II) Homogeneity of degree 2: F.˛jxj/ D ˛2F.jxj/ for all x 2 X and every
number ˛ 2 Œ0;1/.

III) Continuity From Below On The Positive Cone: The identity lim
n!1

F.xn/

D F.limn!1xn/ holds for every increasing sequence
.xn/� XC (see [3]).

IV): For any increasing sequence .xn/�X
C the inequality hereafter holds

lim
n!1

lim
k!1

4�nF.2nxk/� lim
k!1

lim
n!1

4�nF.2nxk/

provided that the limits exist.
V): For any increasing sequence .xn/�X

C the inequality hereafter holds

lim
n!1

lim
k!1

4nF.2�nxk/� lim
k!1

lim
n!1

4nF.2�nxk/

provided that the limits exist.
We shall use the technics in [3] to prove the following two thearems.

Theorem 1. LetX and Y be two Banach lattices and F WX! Y be a cone-related
functional for which there are numbers � > 0, ı � 0 and p < 2 such that

kF.� jxj_�jyj/� .�2F.jxj/_�2F.jyj//k � ıC�.kxkpCkykp/ (2.1)
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for all x;y 2X and �;� 2 RC; then there is a unique cone-related mapping T WX!
Y which satisfies properties I, II and inequality.

kT .jxj/�F.jxj/k �
1

3
ıC

2�

4�2p
kxkp (2.2)

Moreover, if F is continuous from below, then in order that T be continuous from
below it is necessary and sufficient that F enjoy property (IV).

Proof. We first show by induction that for any fixed x 2X and n 2N,

kF.2n
jxj/�4nF.jxj/k �

1

3
.4n
�1/ıC2 �4n�1�kxkp

n�1X
jD0

2j.p�2/: (2.3)

For nD 1, consider � D �D 2 and x D y in inequality (2.1):

kF.2jxj/�4F.jxj/k � ıC2�kxkp:

Suppose (2.3) is true for nD k, we must prove it for nD kC1. Let 2x be replaced
by x then inequality (2.3) for nD k becomes:

kF.2k
j2xj/�4kF.j2xj/k �

1

3
.4k
�1/ıC2 �4k�1�k2xkp

k�1X
jD0

2j.p�2/:

The triangle inequality yields

kF.2kC1
jxj/�4kC1F.jxj/k

� kF.2kC1
jxj/�4kF.j2xj/kCk4kF.j2xj/�4kC1F.jxj/k

�
1

3
ı.4kC1

�1/C2 �4k�kxkp
kX

jD1

2j.p�2/
C2 �4k�kxkp

D
1

3
ı.4kC1

�1/C2 �4k�kxkp
kX

jD0

2j.p�2/;

then inequality (2.3) is true for all n 2N. Now, divide both side of inequality (2.3)
by 4n :

k4�nF.2n
jxj/�F.jxj/k �

1

3
.1�4�n/ıC

�

2
kxkp

n�1X
jD0

2j.p�2/:

Since
n�1X
jD0

2j.p�2/
�

1

1�2p�2
D

4

4�2p
, we obtain that

k4�nF.2n
jxj/�F.jxj/k �

1

3
ıC

2�

4�2p
kxkp: (2.4)
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For every n 2 N, define the mapping Tn W X ! Y by Tn.x/ D 4
�nF.2njxj/. If

x D 0 it is trivial to see that fTn.0/g is a Cauchy sequence. If x 2 Xnf0g for n > m,
inequality (2.3) implies

kTn.jxj/�Tm.jxj/k D k4
�nF.2n

jxj/�4�mF.2m
jxj/k

D 4�n
kF.2n�m

�2m
jxj/�4n�mF.2m

jxj/k

� 4�n3�1.4n�m
�1/ıC2 �4�m�1�k2mxkp

n�m�1X
jD0

2j.p�2/:

Since
n�m�1X

jD0

2j.p�2/
�

4

4�2p
we have

kTn.jxj/�Tm.jxj/k � 3
�14�mıC2m.p�2/�1 4

4�2p
�kxkp:

The assumption p < 2 implies that Tn.x/ is a Cauchy sequence. Since Y is complete
we can define

T .jxj/D lim
n!1

Tn.jxj/ (2.5)

for any x 2X . Clearly, T is a cone-related operator. Let us show that T is maximum
preserving. Let � D �D 2n in (2.1) we have

kF.2n.jxj_ jyj//�22n.F.jxj/_F.jyj//k � ıC�.kxkpCkykp/:

Substituting x with 2nx and y with 2ny in the last inequality:

kF.4n.jxj_ jyj/�4n.F.2n
jxj/_F.2n

jyj/k � ıC2np�.kxkpCkykp/:

Thus

kF.4�2n.4n.jxj_ jyj//�4�n.F.2n
jxj/_F.2n

jyj//k

� 4�2nıC2n.p�4/�.kxkpCkykp/

By letting n!1 we get for all x;y 2X the equality

kT .jxj_ jyj/�T .jxj/_T .jyj/k D 0

or equivalently
T .jxj_ jyj/D T .jxj/_T .jyj/;

because,
lim

n!1
4�2nF.22n

j´j/D lim
m!1

4�mF.2m
j´j/; ´ 2X

Now, we must show T .r jxj/D r2T .jxj/ for all x 2X and r 2 Œ0;1/. Use inequality
(2.1) with �D � , y D 0 and substituting � with 2n� :

kF.2n� jxj/� .2n�/2F.jxj/k � ıC�kxkp:
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If we replace x with 2nx:

kF.4n� jxj/�4n�2F.2n
jxj/k � ıC�kxkp2np:

Divide by 42n both side of above inequality:

k4�2nF.4n� jxj/�4�n�2F.2n
jxj/k � 4�2nıC�kxkp2n.p�4/:

Since p < 2 and

lim
n!1

4�2nF.4n� jxj/D �2 lim
n!1

4�nF.2n
jxj/D �2T .jxj/;

by taking ´D � jxj, we have

r2T .jxj/D lim
n!1

4�2nF.4n� jxj/D lim
n!1

4�2nF.4n
j´j/D T .j´j/D T .� jxj/:

For the validity of inequality (2.2); it is enough to take limit in (2.4) when n!1.
For the uniqueness of T : assume there exist cone-related maps S and T from X to
Y such that

kT .jxj/�F.jxj/k � a1Cb1kxk
p;

kS.jxj/�F.jxj/k � a2Cb2kxk
p;

for all x 2Xnf0g; Since T .2njxj/D 4nT .jxj/ and S.2njxj/D 4nS.jxj/ we have

kT .jxj/�S.jxj/k D 4�n
kT .2n

jxj/�S.2n
jxj/k

� 4�n.kT .2n
jxj/�F.2n

jxj/kCkS.2n
jxj/�F.2n

jxj/k/

D 4�n.a1Ca2/C2
n.p�2/.b1Cb2/kxk

p;

since p < 2,when n!1 we have

T .jxj/D S.jxj/:

To end the proof, we simply mention that the moreover part can be carried out exactly
the same way its counterpart in Theorem 1 was proved in [3]. �

Theorem 2. LetX and Y be two Banach lattices andF WX! Y be a cone-related
functional for which there are numbers � > 0 and p > 2 such that

kF.� jxj_�jyj/� �2F.jxj/_�2F.jyj/k � �.kxkpCkykp/ (2.6)

for all x;y 2 X and �;� 2 RC ; then there is a cone-related mapping T W X ! Y

such that

kT .jxj/�F.jxj/k �
2

2p�4
�kxkp (2.7)

, if p > 4 then T is unique and satisfies properties I, II .
Moreover, if F is continuous from below, then in order that T be continuous from

below it is necessary and sufficient that F enjoy property (V).
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Proof. We first show by induction that for any fixed x 2X and n 2N,

kF.jxj/�4nF.2�n
jxj/k � 21�p�kxkp

n�1X
jD0

2j.2�p/ (2.8)

For nD 1, consider � D �D 2 and x D y D t=2 in inequality (2.6):

kF.jt j/�4F.2�1
jt j/k � 21�p�ktkp

Suppose (2.8) is true for nD k, we must prove it for nD kC1. The triangle inequal-
ity yields

kF.jxj/�4kC1F.2�k�1
jxj/k

� kF.jxj/�4kF.2�k
jxj/kCk4kF.2�k

jxj/�4kC1F.2�k�1
jxj/k

D kF.jxj/�4kF.2�k
jxj/kC4k

kF.2�k
jxj/�4F.2�1.2�k

jxj//k

� 21�p�kxkp
k�1X
jD0

2j.2�p/
C21�p�kxkp2k.2�p/

D 21�p�kxkp
kX

jD0

2j.2�p/

Then inequality (2.8) is true for all n 2N. Next, define Tn.jxj/D 4
nF.2�njxj/, for

x D 0 it is trivial to see fTn.0/g is a Cauchy sequence; If x 2 Xnf0g for n > m, use
(2.8) then we have:

kTn.jxj/�Tm.jxj/k D 4
m
k4n�mF.2�.n�m/

j2�mxj/�F.j2�mxj/k

� 4m.21�p�k2�mxkp/

n�m�1X
jD0

2j.2�p/

Since
n�m�1X

jD0

2j.2�p/
�

2p

2p�4
we have

kTn.jxj/�Tm.jxj/k � 2
m.2�p/

�
2

2p�4
�kxkp

The assumption p > 2 implies that fTn.jxj/g is a Cauchy sequence. Since Y is
complete we can define T WX ! Y ,

T .jxj/D lim
n!1

Tn.jxj/ (2.9)

for any x 2 X . Clearly, T is a cone-related operator. Now, assume p > 4, we must
show T is maximum preserving. Let � D �D 2�n in (2.6):

kF.2�n.jxj_ jyj//�2�2n.F.jxj/_F.jyj//k � �.kxkpCkykp/

Substituting x with 2�nx and y with 2�ny in the last inequality:

kF.4�n.jxj_ jyj//�4�n.F.2�n
jxj/_F.2�n

jyj//k � �2�np.kxkpCkykp/
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Thus

k42nF.4�n
jxj_ jyj/�4n.F.2�n

jxj/_F.2�n
jyj//k � 2n.4�p/�.kxkpCkykp/

By letting n!1 we get for all x;y 2X the equality

kT .jxj_ jyj/�T .jxj/_T .jyj/k D 0

or equivalently
T .jxj_ jyj/D T .jxj/_T .jyj/

because,
lim

n!1
42nF.2�2n

j´j/D lim
m!1

4mF.2�m
j´j/; ´ 2X

For the proof of T .r jxj/D r2T .jxj/ for all x 2X and r 2 Œ0;1/, use equation (2.6)
with �D � , y D 0 and substituting � with 2�n� :

kF.2�n� jxj/� .2�n�/2F.jxj/k � �kxkp

If we replace x with 2�nx in this inequality, then

kF.4�n� jxj/�4�n�2F.2�n
jxj/k � �kxkp2�np

which implies:

k42nF.4�n� jxj/�4n�2F.2�n
jxj/k � �kxkp2n.4�p/

Since p > 4 :

lim
n!1

42nF.4�n� jxj/D �2 lim
n!1

4nF.2�n
jxj/D �2T .jxj/:

Taking ´D � jxj, we have

r2T .jxj/D lim
n!1

42nF.4�n� jxj/D lim
n!1

42nF.4�n
j´j/D T .j´j/D T .� jxj/:

Thus T .� jxj/D �2T .jxj/.
Letting n!1 in (2.8) proves the validity of inequality (2.7). To show the unique-

ness of T assume there exist cone-related maps S and T from X to Y such that

kT .jxj/�F.jxj/k � a1kxk
p;

kS.jxj/�F.jxj/k � a2kxk
p;

for all x 2 Xnf0g; Since T .2�njxj/ D 4�nT .jxj/ and S.2�njxj/ D 4�nS.jxj/ we
have

kT .jxj/�S.jxj/k D 4n
kT .2�n

jxj/�S.2�n
jxj/k

� 4n.kT .2�n
jxj/�F.2�n

jxj/kCkS.2�n
jxj/�F.2�n

jxj/k/

D 2n.2�p/.a1Ca2/kxk
p

since p > 4,when n!1 we have

T .jxj/D S.jxj/:
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To end the proof, we simply mention that the moreover part can be carried out exactly
the same way its counterpart in Theorem 1 was proved in [3]. �

Remark 1. The condition p > 4 is used for the technique of the proof and we think
it is necessary. However we could not find any good example (see [9]).
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