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Abstract. The main purpose of this paper is to study the existence of solutions of stochastic
subdifferential inclusions systems driven by standard Brownian motion. We first use the sub-
jectivity theorem to obtain the existence result of subdifferential inclusion, and then, by applying
the Banach contraction principle we obtain the solution of the corresponding stochastic system.
Our results are inspired by the one in which the existence and uniqueness of solutions to the
subdifferential inclusion system is given.
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1. INTRODUCTION

The theory of stochastic system has been rising as an important field of study in
recent decades. A great number of applications to many problems in control theory,
biology, physics, mechanics and electrical engineering can be modelled by stochastic
system; see [2, 5, 11, 12, 17, 19, 20] and the references cited therein. Furthermore, the
evolution inclusions play a significant role as a tool in the investigation of different
dynamical process and phenomena represented by the inclusion with a discontinuous
or multi-valued right-hand side, arising, specifically, in the investigation of dynamics
of economical, dynamic Coulomb friction problems and biological macrosystems.
Also, they are extremely valuable in demonstrating existence theorems in control
theory and differential variational inequalities. Stochastic evolution inclusions in in-
finite dimensional spaces, have not been considered, particular, stochastic evolution
inclusions of Clarke’s subdifferential type.
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The study for the existence of evolution systems described by the inclusions of
Clarke’s subdifferential type is still untreated topic in the literature and this fact is
the motivation of the present work. In fact, the Clarke’s subdifferential has important
applications in mechanics and engineering, especially in nonsmooth analysis and op-
timization (see [1, 15]). The evolution inclusions with Clarke’s subdifferential type
have been studied in many papers (see [3, 4, 6–10, 13–16, 18]).

To the best of our knowledge, there is no paper which investigates the study of
stochastic evolution inclusions driven by a standard Brownian motion. Thus, we will
make the first attempt to study such problems in this paper. Our results are inspired
by the one in where the existence and uniqueness of solutions to the system is given
(see Chapter 4 of [15]).

The rest of this paper is organized as follows, In Section 2 we introduce some
notations, concepts, and basic results about standard Brownian motion and we recall
some preliminary results about Clarke’s Subdifferential and pseudomonotone oper-
ators. The existence and uniqueness of solutions are discussed in Section 3 by using
the subjectivity theorem and Banach contraction principle.

2. PRELIMINARIES

LetH be a reflexive Banach space. Let .˝;�;P / be a complete probability space
with probability measure P on˝ and a filtration f�t jt 2 Œ0;T �g generated by theH -
valued Wiener process fW.s/ W 0� s � tg defined on the probability space .˝;�;P /
and �T D � . Let L2.˝;�T ;H/ be the Hilbert space of all �T -measurable square
integrable random variables with values inH . Moreover, letL2.0;T IL2.˝;�T ;H//
be the Banach space of continuous maps from .0;T / into L2.˝;�T ;H/ satisfying
E

R T
0 kx.t/k

2dt < C1. Clearly, L2.0;T IL2.˝;�T ;H// is a Banach space with
norm kxk2 D .E

R T
0 kx.t/k

2dt/1=2.
Let X be a Banach space with the norm denoted by k � kX . Denote by X� its dual

space and h�; �iX��X the duality pairing between X� and X . We specify the strong
convergence by! and the weak convergence by *.

Now, we give some basic preliminaries which can be founded in [15].

Definition 1. Let F WX �X� be a multi-valued mapping. Then F is said to be
(i) monotone, if for each x;y 2X ,

hy��x�;y�xi � 0; 8x� 2 F.x/ and y� 2 F.y/:

(ii) maximal monotone, if the graph of the monotone mapping F is not included
in the graph of any other monotone mapping with the same domain.

(iii) pseudomonotone, if
(a) for each x 2X , the set F.x/ is nonempty, bounded, closed and convex;
(b) the mapping F is u.s.c. from each finite-dimensional subspace of X to
X� endowed with the weak topology;
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(c) if fxng �X with xn*x in X , and x�n 2 F.xn/ is such that

limsup
n!1

hx�n ;xn�xi � 0;

then for every y 2X , there exists x�.y/ 2 F.x/ such that

hx�.y/;x�yi � liminf
n!1

hx�n ;xn�yi:

(iv) generalized pseudomonotone, if for any sequence fxng � X with xn*x in
X , and x�n 2 F.xn/ with x�n *x� such that

limsup
n!1

hx�n ;xn�xi � 0;

we have x� 2 F.x/ and hx�n ;xni ! hx
�;xi.

Definition 2. Let F W X ! X� be a single-valued mapping. Then F is said to be
pseudomonotone, if it is bounded and satisfies the inequality

hFx;x�yi � liminf
n!1

hFxn;xn�yi for all x 2X;

where xn*x in X with

limsup
n!1

hFxn;xn�xi � 0:

Definition 3. Let F W X � X� be a multi-valued mapping. We say that F is
coercive if either D.F / (the domain of F ) is bounded or D.F / is unbounded and

lim
kxkX!1;x2D.F /

inffhx�;xiX��X jx� 2 F.x/g
kxkX

DC1:

Definition 4. Let F W X ! X� be a single-valued mapping. We say that F is
coercive if

lim
kxkX!1

hFx;xiX��X

kxkX
DC1:

Moreover, F is said to be coercive with constant ˛ if there exists ˛ > 0 such that

hFx;xiX��X � ˛kxk
2
X for all x 2X:

Theorem 1 (Subjectivity Theorem, [15]). Let X be a reflexive Banach space and
F W X � X� be pseudomonotone and coercive. Then F is surjective, i.e., R.F /D
X�.

Next, we proceed with the definition of the Clarke subdifferential for a locally
Lipschitz function j WX ! R (one can see [1,15]). We denote by j 0.xIv/ the Clarke
generalized directional derivative of j at the point x 2X in the direction v 2X , that
is

j 0.xIv/ WD limsup
�!0C; �!x

j.�C�v/�j.�/

�
:
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Recall also that the Clarke subdifferential or generalized gradient of j at x 2 X ,
denoted by @j.x/, is a subset of X� given by

@j.x/ WD fx� 2X� j j 0.xIv/� hx�;vi for all v 2Xg:

Lemma 1 ([15], Proposition 3.23). If j WX ! R is locally Lipschitz function on a
subset E of X , then

(i) the function .x;v/ 7! j 0.xIv/ is u.s.c. from E �X into R;
(ii) for every x 2 E the subgradient @j.x/ is a nonempty, convex, and weakly�

compact subset of X� which is bounded by the Lipschitz constant Kx > 0 of
j near x;

(iii) the graph of @j is closed in X �X�w�;
(iv) the multi-valued mapping @j is u.s.c. from E into X�w� , i.e., @j is weakly

u.s.c. from E into X�.

3. EXISTENCE RESULTS

Let X be a reflexive Banach space, Y be a Banach space and M W X ! Y be a
given linear continuous operator. We denote by M � W Y �!X� the adjoint operator
to M . Let A W .0;T /�X !X�; J W .0;T /�X ! R and f W .0;T /!X� be given.
Let X D L2.0;T IX/. It is clear that X� D L2.0;T IX�/.

We first consider the subdifferential inclusion problem of the following problem:
Find x 2X such that

A.t;x.t//CM �@J.t;Mx.t// 3 f .t/ a.e. t 2 .0;T /; (3.1)

where f 2X� and @J.t; �/ denotes the Clarke subdifferential of J.t; �/

Definition 5. A function x 2X is called a solution to problem (3.1) if and only if
there exists � 2X� such that(

A.t;x.t//C �.t/D f .t/ a.e. t 2 .0;T /;
�.t/ 2M �@J.t;Mx.t// a.e. t 2 .0;T /:

We will make the following hypotheses:
.HA/ A W .0;T /�X !X� is such that

(i) A.�;x/ is measurable on .0;T / for all x 2X ;
(ii) A.t; �/ is pseudomonotone and coercive with constant ˛ > 0, for a.e. t 2

.0;T /;
(iii) A.t; �/ is strongly monotone for a.e. t 2 .0;T /, i.e.,

hA.t;x1/�A.t;x2/;x1�x2i �m1kx1�x2k
2

for all x1;x2 2X , a.e. t 2 .0;T / with m1 > 0.
.HJ / J W .0;T /�X ! R is such that

(i) J.�;x/ is measurable on .0;T / for all x 2X ;
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(ii) J.t; �/ is locally Lipschitz on X for a.e. t 2 .0;T /;
(iii) k@J.t;x/kX� � c0C c1kxkX for all x 2X , a.e. t 2 .0;T / with c0; c1 > 0;
(iv) h´1�´2;x1�x2i � �m2kx1�x2k2 for all ´i 2 @J.t;xi /;xi 2 X;i D 1;2,

a.e. t 2 .0;T / with m2 > 0;
(v) J ı.t;xI�x/� d0.1Ckxk/ for all x 2X , a.e. t 2 .0;T / with d0 > 0.

.HM / M WX ! Y is compact.
From the idea of Theorem 4.11 of [15], we have the following result.

Theorem 2. Assume that hypotheses .HA/; .HM / hold. If one of the following
hypotheses:

(a) .HJ / (i)-(iv) and ˛ > c1kMk2,
(b) .HJ /,

is satisfied and m1 > m2kMk2 holds, then problem (3.1) has a unique solution x 2
X. Moreover, the solution satisfies

kxkX � c.1Ckf kX�/ (3.2)

with some constant c > 0.

Proof. Let t 2 .0;T / be fixed. We define the multi-valued mapping Ft WX �X�

by
Ft .x/D A.t;x/CM

�@J.t;Mx/

for x 2 X . We will show that Ft is pseudomonotone and coercive. First, we prove
the pseudomonotonicity of Ft and, to this end, we use Proposition 3.58 of [15]
which states that a generalized pseudomonotone operator which is bounded and has
nonempty, closed and convex values is pseudomonotone.

From Lemma 1, it is clear that Ft has nonempty, closed and convex values in X�.
From the boundedness of A.t; �/ and (iii) of .HJ /, it follows that Ft is a bounded
map.

We now show that Ft is a generalized pseudomonotone operator. Let xn;x 2
X; xn*x in X , x�n ;x

� 2X�; x�n *x� in X�, x�n 2 Ft .xn/ and assume that

limsuphx�n ;xn�xi � 0:

We prove that x� 2 Ft .x/ and

hx�n ;xni ! hx
�;xi:

We have x�n D A.t;xn/C �n with �n D M �´n;´n 2 @J.t;Mxn/. From the com-
pactness of M it follows that Mxn!Mx in Y . From (iii) of .HJ /, passing to a
subsequence if necessary, we have ´n* ´ in Y � with some ´ 2 Y �, hence �n! �

with some � 2 X�. By (iii) of Lemma 1, since ´n 2 @J.t;Mxn/, we deduce that
� DM �´ 2M �@J.t;Mx/. Furthermore, from the equality

hx�n ;xn�xi D hA.t;xn/;xn�xiCh�n;xn�xi

D hA.t;xn/;xn�xiCh´n;Mxn�MxiY ��Y ;
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we obtain
limsuphA.t;xn/;xn�xi D limsuphx�n ;xn�xi � 0:

Applying the pseudomonotonicity of A.t; �/, by Proposition 3.66 of [15] we deduce
that A.t;xn/ * A.t;x/ in X� and limhA.t;xn/;xn � xi D 0. Therefore, passing
to the limit in the equation x�n D A.t;xn/C �n, we have x� D A.t;x/C � which,
together with � 2M �@J.t;Mx/, implies x� 2A.t;x/CM �@J.t;Mx/DFtx. Next,
from above we obtain

limhx�n ;xni D limhA.t;xn/;xn�xiC limhA.t;xn/;xiC limh�n;xni

D hA.t;x/;xiCh�;xi D hx�;xi

which, according to Definition 1, shows that F is a generalized pseudomonotone
operator.

Next, from (iii) of .HJ / we have

kM �@J.t;Mx/k � kM �kk@J.t;Mx/kY �

� kM �k.c0C c1kMkkxkX /;

jhM �@J.t;Mx/;xij � kM �@J.t;Mx/kkxk

� c1kMk
2
kxk2C c0kMkkxk;

hence
hM �@J.t;Mx/;xi � �c1kMk

2
kxk2� c0kMkkxk:

Therefore, since A.t; �/ is coercive with constant ˛ > 0, we have

hFxx;xi D hA.t;x/;xiChM
�@J.t;Mx/;xi

� .˛� c1kMk
2/kxk2� c0kMkkxk

for all x 2X .
In case (a), ˛ > c1kMk2, hence

lim
kxk!1

inffhx�;xijx� 2 Ftxg
kxk

DC1: (3.3)

In case (b), let x 2X and � 2M �@J.t;Mx/. So � DM �´ and ´ 2 @J.t;Mx/. From
(iv) of .HJ / we have

�h´;MxiY ��Y � J
ı.t;MxI�Mx/� d0.1CkMxk/� d0.1CkMkkxk/:

Hence, it follows that

h�;xiY ��Y D hM
�´;xi D h´;MxiY ��Y � �d0.1CkMkkxk/;

which shows that .3:3/ is also true. Then the operator Ft is coercive.
Applying Theorem 1 we deduce that Ft is surjective, which implies that the fol-

lowing problem

A.t;x/CM �@J.t;Mx/ 3 f a.e. t 2 .0;T / (3.4)
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has a solution x 2X , where f 2X�. Moreover, from the coercivity of Ft , we have

.˛� c1kMk
2/kxk2X � c0kMkkxkX � kf kX�kxkX

which implies that the following estimate

kxkX � c.1Ckf kX�/

holds with a positive constant c depending on c0; c1 and ˛.
We now prove the uniqueness to problem (3.4). Let x1;x2 2 X be s solution to

problem (3.4). Then there exist ´i 2 Y � and ´i 2 @J.t;Mxi / such that

A.t;xi /CM
�´i D f for i D 1;2: (3.5)

Subtracting the above two equations, multiplying the result by x1�x2, and using the
strong monotonicity of A.t; �/, we have

m1kx1�x2k
2
ChM �´1�M

�´2;x1�x2i � 0: (3.6)

Next, by (iv) of .HJ / and m1 >m2kMk2, we obtain

hM �´1�M
�´2;x1�x2i D h´1�´2;Mx1�Mx2iY ��Y

� �m2kMx1�Mx2k
2
Y

� �m2kMk
2
kx1�x2k

2
X : (3.7)

Combine (3.6) and (3.7) we obtain

.m1�m2kMk
2/kx1�x2k

2
X � 0;

which in view of m1 > m2kMk2, implies x1 D x2. Subsequently, from (3.5) we
deduce that ´1 D ´2 which completes the proof of the uniqueness. Therefore, we
deduce that for a.e. t 2 .0;T / problem (3.1) has a unique solution x.t/ 2 X and,
moreover,

kx.t/kX � c.1Ckf .t/kX�/ (3.8)
for a.e. t 2 .0;T / with c > 0. We point out the constant c is independent of t .

We prove that the function t 7! x.t/ defined above is measurable on .0;T /. To
this end, given g 2X� we denote by ! 2X the unique solution of the inclusion

A.t;!/CM �@J.t;M!/ 3 g a.e. t 2 .0;T /: (3.9)

Since A and J depend on the parameter t , the solution ! is also a function of t , i.e.,
! D !.t/. We claim that the solution ! depends continuously on the right-side g, for
a.e. t 2 .0;T /. Indeed, let g1;g2 2 X� and !1.t/;!2.t/ 2 X be the corresponding
solutions to problem (3.9). From Definition 5 we have

A.t;!1.t//C �1.t/D g1 a.e. t 2 .0;T /; (3.10)

A.t;!2.t//C �2.t/D g2 a.e. t 2 .0;T /; (3.11)
�1.t/ 2M

�@J.t;M!1.t//; �2.t/ 2M
�@J.t;M!2.t// a.e. t 2 .0;T /:

Subtracting (3.11) from (3.10), multiplying the result by !1.t/�!2.t/, we get
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hA.t;!1.t//�A.t;!2.t//;!1.t/�!2.t/iCh�1.t/� �2.t/;!1.t/�!2.t/i

D hg1�g2;!1.t/�!2.t/i

for a.e. t 2 .0;T /. Since �i .t/ 2M �´i .t/ with ´i .t/ 2 @J.t;M!i .t// for a.e. t 2
.0;T / and i D 1;2, by (iii) of .HA/ and (iv) of .HJ /, we obtain

m1k!1.t/�!2.t/k
2
X �m2kMk

2
k!1.t/�!2.t/k

2
X D kg1�g2kX�k!1.t/�!2.t/kX

for a.e. t 2 .0;T /. Exploiting m1 >m2kMk2, we get

k!1.t/�!2.t/k
2
�ecbkg1�g2kX� for a.e. t 2 .0;T /; (3.12)

whereec D .m1�m2kMk2/�1 is independent of t . Hence, we have that the mapping
X� 3 g 7! !.t/ 2X is continuous, for a.e. t 2 .0;T /, which proves the claim. Now,
by (3.12) and the measurability of f , we deduce that the solution x of problem (3.1)
is measurable on .0;T /. Since f 2 X�, from the estimate (3.8), we conclude that
x 2X, and moreover, (3.2) holds. The proof of the theorem is complete. �

Let X D L2.˝;�T ;H/;X D L2.0;T IL2.˝;�T ;H//. We now study the
stochastic subdifferential inclusion problem having the following form:

Find x 2X such that

A.t;x.t//C

Z t

0

�.s;x.s//dW.s/CM �@J.t;Mx.t// 3 f .t/ a.e. t 2 .0;T /; (3.13)

where W is a standard Brownian motion and � W .0;T /�X ! L2.H IX�/.

Definition 6. A function x 2X is called a solution to problem (3.13) if and only
if there exists � 2X� such that(

A.t;x.t//C
R t
0 �.s;x.s//dW.s/C �.t/D f .t/ a.e. t 2 .0;T /;

�.t/ 2M �@J.t;Mx.t// a.e. t 2 .0;T /:

We need the following hypothesis.
.H� / There exist constants l1; l2 > 0 such that

k�.t;x/k2 � l1.1Ckxk/; k�.t;x1/��.t;x2/k
2
� l2kx1�x2k

for all x;x1;x2 2X .

Theorem 3. Assume that hypotheses .HA/, .HM /, .H� / hold. If one of the fol-
lowing hypotheses:

(a) .HJ / (i)-(iv) and ˛ > c1kMk2,
(b) .HJ /,

is satisfied and m1 > m2kMk2 holds, then problem (3.13) has a unique solution in
X.
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Proof. Let � 2X�, We denote by x� 2X the solution of the inclusion

A.t;x�.t//CM
�@J.t;Mx�.t// 3 f .t/��.t/ a.e. t 2 .0;T /; (3.14)

guaranteed by Theorem 2. We know that x� 2X is unique and it satisfies

kx�kX � c.1Ckf kX�Ck�kX�/ (3.15)

with c > 0. We consider the operator � WX�!X� defined by

.��/.t/D

Z t

0

�.s;x�.s//dW.s/ for all � 2X�; a.e. t 2 .0;T /: (3.16)

It is easy to check that the operator� is well defined. Indeed, for �2X�, From .H� /

we have

Ek

Z t

0

�.s;x�.s//dW.s/k
2
D

Z t

0

Ek�.s;x�.s//k
2ds

�

Z t

0

l1.1CEkx�.s/k
2/ds

for a.e. t 2 .0;T /. From (3.15) we obtain that the integral in (3.16) is well defined
and the operator � takes valued in X�.

Next, we show that � has a unique fixed point. Let �1;�2 2X� and let x1 D x�1

and x2 D x�2
be the corresponding solutions to (3.14). We have x1;x2 2X and

A.t;x1.t//C �1.t/D f .t/��1.t/ a.e. t 2 .0;T /; (3.17)

A.t;x2.t//C �2.t/D f .t/��2.t/ a.e. t 2 .0;T /; (3.18)
�1.t/ 2M

�@J.t;Mx1.t//; �2.t/ 2M
�@J.t;Mx2.t// a.e. t 2 .0;T /:

Subtracting (3.18) from (3.17), multiplying the result by x1.t/�x2.t/ and using (iii)
of .HA/, (iv) of .HJ /, we obtain

kx1.t/�x2.t/kX �eck�1.t/��2.t/kX� for a.e. t 2 .0;T / (3.19)

withec > 0. From (3.19), for t 2 .0;T / we have

Ek.��1/.t/� .��2/.t/k
2
DEk

Z t

0

.�.s;x1.s//��.s;x2.s///dW.s/k
2

D

Z t

0

Ek�.s;x1.s//��.s;x2.s//k
2ds

� l2

Z t

0

Ekx1.s/�x2.s/k
2ds

� l2ec2Z t

0

Ek�1.s/��2.s/k
2ds;

and consequently,

Ek.�2�1/.t/� .�
2�2/.t/k

2
� l2ec2Z t

0

Ek��1/.s/� .��2/.s/k
2ds
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� l22ec4Z t

0

Z s

0

Ek�1.�/��2.�/k
2d�ds

� l22ec4Z t

0

Ek�1.s/��2.s/k
2ds

Z t

0

ds

D l22ec4t Z t

0

Ek�1.s/��2.s/k
2ds:

Reiterating this inequality k times leads to

Ek.�k�1/.t/� .�
k�2/.t/k

2
� lk2ec2k tk�1

.k�1/Š

Z t

0

Ek�1.s/��2.s/k
2ds

for a.e. t 2 .0;T /. This implies that

k�k�1��
k�2k

2
X� � l

k
2ec2k T k�1

.k�1/Š
k�1��2k

2
X� :

It is easy to verify that for k sufficient large �k is a contraction on X�. Therefore,
the Banach contraction principle implies that � has a unique fixed point �� 2X�.
Then x�� is a solution to problem (3.13), which concludes the existence part of the
theorem.

The uniqueness part follows from the uniqueness of the fixed point of �. In fact,
let x 2X be a solution to problem (3.13) and define the element � 2X� by

�.t/D

Z t

0

�.s;x.s//dW.s/ for all t 2 .0;T /:

It follows that x is the solution to the problem (3.14) and by the uniqueness of solu-
tions to problem (3.14), we obtain x D x�. This implies ��D � and by the unique-
ness of the fixed point of � we have � D ��, hence x D x�� , which concludes the
proof. �

REFERENCES

[1] F. Clarke, Optimization and Nonsmooth Analysis. New York: Wiley, 1983.
[2] T. Duncan, Y. Hu, and B. Pasik-Duncan, “Stochastic Calculus for Fractional Brownian

Motion. I. Theory.” SIAM Journal Control Optimal, vol. 38, pp. 582–612, 2000, doi:
10.1137/S036301299834171X.
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