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Abstract. In this work, we use similarity method to solve fractional order heat equations with
variable coefficients. The fractional derivative is defined in Caputo sense. Two examples are
presented to illustrate how problems are reduced from two-variable partial fractional differential
equations to ordinary ones. Series solutions are obtained for the ordinary problems in the form
of power series. Based on the obtained results, a definition for an error function with generalized
coefficients is proposed in a series form and its convergence is discussed.
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1. INTRODUCTION

The field of fractional calculus has attracted the interest of researchers in many
fields of applied sciences such as mathematics, physics, chemistry, engineering and
even finance and social sciences. This is due to the fact that several definitions have
been proposed for fractional derivatives and fractional integrals and have been util-
ized to present more accurate models for many real life phenomena. These defini-
tions include Riemann-Liouville definition [20], Caputo definition [2], Riesz defini-
tion [21], Riesz-Feller definition [4], and the modified Riemann-Liouville definition
[14]. These definitions have been used for generalizing many existing models into
the form of fractional partial differential equations (FPDEs).

Two main methods have been basically used for obtaining analytic solutions to
FPDEs: the first method is using Laplace transform with Fourier transform and the
second method is the separation of variables technique [20]. But recently several
semi-analytic methods have been also used to present series solution to FPDEs such
as Adomian decomposition method [5] and [8], homotopy analysis method [10] and
[13], homotopy perturbation method [7] and [17], variational iteration method [23]
and [9], and fractional differential transformation method [18] and [22].

Symmetry methods are applicable to different types of linear and non linear par-
tial differential equations. Yet, the research on using these methods for obtaining

c 2016 Miskolc University Press

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/145235673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


246 A. ELSAID, M. S. ABDEL LATIF, AND M. MANEEA

solutions of FPDEs is still in the initial stage. The work reported on the Riemann-
Liouville fractional derivative includes [1] where scaling transformations are derived
for the time-fractional heat equation to reduce it to a fractional differential equation
(FDE) but with Erdelyi-Kober fractional differential operator. Also, similarity solu-
tions for the time- fractional nonlinear conduction equations are presented in [6] to
reduce the considered problems to ordinary FDEs that are solved by analytic and nu-
merical techniques. Whereas for the fractional derivative defined in Caputo sense,
symmetry properties of fractional diffusion equations are studied in [11]. Finally, the
fractional derivative given by Jumarie definition is studied in [3] where the Lie group
method is applied to a space-time fractional diffusion equation.

In this work, we solve variable coefficients fractional-order diffusion equations
with fractional time derivative defined in Caputo sense by using similarity methods
to reduce FPDEs to FDEs with the same fractional derivative. Two examples are
presented where the resulting FDEs are solved via series solutions. From these solu-
tions, a new definition for error function with generalized coefficients is proposed
and its convergence is proved.

This article is arranged as follows. The definition and properties of Caputo frac-
tional derivative are listed in section two. In section three, the technique of applying
the similarity method to transform FPDEs into FDEs is illustrated. In section four,
power-series solutions are obtained to the FDEs and a new definition for an error
function with generalized coefficients is proposed. The conclusion of this work is
summarized in section five.

2. FRACTIONAL CALCULUS

The majority of research in fractional calculus is dedicated to the two definitions
of Riemann-Liouville and Caputo. Yet, the definition proposed by Caputo has been
utilized more in modeling applied problems as it has two advantages. The first ad-
vantage is that the derivative of a constant equals zero and the second one is that
the initial conditions can be expressed in the form of derivatives of integer order.
But with the definition of Caputo, a fractional derivative is defined for differentiable
functions only.

Definition 1. A real function f .t/, t > 0, is said to be in the space C�, � 2 R, if
there exists a real number p > �, such that f .t/D tpf1.t/, where f1.t/ 2 C.0;1/,
and it is said to be in the space Cm� if f m 2 C�; m 2N:

Definition 2. The Riemann-Liouville fractional integral operator of order ˛ � 0
of a function f .t/ 2 C�; �� �1 is defined as8<: J ˛f .t/D 1

� .˛/

tR
0

.t � �/˛�1f .�/d�; ˛ > 0; t > 0;

J 0f .t/D f .t/:

(2.1)
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The operator J ˛ satisfies the following properties. For f 2 C�, �� �1, ˛;ˇ � 0
and  > �1:
1: J ˛J ˇf .t/D J ˛Cˇf .t/;

2: J ˛J ˇf .t/D J ˇJ ˛f .t/;

3: J ˛t D � .C1/
� .C˛C1/

t˛C :

Definition 3. The fractional derivative in Caputo sense of f .t/ 2 Cm
�1; m 2 N;

t > 0 is defined as [20]

D
ˇ
t f .t/D

(
Jm�ˇ d

m

dtm
f .t/; m�1 < ˇ <m;

dm

dtm
f .t/; ˇ Dm:

(2.2)

Some basic properties of Caputo fractional derivative are:
1: If m�1 < ˇ �m, m 2N and f 2 Cm� , �� �1, then:

D
ˇ
t ŒJ

ˇf .t/�D f .t/; (2.3)

2:

J ˇ ŒD
ˇ
t f .t/�D f .t/�

m�1X
kD0

f .k/.0/
tk

kŠ
; t > 0: (2.4)

3:

D
ˇ
t t

D

� .C1/

� . �ˇC1/
t�ˇ : (2.5)

For more details on Caputo fractional derivative definition and its properties see
[16, 19, 20].

3. SIMILARITY METHOD SOLUTION

In this section, we illustrate the technique for using similarity methods in solving
fractional-order diffusion equations with Caputo definition for fractional time deriv-
atives. The technique is illustrated by two examples. The corresponding integer-order
problems of these examples can be used in modeling heat conduction with variable
heat capacity and thermal conductivity of the heat conductor (see for example [12]).

Problem 1
Consider the fractional order heat equation with variable coefficients

kt˛C2
@˛u

@t˛
D
@2u

@x2
; 0 < ˛ � 1; (3.1)

with the initial condition u.x;0/ D 0. Here, @
˛u
@t˛

denotes the partial fractional de-
rivative of order ˛ of u D u.x; t/ with respect to the time variable t in the Caputo
sense and k is an arbitrary constant. To solve equation (3.1), first we perform its
scaling transformation using similarity methods, see [6] and [15]. Consider the new
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independent and dependent variables denoted by t ;x; and u defined in the following
way

t D �t; x D �px; uD �q u; (3.2)
where � is called the scaling parameter and p and q are arbitrary constants, to be de-
termined such that equation (3.1) remains invariant under this transformation. Using
Caputo definition (2.2), one may easily verify that

@˛u

@t˛
D

1

� .1�˛/

Z t

0

1

.t � �/˛
@u.x;�/

@�
d�

D
1

� .1�˛/

Z t

0

�q

.�t ���/˛

@ Nu. Nx; N�/

@ N�
d� (3.3)

D �q�˛
@˛u

@t
˛ :

where � D ��; also
@2u

@x 2
D �q�2p

@2 Nu

@x 2
: (3.4)

Hence by substituting equations (3.3) and (3.4) into equation (3.1), we get

k�qC2
@˛u

@t
˛ D �

q�2p @
2 Nu

@x 2
: (3.5)

From equation (3.5), it is clear that by setting pD�1 then equation (3.1) is invariant
under transformation (3.2). The characteristic equation associated with transforma-
tion (3.2) is given by

du

qu
D
dx

�x
D
dt

t
: (3.6)

This shows that u .x; t/ can be expressed as

u .x; t/D x�qf .�/; (3.7)

where � D xt:
By using formula (3.7) and again using Caputo definition (2.2) for 0 < ˛ � 1, we

have
@˛u

@t˛
D

1

� .1�˛/

Z t

0

1

.t � �/˛
@u.x;�/

@�
d�

D
1

� .1�˛/

Z �

0

x�qf
0

.�/x

. �
x
�
y
x
/˛

x�1dy

D
1

� .1�˛/

Z �

0

x�qf
0

.�/

x�˛.��y/˛
dy (3.8)

D x�qC˛
d˛f

d�˛
:
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where y D x�: And

@2u

@x2
D x�q�2�2

d2f

d�2
�2q�

df

d�
C .q/.qC1/f .�/: (3.9)

Putting q D 0 and substituting equations (3.8) and (3.9) into equation (3.1), the res-
ulting ordinary FDE is given by

k�˛
d˛f

d�˛
D
d2f

d�2
; (3.10)

with the initial condition f .0/D 0.
Problem 2
Consider the fractional order heat equation with variable coefficients

kt˛C2
@˛u

@t ˛
D 2x3

@u

@x
Cx4

@2u

@x2
; 0 < ˛ � 1; (3.11)

with the initial condition u.x;0/ D 0. On the same manner, we use the similarity
transformation variables

t D �nt ; x D �px; uD �q u: (3.12)

where p, q; and n are arbitrary constants. Then we have

@˛u

@t˛
D

1

� .1�˛/

Z t

0

1

.t � �/˛
@u.x;�/

@�
d�

D
1

� .1�˛/

Z t

0

�q

.�nt ��n�/˛

@ Nu. Nx; N�/

@ N�
d� (3.13)

D �q�n˛
@˛u

@t
˛ :

where � D �n�; also

@u

@x
D �q�p

@ Nu

@x
; and

@2u

@x 2
D �q�2p

@2 Nu

@x 2
: (3.14)

By substituting equations (3.13) and (3.14) into equation (3.11), we get

k�2n�4pCq Nt˛C2
@˛u

@t
˛ D 2 Nx

3�q�2p
@ Nu

@x
C Nx4�q�2p

@2 Nu

@x 2
: (3.15)

From equation (3.15), it is clear that by setting nD p then equation (3.11) is invariant
under transformation (3.12). The characteristic equation becomes

du

qu
D
dx

px
D
dt

pt
: (3.16)
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By solving the characteristic equation (3.16), and putting q D 0; u.x; t/ can be ex-
pressed as

u .x; t/D f .�/; � D tx�1: (3.17)

Again, using formula (3.17) and Caputo definition (2.2) for 0 < ˛ � 1, we have

@˛u

@t˛
D

1

� .1�˛/

Z t

0

1

.t � �/˛
@u.x;�/

@�
d�

D
1

� .1�˛/

Z �

0

f
0

.�/x�1

.x��xy/˛
xdy

D
1

� .1�˛/

Z �

0

f
0

.�/

x˛.��y/˛
dy (3.18)

D x�˛
d˛f

d�˛
:

where y D x�1�: And

@u

@x
D�tx�2

df

d�
;

@2u

@x2
D t2x�4

d2f

d�2
C2tx�3

df

d�
: (3.19)

Substituting into equation (3.11) from equations (3.18) and (3.19), the FPDE (3.11)
is reduced to

k�˛
d˛f

d�˛
D
d2f

d�2
;

with the initial condition f .0/D 0 which is the ordinary FDE (3.10) obtained in first
problem.

4. POWER-SERIES SOLUTION

To find the solution of equation (3.10) we consider the FDE of the form

k�˛
d ˛f

d �˛
D
d2f

d�2
: (4.1)

The solution is assumed in the power series form

f .�/D

1X
nD0

an �
n: (4.2)

By substituting series solution (4.2) into equation (4.1) and equating the coefficients
of similar powers in both sides, we get

a2n D 0;nD 0;1;2; :::
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a3 D k
� .2/

3Š � .2�˛/
a1;

a5 D k
2 � .4/ � .2/

5Š � .4�˛/ � .2�˛/
a1; (4.3)

:::

The resulting solution becomes

f .�/D a1

�
�Ck

� .2/

3Š � .2�˛/
� 3Ck2

� .4/ � .2/

5Š � .4�˛/ � .2�˛/
� 5C :::

�
; (4.4)

which has the fractional order derivative
d˛f

d�˛
D a1Œ

1

� .2�˛/
�1�˛Ck

� .2/� .4/

3Š� .2�˛/� .4�˛/
�3�˛

Ck2
� .2/� .4/� .6/

5Š� .2�˛/� .4�˛/� .6�˛/
�5�˛C :::�:

Based on these results, we propose a definition for error function with generalized
coefficients and discuss its convergence.

Definition 4. An error function with generalized coefficients is defined in the form

erf.�IkI˛/D
1
p
�

1X
nD0

a2nC1�
2nC1; (4.5)

where

a1 D 1;

a2nC1 D
kn

.2nC1/Š

nY
i D1;

� .2i/

� .2i �˛/
; nD 1;2; ::: (4.6)

By this definition, the solution to FDE (4.1) is given by

f .�/D c1C c2erf.�IkI˛/; (4.7)

where c1 and c2 are arbitrary constants. Hence, in the solution of FDE (3.10) with
the initial condition f .0/D 0, c1 equals zero.

Evidently, when substitute ˛ D 1 and k D ��2 in definition (4.5)-(4.6), the ob-
tained series is the Taylor series of the classical integer-order error function erf

�
��
p
2

�
.

This coincides with the fact that in this case equation (4.1) becomes the ordinary
differential equation ��2� d f

d �
D

d 2f

d �2
which has the general solution of the form

f .�/D c1Cc2erf
�
��
p
2

�
, with c1 D 0 to satisfy the initial condition f .0/D 0 . Also,

when ˛ approaches zero and k D ��2, in this case the obtained series is the Taylor
series of the classical trigonometric sine function sin.��/. This coincides with the fact
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that in this case equation (4.1) becomes the ordinary differential equation ��2f D
d 2f

d �2
which has the general solution of the form f .�/D c1sin.��/Cc2cos.��/, with

c2 D 0 to satisfy the initial condition f .0/D 0.
To check the radius of convergence of the error function with generalized coeffi-

cients defined by (4.5)-(4.6), we evaluate the limit

lim
n!1

ˇ̌̌̌
a2nC3

a2nC1

ˇ̌̌̌
D lim
n!1

ˇ̌̌̌
k � .2nC2/

.2nC3/ .2nC2/ � .2nC2�˛/

ˇ̌̌̌
(4.8)

D jkj lim
n!1

ˇ̌̌̌
� .2nC2/

.2nC3/.nC1/� .2nC2�˛/

ˇ̌̌̌
D 0:

Hence, the series converges for all �:

FIGURE 1. The function erf.�I�1
2
I˛/ at different values of ˛.

Figure 1 shows the effect of changing the order of fractional derivative ˛ on the
behavior of the series representation of the solution function erf.�I�1

2
I˛/ at different

values of ˛ (This figure is graphed with nD 40). Figure 1 also illustrates that as ˛
approaches one, the graph of the solution coincides with the graph of the classical
error function erf. �

2
/ which is the solution of the integer-order differential equation

corresponding to FDE (3.10).
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5. CONCLUSION

The similarity method is utilized to solve variable coefficients time-fractional heat
equations where the fractional derivative is given in Caputo sense. Because the sim-
ilarity method decreases the number of independent variables of the equation by one
variable, we use it to transform the time-fractional heat equations with two inde-
pendent variables into an ordinary FDE in the same fractional derivative sense. The
solution to the ordinary FDE is obtained in the form of a power series which mo-
tivated a definition for what we call the error function with generalized coefficients
which has an infinite radius of convergence.
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