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Abstract. In this paper, estimates for second and third MacLaurin coefficients of certain sub-
classes of bi-univalent functions in the open unit disk defined by convolution are determined,
and certain special cases are also indicated. The main result extends and improve a recent one
obtained by Srivastava et al.
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1. INTRODUCTION AND DEFINITIONS

Let A be the class of functions f of the form f .´/ D ´C
1P
nD2

an´
n, which are

analytic in the open unit disk DD f´ 2C W j´j< 1g and normalized by the conditions
f .0/D 0 and f 0.0/D 1. The Koebe one-quarter theorem [3] ensures that the image
of D under every univalent function f 2 A contains the disk with the center in the
origin and the radius 1=4. Thus, every univalent function f 2 A has an inverse
f �1 W f .D/! D, satisfying f �1.f .´//D ´, ´ 2 D, and

f
�
f �1.w/

�
D w; jwj< r0.f /; r0.f /�

1

4
:

Moreover, it is easy to see that the inverse function has the series expansion of the
form

f �1.w/D w�a2w
2
C
�
2a22�a3

�
w3�

�
5a32�5a2a3Ca4

�
w4C : : : ; w 2 f .D/:

(1.1)
A function f 2A is said to be bi-univalent, if both f and f �1 are univalent in D,

in the sense that f �1 has a univalent analytic continuation to D, and we denote by �
this class of bi-univalent functions.
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In [8] the authors defined the classes of functions Pm.ˇ/ as follows: let Pm.ˇ/,
with m � 2 and 0 � ˇ < 1, denote the class of univalent analytic functions P , nor-
malized with P.0/D 1, and satisfyingZ 2�

0

ˇ̌̌̌
ReP.´/�ˇ
1�ˇ

ˇ̌̌̌
d� �m�;

where ´D rei� 2 D.
For ˇ D 0, we denote Pm WD Pm.0/, hence the class Pm represents the class of

functions p analytic in D, normalized with p.0/D 1, and having the representation

p.´/D

2�Z
0

1�´eit

1C´eit
d�.t/; (1.2)

where � is a real-valued function with bounded variation, which satisfiesZ 2�

0

d�.t/D 2� and
Z 2�

0

jd�.t/j �m; m� 2: (1.3)

Clearly, P WDP2 is the well-known class of Carathéodory functions, i.e. the normal-
ized functions with positive real part in the open unit disk D .

Lewin [6] investigated the class � of bi-univalent functions and obtained the bound
for the second coefficient. Brannan and Taha [2] considered certain subclasses of bi-
univalent functions, similar to the familiar subclasses of univalent functions consist-
ing of strongly starlike, starlike and convex functions. They introduced the concept
of bi-starlike functions and the bi-convex functions, and obtained estimates for the
initial coefficients. Recently, Ali et al. [1], Srivastava et al. [9], Frasin and Aouf [4],
Goyal and Goswami [5] and many others have introduced and investigated subclasses
of bi-univalent functions and obtained bounds for the initial coefficients. Motivated
by work of Srivastava et al. [9], we introduce a new subclass of bi-univalent func-
tions, as follows.

For the functions f; h 2A given by

f .´/D ´C

1X
nD2

an´
n; h.´/D ´C

1X
nD2

bn´
n; ´ 2 D;

we recall the Hadamard (or convolution) product of f and h, defined by

.f �h/.´/D ´C

1X
nD2

anbn´
n; ´ 2 D:

Definition 1. For a given function k 2 � , a function f 2 � is said to be in the class
BRk.mIˇ/, with m� 2 and 0� ˇ < 1, if the following conditions are satisfied

.f �k/.´/

´
2Pm.ˇ/;
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.g �k/.w/

w
2Pm.ˇ/;

where g D f �1 and ´;w 2 D.

Remark 1. Taking k.´/D ´=.1�´/2 and mD 2 in the Definition 1 we obtain the
class B.ˇ/ WDBR´=.1�´/2.2Iˇ/ studied by Srivastava et al. [9, Definition 2].

Definition 2. For a given function k 2 � and a number ˛ 2 C, a function f 2 �
is said to be in the class BVk.mI˛;ˇ/, with m � 2 and 0 � ˇ < 1, if the following
conditions are satisfied

.1�˛/
´.f �k/0.´/

.f �k/.´/
C˛

�
1C

´.f �k/00.´/

.f �k/0.´/

�
2Pm.ˇ/;

.1�˛/
w.g �k/0.w/

.g �k/.w/
C˛

�
1C

w.g �k/00.w/

.g �k/0.w/

�
2Pm.ˇ/;

where g D f �1.

Remark 2. .i/ Taking ˛D 0 and ˛D 1 in the above class BVk.mI˛;ˇ/ we obtain
the classes Skm.ˇ/ WDBVk.mI0;ˇ/ and Ckm.ˇ/ WDBVk.mI1;ˇ/, respectively.
.i i/ Moreover, if we take k.´/ D ´=.1� ´/ and m D 2, the classes Skm.ˇ/ and

Ckm.ˇ/ reduces to the well-known classes of bi-starlike and bi-convex functions, re-
spectively (see also [2]).

The object of the paper is to find estimates for the coefficients a2 and a3 for func-
tions in the subclass BRk.mIˇ/ and BVk.mI˛;ˇ/, and these bounds are obtained
by employing the techniques used earlier by Srivastava et al. [9].

2. MAIN RESULTS

In order to prove our main result for the functions f 2BRk.mIˇ/, first we will
prove the following lemma:

Lemma 1. Let the function ˚.´/D 1C
1P
nD1

hn´
n, ´ 2 D, such that ˚ 2 Pm.ˇ/.

Then,

jhnj �m.1�ˇ/; n� 1:

Proof. From (1.2) and (1.3), like in [8] and [7], we can see that if p 2Pm, then

p.´/D

�
m

4
C
1

2

�
p1.´/�

�
m

4
�
1

2

�
p2.´/; (2.1)

where p1;p2 2P .
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Further, if p.´/ D 1C
1P
nD1

pn´
n, ´ 2 D, where p1.´/ D 1C

1P
nD1

p
.1/
n ´n and

p2.´/ D 1C
1P
nD1

p
.2/
n ´n for all ´ 2 D, comparing the coefficients of both sides of

(2.1) we get

pn D

�
m

4
C
1

2

�
p.1/n �

�
m

4
�
1

2

�
p.2/n ; n� 1:

Since p1;p2 2 P , where P is the class of Carathéodory functions, it is well-known
that jp.1/n j � 2 and jp.2/n j � 2 for all n� 1, and thus

jpnj �

�
m

4
C
1

2

�ˇ̌̌
p.1/n

ˇ̌̌
C

�
m

4
�
1

2

�ˇ̌̌
p.2/n

ˇ̌̌
�

2

�
m

4
C
1

2

�
C2

�
m

4
�
1

2

�
Dm; n� 1: (2.2)

Now, the proof of this lemma is straight forward, if we write

˚.´/D .1�ˇ/p.´/Cˇ; where p.´/D 1C

1X
nD1

pn´
n
2Pm:

Then,

˚.´/D 1C .1�ˇ/

1X
nD1

pn´
n; ´ 2 D;

which gives
hn D .1�ˇ/pn; n� 1;

and using the inequality (2.2) we obtain the desired result. �

Theorem 1. Let f .´/D ´C
1P
nD2

an´
n be in the class BRk.mIˇ/, where k 2 �

has the form k.´/D ´C
1P
nD2

kn´
n. If k2; k3 ¤ 0, then

ja2j �min

(s
m.1�ˇ/

jk3j
I
m.1�ˇ/

jk2j

)
; ja3j �

m.1�ˇ/

jk3j
;

and ˇ̌
2a22�a3

ˇ̌
�
m.1�ˇ/

jk3j
:

Proof. Since f 2BRk.mIˇ/, from the Definition 1 we have

.f �k/.´/

´
D p.´/ (2.3)
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and
.g �k/.w/

w
D q.w/; (2.4)

where p; q 2 Pm.ˇ/ and g D f �1. Using the fact that the functions p and q have
the following Taylor expansions

p.´/D 1Cp1´Cp2´
2
Cp3´

3
C : : : ; ´ 2 D; (2.5)

q.w/D 1Cq1wCq2w
2
Cq3w

3
C : : : ; w 2 D; (2.6)

and equating the coefficients in (2.3) and (2.4), from (1.1) we get

k2a2 D p1; (2.7)

k3a3 D p2; (2.8)
and

�k2a2 D q1;

k3
�
2a22�a3

�
D q2: (2.9)

Since p; q 2Pm.ˇ/, according to Lemma 1, the next inequalities hold:

jpkj �m.1�ˇ/; k � 1; (2.10)

jqkj �m.1�ˇ/; k � 1; (2.11)

and thus, from (2.8) and (2.9), by using the inequalities (2.10) and (2.11), we obtain

ja2j
2
�
jq2jC jp2j

2 jk3j
�
m.1�ˇ/

jk3j
;

which gives

ja2j �

s
m.1�ˇ/

jk3j
: (2.12)

From (2.7), by using (2.10) we obtain immediately that

ja2j D

ˇ̌̌̌
p1

k2

ˇ̌̌̌
�
m.1�ˇ/

jk2j
;

and combining this with the inequality (2.12), the first inequality of the conclusion is
proved.

According to (2.8), from (2.10) we easily obtain

ja3j D

ˇ̌̌̌
p2

k3

ˇ̌̌̌
�
m.1�ˇ/

jk3j
;

and from (2.9), by using (2.10) and (2.11) we finally deduceˇ̌
2a22�a3

ˇ̌
D

ˇ̌̌̌
q2

k3

ˇ̌̌̌
�
m.1�ˇ/

jk3j
;

which completes our proof. �
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Setting ˇ D 0 in Theorem 1 we get the following special case:

Corollary 1. Let f .´/D ´C
1P
nD2

an´
n be in the class BRk.mI0/, where k 2 �

has the form k.´/D ´C
1P
nD2

kn´
n. If k2; k3 ¤ 0, then

ja2j �min
�r

m

jk3j
I
m

jk2j

�
; ja3j �

m

jk3j
; and

ˇ̌
2a22�a3

ˇ̌
�

m

jk3j
:

For k.´/D ´=.1�´/2 the above corollary reduces to the next result:

Example 1. If f .´/D ´C
1P
nD2

an´
n is in the class BR´=.1�´/2.mI0/, then

ja2j �

r
m

3
; ja3j �

m

3
; and

ˇ̌
2a22�a3

ˇ̌
�
m

3
:

Taking k.´/D ´=.1�´/ in Corollary 1, we get:

Example 2. If f .´/D ´C
1P
nD2

an´
n is in the class BR´=.1�´/.mI0/, then

ja2j �
p
m; ja3j �m; and

ˇ̌
2a22�a3

ˇ̌
�m:

If we put k.´/D ´=.1�´/2 in Theorem 1, we deduce the next corollary:

Corollary 2. If f .´/D ´C
1P
nD2

an´
n is in the class B.ˇ/, then

ja2j �

8<:
q
2.1�ˇ/
3

; if 0� ˇ � 1
3
;

1�ˇ; if 1
3
< ˇ < 1;

ja3j �
2.1�ˇ/

3
;

and ˇ̌
2a22�a3

ˇ̌
�
2.1�ˇ/

3
:

Remark 3. For the special case 1
3
<ˇ<1, the above first inequality, and the second

one for all 0� ˇ < 1, improve the estimates given by Srivastava et al. in [9, Theorem
2].

Theorem 2. Let f .´/ D ´C
1P
nD2

an´
n be in the class BVk.mI˛;ˇ/, with ˛ 2

Cn f�1g, where k 2 � has the form k.´/D ´C
1P
nD2

kn´
n. If k2; k3 ¤ 0 and

2.1C2˛/k3� .1C3˛/k
2
2 ¤ 0;
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then

ja2j �min

(s
m.1�ˇ/ˇ̌

2.1C2˛/k3� .1C3˛/k
2
2

ˇ̌ I m.1�ˇ/
j1C˛j jk2j

)
;

and

ja3j �min

(
m.1�ˇ/ˇ̌

2.1C2˛/k3� .1C3˛/k
2
2

ˇ̌C m.1�ˇ/

2 j1C2˛j jk3j
I

m.1�ˇ/

2 j1C2˛j jk3j

�
1C

m.1�ˇ/ j1C3˛j

j1C˛j2

�
I

m.1�ˇ/

2 j1C2˛j jk3j

 
1C

m.1�ˇ/
ˇ̌
4.1C2˛/k3� .1C3˛/k

2
2

ˇ̌
jk2j

2
j1C˛j2

!)
;

whenever ˛ 2Cn

�
�
1

2

�
.

Proof. If f 2BVk.mI˛;ˇ/, according to the Definition 2 we have

.1�˛/
´.f �k/0.´/

.f �k/.´/
C˛

�
1C

´.f �k/00.´/

.f �k/0.´/

�
D p.´/

and

.1�˛/
w.g �k/0.w/

.g �k/.w/
C˛

�
1C

w.g �k/00.w/

.g �k/0.w/

�
D q.w/;

where p; q 2Pm.ˇ/ and g D f �1. Since

.1�˛/
´.f �k/0.´/

.f �k/.´/
C˛

�
1C

´.f �k/00.´/

.f �k/0.´/

�
D

1C .1C˛/a2k2´C
�
2.1C2˛/a3k3� .1C3˛/a

2
2k
2
2

�
´2C : : : ´ 2 D;

and according to (1.1)

.1�˛/
´.g �k/0.w/

.g �k/.w/
C˛

�
1C

´.g �k/00.w/

.g �k/0.w/

�
D 1� .1C˛/a2k2wCn�

4.1C2˛/k3� .1C3˛/k
2
2

�
a22�2.1C2˛/a3k3

o
w2C : : : ; w 2 D;

from (2.5) and (2.6) combined with the above two expansion formulas, it follows that

.1C˛/a2k2 D p1; (2.13)

2.1C2˛/a3k3� .1C3˛/a
2
2k
2
2 D p2; (2.14)

and

� .1C˛/a2k2 D q1;�
4.1C2˛/k3� .1C3˛/k

2
2

�
a22�2.1C2˛/a3k3 D q2: (2.15)
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Now, from (2.14) and (2.15) we deduce that

a22 D
p2Cq2

4.1C2˛/k3�2.1C3˛/k
2
2

; (2.16)

whenever 2.1C2˛/k3� .1C3˛/k22 ¤ 0, and

4.1C2˛/k3
�
a3�a

2
2

�
D p2�q2:

Using (2.16) in the above relation, we obtain

a3 D
p2Cq2

4.1C2˛/k3�2.1C3˛/k
2
2

C
p2�q2

4.1C2˛/k3
; (2.17)

whenever 2.1C2˛/k3� .1C3˛/k
2
2 ¤ 0; ˛ 2Cn

�
�
1

2

�
:

From (2.13) and (2.14) we get

a3 D
1

2.1C2˛/k3

�
p2C

1C3˛

.1C˛/2
p21

�
; for ˛ 2Cn

�
�1I�

1

2

�
; (2.18)

while from (2.13) and (2.15) we deduce that

a3 D
1

2.1C2˛/k3

"
�q2C

4.1C2˛/k3� .1C3˛/k
2
2

k22.1C˛/
2

p21

#
; (2.19)

for ˛ 2Cn

�
�1I�

1

2

�
.

Combining (2.13) and (2.16) for the computation of the upper-bound of ja2j, and
(2.17), (2.18) and (2.19) for the computation of ja3j, by using Lemma 1 we easily
find the estimates of our theorem. �

Taking ˛ D 0 and ˛ D 1 in Theorem 2 we obtain the following two special cases,
respectively:

Corollary 3. Let f .´/ D ´C
1P
nD2

an´
n be in the class Skm.ˇ/, where k 2 � has

the form k.´/D ´C
1P
nD2

kn´
n. If k2; k3 ¤ 0 and

2k3�k
2
2 ¤ 0;

then

ja2j �min

(s
m.1�ˇ/ˇ̌
2k3�k

2
2

ˇ̌ Im.1�ˇ/
jk2j

)
;

and

ja3j �min

(
m.1�ˇ/ˇ̌
2k3�k

2
2

ˇ̌C m.1�ˇ/
2 jk3j

I
m.1�ˇ/.1Cm.1�ˇ//

2 jk3j
I
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m.1�ˇ/

2 jk3j

 
1C

m.1�ˇ/
ˇ̌
4k3�k

2
2

ˇ̌
jk2j

2

!)
:

Corollary 4. Let f .´/ D ´C
1P
nD2

an´
n be in the class Ckm.ˇ/, where k 2 � has

the form k.´/D ´C
1P
nD2

kn´
n. If k2; k3 ¤ 0 and

3k3�2k
2
2 ¤ 0;

then

ja2j �min

(s
m.1�ˇ/ˇ̌
6k3�4k

2
2

ˇ̌ Im.1�ˇ/
2 jk2j

)
;

and

ja3j �min

(
m.1�ˇ/ˇ̌
6k3�4k

2
2

ˇ̌C m.1�ˇ/
6 jk3j

I
m.1�ˇ/.1Cm.1�ˇ//

6 jk3j
I

m.1�ˇ/

6 jk3j

 
1C

m.1�ˇ/
ˇ̌
3k3�k

2
2

ˇ̌
jk2j

2

!)
:
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