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POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS
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Abstract. For an integer k � 2, let .F .k/
n /n be the k-Fibonacci sequence which starts with

0; : : : ;0;1 (k terms) and each term afterwards is the sum of the k preceding terms. In this paper,
we search for powers of 2 which are sums of two k-Fibonacci numbers. The main tools used in
this work are lower bounds for linear forms in logarithms and a version of the Baker–Davenport
reduction method in diophantine approximation. This paper continues and extends the previous
work of [4] and [2].
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1. INTRODUCTION

In this paper we consider, for an integer k � 2, the k-generalized Fibonacci se-
quence or, for simplicity, the k-Fibonacci sequence F .k/ WD .F

.k/
n /n�2�k given by

the recurrence

F .k/
n D F

.k/
n�1CF

.k/
n�2C�� �CF

.k/

n�k
for all n� 2; (1.1)

with the initial conditions F .k/

�.k�2/
D F

.k/

�.k�3/
D �� � D F

.k/
0 D 0 and F .k/

1 D 1.

We shall refer to F .k/
n as the nth k-Fibonacci number. We note that this generaliz-

ation is in fact a family of sequences where each new choice of k produces a distinct
sequence. For example, the usual Fibonacci sequence .Fn/n�0 is obtained for k D 2
and for subsequent values of k, these sequences are called Tribonacci, Tetranacci,
Pentanacci, Hexanacci, Heptanacci, Octanacci, and so on.

The first direct observation is that the first kC1 non–zero terms in F .k/ are powers
of two, namely

F
.k/
1 D 1; F

.k/
2 D 1; F

.k/
3 D 2; F

.k/
4 D 4; : : : ; F

.k/

kC1
D 2k�1; (1.2)
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while the next term in the above sequence is F .k/

kC2
D 2k � 1. Indeed, observe that

recursion (1.1) implies the three–term recursion

F .k/
n D 2F

.k/
n�1�F

.k/

n�k�1
for all n� 3; (1.3)

which also shows that the k-Fibonacci sequence grows at a rate less than 2n�2. We
have, in fact, that F .k/

n < 2n�2 for all n � kC 2 (see [2, Lemma 2]). In addition,
Mathematical induction and (1.3) can be used to prove that

F .k/
n D 2n�2

� .n�k/ �2n�k�3 holds for all kC2� n� 2kC2: (1.4)

The above sequences are among the several generalizations of the Fibonacci numbers,
however other generalizations are also known (see, for example, [6, 13, 20]). The k-
Fibonacci sequence has been amply studied, generating an extensive literature.

Recent works on problems involving k-Fibonacci numbers are for instance the
papers of F. Luca [14] and D. Marques [16], who proved that 55 and 44 are the
largest repdigits (numbers with only one distinct digit) in the sequences F .2/ and
F .3/, respectively. Moreover, D. Marques conjectured that there are no repdigits,
with at least two digits, belonging to F .k/, for k > 3. This conjecture was confirmed
shortly afterwards by Bravo and Luca [3].

Other class of problems has been to represent certain numbers as sum of
k-Fibonacci numbers. Regarding this matter, all factorials which are sums of at most
three Fibonacci numbers were found by Luca and Siksek [15]; Bravo and Luca [5]
recently found all repdigits which are sums of at most two k-Fibonacci numbers.
Further, the problem of determining all Fibonacci numbers which are sums of two
repdigits is investigated in [9].

In the present paper we extend the works [2, 4] which investigated the powers of
2 that appear in the k-Fibonacci sequence and the powers of 2 which are sums of
two Fibonacci numbers, respectively. To be more precise, we study the Diophantine
equation

F .k/
n CF .k/

m D 2a (1.5)

in integers n;m;k and a with k � 2 and n�m.
Before presenting our main theorem, we observe that in equation (1.5) one can

assume m � 1 and k � 3 since the other cases were already treated in [2, 4]. Our
result is the following.

Theorem 1. Let .n;m;k;a/ be a solution of the Diophantine equation (1.5) in
positive integers n;m;k and a with k � 3 and n�m.

.a/ The only solutions of the Diophantine equation (1.5) with n D m are given
by .n;m;a/D .1;1;1/ and .n;m;a/D .t; t; t �1/ for all 2� t � kC1.

.b/ The only solution of the Diophantine equation (1.5) with n>m and a¤ n�2
is given by .n;m;a/D .2;1;1/.
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.c/ The only solutions of the Diophantine equation (1.5) with n > m and a D
n�2 are given by

.n;m;a/D .kC2`;2`
C`�1;kC2`

�2/; (1.6)

where ` is a positive integer such that 2`C `� 2 � k. So in particular we
have m� kC1 and n� 2kC1.

Let us give a brief overview of our strategy for proving Theorem 1. The proof
of the assertion .a/ follows from the work of [2]. To prove assertions .b/ and .c/,
we first rewrite equation (1.5) in suitable ways in order to obtain two different linear
forms in logarithms of algebraic numbers which are both nonzero and small. Next,
we use twice a lower bound on such nonzero linear forms in logarithms of algebraic
numbers due to Matveev [17] to bound n polynomially in terms of k. When k is
small, we use some properties of continued fractions to reduce the upper bounds to
cases that can be treated computationally. When k is large and a¤ n�2, we use some
estimates from [2,3] based on the fact that the dominant root of F .k/ is exponentially
close to 2. However, when k is large and a D n�2, the estimates given in [2, 3] are
not enough and therefore we need to get more accurate estimates to finish the job.

2. PRELIMINARY RESULTS

Before proceeding further, we shall recall some facts and properties of the
k-Fibonacci sequence which will be used later. First, it is known that the charac-
teristic polynomial of F .k/, namely

	k.x/D x
k
�xk�1

�� � ��x�1;

is irreducible over QŒx� and has just one zero outside the unit circle. Throughout
this paper, ˛ WD ˛.k/ denotes that single zero, which is a Pisot number of degree k
since the other zeros of the characteristic polynomial 	k.x/ are strictly inside the unit
circle (see, for example, [18,19] and [21]). Moreover, it is known from Lemma 2.3 in
[12] that ˛.k/ is located between 2.1� 2�k/ and 2, a fact rediscovered by Wolfram
[21]. To simplify notation, we will omit the dependence on k of ˛.

We now consider for an integer k � 2, the function

fk.x/D
x�1

2C .kC1/.x�2/
for x > 2.1�2�k/: (2.1)

With this notation, Dresden and Du [10] gave the following “Binet–like” formula for
F .k/:

F .k/
n D

kX
iD1

fk.˛
.i//˛.i/n�1

; (2.2)

where ˛ WD ˛.1/; : : : ;˛.k/ are the zeros of 	k.x/. It was also proved in [10] that the
contribution of the zeros which are inside the unit circle to the formula (2.2) is very
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small, namely that the approximationˇ̌̌
F .k/

n �fk.˛/˛
n�1

ˇ̌̌
<
1

2
holds for all n� 2�k: (2.3)

When k D 2, one can easily prove by induction that

˛n�2
� Fn � ˛

n�1 for all n� 1: (2.4)

It was proved in [3] that

˛n�2
� F .k/

n � ˛n�1 holds for all n� 1 and k � 2; (2.5)

which shows that (2.4) holds for the k-Fibonacci sequence as well. The observations
from expressions (2.2) to (2.5) lead us to call to ˛ the dominant zero of F .k/.

In order to prove Theorem 1, we need to use several times a Baker type lower
bound for a nonzero linear form in logarithms of algebraic numbers and such a bound,
which plays an important role in this paper, was given by Matveev [17]. We begin by
recalling some basic notions from algebraic number theory.

Let � be an algebraic number of degree d with minimal primitive polynomial over
the integers

a0x
d
Ca1x

d�1
C�� �Cad D a0

dY
iD1

.x��.i//;

where the leading coefficient a0 is positive and the �.i/’s are the conjugates of �.
Then

h.�/D
1

d

0@loga0C

dX
iD1

log
�

maxfj�.i/
j;1g

�1A ;
is called the logarithmic height of �.

In particular, if � D p=q is a rational number with gcd.p;q/ D 1 and q > 0,
then h.�/ D logmaxfjpj;qg. The following properties of the function logarithmic
height h.�/, which will be used in the next sections without special reference, are also
known:

h.�˙/� h.�/Ch./C log2;

h.�˙1/� h.�/Ch./;

h.�s/D jsjh.�/ .s 2Z/:

With the previous notation, Matveev (see [17] or Theorem 9.4 in [7]) proved the
following deep theorem.

Theorem 2 (Matveev’s Theorem). Assume that 1; : : : ;t are positive real algeb-
raic numbers in a real algebraic number field K of degree D, b1; : : : ;bt are rational
integers, and

� WD 
b1

1 � � �
bt

t �1;
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is not zero. Then

j�j> exp
�
�1:4�30tC3

� t4:5
�D2.1C logD/.1C logB/A1 � � �At

�
;

where
B �maxfjb1j; : : : ; jbt jg;

and
Ai �maxfDh.i /; j logi j;0:16g; for all i D 1; : : : ; t:

In 1998, Dujella and Pethő in [11, Lemma 5.a/] gave a version of the reduction
method based on the Baker–Davenport Lemma [1]. We present the following lemma,
which is an immediate variation of the result due to Dujella and Pethő from [11],
and will be one of the key tools used in this paper to reduce the upper bounds on the
variables of the Diophantine equation (1.5).

Lemma 1. Let M be a positive integer, let p=q be a convergent of the continued
fraction of the irrational  such that q > 6M , and let A;B;� be some real numbers
with A > 0 and B > 1. Let further � D jj�qjj �M jjqjj, where jj � jj denotes the
distance from the nearest integer. If � > 0, then there is no solution to the inequality

0 < ju �vC�j< AB�w ; (2.6)

in positive integers u;v and w with

u�M and w �
log.Aq=�/

logB
:

Proof. The proof proceeds similarly to that of Lemma 5 in [11]. Indeed, assume
that 0 < u �M . Multiplying (2.6) by q, and keeping in mind that jjq jj D jp�q j
because p=q is a convergent of  , we get

qAB�w > jq�� .qv�up/�u.p�q/j

� jq�� .qv�up/j�ujp�q j

� jjq�jj�ujjq jj

� jjq�jj�M jjq jj D �;

giving

w <
log.Aq=�/

logB
:

�

To conclude this section, we present a useful lemma that will be used later.

Lemma 2. For k � 2, let ˛ be the dominant root of F .k/, and consider the function
fk.x/ defined in (2.1). Then:
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.i/ Inequalities

1=2 < fk.˛/ < 3=4 and jfk.˛
.i//j< 1; 2� i � k

hold. So, the number fk.˛/ is not an algebraic integer.
.i i/ The logarithmic height function satisfies h.fk.˛// < 3 logk.

Proof. A straightforward verification shows that @xfk.x/ < 0. Indeed,

@xfk.x/D
1�k

..2C .kC2/.x�2///2
< 0; for all k � 2:

From this, we conclude that

1=2D fk.2/ < fk.˛/ < fk

�
2.1�2�k/

�
D

2k�1�1

2k �k�1
� 3=4; for all k � 3:

While, f2..1C
p
5/=2/D

p
5.1C

p
5/=10D 0:72360: : : 2 .1=2;3=4/. On the other

hand, as j˛.i/j < 1, then j˛.i/ � 1j < 2 and j2C .k C 1/.˛.i/ � 2/j > k � 1, so
jfk.˛

.i//j < 1 for all k � 3. Further, f2..1�
p
5/=2/ D 0:2763: : :. This proves

the first part of .i/. Assume now that fk.˛/ is an algebraic integer. Then its norm
(from K D Q.˛/ to Q) is an integer. Applying the norm of K over Q and taking
absolute values, we obtain that

1� jNK=Q.fk.˛//j D fk.˛/

kY
iD2

jfk.˛
.i//j:

However, fk.˛/ < 3=4 and jfk.˛
.i//j<1 for i D 2; : : : ;k and all k � 2, contradicting

the above inequality. Hence the result of .i/. The proof of .i i/ can be consulted in
[3]. �

3. AN INEQUALITY FOR n IN TERMS OF k

Assume throughout that equation (1.5) holds. First of all, observe that if nD m,
then the original equation (1.5) becomes F .k/

n D 2a�1. But the only solutions of
this latter equation with k � 3 are given by .n;a/ 2 f.1;1/; .t; t � 1/g for all 2 �
t � kC 1 in view of the previous work of [2]. Moreover, note that we can assume
n � kC 2, since otherwise F .k/

n and F .k/
m would be powers of 2, and therefore, the

only additional solution of (1.5) in this instance is given by .n;m;a/D .2;1;1/ as can
be easily seen. So, from now on, we assume that n > m� 2, n� kC2 and a � 2.

Combining (1.5) with the fact that F .k/
t � 2t�2 for all t � 2, one gets

2a
� 2n�2

C2m�2
D 2n�2.1C2m�n/� 2n�2.1C2�1/ < 2n�1;

implying a � n� 2. This fact is fundamental in our research to the point that we
distinguish two cases for reasons soon to be seen, namely a < n� 2 and a D n� 2.
However, we shall now use linear forms in logarithms to bound n polynomially on k,
without any restriction on a.
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Indeed, by using (1.5) and (2.3), we get thatˇ̌
2a
�fk.˛/˛

n�1
ˇ̌
<
1

2
CF .k/

m �
1

2
C˛m�1;

where we have also used the right–hand inequality from (2.5). Dividing both sides of
the above inequality by fk.˛/˛

n�1, we obtainˇ̌̌
2a
�˛�.n�1/

� .fk.˛//
�1
�1
ˇ̌̌
<

3

˛n�m
; (3.1)

because fk.˛/ > 1=2 from Lemma 2.i/.
In a first application of Matveev’s result Theorem 2, we take t WD 3 and

1 WD 2; 2 WD ˛ and 3 WD fk.˛/:

We also take b1 WD a, b2 WD �.n� 1/ and b3 WD �1. We begin by noticing that the
three numbers 1;2;3 are positive real numbers and belong to K WDQ.˛/, so we
can take D WD ŒK WQ� D k. The left–hand size of (3.1) is not zero. Indeed, if this
were zero, we would then get that fk.˛/ D 2

a �˛�.n�1/ and so fk.˛/ would be an
algebraic integer, in contradiction to Lemma 2.i/.

Since h.1/D log2 and h.2/D .log˛/=k < .log2/=kD .0:693147: : :/=k, it fol-
lows that we can take A1 WD k log2 and A2 WD 0:7. Further, in view of Lemma 2.i i/,
we have that h.3/ < 3 logk, so we can take A3 WD 3k logk. Finally, by recalling that
a � n�2, we can take B WD n�1.

Then, Matveev’s theorem implies that a lower bound on the left–hand side of (3.1)
is

exp.�C1.k/� .1C log.n�1//.k log2/.0:7/.3k logk// ;
where C1.k/ WD 1:4�30

6�34:5�k2� .1C logk/ < 1:5�1011k2 .1C logk/. Com-
paring this with the right–hand side of (3.1), taking logarithms and then performing
the respective calculations, we get that

.n�m/ log˛ < 8:75�1011k4 log2k log.n�1/: (3.2)

Let us now get a second linear form in logarithms. To this end, we use (1.5) and (2.3)
once again to obtainˇ̌

2a
�fk.˛/˛

n�1
�
1C˛m�n

�ˇ̌
�

ˇ̌̌
F .k/

n �fk.˛/˛
n�1

ˇ̌̌
(3.3)

C

ˇ̌̌
F .k/

m �fk.˛/˛
m�1

ˇ̌̌
< 1:

Dividing both sides of the above inequality by the second term of the left–hand side,
we get ˇ̌̌

2a
�˛�.n�1/

� .fk.˛/.1C˛
m�n//�1

�1
ˇ̌̌
<

2

˛n�1
: (3.4)

In a second application of Matveev’s theorem, we take the parameters t WD 3 and

1 WD 2; 2 WD ˛; 3 WD fk.˛/.1C˛
m�n/:
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We also take b1 WD a, b2 WD �.n�1/ and b3 WD �1. As before, K WDQ.˛/ contains
1;2 and 3 and has degree D WD k. To see why the left–hand side of (3.4) is
not zero, note that otherwise, we would get the relation 2a D fk.˛/.˛

n�1C˛m�1/.
Now, conjugating with an automorphism � of the Galois group of 	k.x/ over Q
such that �.˛/ D ˛.i/ for some i > 1, and then taking absolute values, we have
2a D jfk.˛

.i//jj˛.i/n�1
C˛.i/m�1

j < 2, since Lemma 2.i/. But the last inequality
above is not possible because a � 2. Hence, indeed the left–hand side of inequality
(3.4) is nonzero.

In this application of Matveev’s theorem we take A1 WD k log2, A2 WD 0:7 and
B WD n�1 as we did before. Let us now estimate h.3/. In view of the properties of
h.�/ and Lemma 2.i i/ once again, we have

h.3/ < 3 logkCjm�nj
�

log˛
k

�
C log2

< 4 logkC .n�m/
�

log˛
k

�
;

for all k� 3. So, we can takeA3 WD 4k logkC.n�m/ log˛. Now Matveev’s theorem
implies that a lower bound on the left–hand side of (3.4) is

exp.�C2.k/� .1C log.n�1//.k log2/.0:7/.4k logkC .n�m/ log˛// ;

where C2.k/ WD 1:4� 30
6� 34:5�k2� .1C logk/ < 1:5� 1011k2 .1C logk/. So,

inequality (3.4) yields

.n�1/ log˛� log2 < 2:92�1011k3 logk log.n�1/.4k logkC .n�m/ log˛/:

Using now (3.2) in the right–most term of the above inequality and taking into ac-
count that 1= log˛ < 2, we conclude, after some elementary algebra, that

n�1 < 5:12�1023k7 log3k log2.n�1/: (3.5)

It easy to check that for A� 100 the inequality

x < A log2x implies x < 4A log2A:

Thus, taking A D 5:12� 1023k7 log3k and performing the respective calculations,
inequality (3.5) yields n < 6:654� 1027k7 log5k. We record what we have proved
so far as a lemma.

Lemma 3. If .n;m;k;a/ is a solution in positive integers of equation (1.5) with
n > m� 2 and k � 3, then both inequalities

a � n�2 and n < 6:66�1027k7 log5k

hold.
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4. CONSIDERATIONS ON k FOR a < n�2

In this section, we show that for any k � 3, equation (1.5) has no solutions in the
range indicated in the title except the one given in Theorem 1.b/. A key point for the
case a¤ n�2 consists of exploiting the fact that when k is large, the dominant root
of F .k/ is exponentially close to 2, so one can write the dominant term of the Binet
formula for F .k/ as a power of 2 plus an error which is well under control. Precisely
we will use the following Lemma from [2] (see also [3]).

Lemma 4. For k � 2, let ˛ be the dominant root of F .k/, and consider the function
fk.x/ defined in (2.1). If r > 1 is an integer satisfying r �1 < 2k=2, then

fk.˛/˛
r�1
D 2r�2

C
ı

2
C2r�1�C�ı;

where ı and � are real numbers such that

jıj<
2r

2k=2
and j�j<

2k

2k
:

4.1. The case of small k

We next treat the cases when k 2 Œ3;340�. Note that for these values of the para-
meter k, Lemma 3 gives us absolute upper bounds for n andm. However, these upper
bounds are so large that we wish to reduce them to a range where the solutions can
be identified by using a computer. To do this, we first let

´1 WD a log2� .n�1/ log˛� logfk.˛/: (4.1)

First of all, note that (3.1) can be rewritten as

je´1 �1j<
3

˛n�m
: (4.2)

Secondly, by using (1.5) and (2.3), we have

fk.˛/˛
n�1 < F .k/

n C
1

2
< F .k/

n CF .k/
m D 2a:

Consequently, 1 < 2a˛�.n�1/.fk.˛//
�1 and so ´1 > 0. This, together with (4.2),

gives

0 < ´1 � e
´1 �1 <

3

˛n�m
:

Replacing ´1 in the above inequality by its formula (4.1) and dividing both sides of
the resulting inequality by log˛, we get

0 < a

�
log2
log˛

�
�nC

�
1�

logfk.˛/

log˛

�
< 6 �˛�.n�m/; (4.3)

where we have used again the fact that 1= log˛ < 2. We put

O WD O.k/D
log2
log˛

; O� WD O�.k/D 1�
logfk.˛/

log˛
; A WD 6 and B WD ˛:
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We also putMk WD
�
6:66�1027k7 log5k

˘
, which is an upper bound on a by Lemma

3. The fact that ˛ is a unit in OK, the ring of integers of K, ensures that O is an irra-
tional number. Even more, O is transcendental by the Gelfond-Schneider Theorem.
Then, the above inequality (4.3) yields

0 < a O �nC O� < A �B�.n�m/: (4.4)

It then follows from Lemma 1, applied to inequality (4.4), that

n�m<
log.Aq=�/

logB
;

where q D q.k/ > 6Mk is a denominator of a convergent of the continued fraction of
O such that �D �.k/D jj O�qjj�Mkjj Oqjj> 0. A computer search with Mathematica
revealed that if k 2 Œ3;340�, then the maximum value of log.Aq=�/= logB is < 680.
Hence, we deduce that the possible solutions .n;m;k;a/ of the equation (1.5) for
which k is in the range Œ3;340� all have n�m 2 Œ1;680�.

Let us now work a little bit on (3.4) in order to find an upper bound on n. Let

´2 WD a log2� .n�1/ log˛� log�.k;n�m/; (4.5)

where �.k;n�m/ WD fk.˛/.1C˛
m�n/. Therefore, (3.4) can be rewritten as

je´2 �1j<
2

˛n�1
: (4.6)

Note that ´2¤ 0; thus, we distinguish the following cases. If ´2>0, then e´2�1> 0,
so from (4.6) we obtain

0 < ´2 <
2

˛n�1
:

Suppose now that ´2 < 0. It is a straightforward exercise to check that 2=˛n�1 � 1=2

for all k � 3 and all n � 5. Then, from (4.6), we have that je´2 � 1j < 1=2 and
therefore ej´2j < 2. Since ´2 < 0, we have

0 < j´2j � e
j´2j�1D ej´2jje´2 �1j<

4

˛n�1
:

In any case, we have that the inequality

0 < j´2j<
4

˛n�1

holds for all k � 3 and n � 5. Replacing ´2 in the above inequality by its formula
(4.5) and arguing as in (4.3), we conclude that

0 <

ˇ̌̌̌
a

�
log2
log˛

�
�nC

�
1�

log�.k;n�m/
log˛

�ˇ̌̌̌
< 4 �˛�.n�1/: (4.7)

Here, we also take Mk WD
�
6:66�1027k7 log5k

˘
(upper bound on a), and, as we

explained before, we apply Lemma 1 to inequality (4.7) in order to obtain an upper
bound on n� 1. Indeed, with the help of Mathematica we find that if k 2 Œ3;340�
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and n�m 2 Œ1;680�, then the maximum value of log.4q=�/= log˛ is < 680. Thus,
the possible solutions .n;m;k;a/ of the equation (1.5) with k in the range Œ3;340� all
have n� 680.

Finally, a brute force search with Mathematica in the range

3� k � 340; kC2� n� 680 and 2�m� n�1

gives no solutions for the equation (1.5) with a < n�2. This completes the analysis
in the case k 2 Œ3;340�.

4.2. The case of large k

Here we assume that k > 340 and show that (1.5) has no solutions. For such k we
have

m< n < 6:66�1027k7 log5k < 2k=2:

It then follows from Lemma 4 that

jfk.˛/˛
n�1
�2n�2

j<
2n�1

2k=2
C
2nk

2k
C
2nC1k

23k=2
:

The above inequality obviously holds with n replaced bym. This, together with (3.3),
impliesˇ̌

2n�2
C2m�2

�2a
ˇ̌
�
ˇ̌
2n�2

�fk.˛/˛
n�1

ˇ̌
C
ˇ̌
2m�2

�fk.˛/˛
m�1

ˇ̌
C
ˇ̌
fk.˛/˛

n�1
Cfk.˛/˛

m�1
�2a

ˇ̌
<
2n�1C2m�1

2k=2
C
.2nC2m/k

2k
C
.2nC1C2mC1/k

23k=2
C1:

Dividing both sides of the above inequality by 2n�2 and taking into account that
n� kC2, we getˇ̌̌
1C2m�n

�2a�.n�2/
ˇ̌̌
<
2C2m�nC1

2k=2
C
.4C2m�nC2/k

2k
C
.8C2m�nC3/k

23k=2

C
1

2n�2
<

3

2k=2
C
6k

2k
C

12k

23k=2
C

1

2n�2
<

6

2k=2
: (4.8)

However, the above inequality is not possible when a < n� 2, since the term of the
left hand side is > 1=2 because 1C2m�n > 1 and 2a�.n�2/ � 1=2, in contrast to the
right hand side which is very small because k > 340.

5. CONSIDERATIONS ON k FOR aD n�2

To begin, we note that for any k � 3, the triple .n;m;a/D .kC2`;2`C`�1;kC

2`� 2/, where ` is a positive integer such that 2`C `� 2 � k, is a solution of the
Diophantine equation (1.5). Indeed, since 2`C`�2� k, we have

2� 2`
C`�1� kC1 and kC2� kC2`

� 2kC2:
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Thus, from (1.2) and (1.4) we get, respectively

F
.k/

2`C`�1
D 22`C`�3 and F

.k/

kC2` D 2
kC2`�2

�22`C`�3:

Now it is clear that F .k/

kC2`CF
.k/

2`C`�1
D 2kC2`�2.

We remark that the estimate of Bravo and Luca presented in Lemma 4 is sufficient
for several Diophantine problems involving k-Fibonacci numbers, but for the case
aD n�2, that will be discussed below, we require some better ones. To this end, we
recall the following result due to Cooper and Howard [8].

Lemma 5. For k � 2 and n� kC2,

F .k/
n D 2n�2

C

b
nCk
kC1
c�1X

jD1

Cn;j 2
n�.kC1/j�2;

where

Cn;j D .�1/
j

" 
n�jk

j

!
�

 
n�jk�2

j �2

!#
:

In the above, we have denoted by bxc the greatest integer less than or equal to x
and used the convention that

�
a
b

�
D 0 if either a < b or if one of a or b is negative.

For example, assuming that kC 2 � n � 2kC 2 we get b.nCk/=.kC 1/c D 2 and
Cn;1 D�.n�k/, so Cooper and Howard’s formula becomes the identity (1.4).

5.1. The case of small k

Suppose that k 2 Œ3;690�. Here, we perform an analysis quite similar to that made
in Subsection 4.1 to reduce the upper bound on n. After doing the respective calcu-
lations, we conclude that the possible solutions .n;m;k;n� 2/ of the equation (1.5)
with k in the range Œ3;690� all have n � 1380. The procedure is quite similar; hence
we omit the details in order to avoid unnecessary repetitions. Finally, a brute force
search with Mathematica in the range

3� k � 690; kC2� n� 1380 and 2�m� n�1

confirms the assertion of Theorem 1.c/.

5.2. The case of large k

Let us now assume that k > 690. Note that for these values of k we have

m< n < 6:66�1027k7 log5k < 2k=4:

We now proceed with the proof of Theorem 1.c/ by distinguishing two cases on n.

Case 1. n � 2kC 2. Suppose first that m � kC 1. Then, it follows from (1.2) and
(1.4), that

F .k/
n D 2n�2

� .n�k/ �2n�k�3 and F .k/
m D 2m�2:



F
.k/
n CF

.k/
m D 2a 97

Then, from the original equation (1.5) we have 2m�2 D .n�k/ �2n�k�3 or, equival-
ently, n�k D 2` where `D m�nCkC 1. So, mD .n�k/C `� 1D 2`C `� 1.
Further, sincem� kC1, we deduce that 2`C`�2� k. That is, the solution .n;m;a/
of the equation (1.5) has the shape (1.6).

Now suppose m > kC 1. Note that in this case we have that 1 � n�m � k and
2�m�k � kC1 as well as 3� n�k � kC2. Here, equation (1.5) implies

2m�2
D .n�k/ �2n�k�3

C .m�k/ �2m�k�3

giving
2kC1

D .n�k/ �2n�m
Cm�k:

Thus, 2n�m jm�k, and consequently, 2kC1 � .kC2/.kC1/CkC1D .kC1/.kC

3/. This contradicts our assumption that k > 690.

Case 2. n > 2kC 2. To deal with this case, we first remark that a straightforward
application of Lemma 5 allows us to conclude that for all n� kC2,

F .k/
n D 2n�2

�
1�

n�k

2kC1
C s1

�
where js1j<

4n2

22kC2
: (5.1)

Indeed,

js1j �

b
nCk
kC1
c�1X

jD2

jCn;j j

2.kC1/j
<
X
j�2

2nj

2.kC1/j .j �2/Š

<
2n2

22kC2

X
j�2

.n=2kC1/j�2

.j �2/Š
<

2n2

22kC2
en=2kC1

:

Further, since n < 2k we have that en=2kC1

< e1=2 < 2. Thus

js1j<
4n2

22kC2
:

Suppose now that m � kC 1. In this case we use (1.5) and (5.1) as well as the fact
that F .k/

m D 2m�2, to obtainˇ̌̌̌
2n�2.n�k/

2kC1
�2m�2

ˇ̌̌̌
< 2n�2

js1j<
2nn2

22kC2
:

Dividing the above inequality by 2n�2�.kC1/.n� k/ and taking into account that
n < 2k=4, we find that ˇ̌̌̌

ˇ1� 2m�nCkC1

n�k

ˇ̌̌̌
ˇ< 1

2k=2
: (5.2)

Note that if the left–hand side of (5.2) is not zero, then we deduce 1=n < 1=.n�k/ <
1=2k=2, which is false since n < 2k=4 and k > 690. Hence, n D kC 2` where ` D
m�nCkC1. However, this is impossible since n�k 2Z andm�nCkC1��1.
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Finally, suppose that m � kC 2. Note that if one takes a D n� 2 in (4.8), then
it is clear that 2m�n < 6=2k=2 < 1=2k=2�3, and so n�m > k=2�3. Going back to
equality (1.5) and substituting F .k/

n and F .k/
m , according to the identity (5.1), we findˇ̌̌̌

2n�2.n�k/

2kC1
�2m�2

ˇ̌̌̌
< 2n�2

js1jC2
m�2
js2jC

2m�2.m�k/

2kC1

<
2nC1n2

22kC2
C
2m�2.m�k/

2kC1
:

From the above, and using the facts n > 2kC2, n < 2k=4 and n�m > k=2�3, we
get, after some calculations, thatˇ̌̌̌

ˇ1� 2m�nCkC1

n�k

ˇ̌̌̌
ˇ< 10

2k=2
: (5.3)

Note that the left–hand side of (5.3) is zero, since otherwise the same argument used
in (5.2) leads to a contradiction. Hence

2n�2.n�k/

2kC1
D 2m�2: (5.4)

In order to exploit the above relation, we shall consider one more term for F .k/
n in

the expression (5.1). Indeed, the same argument that we used to obtain (5.1) allows
us to deduce that

F .k/
n D 2n�2

�
1�

n�k

2kC1
C
.n�2k�1/.n�2k/�2

22kC3
C s3

�
; js3j<

4n3

23kC3
:

Combining the above identity for F .k/
n and the identity (5.1) applied to F .k/

m together
with (1.5) and the relation (5.4), we conclude thatˇ̌̌̌

2n�2 ..n�2k�1/.n�2k/�2/

22kC3
�
2m�2.m�k/

2kC1

ˇ̌̌̌
< 2n�2

js3jC2
m�2
js2j

<
2nC1n3

23kC3
:

Dividing both sides of the above inequality by 2n�2�.2kC3/ and using (5.4) once
again, we get the inequality

j.n�2k�1/.n�2k/�2�2.n�k/.m�k/j<
8n3

2k
<

8

2k=4
< 1;

and consequently

.n�2k�1/.n�2k/�2D 2.n�k/.m�k/: (5.5)
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On the other hand, by equality (5.4) once more we have that 2m�nCkC1 D n� k.
From this, we get that 2n�m D 2kC1=.n� k/ < 2k , so n�m < k or equivalently
m�k > n�2k. Using this fact on equality (5.5), we obtain

.n�2k�1/.n�2k/�2 > 2.n�k/.n�2k/

implying .n� 2k/.nC 1/ < �2, which is impossible because our assumption that
n>2kC2. This completes the analysis when n>2kC2 andm� kC2 and therefore
the proof of Theorem 1.
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