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Abstract. Cayley’s Theorem states that a permutation group of a group is isomorphic to the given
group. We show that this permutation group is Adams completion of the group with respect to a
suitably chosen set of morphisms in the category of groups and homomorphisms.
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1. INTRODUCTION

Many algebraic and geometrical constructions in algebraic and general topology
can be viewed as Adams completions or cocompletions of objects in suitable cat-
egories, with respect to the chosen set of morphisms. The notion of generalized
Adams completion arose from a general categorical completion process, suggested
by Adams [1,2]. Originally, this was considered for admissible categories and gen-
eralized homology (or cohomology) theories. The notion has been considered in a
more general framework by Deleanu, Frei and Hilton [4] where an arbitrary category
and an arbitrary set of morphisms of the category are considered.

Let % be a category and S be a set of morphisms of %. Let €[S ™!] denote the
category of fractions [6] of 4 with respectto S and F : € — %’[S™!] be the canonical
functor. Let . denote the category of sets and functions. Then for a given object Y
of €, €[S™(—,Y) : € — .7 defines a contravariant functor [6]. If this functor is
representable by an object Y of €, i.e., €[S™!](—.Y) = € (-, Ys), then Yy is called
the generalized Adams completion [4] of Y with respect to the set of morphisms S or
simply the S-completion of Y. Yg is also referred as the completion of Y .

Let S be the set of all morphisms s in € such that F(s) is an isomorphism in
€[S™1]. Then S is called as the saturation of S. The set of morphisms S is said to
be saturated [4]if S = S.
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2. CAYLEY’S THEOREM

Let G be a group. Then G = {Tg G —> G | Tg(x) =gxforallx € G, g € G}
is a permutation group. Then by Cayley’s Theorem [5] G is isomorphic to G. The
following result is easy to prove.

Theorem 1. Let G be a group and G be a group of permutations. Then there is
an isomorphism ¢ : G — G. If K is a group and f : G — K is an isomorphism, then
there exists a unique isomorphism 0 : K — G making the triangle commutative, i.e.,
0f =o.

G—¢>G
7

/
]
K

Proof. Define 6 : K — G by the rule 8(k) = ¢f ~! (k) for all k € K. Clearly, 6 is
well defined and is also a homomorphism. In order to show @ is injective, we have to
show ker 6 = {eg}. Letk e ker 0, ie., 0(k) =of (k)= eq- So f7Uk)=eg,ie.,
k = ek, showing 6 is injective. Next we show 6 is surjective. 8(K) = ¢f ~1(K) =

¢(G) = G; so 0 is surjective. Thus, 6 is an isomorphism.

Forany g € G, 6f(g) = ¢f 1 (f(g)) = ¢(g). Thus 8f = ¢, i.e., the diagram is
commutative. Next we show that @ is unique. Let there exist another 6’ : K — G
with @’ f = ¢. Then forany k € K, (k) = ¢f 1 (k) =0’ ff~1 (k) = 6'(k). Hence
6 = 0’. This completes the proof of Theorem 1. O

3. THE CATEGORY ¥

Let % be a fixed Grothendieck universe [0]. Let ¢ denote the category of groups
and homomorphisms. We assume that the underlying sets of the elements of ¢ are
elements of % .

Let S be the set of all morphisms s : P — Q in ¢ such that s is an isomorphism.

Theorem 2. Lets; : P; — Q; lie in S for each i € I where the index set I is an
element of % . Then V s;j: vV Pi — Vv Q; liesin S.
iel iel iel

Proof. Coproducts in ¢ are the free products. Define a map s = .\/Isi P =
&S
Y Pi— v Qi =Qbytherules(pi -+ px) = ¢(p1) - @(p) where ¢(p;) = si (p;)
if pj € Pj, j =1,--- k. Clearly, s is well defined and is also a homomorphism.

In order to show s is injective we have to show ker s = {ep}. Let p = py---pi €
kers,i.e., s(p1--- pr) =eg = 1; this implies that ¢(p1) ---@(pr) = 1 where p(p;) =
si(pj) =wi(si(p;)) forpj e Pj, j=1,--- kand o] : Q; — QO defined by w;(eg,) =
1 and w/(b) = b for b € Q;, is a monomorphism for each i € I. So each ¢(p;) =
si(pj) = w{(si(pj)) = 1 = w](eg,) from which it follows that s;(p;) = eg;, i.e.,
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pj = ep;, for pj € P; and j = 1,--- k. Next pi---pr = n(p1)---n(px) where
n(p;j) =wi(p;j) =wi(ep;) =1for p; € P; and w; : P; — P is defined by w; (ep;) =
1 and w; (a) = a fora € P;,is amonomorphism foreachi € I. So py---pp =1=ep.
Hence s is injective.

Next take g1 ---qx € Q whereg; € Q; fori € [ and j =1,--- k. Butg; =s;(p;)
where p; € Pi. So q1---qr = ¢(p1)---¢(pk) where ¢(p;) = si(p;) for p; € P;.
Hence g1 ---qx = s(p1--- pr), showing s is surjective. Therefore, s : P — Q is an
isomorphism, i.e., s = _;/Is,- lies in S. This completes the proof of Theorem 2. [

1

We will show that the set of morphisms S of the category ¢ of groups and homo-

morphisms admits a calculus of left fractions [6].

Theorem 3. S admits a calculus of left fractions.

Proof. Since S consists of all isomorphisms in ¢, clearly S is a closed family of
morphisms of the category . We shall verify conditions (i) and (ii) of Theorem 1.3
(41, p.67). Lets : P — Q and ¢ : Q — R be two morphisms in ¢. We show if s € S
ands € S,thent € S. Letg € kert, i.e.,t(q) =er. Sot(s(p)) =egr, p € P. Since
ts is an isomorphism we have p =ep. So g = s(ep) = eq, ie., kert = {eg}, ie.,
t is injective. Since ts € S and s € S, we have ts(P) = R and s(P) = Q. Then
t(Q)=t(s(P)) = R. Sot is surjective. Thus ¢ is an isomorphism, i.e., t € S. Hence
condition (i) of Theorem 1.3 ([4], p.67) holds.

In order to prove condition (ii) of Theorem 1.3 ([4], p.67) consider the diagram

A—f>B

!

in 4 with s € §S. We assert that the above diagram can be completed to a weak
push-out diagram

in¥9 witht € S. Let D = (B*C)/N, where N is a normal subgroup of B * C
generated by { f(a)s(a)™' :a € A}. Define t : B — D by the rule ¢ (b) = bN for all
be Band g:C — D bytherule g(c) =cN for all c € C. Clearly, the two maps
are well defined and homomorphisms. For any a € A, tf(a) = f(a)N =s(a)N =
gs(a), implies that ¢ f = gs. Hence the diagram is commutative.

Next we show ¢ € S, i.e., ¢ is an isomorphism. Take b € ker ¢, i.e.,t(b) =ep = N;
this implies PN = N, i.e., b € N. Hence b = f(a)s(a)™' = f(a)s(a™") for some
a € A. Then bl = f(a)s(a™'), implies that b8 (ec) = f(a)82(s(a~')) where 85 :
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C — B x C, defined by §3(ec) = 1 and §>(c) = ¢ for ¢ € C, is a monomorphism.
Then b = f(a), 82(ec) = 82(s(a™1)). As 82(ec) = 82(s(a™ 1)), we have s(a™!) =
ec,givinga =e4. Thenb = f(eyq) = ep, implies thatker t = {ep}, i.e., ¢ is injective.
In orrder to show ¢ is surjective, take an element wN € D, where w € B % C, and
for w # 1, w can be uniquely written as w = wy --- wy where all factors are # 1 and
two adjacent factors do not belong to the same group. Then wN = wy---wi N =
wiN - wi N = @(wy) - ¢(wy) where p(w;) =1 (w;) if w; € B and p(w;) = g(w;)
if w; € C. If w; € C, then w; = s(a;) and g(w;) = g(s(a;)) = gs(a;) =tf(a;). So
wN = t(an element of B). ¢ is surjective. Thus ¢ is an isomorphism, i.e., t € S.
Nextletu : B — X and v : C — X in category ¢ be such that uf = vs.

Define 6 : D — X by the rule 6(wN) = p(w1)---@(wg), w = wy---w; where
o(w;) = u(w;) if w; € B and ¢(w;) = v(w;) if w; € C. We can easily show
that 6 is well defined and also a homomorphism. Next we show that the two tri-
angles are commutative. For any b € B, 0t(b) = 0(bN) = u(b) and for any c € C,
Og(c)=0(cN)=v(c). So 6t =u and 8g = v. This completes the proof of Theorem
3. O

Also from the above discussion we conclude the following.

Theorem 4. The category ¢ is cocomplete.

The proof of the following result is trivial.

Proposition 1. S is saturated.

All the conditions of Theorem 1 ([3], p.32) are satisfied for the category ¢ and the
set of morphisms S of 4. So from the Theorem 1.2 ([4], p.63), we have the following

result.

Theorem 5. Every object G of the category 4 has an Adams completion G g with
respect to the set of morphisms S. Furthermore, there exists a morphisme : G — Gg
in S which is couniversal with respect to the morphisms in S : given a morphism
s:G — H in S there exists a unique morphismt : H — Gg in S such that ts = e.
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In other words the following diagram is commutative :

G —%~Gg

7
v
K .
v/

H

4, G_ AS ADAMS COMPLETION

We show that G, a permutation group, as constructed in the proof of Cayley’s
Theorem for a group G, is the Adams completion G g of the group G.

Theorem 6. G =~ G3.

Proof. Consider the following diagram :

G—2-6G

| A

Gs

By Theorem 1, there exists a unique morphism 6 : Gg — G in S such that fe = ¢.
Next consider the following diagram :

G —%~ Gy

| A

G

By Theorem 5, there exists a unique morphism ¥ : G — G in S such that Yo = e.
Consider the following diagram :

G ¢ Gs

A
e G
/ A
Gs

We have y0e = ¢ = e. By the uniqueness condition of the couniversal property of
e, we conclude 0 = 1g4.
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Next consider the following diagram :

We have 01y ¢ = 8e = ¢. By the uniqueness condition of the couniversal property of
@, we conclude 0y = 15.

Thus G = Gg. This completes the proof of Theorem 6. O
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