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Abstract. An ideal I of a commutative ring R is said to be irreducible if it cannot be written
as the intersection of two larger ideals. A proper ideal I of a ring R is said to be strongly
irreducible if for each ideals J; K of R, J \K � I implies that J � I or K � I . In this
paper, we introduce the concepts of 2-irreducible and strongly 2-irreducible ideals which are
generalizations of irreducible and strongly irreducible ideals, respectively. We say that a proper
ideal I of a ring R is 2-irreducible if for each ideals J; K and L of R, I D J \K\L implies
that either I D J \K or I D J \L or I DK\L. A proper ideal I of a ring R is called strongly
2-irreducible if for each ideals J; K and L of R, J \K\L� I implies that either J \K � I
or J \L� I or K\L� I .
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1. INTRODUCTION

Throughout this paper all rings are commutative with a nonzero identity. Recall
that an ideal I of a commutative ring R is irreducible if I D J \K for ideals J and
K of R implies that either I D J or I DK. A proper ideal I of a ring R is said to be
strongly irreducible if for each ideals J; K of R, J \K � I implies that J � I or
K � I (see [3], [13]). Obviously a proper ideal I of a ring R is strongly irreducible
if and only if for each x;y 2 R, Rx \Ry � I implies that x 2 I or y 2 I . It is
easy to see that any strongly irreducible ideal is an irreducible ideal. Now, we recall
some definitions which are the motivation of our work. Badawi in [4] generalized the
concept of prime ideals in a different way. He defined a nonzero proper ideal I of
R to be a 2-absorbing ideal of R if whenever a;b;c 2 R and abc 2 I , then ab 2 I
or ac 2 I or bc 2 I . It is shown that a proper ideal I of R is a 2-absorbing ideal if
and only if whenever I1I2I3 � I for some ideals I1;I2;I3 of R, then I1I2 � I or
I1I3 � I or I2I3 � I . In [9], Yousefian Darani and Puczyłowski studied the concept
of 2-absorbing commutative semigroups. Anderson and Badawi [2] generalized the
concept of 2-absorbing ideals to n-absorbing ideals. According to their definition,
a proper ideal I of R is called an n-absorbing (resp. strongly n-absorbing) ideal
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if whenever a1 � � �anC1 2 I for a1; :::;anC1 2 R (resp. I1 � � �InC1 � I for ideals
I1; � � �InC1 of R), then there are n of the ai ’s (resp. n of the Ii ’s) whose product
is in I . Thus a strongly 1-absorbing ideal is just a prime ideal. Clearly a strongly
n-absorbing ideal of R is also an n-absorbing ideal of R. The concept of 2-absorbing
primary ideals, a generalization of primary ideals was introduced and investigated in
[6]. A proper ideal I of a commutative ring R is called a 2-absorbing primary ideal
if whenever a;b;c 2 R and abc 2 I , then either ab 2 I or ac 2

p
I or bc 2

p
I .

We refer the readers to [5] for a specific kind of 2-absorbing ideals and to [19], [10],
[11] for the module version of the above definitions. We define an ideal I of a ring
R to be 2-irreducible if whenever I D J \K \L for ideals I; J and K of R, then
either I D J \K or I D J \L or I DK\L. Obviously, any irreducible ideal is a
2-irreducible ideal. Also, we say that a proper ideal I of a ring R is called strongly 2-
irreducible if for each ideals J; K andL ofR, J \K\L� I implies that J \K � I
or J \L � I or K \L � I . Clearly, any strongly irreducible ideal is a strongly 2-
irreducible ideal. In [8], [7] we can find the notion of 2-irreducible preradicals and
its dual, the notion of co-2-irreducible preradicals. We call a proper ideal I of a ring
R singly strongly 2-irreducible if for each x;y;´ 2 R, Rx\Ry \R´ � I implies
that Rx\Ry � I or Rx\R´ � I or Ry \R´ � I . It is trivial that any strongly
2-irreducible ideal is a singly strongly 2-irreducible ideal. A ring R is said to be an
arithmetical ring, if for each ideals I; J and K of R, .I C J /\K D .I \K/C
.J \K/. This condition is equivalent to the condition that for each ideals I; J and
K of R, .I \J /CK D .I CK/\ .J CK/, see [15]. In this paper we prove that,
a nonzero ideal I of a principal ideal domain R is 2-irreducible if and only if I is
strongly 2-irreducible if and only if I is 2-absorbing primary. It is shown that a
proper ideal I of a ring R is strongly 2-irreducible if and only if for each x;y;´ 2R,
.RxCRy/\.RxCR´/\.RyCR´/� I implies that .RxCRy/\.RxCR´/� I
or .RxCRy/\ .RyCR´/� I or .RxCR´/\ .RyCR´/� I . A proper ideal I
of a von Neumann regular ring R is 2-irreducible if and only if I is 2-absorbing if
and only if for every idempotent elements e1; e2; e3 of R, e1e2e3 2 I implies that
either e1e2 2 I or e1e3 2 I or e2e3 2 I . If I is a 2-irreducible ideal of a Noetherian
ring R, then I is a 2-absorbing primary ideal of R. Let RDR1�R2, where R1 and
R2 are commutative rings with 1 ¤ 0. It is shown that a proper ideal J of R is a
strongly 2-irreducible ideal of R if and only if either J D I1�R2 for some strongly
2-irreducible ideal I1 of R1 or J D R1� I2 for some strongly 2-irreducible ideal I2
of R2 or J D I1�I2 for some strongly irreducible ideal I1 of R1 and some strongly
irreducible ideal I2 of R2. A proper ideal I of a unique factorization domain R is
singly strongly 2-irreducible if and only if pn1

1 p
n2

2 � � �p
nk

k
2 I , where pi ’s are distinct

prime elements ofR and ni ’s are natural numbers, implies that pnr
r p

ns
s 2 I , for some

1� r;s � k.
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2. BASIC PROPERTIES OF 2-IRREDUCIBLE AND STRONGLY 2-IRREDUCIBLE
IDEALS

It is important to notice that when R is a domain, then R is an arithmetical ring
if and only if R is a Prüfer domain. In particular, every Dedekind domain is an
arithmetical domain.

Theorem 1. Let R be a Dedekind domain and I be a nonzero proper ideal of R.
The following conditions are equivalent:

(1) I is a strongly irreducible ideal;
(2) I is an irreducible ideal;
(3) I is a primary ideal;
(4) I D Rpn for some prime (irreducible) element p of R and some natural

number n.

Proof. See [13, Lemma 2.2(3)] and [18, p. 130, Exercise 36]. �

We recall from [1] that an integral domain R is called a GCD-domain if any two
nonzero elements of R have a greatest common divisor .GCD/, equivalently, any
two nonzero elements of R have a least common multiple .LCM/: Unique factor-
ization domains (UFD’s) are well-known examples of GCD-domains. Let R be a
GCD-domain. The least common multiple of elements x; y of R is denoted by
Œx;y�. Notice that for every elements x; y 2 R, Rx\Ry D RŒx;y�. Moreover, for
every elements x;y;´ of R, we have ŒŒx;y�;´�D Œx; Œy;´��. So we denote ŒŒx;y�;´�
simply by Œx;y;´�.

Recall that every principal ideal domain (PID) is a Dedekind domain.

Theorem 2. LetR be a PID and I be a nonzero proper ideal ofR. The following
conditions are equivalent:

(1) I is a 2-irreducible ideal;
(2) I is a 2-absorbing primary ideal;
(3) Either I D Rpk for some prime (irreducible) element p of R and some nat-

ural number n, or I D R.pn1p
m
2 / for some distinct prime (irreducible) ele-

ments p1; p2 of R and some natural numbers n; m.

Proof. (2),(3) See [6, Corollary 2.12].
(1))(3) Assume that I D Ra where 0¤ a 2 R. Let aD pn1

1 p
n2

2 � � �p
nk

k
be a prime

decomposition for a. We show that either k D 1 or k D 2. Suppose that k > 2. By
[14, p. 141, Exercise 5], we have that I DRpn1

1 \Rp
n2

2 \� � �\Rp
nk

k
. Now, since I is

2-irreducible, there exist 1� i;j � k such that I DRpni

i \Rp
nj

j , say i D 1; j D 2.
Therefore we have I DRpn1

1 \Rp
n2

2 �Rp
n3

3 , which is a contradiction.
(3))(1) If I D Rpk for some prime element p of R and some natural number n,
then I is irreducible, by Theorem 1, and so I is 2-irreducible. Therefore, assume
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that I D R.pn1p
m
2 / for some distinct prime elements p1; p2 of R and some natural

numbers n; m. Let I D Ra\Rb\Rc for some elements a; b and c of R. Then
a; b and c divide pn1p

m
2 , and so a D p˛1

1 p
˛2

2 , b D pˇ1

1 p
ˇ2

2 and c D p1

1 p
2

2 where
˛i ;ˇi ;i are some nonnegative integers. On the other hand I D Ra\Rb\Rc D
RŒa;b;c�D R.pı1p

"
2/ in which ı D maxf˛1;ˇ1;1g and "D maxf˛2;ˇ2;2g. We

can assume without loss of generality that ıD ˛1 and "D ˇ2. So I DR.p˛1

1 p
ˇ2

2 /D

Ra\Rb. Consequently, I is 2-irreducible. �

A commutative ring R is called a von Neumann regular ring (or an absolutely flat
ring) if for any a 2 R there exists an x 2 R with a2x D a, equivalently, I D I 2 for
every ideal I of R.

Remark 1. Notice that a commutative ring R is a von Neumann regular ring if and
only if IJ D I \J for any ideals I; J of R, by [16, Lemma 1.2]. Therefore over
a commutative von Neumann regular ring the two concepts of strongly 2-irreducible
ideals and of 2-absorbing ideals are coincide.

Theorem 3. Let I be a proper ideal of a ring R. Then the following conditions
are equivalent:

(1) I is strongly 2-irreducible;
(2) For every elements x;y;´ of R, .RxCRy/\ .RxCR´/\ .RyCR´/� I

implies that .RxCRy/\ .RxCR´/ � I or .RxCRy/\ .RyCR´/ � I
or .RxCR´/\ .RyCR´/� I .

Proof. (1))(2) There is nothing to prove.
(2))(1) Suppose that J; K and L are ideals of R such that neither J \K � I
nor J \L � I nor K \L � I . Then there exist elements x; y and ´ of R such
that x 2 .J \K/nI and y 2 .J \L/nI and ´ 2 .K \L/nI . On the other hand
.RxCRy/\.RxCR´/\.RyCR´/� .RxCRy/� J , .RxCRy/\.RxCR´/\
.RyCR´/� .RxCR´/�K and .RxCRy/\ .RxCR´/\ .RyCR´/� .RyC
R´/ � L. Hence .RxCRy/\ .RxCR´/\ .RyCR´/ � I , and so by hypothesis
either .RxCRy/\.RxCR´/� I or .RxCRy/\.RyCR´/� I or .RxCR´/\
.RyCR´/� I . Therefore, either x 2 I or y 2 I or ´ 2 I , which any of these cases
has a contradiction. Consequently I is strongly 2-irreducible. �

A ring R is called a Bézout ring if every finitely generated ideal of R is principal.
As an immediate consequence of Theorem 3 we have the next result:

Corollary 1. Let I be a proper ideal of a Bézout ring R. Then the following
conditions are equivalent:

(1) I is strongly 2-irreducible;
(2) I is singly strongly 2-irreducible;

Now we can state the following open problem.
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Problem 1. Let I be a singly strongly 2-irreducible ideal of a ring R. Is I a
strongly 2-irreducible ideal of R?

Proposition 1. Let R be a ring. If I is a strongly 2-irreducible ideal of R, then I
is a 2-irreducible ideal of R.

Proof. Suppose that I is a strongly 2-irreducible ideal of R. Let J; K and L be
ideals of R such that I D J \K\L. Since J \K\L � I , then either J \K � I
or J \L � I or K \L � I . On the other hand I � J \K and I � J \L and
I �K\L. Consequently, either I D J \K or I D J \L or I DK\L. Therefore
I is 2-irreducible. �

Remark 2. It is easy to check that the zero ideal I Df0g of a ringR is 2-irreducible
if and only if I is strongly 2-irreducible.

Proposition 2. Let I be a proper ideal of an arithmetical ring R. The following
conditions are equivalent:

(1) I is a 2-irreducible ideal of R;
(2) I is a strongly 2-irreducible ideal of R;
(3) For every ideals I1 ;I2 and I3 of R with I � I1, I1\ I2\ I3 � I implies

that I1\I2 � I or I1\I3 � I or I2\I3 � I .

Proof. (1))(2) Assume that J; K and L are ideals of R such that J \K \L �
I . Therefore I D I C .J \K \L/ D .I CJ /\ .I CK/\ .I CL/, since R is an
arithmetical ring. So either I D .I C J /\ .I CK/ or I D .I C J /\ .I CL/ or
I D .I CK/\ .I CL/, and thus either J \K � I or J \L � I or K \L � I .
Hence I is a strongly 2-irreducible ideal.
(2))(3) is clear.
(3))(2) Let J; K and L be ideals of R such that J \K\L� I . Set I1 WD J C I ,
I2 WDK and I3 WDL. Since R is an arithmetical ring, then I1\I2\I3 D .J CI /\
K\LD .J \K\L/C .I \K\L/� I . Hence either I1\ I2 � I or I1\ I3 � I
or I2 \ I3 � I which imply that either J \K � I or J \L � I or K \L � I ,
respectively. Consequently, I is a strongly 2-irreducible ideal of R.
(2))(1) By Proposition 1. �

As an immediate consequence of Theorem 2 and Proposition 2 we have the next
result.

Corollary 2. LetR be aPID and I be a nonzero proper ideal ofR. The following
conditions are equivalent:

(1) I is a strongly 2-irreducible ideal;
(2) I is a 2-irreducible ideal;
(3) I is a 2-absorbing primary ideal;
(4) Either I D Rpk for some prime (irreducible) element p of R and some nat-

ural number n, or I D R.pn1p
m
2 / for some distinct prime (irreducible) ele-

ments p1; p2 of R and some natural numbers n; m.
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The following example shows that the concepts of strongly irreducible (irredu-
cible) ideals and of strongly 2-irreducible (2-irreducible) ideals are different in gen-
eral.

Example 1. Consider the ideal 6Z of the ring Z. By Corollary 2, 6ZD .2:3/Z is
a strongly 2-irreducible (a 2-irreducible) ideal of Z. But, Theorem 1 says that 6Z is
not a strongly irreducible (an irreducible) ideal of Z.

It is well known that every von Neumann regular ring is a Bézout ring. By [15, p.
119], every Bézout ring is an arithmetical ring.

Corollary 3. Let I be a proper ideal of a von Neumann regular ring R. The
following conditions are equivalent:

(1) I is a 2-absorbing ideal of R;
(2) I is a 2-irreducible ideal of R;
(3) I is a strongly 2-irreducible ideal of R;
(4) I is a singly strongly 2-irreducible of R;
(5) For every idempotent elements e1; e2; e3 of R, e1e2e3 2 I implies that either

e1e2 2 I or e1e3 2 I or e2e3 2 I .

Proof. (1),(3) By Remark 1.
(2),(3) By Proposition 2.
(3),(4) By Corollary 1.
(1))(5) is evident.
(5))(3) The proof follows from Theorem 3 and the fact that any finitely generated
ideal of a von Neumann regular ring R is generated by an idempotent element. �

Proposition 3. Let I1; I2 be strongly irreducible ideals of a ring R. Then I1\I2
is a strongly 2-irreducible ideal of R.

Proof. Strightforward. �

Theorem 4. Let R be a Noetherian ring. If I is a 2-irreducible ideal of R, then
either I is irreducible or I is the intersection of exactly two irreducible ideals. The
converse is true when R is also arithmetical.

Proof. Assume that I is 2-irreducible. By [20, Proposition 4.33], I can be written
as a finite irredundant irreducible decomposition I D I1\I2\� � �\Ik . We show that
either k D 1 or k D 2. If k > 3, then since I is 2-irreducible, I D Ii \ Ij for some
1 � i;j � k, say i D 1 and j D 2. Therefore I1\ I2 � I3, which is a contradiction.
For the second atatement, let R be arithmetical, and I be the intersection of two irre-
ducible ideals. Since R is arithmetical, every irreducible ideal is strongly irreducible,
[13, Lemma 2.2(3)]. Now, apply Proposition 3 to see that I is strongly 2-irreducible,
and so I is 2-irreducible. �

Corollary 4. Let R be a Noetherian ring and I be a proper ideal of R. If I is
2-irreducible, then I is a 2-absorbing primary ideal of R.
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Proof. Assume that I is 2-irreducible. By the fact that every irreducible ideal of a
Noetherian ring is primary and regarding Theorem 4, we have either I is a primary
ideal or is the intersection of two primary ideals. It is clear that every primary ideal
is 2-absorbing primary, also the intersection of two primary ideals is a 2-absorbing
primary ideal, by [6, Theorem 2.4]. �

Proposition 4. Let R be a ring, and let P1; P2 and P3 be pairwise comaximal
prime ideals of R. Then P1P2P3 is not a 2-irreducible ideal.

Proof. The proof is easy. �

Corollary 5. If R is a ring such that every proper ideal of R is 2-irreducible, then
R has at most two maximal ideals.

Theorem 5. Let I be a radical ideal of a ring R, i.e., I D
p
I . The following

conditions are equivalent:
(1) I is strongly 2-irreducible;
(2) I is 2-absorbing;
(3) I is 2-absorbing primary;
(4) I is either a prime ideal ofR or is an intersection of exactly two prime ideals

of R.

Proof. (1))(2) Assume that I is strongly 2-irreducible. Let J; K and L be ideals
of R such that JKL � I . Then J \K \L �

p
J \K\L �

p
I D I . So, either

J \K � I or J \L� I orK\L� I . Hence either JK � I or JL� I orKL� I .
Consequently I is 2-absorbing.
(2),(3) is obvious.
(2))(4) If I is a 2-absorbing ideal, then either

p
I is a prime ideal or is an inter-

section of exactly two prime ideals, [4, Theorem 2.4]. Now, we prove the claim by
assumption that I D

p
I .

(4))(1) By Proposition 3. �

Theorem 6. Let f WR! S be a surjective homomorphism of commutative rings,
and let I be an ideal of R containing Ker.f /. Then,

(1) If I is a strongly 2-irreducible ideal of R, then I e is a strongly 2-irreducible
ideal of S .

(2) I is a 2-irreducible ideal of R if and only if I e is a 2-irreducible ideal of S .

Proof. Since f is surjective, J ce D J for every ideal J of S . Moreover, .K \
L/e DKe\Le and Kec DK for every ideals K; L of R which contain Ker.f/.
(1) Suppose that I is a strongly 2-irreducible ideal ofR. If I eDS , then I D I ec DR,
which is a contradiction. Let J1; J2 and J3 be ideals of S such that J1\J2\J3� I e.
Therefore J c1 \ J

c
2 \ J

c
3 � I

ec D I . So, either J c1 \ J
c
2 � I or J c1 \ J

c
3 � I or

J c2 \ J
c
3 � I . Without loss of generality, we may assume that J c1 \ J

c
2 � I . So,

J1\J2 D .J1\J2/
ce � I e. Hence I e is strongly 2-irreducible.
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(2) The necessity is similar to part (1). Conversely, let I e be a strongly 2-irreducible
ideal of S , and let I1; I2 and I3 be ideals of R such that I D I1\ I2\ I3. Then
I e D I e1 \ I

e
2 \ I

e
3 . Hence, either I e D I e1 \ I

e
2 or I e D I e1 \ I

e
3 or I e D I e2 \ I

e
3 .

We may assume that I e D I e1 \ I
e
2 . Therefore, I D I ec D I ec1 \ I

ec
2 D I1 \ I2.

Consequently, I is strongly 2-irreducible. �

Corollary 6. Let f WR! S be a surjective homomorphism of commutative rings.
There is a one-to-one correspondence between the 2-irreducible ideals of R which
contain Ker.f / and 2-irreducible ideals of S .

Recall that a ring R is called a Laskerian ring if every proper ideal of R has a
primary decomposition. Noetherian rings are some examples of Laskerian rings.

Let S be a multiplicatively closed subset of a ringR. In the next theorem, consider
the natural homomorphism f WR! S�1R defined by f .x/D x=1.

Theorem 7. Let I be a proper ideal of a ringR and S be a multiplicatively closed
set in R.

(1) If I is a strongly 2-irreducible ideal of S�1R, then I c is a strongly 2-
irreducible ideal of R.

(2) If I is a primary strongly 2-irreducible ideal of R such that I \S D¿, then
I e is a strongly 2-irreducible ideal of S�1R.

(3) If I is a primary ideal of R such that I e is a strongly 2-irreducible ideal of
S�1R, then I is a strongly 2-irreducible ideal of R.

(4) IfR0 is a faithfully flat extension ring ofR and if IR0 is a strongly 2-irreducible
ideal of R0, then I is a strongly 2-irreducible ideal of R.

(5) If I is strongly 2-irreducible and H is an ideal of R such that H � I , then
I=H is a strongly 2-irreducible ideal of R=H .

(6) If R is a Laskerian ring, then every strongly 2-irreducible ideal is either a
primary ideal or is the intersection of two primary ideals.

Proof. (1) Assume that I is a strongly 2-irreducible ideal of S�1R. Let J; K and
L be ideals of R such that J \K\L� I c . Then J e \Ke \Le � I ce D I . Hence
either J e\Ke � I or J e\Le � I orKe\Le � I since I is strongly 2-irreducible.
Therefore either J \K � I c or J \L � I c or K \L � I c . Consequently I c is a
strongly 2-irreducible ideal of R.
(2) Suppose that I is a primary strongly 2-irreducible ideal such that I \S D¿. Let
J; K and L be ideals of S�1R such that J \K\L� I e. Since I is a primary ideal,
then J c \Kc \Lc � I ec D I . Thus J c \Kc � I or J c \Lc � I or Kc \Lc � I .
Hence J \K � I e or J \L� I e or K\L� I e.
(3) Let I be a primary ideal ofR, and let I e be a strongly 2-irreducible ideal of S�1R.
By part (1), I ec is strongly 2-irreducible. Since I is primary, we have I ec D I , and
thus we are done.
(4) Let J; K andL be ideals ofR such that J \K\L� I . Thus JR0\KR0\LR0D
.J \K\L/R0 � IR0, by [12, Lemma 9.9]. Since IR0 is strongly 2-irreducible, then
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either JR0\KR0 � IR0 or JR0\LR0 � IR0 or KR0\LR0 � IR0. Without loss of
generality, assume that JR0\KR0 � IR0. So, .JR0\R/\ .KR0\R/ � IR0\R.
Hence J \K � I , by [17, Theorem 4.74]. Consequently I is strongly 2-irreducible.
(5) Let J; K and L be ideals of R containing H such that .J=H/\ .K=H/\
.L=H/ � I=H . Hence J \K \L � I . Therefore, either J \K � I or J \L �
I or K \L � I . Thus, .J=H/\ .K=H/ � I=H or .J=H/\ .L=H/ � I=H or
.K=H/\ .L=H/� I=H . Consequently, I=H is strongly 2-irreducible.
(6) Let I be a strongly 2-irreducible ideal and \niD1Qi be a primary decomposition
of I . Since \niD1Qi � I , then there are 1 � r;s � n such that Qr \Qs � I D
\niD1Qi �Qr \Qs . �

Let S be a multiplicatively closed subset of a ring R. Set

C WD fI c j I is an ideal of RSg:

Corollary 7. Let R be a ring and S be a multiplicatively closed subset of R. Then
there is a one-to-one correspondence between the strongly 2-irreducible ideals ofRS
and strongly 2-irreducible ideals of R contained in C which do not meet S .

Proof. If I is a strongly 2-irreducible ideal of RS , then evidently I c ¤R, I c 2 C
and by Theorem 7(1), I c is a strongly 2-irreducible ideal of R. Conversely, let I be a
strongly 2-irreducible ideal of R, I \S D¿ and I 2C . Since I \S D¿, I e ¤RS .
Let J \K\L� I e where J; K and L are ideals ofRS . Then J c\Kc\Lc D .J \
K\L/c � I ec . Now since I 2C , then I ec D I . So J c\Kc\Lc � I . Hence, either
J c\Kc � I or J c\Lc � I orKc\Lc � I . Then, either J \K D .J \K/ce � I e

or J \L D .J \L/ce � I e or K \L D .K \L/ce � I e. Consequently, I e is a
strongly 2-irreducible ideal of RS . �

Let n be a natural number. We say that I is an n-primary ideal of a ring R if I is
the intersection of n primary ideals of R.

Proposition 5. Let R be a ring. Then the following conditions are equivalent:
(1) Every n-primary ideal of R is a strongly 2-irreducible ideal;
(2) For any prime ideal P of R, every n-primary ideal of RP is a strongly 2-

irreducible ideal;
(3) For any maximal ideal m of R, every n-primary ideal of Rm is a strongly

2-irreducible ideal.

Proof. (1))(2) Let I be an n-primary ideal of RP . We know that I c is an n-
primary ideal ofR, I c\.RnP /D¿, I c 2C and, by the assumption, I c is a strongly
2-irreducible ideal of R. Now, by Corollary 7, I D .I c/P is a strongly 2-irreducible
ideal of RP .
(2))(3) is clear.
(3))(1) Let I be an n-primary ideal of R and let m be a maximal ideal of R con-
taining I . Then, Im is an n-primary ideal of Rm and so, by our assumption, Im is
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a strongly 2-irreducible ideal of Rm. Now by Theorem 10(1), .Im/c is a strongly
2-irreducible ideal of R, and since I is an n-primary ideal of R, .Im/c D I , that is,
I is a strongly 2-irreducible ideal of R. �

Theorem 8. Let R D R1�R2, where R1 and R2 are rings with 1¤ 0. Let J be
a proper ideal of R. Then the following conditions are equivalent:

(1) J is a strongly 2-irreducible ideal of R;
(2) Either J D I1 �R2 for some strongly 2-irreducible ideal I1 of R1 or J D

R1 � I2 for some strongly 2-irreducible ideal I2 of R2 or J D I1 � I2 for
some strongly irreducible ideal I1 of R1 and some strongly irreducible ideal
I2 of R2.

Proof. (1))(2) Assume that J is a strongly 2-irreducible ideal of R. Then J D
I1�I2 for some ideal I1 ofR1 and some ideal I2 ofR2. Suppose that I2DR2. Since
J is a proper ideal of R, I1 ¤R1. Let R0 D R

f0g�R2
. Then J 0 D J

f0g�R2
is a strongly

2-irreducible ideal of R0 by Theorem 7(5). Since R0 is ring-isomorphic to R1 and
I1 ' J

0, I1 is a strongly 2-irreducible ideal of R1. Suppose that I1 D R1. Since J
is a proper ideal of R, I2 ¤ R2. By a similar argument as in the previous case, I2
is a strongly 2-irreducible ideal of R2. Hence assume that I1 ¤ R1 and I2 ¤ R2.
Suppose that I1 is not a strongly irreducible ideal of R1. Then there are x; y 2 R1
such that R1x\R1y � I1 but neither x 2 I1 nor y 2 I1. Notice that .R1x�R2/\
.R1�f0g/\ .R1y�R2/D .R1x\R1y/�f0g � J , but neither .R1x�R2/\ .R1�
f0g/DR1x�f0g � J nor .R1x�R2/\ .R1y�R2/D .R1x\R1y/�R2 � J nor
.R1 �f0g/\ .R1y �R2/ D R1y �f0g � J , which is a contradiction. Thus I1 is a
strongly irreducible ideal of R1. Suppose that I2 is not a strongly irreducible ideal of
R2. Then there are ´; w 2R2 such that R2´\R2w � I2 but neither ´ 2 I2 nor w 2
I2. Notice that .R1�R2´/\.f0g�R2/\.R1�R2w/Df0g�.R2´\R2w/� J , but
neither .R1�R2´/\ .f0g�R2/D f0g�R2´� J , nor .R1�R2´/\ .R1�R2w/D
R1� .R2´\R2w/� J nor .f0g�R2/\ .R1�R2w/D f0g�R2w � J , which is a
contradiction. Thus I2 is a strongly irreducible ideal of R2.
(2))(1) If J D I1�R2 for some strongly 2-irreducible ideal I1 ofR1 or J DR1�I2
for some strongly 2-irreducible ideal I2 of R2, then it is clear that J is a strongly 2-
irreducible ideal of R. Hence assume that J D I1� I2 for some strongly irreducible
ideal I1 of R1 and some strongly irreducible ideal I2 of R2. Then I 01 D I1�R2 and
I 02 D R1� I2 are strongly irreducible ideals of R. Hence I 01\ I

0
2 D I1� I2 D J is a

strongly 2-irreducible ideal of R by Proposition 3. �

Theorem 9. Let R D R1�R2� � � � �Rn, where 2 � n <1, and R1;R2; :::;Rn
are rings with 1¤ 0. Let J be a proper ideal of R. Then the following conditions are
equivalent:

(1) J is a strongly 2-irreducible ideal of R.
(2) Either J D �ntD1It such that for some k 2 f1;2; :::;ng, Ik is a strongly 2-

irreducible ideal of Rk , and It D Rt for every t 2 f1;2; :::;ngnfkg or J D
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�ntD1It such that for some k;m 2 f1;2; :::;ng, Ik is a strongly irreducible
ideal of Rk , Im is a strongly irreducible ideal of Rm, and It D Rt for every
t 2 f1;2; :::;ngnfk;mg.

Proof. We use induction on n. Assume that n D 2. Then the result is valid by
Theorem 8. Thus let 3 � n <1 and assume that the result is valid when K D R1�
� � ��Rn�1. We prove the result when RDK�Rn. By Theorem 8, J is a strongly 2-
irreducible ideal ofR if and only if either J DL�Rn for some strongly 2-irreducible
ideal L of K or J D K �Ln for some strongly 2-irreducible ideal Ln of Rn or
J DL�Ln for some strongly irreducible idealL ofK and some strongly irreducible
ideal Ln of Rn. Observe that a proper ideal Q of K is a strongly irreducible ideal of
K if and only if QD�n�1tD1It such that for some k 2 f1;2; :::;n�1g, Ik is a strongly
irreducible ideal ofRk , and It DRt for every t 2 f1;2; :::;n�1gnfkg. Thus the claim
is now verified. �

Lemma 1. Let R be a GCD-domain and I be a proper ideal of R. The following
conditions are equivalent:

(1) I is a singly strongly 2-irreducible ideal;
(2) For every elements x;y;´ 2R, Œx;y;´� 2 I implies that Œx;y� 2 I or Œx;´� 2

I or Œy;´� 2 I .

Proof. Since for every elements x; y of R we have Rx\Ry D RŒx;y�, there is
nothing to prove. �

Now we study singly strongly 2-irreducible ideals of a UFD.

Theorem 10. Let R be a UFD, and let I be a proper ideal of R. Then the
following conditions hold:

(1) I is singly strongly 2-irreducible if and only if for each elements x;y;´ of R,
Œx;y;´� 2 I implies that either Œx;y� 2 I or Œx;´� 2 I or Œy;´� 2 I .

(2) I is singly strongly 2-irreducible if and only if pn1

1 p
n2

2 � � �p
nk

k
2 I , where

pi ’s are distinct prime elements of R and ni ’s are natural numbers, implies
that pnr

r p
ns
s 2 I , for some 1� r;s � k.

(3) If I is a nonzero principal ideal, then I is singly strongly 2-irreducible if
and only if the generator of I is a prime power or the product of two prime
powers.

(4) Every singly strongly 2-irreducible ideal is a 2-absorbing primary ideal.

Proof. (1) By Lemma 1.
(2) Suppose that I is singly strongly 2-irreducible and pn1

1 p
n2

2 � � �p
nk

k
2 I in which

pi ’s are distinct prime elements of R and ni ’s are natural numbers. Then
Œp
n1

1 ;p
n2

2 ; : : : ;p
nk

k
�D p

n1

1 p
n2

2 � � �p
nk

k
2 I . Hence by part (1), there are 1 � r;s � k

such that Œpnr
r ;p

ns
s � 2 I , i.e., pnr

r p
ns
s 2 I .
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For the converse, let Œx;y;´� 2 I for some x;y;´ 2 Rnf0g. Assume that x; y and ´
have prime decompositions as below,

x D p
˛1

1 p
˛2

2 � � �p
˛k

k
q
ˇ1

1 q
ˇ2

2 � � �q
ˇs
s ;

y D p
1

1 p
2

2 � � �p
k

k
r
ı1

1 r
ı2

2 � � �r
ıu
u ;

´D p
"1

1 p
"2

2 � � �p
"k0

k0 q
�1

1 q
�2

2 � � �q
�s0

s0 r
�1

1 r
�2

2 � � �r
�u0

u0 s
�1

1 s
�2

2 � � �s
�v
v ;

in which 0� k0 � k, 0� s0 � s and 0� u0 � u. Therefore,

Œx;y;´�D p
�1

1 p
�2

2 � � �p
�k0

k0 p
!k0C1

k0C1
� � �p

!k

k
q
�1

1 q
�2

2 � � �q
�s0

s0

q
ˇs0C1

s0C1 � � �q
ˇs
s r

�1

1 r
�2

2 � � �r
�u0

u0 r
ıu0C1

u0C1 � � �r
ıu
u s

�1

1 s
�2

2 � � �s
�v
v 2 I;

where �i D maxf˛i ;i ; "ig for every 1 � i � k0; !j D maxf j̨ ;j g for every k0 <
j � k; �i Dmaxfˇi ;�ig for every 1� i � s0; �i Dmaxfıi ;�ig for every 1� i � u0.
By part (2), we have twenty one cases. For example we investigate the following two
cases. The other cases can be verified in a similar way.
Case 1. For some 1� i;j � k0, p�i

i p
�j
j 2 I . If �i D˛i and �j D j̨ , then clearly x 2 I

and so Œx;y� 2 I . If �i D ˛i and �j D j , then p˛i

i p
j

j j Œx;y� and thus Œx;y� 2 I . If
�i D ˛i and �j D "j , then p˛i

i p
"j
j j Œx;´� and thus Œx;´� 2 I .

Case 2. Let p�i

i p
!j

j 2 I ; for some 1 � i � k0 and k0C 1 � j � k. For �i D ˛i ,
!j D j̨ we have x 2 I and so Œx;y� 2 I . For �i D "i , !j D j we have Œy;´� 2 I .
Consequently I is singly strongly 2-irreducible, by part (1).
(3) Suppose that I D Ra for some nonzero element a 2 R. Assume that I is singly
strongly 2-irreducible. Let a D pn1

1 p
n2

2 � � �p
nk

k
be a prime decomposition for a such

that k > 2. By part (2) we have that pnr
r p

ns
s 2 I for some 1 � r;s � k. Therefore

I DR.p
nr
r p

ns
s /.

Conversely, if a is a prime power, then I is strongly irreducible ideal, by [3, Theorem
2.2(3)]. Hence I is singly strongly 2-irreducible. Let I D R.prqs/ for some prime
elements p; q of R. Assume that for some distinct prime elements q1;q2; :::;qk
of R and natural numbers m1;m2; :::;mk , qm1

1 q
m2

2 � � �q
mk

k
2 I D R.prqs/. Then

prqs j q
m1

1 q
m2

2 � � �q
mk

k
. Hence there exists 1 � i � k such that p D qi and r � mi ,

also there exists 1 � j � k such that q D qj and s �mj . Then, since prqs 2 I , we
have qmi

i q
mj

j 2 I . Now, by part (2), I is singly strongly 2-irreducible.
(4) Let I be singly strongly 2-irreducible and xy´ 2 I for some x;y;´ 2 Rnf0g.
Consider the following prime decompositions,

x D p
˛1

1 p
˛2

2 � � �p
˛k

k
q
ˇ1

1 q
ˇ2

2 � � �q
ˇs
s ;

y D p
1

1 p
2

2 � � �p
k

k
r
ı1

1 r
ı2

2 � � �r
ıu
u ;

´D p
"1

1 p
"2

2 � � �p
"k0

k0 q
�1

1 q
�2

2 � � �q
�s0

s0 r
�1

1 r
�2

2 � � �r
�u0

u0 s
�1

1 s
�2

2 � � �s
�v
v ;

in which 0� k0 � k, 0� s0 � s and 0� u0 � u. By these representations we have,
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xy´D p
˛1C1C"1

1 p
˛2C2C"2

2 � � �p
˛k0Ck0C"k0

k0 p
˛k0C1Ck0C1

k0C1

� � �p
˛kCk

k
q
ˇ1C�1

1 q
ˇ2C�2

2 � � �q
ˇs0C�s0

s0 q
ˇs0C1

s0C1 � � �q
ˇs
s

r
ı1C�1

1 r
ı2C�2

2 � � �r
ıu0C�u0

u0 r
ıu0C1

u0C1 � � �r
ıu
u s

�1

1 s
�2

2 � � �s
�v
v 2 I:

Now, apply part (2). We investigate some cases that can be happened, the other
cases similarly lead us to the claim that I is 2-absorbing primary. First, assume for
some 1 � i;j � k0, p˛iCiC"i

i p j̨CjC"j
j 2 I . Choose a natural number n such

that n � maxf˛iCi

"i
; j̨Cj

"j
g. With this choice we have .nC 1/"i � ˛i C i C "i

and .nC 1/"j � j̨ C j C "j , so p.nC1/"i

i p
.nC1/"j
j 2 I . Then ´nC1 2 I , so ´ 2

p
I . The other one case; assume that for some 1 � i � k0 and k0C 1 � j � k,

p
˛iCiC"i

i p j̨Cj

j 2 I . Choose a natural number n such that n � maxf˛iC"i

i
; j̨

j
g.

With this choice we have .nC 1/i � ˛i C i C "i and .nC 1/j � j̨ C j , thus

p
.nC1/i

i p
.nC1/j

j 2 I . Then ynC1 2 I , so y 2
p
I . Assume that p˛iCi

i s
�j

j 2 I , for
some k0C1 � i � k and some 1 � j � v. Let n be a natural number where n � i

˛i
,

then .nC1/˛i � ˛i Ci . Hence p.nC1/˛i

i s
.nC1/�j

j 2 I which shows that x´ 2
p
I .

Suppose that for some s0C1 � i � s and u0C1 � j � u, qˇi

i r
ıj
j 2 I . Then, clearly

xy 2 I . �

Corollary 8. Let R be a UFD.
(1) Every principal ideal of R is a singly strongly 2-irreducible ideal if and only

if it is a 2-absorbing primary ideal.
(2) Every singly strongly 2-irreducible ideal of R can be generated by a set of

elements of the forms pn and pni

i p
nj

j in which p;pi ;pj are some prime
elements of R and n;ni ;nj are some natural numbers.

(3) Every 2-absorbing ideal of R is a singly strongly 2-irreducible ideal.

Proof. (1) Suppose that I is singly strongly 2-irreducible ideal. By Theorem
10(4), I is a 2-absorbing primary ideal. Conversely, let I be a nonzero 2-absorbing
primary ideal. Let I D Ra, where 0 ¤ a 2 I . Assume that a D pn1

1 p
n2

2 � � �p
nk

k
be

a prime decomposition for a. If k > 2, then since pn1

1 p
n2

2 � � �p
nk

k
2 I and I is a

2-absorbing primary ideal, there exist a natural number n, and integers 1 � i;j � k
such that pnni

i p
nnj

j 2 I , say i D 1 and j D 2. Therefore p3 j p
nn1

1 p
nn2

2 which is a
contradiction. Therefore k D 1 or 2, that is I D Rpn1

1 or I D R.pn1

1 p
n2

2 /, respect-
ively. Hence by Theorem 10(3), I is singly strongly 2-irreducible.
(2) LetX be a generator set for a singly strongly 2-irreducible ideal of I , and let x be
a nonzero element of X . Assume that x D pn1

1 p
n2

2 � � �p
nk

k
be a prime decomposition

for x such that k � 2. By Theorem 10(2), for some 1� i;j � k, we have pni

i p
nj

j 2 I ,
and then Rx �Rpni

i p
nj

j � I . Consequently, I can be generated by a set of elements
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of the forms pn and pni

i p
nj

j .
(3) is a direct consequence of Theorem 10(2). �

The following example shows that in part (1) of Corollary 8 the condition that I
is principal is necessary. Moreover, the converse of part (2) of this corollary need not
be true.

Example 2. Let F be a field andRDF Œx;y;´�, where x; y and ´ are independent
indeterminates. We know that R is a UFD. Suppose that I D hx;y2;´2i. Sincep
hx;y2;´2i D hx;y;´i is a maximal ideal of R, I is a primary ideal and so is a 2-

absorbing primary ideal. Notice that .xCyC´/y´ 2 I , but neither .xCyC´/y 2 I
nor .xCyC´/´2 I nor y´2 I . Consequently, I is not singly strongly 2-irreducible,
by Theorem 10(2).
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