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Abstract. Lattice induced threshold function is a Boolean function determined by a particular
linear combination of lattice elements. We prove that every isotone Boolean function is a lattice
induced threshold function and vice versa. We give the generalization of this result to Boolean
functions on a k-element set.
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1. INTRODUCTION

,,Threshold functions provide a simple but fundamental model for many ques-
tions investigated in electrical engineering, artificial intelligence, game theory and
many other areas.” (Quotation from [3].) In [10], modeling neurons and political de-
cisions are also mentioned, as application of classical threshold functions. A classical
threshold function is a Boolean function f W f0;1gn! f0;1g such that there exist
real numbers w1; : : : ;wn; t , fulfilling

f .x1; : : : ;xn/D 1 if and only if
nX

iD1

wi �xi � t; (1.1)

where wi is called the weight of xi , for i D 1;2; : : : ;n and t is a constant called the
threshold value. In this paper we define a new but related notion: the so called lattice
induced threshold function and we investigate its properties.
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1.1. Historical background

For the historical as well as for the basic mathematical background we recommend
the books [3, 5, 10, 11]. For some algebraic aspects of classical threshold functions,
we list relevant algebraic papers from several areas of algebra. In [1] the authors
reveal the connection between classical threshold functions and fundamental ideals
of group-rings. Paper [8] determines the invariance groups of threshold functions.
The topic of monotone Boolean functions has constantly been investigated. For the
recent results see e.g. [2, 6, 9]. Paper [7] proves that classical threshold functions
cannot be characterized by a finite set of standard or generalized constraints.

1.2. Motivation

Isotone Boolean functions constitute a clone; threshold functions are not closed
under superposition, see Theorem 9.2 in [3], so they do not constitute a clone. It
is easy to see that threshold functions with positive weights and a threshold value
are isotone. However, an isotone Boolean function is not necessarily threshold, e.g.
f D x �y_w �´ is isotone, but not a threshold function. To see this, it is enough to
consider its invariance group, which is the following:

D8D f./; .1324/; .12/.34/; .1423/; .12/; .34/; .13/.24/; .14/.23/g;

however by [8] the invariance group of any threshold function is a direct product of
symmetric groups.

Therefore, our aim is to generalize threshold functions in the framework of lattice
valued functions, and then, in particular, to obtain a characterization of all isotone
Boolean functions and to represent them by particular linear combinations.

1.3. Outline

In Preliminaries, we present properties of lattice valued functions, Boolean func-
tions and classical threshold functions.

In Section 3 we define threshold functions induced by complete lattices; these are
Boolean functions determined by a particular linear combination of lattice elements.
We prove that every isotone Boolean function is a lattice induced threshold function
and vice versa. In Section 4 we give a generalization of results for isotone functions
on k-element set. In Section 5 we present some examples and further observations.

2. PRELIMINARIES

2.1. Order, lattices

Our basic notion is a partially ordered set, ordered set, poset, denoted by .P;�/,
where � is an order on a set P . If a poset is a lattice, then it is denoted by .L;�/,
with the meet and the join of a;b 2L being a^b and a_b respectively. The bottom
and the top of a poset, if they exist, are 0 and 1, respectively. If .P;�/ is a poset,
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then we denote by
V
M and

W
M the meet and the join of M � P respectively, if

they exist. An up-set (semi-filter) on a poset .P;�/ is a subset F of P fulfilling the
property: if x 2 F and x � y; then y 2 F:

We deal with complete lattices and free distributive lattices with n generators.
We also use finite Boolean lattices, represented by all n-tuples of 0 and 1, ordered
componentwise, and denoted by .f0;1gn;�/.

2.2. Boolean functions; threshold functions

A Boolean function is a mapping f W f0;1gn! f0;1g, n 2N.
The domain f0;1gn of a Boolean function is usually ordered componentwise, with

respect to the natural order 0 � 1 : .x1;x2; : : : ;xn/ � .y1;y2; : : : ;yn/ if and only if
for every i 2 f1; : : : ;ng, xi � yi .

As it is known, the poset .f0;1gn;�/ is a Boolean lattice. Moreover, every finite
Boolean lattice with n atoms is isomorphic to this one.

A Boolean function f W f0;1gn! f0;1g is isotone (order preserving, positive, as
in [3]), if for every x;y 2 f0;1gn, from x � y, it follows that f .x/� f .y/.

The following is easy to check.

Lemma 1. The set F � f0;1gn is an up-set on .f0;1gn;�/ if and only if a Boolean
function f defined by

f .x/D 1 if and only if x 2 F

is isotone.

As mentioned in Introduction, a threshold function is a Boolean function f W
f0;1gn! f0;1g such that there exist real numbers w1; : : : ;wn; t , fulfilling

f .x1; : : : ;xn/D 1 if and only if
nX

iD1

wi �xi � t;

where wi are called the weights of xi , for i D 1;2; : : : ;n and t is a constant called
the threshold value.

3. THRESHOLD FUNCTIONS INDUCED BY COMPLETE LATTICES

In this section we introduce threshold functions induced by complete lattices, and
we use them for investigating isotone Boolean functions and their representation.

We deal with Boolean functions over the Boolean lattice .f0;1gn;�/, and in addi-
tion we use a complete lattice L in which the bottom and the top are (also) denoted
by 0 and 1 respectively; however, it is clear from the context whether 0 (1) is a com-
ponent in some .x1; : : : ;xn/ 2 f0;1g

n, or it is from L.
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For x 2 f0;1g, and w 2 L, we define a mapping L�f0;1g into L denoted by ”�”,
as follows:

w �x WD

�
w; if x D 1

0; if x D 0:
(3.1)

A function f W f0;1gn!f0;1g is a lattice induced threshold function, if there is
a complete lattice L and w1; : : : ;wn; t 2 L, such that

f .x1; : : : ;xn/D 1 if and only if
n_

iD1

.wi �xi /� t: (3.2)

Proposition 1. Every lattice induced threshold function is isotone.

Proof. Let L be a complete lattice, let w1; : : : ;wn; t 2 L, and f W f0;1gn! f0;1g
a lattice induced threshold function.

Let .x1;x2; : : : ;xn/� .y1;y2; : : : ;yn/. Then, for every i , we have wi �xi �wi �yi ,
by the definition (3.1). Hence,

n_
iD1

.wi �xi /�

n_
iD1

.wi �yi /:

Therefore, if f .x1; : : : ;xn/D 1, then
n_

iD1

.wi �xi /� t; and hence
n_

iD1

.wi �yi /� t:

This implies f .y1; : : : ;yn/D 1 and we obtain

f .x1; : : : ;xn/� f .y1; : : : ;yn/;

which proves that f is an isotone function. �

Theorem 1. Every isotone Boolean function is a lattice induced threshold func-
tion.

Proof. We prove that for every n 2N, there is a lattice L such that every isotone
Boolean function is a lattice induced threshold function over L.

Let n2N. We takeL to be a free distributive lattice with n generatorsw1; w2; : : : ;

wn (the join and meet of empty set of generators are also counted here, as the bottom
and the top of L, respectively). Recall that every element in a free distributive lattice
can be uniquely represented in a ”conjunctive normal form” by means of generators
(i.e., every element is a meet of elements of the type

W
i2J wj , where J � f1; : : : ;ng,)

see e.g., [4].
Therefore, for x;y 2 L, if x D

Vp

kD1

W
j2Ik

wj and y D
Vl

kD1

W
s2Jk

ws , then
x � y if and only if for every u 2 f1; : : : ; lg there is k 2 f1; : : : ;pg such that Ik � Ju.
(*)
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Let f W f0;1gn!f0;1g be an isotone Boolean function. Let F be the correspond-
ing up-set on f0;1gn (according to Lemma 1). Further, let m1,. . . ,mp be minimal
elements of this up-set. Let I1,. . . ,Ip be subsets of f1;2; : : : ;ng, i.e., sets of indices,
such that i 2 Ik if and only if i -th coordinate of mk is equal to 1.

For the threshold t 2 L associated to the given function f we take

t D

p^
kD1

_
j2Ik

wj :

Now, we prove that

f .x1; : : : ;xn/D 1 if and only if
n_

iD1

.wi �xi /� t: (3.3)

Indeed, from f .x1; : : : ;xn/D 1, it follows that there is a minimal element ml in the
corresponding up-set, such that .x1; : : : ;xn/�ml . Hence,

n_
iD1

.wi �xi /�
_

j2Il

wj �

p^
kD1

_
j2Ik

wj D t:

Now we suppose that
n_

iD1

.wi �xi /�

p^
kD1

_
j2Ik

wj

for an ordered n-tuple .x1; : : : ;xn/. Let I � f1; : : :ng be the set of indices such that
xi D 1 if and only if i 2 I . We prove that there is s 2 f1; : : :pg such that Is � I . This
follows directly from the above mentioned (*) property of the free distributive lattice
with n generators w1; : : : ;wn.

Now, it follows that .x1; : : : ;xn/� .y1; : : : ;yn/; where yi D 1 if and only if i 2 Is .
Therefore,

n_
iD1

.wi �yi /� t; and f .y1; : : : ;yn/D 1:

This finally implies f .x1; : : : ;xn/D 1. �

Remark 1. In the previous proposition it is proved not only that every isotone
n-ary Boolean function is a lattice induced threshold function, but also that the cor-
responding lattice in each case can be the free distributive lattice with n generators.
�

Remark 2. If we want to induce all isotone function with one distributive lattice,
then clearly no lattice with smaller cardinality than the free distributive lattice with
n generators is appropriate, since different elements of the free distributive lattice
provide different isotone functions. �

Here we investigate lattice valued functions on finite Boolean lattices.
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3.1. Representation of isotone lattice valued Boolean functions by cuts

A function f W f0;1gn ! L, where L is a complete lattice, is a lattice valued
(L-valued) Boolean function.

For f W f0;1gn! L and p 2 L, a cut set (cut) fp is a subset of f0;1gn:

fp D fx 2 f0;1g
n
j f .x/� pg:

A characteristic function of the cut fp is an ordinary Boolean function and we
denote it by the same symbol fp.

The following lemma is straightforward.

Lemma 2. Let B be a Boolean lattice and � W B! L an L-valued Boolean func-
tion. Then � is isotone if and only if all the cuts of � are up-sets on B .

In this part, we represent isotone L-valued functions on B in the framework of cut
sets and lattice induced threshold functions.

Our main tool here is a particular L-valued Boolean function, defined as follows.
Let B D .f0;1gn;�/, n 2 N, let LD a free distributive lattice with n generators

w1; : : : ;wn and ˇ W B ! LD , an LD-valued function on B defined in the following
way: for x D .x1; : : : ;xn/ 2 B

ˇ.x/D

n_
iD1

.wi �xi /; (3.4)

where the function ” �” is defined by (3.1).
By the definition, ˇ is uniquely (up to a permutation of generators wi ) determined

by a finite Boolean lattice B D .f0;1gn;�/, i.e., by a positive integer n.
A connection of isotone functions and cuts is presented in Lemma 2. Next we

prove that in this framework, ˇ can be considered as the main representative of all
isotone L-valued functions on B .

Theorem 2. Every up-set of a finite Boolean lattice B D .f0;1gn;�/, n 2N, is a
cut of ˇ.

Proof. Let B D .f0;1gn;�/ be a finite Boolean lattice. By Theorem 1, every iso-
tone Boolean function with n variables is a lattice induced threshold function over
a free distributive lattice LD with n generators. By Lemma 1, every up-set on B is
(as a characteristic function) an isotone Boolean function f W f0;1gn! f0;1g. This
means that there are elements w1; : : : ;wn 2 LD (generators), such that

f .x1; : : : ;xn/D 1 if and only if
n_

iD1

.wi �xi /� t; for some t 2 LD:

Thereby, by (3.4),

f .x1; : : : ;xn/D 1 if and only if ˇ.x/� t if and only if x 2 ˇ t :
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Hence the up-set whose characteristic function is f , coincides with the cut ˇ t of
ˇ. �

By Lemma 2, we have the following obvious consequence of Theorem 2.

Corollary 1. Lattice valued function ˇ defined by .3:4/ is isotone. Moreover, the
collection of cuts of every L-valued isotone function on B (for any L) is contained
in the collection of cuts of ˇ.

4. GENERALIZATION: ISOTONE FUNCTIONS ON THE k-ELEMENT SET

In this part we investigate isotone functions on a k-element set f1;2; : : : ;kg. Gen-
eralizing previously presented techniques, we introduce multi-value threshold func-
tions induced by complete lattices and use them for representing the mentioned iso-
tone functions.

Let L be a complete lattice with the bottom element 0 and top element 1: For
x 2 f1; : : : ;kg, and w1; : : : ;wk 2 L, we define a mapping

fw1; : : : ;wk
g�f1; : : : ;kg ! L

denoted by ”�”, as follows:

wj
�x WD

�
wj ; if j � x;

0 otherwise.
(4.1)

Now, f W f1; : : : ;kgn ! f1; : : : ;kg is a lattice induced multi-value threshold
function, if there is a complete latticeL andw1

1 ; : : : ;w
k
1 ; : : : ; w

1
n; : : : ;w

k
n ; ti1

; : : : ; tip 2

L, where i1; : : : ; ip 2 f1; : : :kg and from c < d it follows that ic < id 1,
such that for r 2 f1; : : : ;kg,

f .x1; : : : ;xn/D r if and only ifWn
iD1

Wk
jD1.w

j
i �xi / 2 "tr ; for r D ip andWn

iD1

Wk
jD1.w

j
i �xi / 2 "trn

�S
h>r "th

�
; for r < ip.

Proposition 2. Every lattice induced multi-value threshold function is isotone.

Proof. LetL be a complete lattice andw1
1 ; : : : ;w

k
1 ; : : : ;w

1
n; : : : ;w

k
n ; ti1

; : : : ; tip 2L,
where i1; : : : ; ip 2 f1; : : :kg

such that for r 2 f1; : : : ;kg,

f .x1; : : : ;xn/D r if and only ifWn
iD1

Wk
jD1.w

j
i �xi / 2 "tr ; for r D ip andWn

iD1

Wk
jD1.w

j
i �xi / 2 "trn

�S
h>r "th

�
; for r < ip

1Hence, ip is the greatest element of i1; : : : ; ip
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is a lattice induced multi-value threshold function.
Let .x1;x2; : : : ;xn/� .y1;y2; : : : ;yn/. Then, for every i 2 f1; : : : ;kg

k_
jD1

.w
j
i �xi /�

k_
jD1

.w
j
i �yi /

by the definition (4.1) of the mapping ” �”. Hence,

n_
iD1

k_
jD1

.w
j
i �xi /�

n_
iD1

k_
jD1

.w
j
i �yi /:

Therefore, if f .x1; : : : ;xn/D r , then

n_
iD1

k_
jD1

.w
j
i �xi /� tr and hence

n_
iD1

k_
jD1

.w
j
i �yi /� tr :

This implies
Wn

iD1

Wk
jD1.w

j
i �yi / 2

�
"trn

�S
h>r "th

��S�S
h>r "th

�
, hence, either

f .y1; : : : ;yn/D r or f .y1; : : : ;yn/ > r , in either case f .x1; : : : ;xn/� f .y1; : : : ;yn/:

�

Theorem 3. Every isotone function on the k-element set is a lattice induced multi-
value threshold function.

Proof. We prove that for any natural number n, and k > 2, there is a latticeL, such
that every n-ary isotone function on the k-element set is a lattice induced multi-value
threshold function.

This lattice L is a free distributive lattice with k �n generators w1
1 ; : : : ;w

k
1 ;

: : : ;w1
n; : : : ;w

k
n . In some instances we denote the set of generators by fw1

1 ; : : : ;

wk
1 ; : : : ;w

1
n; : : : ;w

k
ng and in other by fwj j j 2 f1; : : : ;k �ngg.

If x;y 2 L, x D
Vp

uD1

W
j2Iu

wj and y D
Vl

uD1

W
s2Ju

ws , then x � y if and
only if for every u 2 f1; : : : ;pg there is v 2 f1; : : : ; lg such that Iu � Jv.

Let f W f1; : : : ;kgn! f1; : : : ;kg be an isotone function on the k-element set. Let
r be an element 1 � r � k and let Fr be the up-set corresponding to r; i.e. Fr D

f �1."r/: Observe that in case no element is mapped by f to some a 2 f1; : : : ;kg,
then Fa D FaC1. Further, let mr;1; : : : ;mr;pr

be minimal elements of this up-set, in
case Fr n

S
h>r Fh is not empty. For s 2 f1; : : : ;prg, let mr;s D .m1;r;s; : : : ;mn;r;s/:

For the thresholds ti1
; : : : ; tip 2L, where i1; : : : ; ip 2 f1; : : :kg are associated to the

given function f , we take

tr D

pr̂

sD1

n_
iD1

k_
jD1

.w
j
i �mi;r;s/ for r 2 f1; : : : ;kg for which Fr n

[
h>r

Fh 6D¿:

Now we show that
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f .x1; : : : ;xn/D r if and only ifWn
iD1

Wk
jD1.w

j
i �xi / 2 "tr ; for r D ip andWn

iD1

Wk
jD1.w

j
i �xi / 2 "trn

�S
h>r "th

�
; for r < ip

Suppose that f .x1; : : : ;xn/ D r , for r D ip. Indeed, from f .x1; : : : ;xn/ � r , it
follows that there is a minimal element mr;lr

in the corresponding up-set, such that
.x1; : : : ;xn/�mr;lr

D .m1;r;lr
; : : : ;mn;r;lr

/. Hence,

n_
iD1

k_
jD1

.w
j
i �xi /�

n_
iD1

k_
jD1

.w
j
i �m1;r;lr

/�

pr̂

sD1

n_
iD1

k_
jD1

.w
j
i �mi;r;vr

/D tr :

On the other hand, let
Wn

iD1

Wk
jD1.w

j
i �xi / 2 "tr ; for r D ip. Then,Wn

iD1

Wk
jD1.w

j
i � xi / �

Vpr

sD1

Wn
iD1

Wk
jD1.w

j
i �mi;r;vr

/ D tr : By the definition of
the order � in the free distributive lattice, it follows that there is an mr;lr

, such
that

Wn
iD1

Wk
jD1.w

j
i � xi / �

Wn
iD1

Wk
jD1.w

j
i �m1;r;lr

/, and .x1; : : : ;xn/ � mr;lr
D

.m1;r;lr
; : : : ;mn;r;lr

/ and hence f .x1; : : : ;xn/D r .
Now, suppose that
f .x1; : : : ;xn/D r for r < ip: We have that Fr n

S
h>r Fh 6D¿.

As above, from f .x1; : : : ;xn/� r , it follows that there is a minimal element mr;lr

in the corresponding up-set, such that .x1; : : : ;xn/ � mr;lr
D .m1;r;lr

; : : : ;mn;r;lr
/.

Hence,
n_

iD1

k_
jD1

.w
j
i �xi /�

n_
iD1

k_
jD1

.w
j
i �m1;r;lr

/�

pr̂

sD1

n_
iD1

k_
jD1

.w
j
i �mi;r;vr

/D tr

and Wn
iD1

Wk
jD1.w

j
i �xi / 2 "trn

�S
h>r "th

�
:

Suppose now that .x1; : : : ;xn/ is an element such thatWn
iD1

Wk
jD1.w

j
i �xi / 2 "trn

�S
h>r "th

�
:

Now
Wn

iD1

Wk
jD1.w

j
i �xi / �

Vpr

sD1

Wn
iD1

Wk
jD1.w

j
i �mi;r;vr

/. By the arguments
above, we have that there is a minimal element in the corresponding up-set, such that
.x1; : : : ;xn/ � mr;lr

D .m1;r;lr
; : : : ;mn;r;lr

/. Therefore, f .x1; : : : ;xn/ � r . By the
condition

Wn
iD1

Wk
jD1.w

j
i �xi / 62 "th, for h> r we obtain that f .x1; : : : ;xn/ 6� h; for

h > r , hence f .x1; : : : ;xn/D r .
�

Observe that in the case of isotone functions on a k-element sets, the analogue
properties to those in Remarks 1 and 2 are satisfied.
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5. SOME EXAMPLES AND OBSERVATIONS

In this part we discus whether we can get particular isotone Boolean functions
using some lattices different than the free distributive ones.

Starting with our approach, it is possible to characterize isotone Boolean functions
satisfying some relationships among components by a free distributive lattice with
less than n generators and also by factor lattices of the free distributive lattices.

Without getting into detailed elaboration, in the sequel we briefly describe these
characterizations.

1. Isotone Boolean functions f W f0;1gn! f0;1g satisfying

f .x1; :::;1; :::;0; :::;xn/D f .x1; :::;0; :::;1; :::;xn/D f .x1; :::;1; :::;1; :::;xn/

for all xk for k 2 f1; : : : ;ngn fi;j g, i 6D j , where 1 and 0 are on i -th and j -th places,
can be characterized by the free distributive lattice with n�1 generators (wherewi D

wj ).
This can be generalized to the case with k components (out of n) among which at

least one is 1; a characterization is obtained by the free distributive lattices with n�k
generators (with wi1

D : : :D wik
).

2. Isotone Boolean functions f W f0;1gn! f0;1g satisfying

f .x1; :::;0; :::;1; :::;xn/D f .x1; :::;1; :::;1; :::;xn/

for all xk with k 2 f1; : : : ;ng n fi;j g, i 6D j , where 0 and 1 ( 1 and 1), are on i -th
and j -th places, respectively; a characterization is obtained by a factor lattice of free
distributive lattice (corresponding to the relationship wi <wj ).

Generalizations to isotone Boolean functions with k ordered components can be
characterized using factor lattices of free distributive lattices with n generators (where
wi1

; : : : ;wik
constitute a corresponding poset).

3. Isotone Boolean functions f W f0;1gn! f0;1g satisfying combinations of vari-
ous relationships of the type 1. and 2. can be characterized by factor lattices of the
free distributive lattices with n generators (which corresponds to distributive lattices
freely generated by posets).

Furthermore, it is possible to characterize Boolean functions by various non
-distributive lattices with smaller number of elements. We present here some ex-
amples.

Example 1. Let f W f0;1g3!f0;1g be a Boolean function, defined by f .1;1;1/D
f .1;1;0/D f .0;1;1/D f .1;0;1/D 1 and f .x;y;´/D 0 otherwise. This Boolean
function can be represented as a lattice-induced threshold function using a latticeM3,
where w1, w2, w3 are atoms of the lattice and t is the top of the lattice.

Similarly, a representation can be obtained for all analogous Boolean functions
f W f0;1gn! f0;1g having value 1 for all .x1; :::;xn/ with 2 and more coordinates
with value 1, and having value 0 otherwise, by a lattice Mn, where w1, ..., wn are
atoms of the lattice and t is the top of the lattice.
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Example 2. Let f W f0;1g3!f0;1g be a Boolean function, defined by f .0;0;0/D
0 and f .x;y;´/D 1 otherwise. This Boolean function can be represented as a lattice-
induced threshold function using a lattice 0˚M3 (M3 with an additional bottom
element 0), where w1, w2, w3 are co-atoms and t is the atom of the lattice. A similar
representation is possible for all analogous Boolean functions f W f0;1gn! f0;1g.

By similar constructions, choosing suitable lattices and elements w1; : : : ;wn, t
we can represent all particular Boolean functions. However, if we want to make a
representation of all Boolean functions f W f0;1gn! f0;1g by one lattice, then the
smallest such lattice is the free Boolean lattice with n generators. Clearly, its number
of elements coincides with the number of different Boolean functions.

6. CONCLUSION

To sum up, we have introduced a lattice induced threshold function, as a general-
ization of the class of classical threshold functions. Our motivation was to capture
isotonicity of Boolean functions.

The obtained results could be further generalized in several directions. First of all,
one could consider lattice functions instead of Boolean ones. Also, one might look
for a characterization of the classical threshold functions within the class of lattice
induced threshold functions. Furthermore, as mentioned above, with appropriately
chosen lattices as co-domain, interesting classes of Boolean functions could be ob-
tained.
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E-mail address: horeszt@math.u-szeged.hu

Branimir Šešelja
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