Miskolc Mathematical Notes

# NONEXISTENCE OF $2-(v, k, 1)$ DESIGNS ADMITTING AUTOMORPHISM GROUPS WITH SOCLE $E_{8}(q)$ 

SHANGZHAO LI<br>Received 21 December, 2014


#### Abstract

One of the outstanding problems in combinatorial design theory is concerning the existence of $2-(v, k, 1)$ designs. In particular, the existence of $2-(v, k, 1)$ designs admitting an interesting group of automorphisms is of great interest. Thirty years ago, a six-person team classified $2-(v, k, 1)$ designs which have flag-transitive automorphism groups. Since then the effort has been to classify those $2-(v, k, 1)$ designs which are block-transitive but not flagtransitive. This paper is a contribution to this program and we prove there is nonexistence of $2-$ ( $v, k, 1$ ) designs admitting a point-primitive block-transitive but not flag-transitive automorphism group $G$ with socle $E_{8}(q)$.


2010 Mathematics Subject Classification: Primary 05B05; Secondary 20B25
Keywords: block-transitive, point-primitive, design, socle

## 1. Introduction

This paper is part of a project to classify groups and $2-(v, k, 1)$ designs where the group acts transitively on the blocks of the design. A $2-(v, k, 1)$ design $\mathscr{D}=(\mathscr{P}, \mathscr{B})$ is a pair consisting of a finite set $\mathscr{P}$ of points and a collection $\mathscr{B}$ of $k$-subsets of $\mathcal{P}$, called blocks, such that any 2 -subsets of $\mathscr{P}$ is contained in exactly one block. Traditionally one defined $v=:|\mathscr{P}|$ and $b=:|\mathscr{B}|$. We will always assume that $2<$ $k<v$.

One of the outstanding problems in combinatorial design theory is concerning the existence of $2-(v, k, 1)$ designs. In particular, the existence of $2-(v, k, 1)$ designs admitting an interesting group of automorphisms is of great interest. Thirty years ago, a six-person team [2] classified the pairs $(\mathscr{D}, G)$ where $\mathscr{D}$ is a $2-(v, k, 1)$ design and $G$ is a flag-transitive automorphism group of $\mathscr{D}$, with the exception of those in which $G$ is a one-dimensional affine group. Since then the effort has been to classify those $2-(v, k, 1)$ designs which are block-transitive but not flag-transitive. These fall naturally into two classes, those where the action on points is primitive and those where the action on points is imprimitive. The primitive ones are now subdivided,

[^0]according to the O'Nan-Scotte theorem and some further work by Camina, into the socles which are either elementary abelian or non-abelian simple. As a result of [6] it is known that the second only occur finitely times for a given line size. This paper contributes to the program for determining the pairs $(\mathscr{D}, G)$ in which $\mathscr{D}$ has a pointprimitive block-transitive subgroup, $G$, of automorphisms. From the assumption that $G$ is transitive on the set $\mathscr{B}$ of blocks, it follows that $G$ is also transitive on the point set $\mathcal{P}$. This is a consequence of the theorem of Block in [1].

The classification of block-transitive $2-(v, 3,1)$ designs was completed about thirty years ago (see [4]). In [3] Camina and Siemons classified $2-(v, 4,1)$ designs with a block-transitive, solvable group of automorphisms. Li classified $2-(v, 4,1)$ designs admitting a block-transitive, unsolvable group of automorphisms (see [11]). Tong and Li classified $2-(v, 5,1)$ designs with a block-transitive, solvable group of automorphisms in [19]. Liu classified $2-(v, k, 1)$ (where $k=6,7,8,9,10)$ designs with a block-transitive, solvable group of automorphisms in [16]. Ding [8] considered $2-(v, k, 1)$ designs admitting block-transitive automorphism groups in $\operatorname{AGL}(1, q)$ and prove the existence of $2-(v, 6,1)$ designs which have block-transitive but not flag-transitive automorphism groups in $\operatorname{AGL}(1, q)$ (see [7]). Dai and Zhao consider $2-(v, 13,1)$ designs with point-primitive block-transitive unsolvable group of automorphisms whose socle is $S z\left(2^{2 n+1}\right)$ in [5]. Recently, there have been a number contributions to this classification (see [13, 14]). Here we focus on the existence problem of $2-(v, k, 1)(k \leq 2793)$ designs with a point-primitive block-transitive automorphism group of almost simple type and prove the following theorem:

Theorem 1. Suppose that $E_{8}(q) \unlhd G \leq \operatorname{Aut}\left(E_{8}(q)\right)$ for $q>5$. Then there is nonexistence of $2-(v, k, 1)(k \leq 2793)$ design $\mathcal{D}$ admitting a point-primitive blocktransitive but not flag-transitive automorphism group $G$.

We introduce some notation below. Let $X$ and $Y$ be arbitrary finite groups. The expression $X \cdot Y$ denotes an extension of $X$ by $Y$ and $X: Y$ denotes the split extension. If $Y$ is a subgroup of $X$, then the symbol $|X: Y|$ denotes the index of $Y$ in $X$. Let $\mathscr{D}$ be a $2-(v, k, 1)$ design and $G$ be an automorphism group of $\mathscr{D}$. If $B$ is a block, then $G_{B}$ denotes the setwise stabilizer of $B$ in $G$ and $G_{(B)}$ is the pointwise stabilizer of $B$ in $G$. In addition, $G^{B}$ denotes the permutation group induced by the action of $G_{B}$ on the points of $B$. Then $G^{B} \cong G_{B} / G_{(B)}$. We will write $\alpha$ to be a point of $\mathscr{D}$ and $G_{\alpha}$ to be the stabilizer of $\alpha$ under the action of $G$. Other notation for group structure is standard.

The paper is organized as follows. Section 2 describes several preliminary results concerning the group $E_{8}(q)$ and $2-(v, k, 1)$ designs. Section 3 gives the proof of the theorem.

## 2. Preliminary results

Suppose that $G$ is a block-transitive automorphism group of a $2-(v, k, 1)$ design. It is well-known that:

$$
\begin{gather*}
v=r(k-1)+1  \tag{2.1}\\
v(v-1)=b k(k-1) \tag{2.2}
\end{gather*}
$$

Then we have $r=(v-1) /(k-1)$. We can show that $b \geq v$ and so $k \leq r$. If $k=r$ then $v=k^{2}-k+1$; if $r \geq k+1$, then $v \geq k^{2}$.

We use a result of W. Fang and H. Li [9]. Define the following constants:

$$
b_{1}=(b, v), b_{2}=(b, v-1), k_{1}=(k, v), \text { and } k_{2}=(k, v-1)
$$

Using the basic equalities 2.1 and 2.2, we get the Fang-Li Equations:

$$
k=k_{1} k_{2}, b=b_{1} b_{2}, r=b_{2} k_{2}, \text { and } v=b_{1} k_{1}
$$

We shall state a number of basic results which will be used repeatedly throughout the paper. Liebeck and Saxl have determined the maximal subgroups of $\operatorname{Soc}(G)=$ $E_{8}(q)$ in [15].

Lemma 1 ([15]). Suppose that $T=E_{8}(q) \unlhd G \leq \operatorname{Aut}(T)$. Let $M$ be a maximal subgroup of $G$ not containing $T$. Then one of the following holds
(1) $|M|<q^{110}|G: T|$;
(2) $M \cap T$ is a parabolic group;
(3) $M \cap T$ is isomorphic to $\left(S L_{2}(q) \circ E_{7}(q)\right) . d, D_{8}(q) . d$, or $E_{8}\left(q^{\frac{1}{2}}\right)$ with $q$ square, where $d=(2, q-1)$.

Lemma 2 ([18]). Let $G=T:\langle x\rangle$ and act block-transitively on a $2-(v, k, 1)$ design $\mathscr{D}=(\mathscr{P}, \mathscr{B})$, where $x \in \operatorname{Out}(T)$. Then $T$ acts transitively on $\mathcal{P}$.

Lemma 3 ([17]). Let $G$ be a solvable block-transitive automorphism group of a $2-(v, k, 1)$ design. If $G$ is point-primitive, then
(1) there exists a prime number $p$ and a positive integer $n$ such that $v=p^{n}$;
(2) if there exists a p-primitive prime divisor e of $p^{n}-1$, such that $e \| G \mid$, then either $G \leq A \Gamma L\left(1, p^{n}\right)$ or $k \mid v$.

Lemma 4 ([10]). Let $\mathfrak{D}$ be a $2-(v, k, 1)$ design admitting a block-transitive and point-primitive but not flag-transitive automorphism group $G$. Assume that $T=$ $\operatorname{Soc}(G)$ and $T_{\alpha}=T \cap G_{\alpha}$ where $\alpha \in \mathcal{P}$. Then the following hold:
(1) $\frac{v}{z}<\left(k_{2} k-k_{2}+1\right)|G: T|$, where $z$ is the size of a $T_{\alpha}-$ orbit in $\mathcal{P} \backslash\{\alpha\}$;
(2) if $(v-1, q)=1$, then there exists a $T_{\alpha}$-orbit with size $y$ in $\mathcal{P} \backslash\{\alpha\}$ such that $y\left|\left|T_{\alpha}\right|_{p^{\prime}}\right.$.
Lemma 5. Let $\mathfrak{D}$ be a $2-(v, k, 1)$ design admitting a block-transitive automorphism group $G$. Assume that $T=\operatorname{Soc}(G)$ and $T_{\alpha}=T \cap G_{\alpha}$ where $\alpha \in \mathcal{P}$. Then
(1) $v=k_{2}(k-1) b_{2}+1$;
(2) $\left.b_{2}| | T_{\alpha}\right|_{v^{\prime}}|G: T|$ and $v \leq 1+k(k-1)\left|T_{\alpha}\right|_{v^{\prime}}|G: T|$;
(3) If $G$ is not flag-transitive and non-solvable, then $\frac{|T|}{\left|T_{\alpha}\right|^{2}} \leq \frac{k(k-1)+1}{2}|G: T|$.

Proof. (1) Since $k(k-1) b=v(v-1)$ and $k=k_{1} k_{2}, b=b_{1} b_{2}, v=b_{1} k_{1}$, we obtain $k_{2}(k-1) b_{2}=v-1$ and hence $v=1+k_{2}(k-1) b_{2}$.
(2) Since $r v=b k$, it follows that $r\left|G: G_{\alpha}\right|=k\left|G: G_{B}\right|$, where $\alpha \in \mathcal{P}, B \in \mathscr{B}$. Recall that $k=k_{1} k_{2}, r=b_{2} k_{2}$. It is clear that $b_{2}\left|G_{B}\right|=k_{1}\left|G_{\alpha}\right|$. Note that $\left(b_{2}, k_{1}\right)=$ 1 and hence $b_{2}$ divides $\left|G_{\alpha}\right|$. Since $\left(b_{2}, v\right)=1$, then $\left.b_{2}| | G_{\alpha}\right|_{v^{\prime}}$. Since $G$ is blocktransitive, by Lemma 2, $T$ is point-transitive. We conclude that $v=\left|G: G_{\alpha}\right|=\mid T$ : $T_{\alpha} \mid$. Hence $\left|G_{\alpha}\right|=\left|T_{\alpha}\right||G: T|$ and so $\left.b_{2}| | T_{\alpha}\right|_{v^{\prime}}|G: T|$. Together with (1), it deduces that $v \leq 1+k_{2}(k-1)\left|T_{\alpha}\right|_{v^{\prime}}|G: T|$ and hence $v \leq 1+k(k-1)\left|T_{\alpha}\right|_{v^{\prime}}|G: T|$.
(3) Let $B$ be a block of $\mathscr{D}$. Since $G$ is non-solvable, the following possibility for the structure of $G^{B}$, the rank and subdegree of $G$ does not occur:

| Type of $G^{B}$ | Rank of $G$ | Subdegree of $G$ |
| :---: | :---: | :---: |
| $\langle 1\rangle$ | $1+k_{2}(k-1)$ | $1, \overbrace{b_{2}, b_{2}, \cdots, b_{2}}^{k_{2}(k-1)}$ |

Otherwise, $\left|G^{B}\right|$ is odd, whence $|G|$ is odd and so $G$ is solvable, which contradicts the fact that $G$ is non-solvable. Then by the proof of Proposition 3.1 in [10] the conclusion holds.

Lemma 6 ([12]). Suppose that $\mathscr{D}$ is a $2-(v, k, 1)$ design and $G$ is an almost simple group acting on $\mathscr{D}$ block-transitively. Let $G_{\alpha}$ be the stabilizer in $G$ of a point $\alpha$ of $\mathfrak{D}$ and suppose the socle $T$ of $G$ is a simple group of Lie type. If the intersection of $G_{\alpha}$ and $T$ is a parabolic subgroup of $T$, then $G$ acts on $\mathcal{D}$ flag-transitively.

## 3. Proof of Theorem 1

Suppose that there exists a $2-(v, k, 1)(k \leq 2793)$ design $\mathscr{D}$ satisfying the conditions of the Main Theorem. We will derive contradictions to prove the Main Theorem.

Since $T=E_{8}(q) \unlhd G \leq A u t\left(E_{8}(q)\right)$, then $G=T:\langle x\rangle$ and $|O u t(T)|=a$, where $x \in \operatorname{Out}(T)$. Let $o(x)=m$. Then we obtain that $m \mid a$ and $|G|=q^{120}\left(q^{30}-1\right)\left(q^{24}-\right.$ 1) $\left(q^{20}-1\right)\left(q^{18}-1\right)\left(q^{14}-1\right)\left(q^{12}-1\right)\left(q^{8}-1\right)\left(q^{2}-1\right) m$. Since $G$ is point-primitive, $G_{\alpha}$ is the maximal subgroup of $G$ for any $\alpha \in \mathcal{P}$. Then $M=G_{\alpha}$ satisfies one of the three cases in Lemma 1. If $G_{\alpha} \cap T$ is a parabolic subgroup of $T$, then by Lemma 6 we see that $G$ is flag-transitive, which is a contradiction. Therefore, the case (2) in Lemma 1 does not occur and it suffices to consider the following two cases.

Case 3.1: $\quad\left|G_{\alpha}\right|<q^{110}|G: T|$.
Since $G$ is block-transitive, by Lemma 2, $T$ is point-transitive. Hence $\left|G_{\alpha}\right|=$ $\left|T_{\alpha}\right||G: T|$ and so $\left|T_{\alpha}\right|<q^{110}$. Then $v=\left|T: T_{\alpha}\right|$ is not a prime power and by Lemma 3 we have that $G$ is non-solvable. Note that $m=|G: T|$. It follows by

Lemma 5 (3) that

$$
|T| \leq \frac{k(k-1)+1}{2}\left|T_{\alpha}\right|^{2}|G: T| \leq \frac{7798057}{2} q^{220} m
$$

This gives,

$$
\begin{aligned}
\frac{|T|}{q^{220}} & =\frac{\left(q^{2}-1\right)\left(q^{8}-1\right)\left(q^{12}-1\right)\left(q^{14}-1\right)\left(q^{18}-1\right)\left(q^{20}-1\right)\left(q^{24}-1\right)\left(q^{30}-1\right)}{q^{100}} \\
& <\frac{7798057}{2} m
\end{aligned}
$$

Since

$$
\left(q^{2}-1\right)\left(q^{8}-1\right)\left(q^{12}-1\right)\left(q^{14}-1\right)\left(q^{18}-1\right)\left(q^{20}-1\right)\left(q^{24}-1\right)\left(q^{30}-1\right)>\frac{7}{10} q^{128}
$$

it implies that

$$
\frac{7}{10} q^{8}<\frac{7798057}{2} m
$$

Recall that $m \mid a, q=p^{a}, p \geq 2$. We can conclude therefore that

$$
\begin{equation*}
\frac{7}{10} \cdot 2^{8 a} \leq \frac{7}{10} \cdot p^{8 a}=\frac{7}{10} q^{8}<\frac{7798057}{2} a \tag{3.1}
\end{equation*}
$$

which forces $a \leq 2$. We calculate to obtain all possibilities for the values of $p$ and $a$ satisfying the inequality 3.1 : (1) $a=1, p \leq 5$, a prime; (2) $a=2, p=2$. This contradicts $q>5$.

Case 3.2: $\quad G_{\alpha} \cap T$ is case (3) in Lemma 1.
Now we consider three cases.
Subcase 3.2.1: $\quad T_{\alpha}=\left(S L_{2}(q) \circ E_{7}(q)\right) . d$ where $d=(2, q-1)$.
We observe that

$$
\left|T_{\alpha}\right|=q^{64}\left(q^{18}-1\right)\left(q^{14}-1\right)\left(q^{12}-1\right)\left(q^{10}-1\right)\left(q^{8}-1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)^{2}
$$

and

$$
v=\frac{q^{56}\left(q^{30}-1\right)\left(q^{24}-1\right)\left(q^{20}-1\right)}{\left(q^{10}-1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)}
$$

Hence

$$
\left|T_{\alpha}\right|_{v^{\prime}} \leq\left(q^{2}-1\right)^{8}\left(q^{12}+q^{6}+1\right)\left(1+q^{2}+q^{4}+q^{6}+q^{8}+q^{10}+q^{12}\right)<\frac{7}{5} q^{40}
$$

Since

$$
v=\frac{q^{56}\left(q^{30}-1\right)\left(q^{24}-1\right)\left(q^{20}-1\right)}{\left(q^{10}-1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)}>\frac{1}{50} q^{112}
$$

we can appeal to Lemma 5 (2) to observe that

$$
\frac{1}{50} q^{112}<v \leq 1+k(k-1)\left|T_{\alpha}\right|_{v^{\prime}}|G: T|<1+7798056 \cdot \frac{7}{5} \cdot q^{40} a
$$

This implies the following inequality

$$
\frac{1}{50} \cdot 2^{72 a} \leq \frac{1}{50} \cdot q^{72}<\frac{1}{2^{40 a}}+7798056 \cdot \frac{7}{5} \cdot a<\frac{4}{5} \cdot 2^{24} a
$$

which is impossible.
Subcase 3.2.2: $\quad T_{\alpha}=D_{8}(q) . d$, where $d=(2, q-1)$.
We calculate that

$$
\left|T_{\alpha}\right|=\frac{d q^{56}\left(q^{8}-1\right) \prod_{i=1}^{7}\left(q^{2 i}-1\right)}{d_{1}}
$$

and

$$
v=\frac{d_{1} q^{64}\left(q^{30}-1\right)\left(q^{24}-1\right)\left(q^{20}-1\right)\left(q^{18}-1\right)}{d\left(q^{10}-1\right)\left(q^{8}-1\right)\left(q^{6}-1\right)\left(q^{4}-1\right)}
$$

where $d_{1}=\left(4, q^{8}-1\right)$. Since $(v-1, q)=1$, by Lemma 4 (2), there exists in $\mathcal{P} \backslash\{\alpha\}$ a $T_{\alpha}$-orbit of size $y$ such that $y \|\left. T_{\alpha}\right|_{p^{\prime}}$. Hence

$$
y \leq\left|T_{\alpha}\right|_{p^{\prime}} \leq 2\left(q^{8}-1\right) \prod_{i=1}^{7}\left(q^{2 i}-1\right)
$$

Thus

$$
\begin{aligned}
\frac{v}{y} & \geq \frac{d_{1} q^{64}\left(q^{30}-1\right)\left(q^{24}-1\right)\left(q^{20}-1\right)\left(q^{18}-1\right)}{2 d\left(q^{14}-1\right)\left(q^{12}-1\right)\left(q^{10}-1\right)^{2}\left(q^{8}-1\right)^{3}\left(q^{6}-1\right)^{2}\left(q^{4}-1\right)^{2}\left(q^{2}-1\right)} \\
& >\frac{\frac{1}{10} \cdot q^{108}}{4 \cdot \frac{15}{2} \cdot q^{44}}=\frac{1}{300} q^{64}
\end{aligned}
$$

Note that $k_{2} \leq k$. We now apply Lemma 4 (1) to conclude that

$$
\frac{1}{300} \cdot 2^{64 a} \leq \frac{1}{300} q^{64}<\frac{v}{y}<(k(k-1)+1)|G: T| \leq 7798057 a<\frac{19}{20} \cdot 2^{23} a
$$

which is a contradiction.
Subcase 3.2.3: $\quad T_{\alpha}=E_{8}\left(q^{\frac{1}{2}}\right)$.
We obtain that

$$
\left|T_{\alpha}\right|=q^{60}\left(q^{15}-1\right)\left(q^{12}-1\right)\left(q^{10}-1\right)\left(q^{9}-1\right)\left(q^{7}-1\right)\left(q^{6}-1\right)\left(q^{4}-1\right)(q-1)
$$

and

$$
v=q^{60}\left(q^{15}+1\right)\left(q^{12}+1\right)\left(q^{10}+1\right)\left(q^{9}+1\right)\left(q^{7}+1\right)\left(q^{6}+1\right)\left(q^{4}+1\right)(q+1)
$$

Then it deduces that

$$
\begin{aligned}
\left|T_{\alpha}\right|_{v^{\prime}} & \leq(q-1)^{8}\left(q^{2}+q+1\right)^{4}\left(q^{6}+q^{3}+1\right)\left(1+q+q^{2}+q^{3}+q^{4}\right)^{2} \\
& \cdot\left(1+q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}\right)\left(1-q+q^{3}-q^{4}+q^{5}-q^{7}+q^{8}\right)<48 q^{44}
\end{aligned}
$$

Since

$$
v=q^{60}\left(q^{15}+1\right)\left(q^{12}+1\right)\left(q^{10}+1\right)\left(q^{9}+1\right)\left(q^{7}+1\right)\left(q^{6}+1\right)\left(q^{4}+1\right)(q+1)>q^{124}
$$

by Lemma 5 (2) this implies that

$$
q^{124}<v \leq 1+k(k-1)\left|T_{\alpha}\right|_{v^{\prime}}|G: T|<1+7798056 \cdot 48 \cdot q^{44} \cdot a
$$

This leads to the following result

$$
2^{80 a} \leq q^{80}<\frac{1}{2^{44 a}}+7798056 \cdot 48 a<\frac{4}{5} \cdot 2^{29} a
$$

which gives a contradiction.
This completes the proof of Theorem 1.

## Acknowledgement

The author is grateful to the editor and reviewer for pointing out errors in the original version of this paper and their valuable comments and suggestions.

## References

[1] R. E. Block, "On the orbits of collineation groups," Math. Z., vol. 96, no. 1, pp. 33-49, 1967, doi: 10.1007/BF01111448.
[2] F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck, and J. Sax1, "Linear spaces with flag-transitive automorphism groups," Geom. Dedicata, vol. 36, no. 1, pp. 89-94, 1990.
[3] A. R. Camina and J. Siemons, "Block transitive automorphism groups of $2-(v, k, 1)$ block designs," J. Comb. Theory, Ser. A, vol. 51, no. 2, pp. 268-276, 1989, doi: 10.1016/0097-3165(89)90052-6.
[4] P. C. Clapham, "Steiner systems with block transitive automorphism groups," Discrete Math., vol. 14, no. 2, pp. 121-131, 1976, doi: 10.1016/0012-365X(76)90055-8.
[5] S. J. Dai and K. Zhao, "Block transitive $2-(v, 13,1)$ designs and Suzuki groups," Ars Comb., vol. 105, no. 5, pp. 369-373, 2012.
[6] A. Delandtsheer and J. Doyen, "Most block-transitive $t$-designs are point-primitive," Geom. Dedicata, vol. 29, no. 3, pp. 307-310, 1989, doi: 10.1007/BF00572446.
[7] S. F. Ding, "The existence and construction of a family of block-transitive $2-(v, 6,1)$ designs," $J$. Comb. Theory, Ser. A, vol. 116, no. 1, pp. 215-222, 2009.
[8] S. F. Ding and W. J. Liu, "Existence of $2-(v, k, 1)$ designs admitting a block-transitive group of affine type," Electron. J. Comb., vol. 19, no. 3, pp. 1-12, 2012.
[9] W. D. Fang and H. L. Li, "A generalisation of Camina-Gagens Theorem," Math. Mag., (Wuhan), vol. 13, no. 13, pp. 437-441, 1993 (in Chinese).
[10] G. G. Han, "Block-transitive $2-(v, k, 1)$ designs and the twisted simple groups ${ }^{2} E_{6}(q), "$ Appl. Math. Comput., vol. 242, no. 9, pp. 109-115, 2014, doi: 10.1016/j.amc.2014.05.027.
[11] H. L. Li, "On block-transitive $2-(v, 4,1)$ designs," J. Comb. Theory, Ser. A, vol. 69, no. 1, pp. 115-124, 1995.
[12] H. L. Li and Y. Liu, "Automorphism groups of linear spaces and their parabolic subgroups," J. Comb. Theory, Ser. A, vol. 116, no. 1, pp. 1-11, 2009, doi: 10.1016/j.jcta.2008.04.001.
[13] S. Z. Li, S. J. Dai, and L. Y. Jiang, "Unsolvable block-transitive automorphism groups of 2 ( $v, 31,1$ ) designs," Ars Comb., vol. 117, no. 5, pp. 469-476, 2014.
[14] S. Z. Li, G. G. Han, and W. J. Liu, "Block-transitive $2-(v, k, 1)$ designs and the Chevalley groups $F_{4}(q), "$ Appl. Math. Comput., vol. 248, no. 12, pp. 380-385, 2014.
[15] M. W. Liebeck and J. Sax1, "On the orders of maximal subgroups of the finite exceptional groups of Lie type," Proc. Lond. Math. Soc., vol. 55, no. 2, pp. 299-330, 1987, doi: $10.1093 / \mathrm{plms} / \mathrm{s} 3-$ 55'2.299.
[16] W. J. Liu, "Block transitive $2-(v, k, 1)$ designs," Ph. D. Thesis, Zhejiang University, Hangzhou, 1998.
[17] W. J. Liu, H. L. Li, and C. G. Ma, "Soluble block-transitive automorphism groups of $2-(v, 7,1)$ designs," Adv. Math., vol. 30, no. 1, pp. 56-62, 2001 (in Chinese).
[18] W. J. Liu, S. Z. Li, and L. Z. Gong, "Almost simple groups with socle Ree $(q)$ acting on finte linear spaces," Eur. J. Comb., vol. 27, no. 6, pp. 788-800, 2006, doi: 10.1016/j.ejc.2005.05.008.
[19] W. W. Tong and H. L. Li, "Solvable block transitive automorphism groups of $2-(v, 5,1)$ designs," Discrete Math., vol. 260, no. 1-3, pp. 267-273, 2003, doi: 10.1016/S0012-365X(02)00763-X.

## Author's address

## Shangzhao Li

Changshu Institute of Technology, School of Mathematics and Statistics, 99 Hushan St., Changshu, China

E-mail address: 1szfd2004@126.com


[^0]:    The author was supported in part by the National Natural Science Foundation of China, Grant Nos. 11471054 and 11271208.

