

Miskolc Mathematical Notes Vol. 16 (2015), No. 2, pp. 995–1002 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2015.1473

NONEXISTENCE OF 2-(v,k,1) DESIGNS ADMITTING AUTOMORPHISM GROUPS WITH SOCLE $E_8(q)$

SHANGZHAO LI

Received 21 December, 2014

Abstract. One of the outstanding problems in combinatorial design theory is concerning the existence of 2 - (v, k, 1) designs. In particular, the existence of 2 - (v, k, 1) designs admitting an interesting group of automorphisms is of great interest. Thirty years ago, a six-person team classified 2 - (v, k, 1) designs which have flag-transitive automorphism groups. Since then the effort has been to classify those 2 - (v, k, 1) designs which are block-transitive but not flag-transitive. This paper is a contribution to this program and we prove there is nonexistence of 2 - (v, k, 1) designs admitting a point-primitive block-transitive but not flag-transitive automorphism group G with socle $E_8(q)$.

2010 Mathematics Subject Classification: Primary 05B05; Secondary 20B25

Keywords: block-transitive, point-primitive, design, socle

1. INTRODUCTION

This paper is part of a project to classify groups and 2 - (v, k, 1) designs where the group acts transitively on the blocks of the design. A 2 - (v, k, 1) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is a pair consisting of a finite set \mathcal{P} of points and a collection \mathcal{B} of k-subsets of \mathcal{P} , called blocks, such that any 2-subsets of \mathcal{P} is contained in exactly one block. Traditionally one defined $v =: |\mathcal{P}|$ and $b =: |\mathcal{B}|$. We will always assume that 2 < k < v.

One of the outstanding problems in combinatorial design theory is concerning the existence of 2 - (v, k, 1) designs. In particular, the existence of 2 - (v, k, 1) designs admitting an interesting group of automorphisms is of great interest. Thirty years ago, a six-person team [2] classified the pairs (\mathcal{D}, G) where \mathcal{D} is a 2 - (v, k, 1) design and G is a flag-transitive automorphism group of \mathcal{D} , with the exception of those in which G is a one-dimensional affine group. Since then the effort has been to classify those 2 - (v, k, 1) designs which are block-transitive but not flag-transitive. These fall naturally into two classes, those where the action on points is primitive and those where the action on points is imprimitive.

© 2015 Miskolc University Press

The author was supported in part by the National Natural Science Foundation of China, Grant Nos. 11471054 and 11271208.

according to the O'Nan-Scotte theorem and some further work by Camina, into the socles which are either elementary abelian or non-abelian simple. As a result of [6] it is known that the second only occur finitely times for a given line size. This paper contributes to the program for determining the pairs (\mathcal{D}, G) in which \mathcal{D} has a point-primitive block-transitive subgroup, G, of automorphisms. From the assumption that G is transitive on the set \mathcal{B} of blocks, it follows that G is also transitive on the point set \mathcal{P} . This is a consequence of the theorem of Block in [1].

The classification of block-transitive 2 - (v, 3, 1) designs was completed about thirty years ago (see [4]). In [3] Camina and Siemons classified 2 - (v, 4, 1) designs with a block-transitive, solvable group of automorphisms. Li classified 2 - (v, 4, 1)designs admitting a block-transitive, unsolvable group of automorphisms (see [11]). Tong and Li classified 2 - (v, 5, 1) designs with a block-transitive, solvable group of automorphisms in [19]. Liu classified 2 - (v, k, 1) (where k = 6, 7, 8, 9, 10) designs with a block-transitive, solvable group of automorphisms in [16]. Ding [8] considered 2 - (v, k, 1) designs admitting block-transitive automorphism groups in AGL(1,q)and prove the existence of 2 - (v, 6, 1) designs which have block-transitive but not flag-transitive automorphism groups in AGL(1,q) (see [7]). Dai and Zhao consider 2 - (v, 13, 1) designs with point-primitive block-transitive unsolvable group of automorphisms whose socle is $Sz(2^{2n+1})$ in [5]. Recently, there have been a number contributions to this classification (see [13, 14]). Here we focus on the existence problem of 2 - (v, k, 1) ($k \le 2793$) designs with a point-primitive block-transitive automorphism group of almost simple type and prove the following theorem:

Theorem 1. Suppose that $E_8(q) \leq G \leq Aut(E_8(q))$ for q > 5. Then there is nonexistence of 2 - (v, k, 1) ($k \leq 2793$) design \mathcal{D} admitting a point-primitive block-transitive but not flag-transitive automorphism group G.

We introduce some notation below. Let X and Y be arbitrary finite groups. The expression $X \cdot Y$ denotes an extension of X by Y and X : Y denotes the split extension. If Y is a subgroup of X, then the symbol |X : Y| denotes the index of Y in X. Let \mathcal{D} be a 2 - (v, k, 1) design and G be an automorphism group of \mathcal{D} . If B is a block, then G_B denotes the setwise stabilizer of B in G and $G_{(B)}$ is the pointwise stabilizer of B in G. In addition, G^B denotes the permutation group induced by the action of G_B on the points of B. Then $G^B \cong G_B/G_{(B)}$. We will write α to be a point of \mathcal{D} and G_{α} to be the stabilizer of α under the action of G. Other notation for group structure is standard.

The paper is organized as follows. Section 2 describes several preliminary results concerning the group $E_8(q)$ and 2-(v,k,1) designs. Section 3 gives the proof of the theorem.

2. PRELIMINARY RESULTS

Suppose that G is a block-transitive automorphism group of a 2 - (v, k, 1) design. It is well-known that:

$$v = r(k-1) + 1;$$
 (2.1)

$$v(v-1) = bk(k-1).$$
 (2.2)

Then we have r = (v-1)/(k-1). We can show that $b \ge v$ and so $k \le r$. If k = r then $v = k^2 - k + 1$; if $r \ge k + 1$, then $v \ge k^2$.

We use a result of W. Fang and H. Li [9]. Define the following constants:

$$b_1 = (b, v), b_2 = (b, v - 1), k_1 = (k, v), \text{ and } k_2 = (k, v - 1).$$

Using the basic equalities 2.1 and 2.2, we get the Fang-Li Equations:

 $k = k_1 k_2, b = b_1 b_2, r = b_2 k_2$, and $v = b_1 k_1$.

We shall state a number of basic results which will be used repeatedly throughout the paper. Liebeck and Saxl have determined the maximal subgroups of $Soc(G) = E_8(q)$ in [15].

Lemma 1 ([15]). Suppose that $T = E_8(q) \leq G \leq Aut(T)$. Let M be a maximal subgroup of G not containing T. Then one of the following holds

- (1) $|M| < q^{110}|G:T|;$
- (2) $M \cap T$ is a parabolic group;
- (3) $M \cap T$ is isomorphic to $(SL_2(q) \circ E_7(q)).d$, $D_8(q).d$, or $E_8(q^{\frac{1}{2}})$ with q square, where d = (2, q-1).

Lemma 2 ([18]). Let $G = T : \langle x \rangle$ and act block-transitively on a 2 - (v, k, 1) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$, where $x \in Out(T)$. Then T acts transitively on \mathcal{P} .

Lemma 3 ([17]). Let G be a solvable block-transitive automorphism group of a 2-(v,k,1) design. If G is point-primitive, then

- (1) there exists a prime number p and a positive integer n such that $v = p^n$;
- (2) if there exists a *p*-primitive prime divisor *e* of $p^n 1$, such that e||G|, then either $G \leq A\Gamma L(1, p^n)$ or k|v.

Lemma 4 ([10]). Let \mathcal{D} be a 2 - (v, k, 1) design admitting a block-transitive and point-primitive but not flag-transitive automorphism group G. Assume that T = Soc(G) and $T_{\alpha} = T \cap G_{\alpha}$ where $\alpha \in \mathcal{P}$. Then the following hold:

- (1) $\frac{v}{\tau} < (k_2k k_2 + 1)|G:T|$, where z is the size of a T_{α} -orbit in $\mathcal{P} \setminus \{\alpha\}$;
- (2) $\tilde{if}(v-1,q) = 1$, then there exists a T_{α} -orbit with size y in $\mathcal{P} \setminus \{\alpha\}$ such that $y ||T_{\alpha}|_{p'}$.

Lemma 5. Let \mathcal{D} be a 2-(v,k,1) design admitting a block-transitive automorphism group G. Assume that T = Soc(G) and $T_{\alpha} = T \cap G_{\alpha}$ where $\alpha \in \mathcal{P}$. Then

(1) $v = k_2(k-1)b_2 + 1;$

(2) $b_2||T_{\alpha}|_{v'}|G:T|$ and $v \le 1 + k(k-1)|T_{\alpha}|_{v'}|G:T|$; (3) If G is not flag-transitive and non-solvable, then $\frac{|T|}{|T_{\alpha}|^2} \le \frac{k(k-1)+1}{2}|G:T|$.

Proof. (1) Since k(k-1)b = v(v-1) and $k = k_1k_2, b = b_1b_2, v = b_1k_1$, we obtain $k_2(k-1)b_2 = v-1$ and hence $v = 1 + k_2(k-1)b_2$.

(2) Since rv = bk, it follows that $r|G : G_{\alpha}| = k|G : G_B|$, where $\alpha \in \mathcal{P}, B \in \mathcal{B}$. Recall that $k = k_1k_2, r = b_2k_2$. It is clear that $b_2|G_B| = k_1|G_{\alpha}|$. Note that $(b_2, k_1) = 1$ and hence b_2 divides $|G_{\alpha}|$. Since $(b_2, v) = 1$, then $b_2||G_{\alpha}|_{v'}$. Since G is block-transitive, by Lemma 2, T is point-transitive. We conclude that $v = |G : G_{\alpha}| = |T : T_{\alpha}|$. Hence $|G_{\alpha}| = |T_{\alpha}||G : T|$ and so $b_2||T_{\alpha}|_{v'}|G : T|$. Together with (1), it deduces that $v \le 1 + k_2(k-1)|T_{\alpha}|_{v'}|G : T|$ and hence $v \le 1 + k(k-1)|T_{\alpha}|_{v'}|G : T|$.

(3) Let B be a block of \mathcal{D} . Since G is non-solvable, the following possibility for the structure of G^B , the rank and subdegree of G does not occur:

Type of G^B	Rank of G	Subdegree of G
		$k_2(k-1)$
(1)	$1 + k_2(k-1)$	$1, b_2, b_2, \cdots, b_2$

Otherwise, $|G^B|$ is odd, whence |G| is odd and so G is solvable, which contradicts the fact that G is non-solvable. Then by the proof of Proposition 3.1 in [10] the conclusion holds.

Lemma 6 ([12]). Suppose that \mathcal{D} is a 2 - (v, k, 1) design and G is an almost simple group acting on \mathcal{D} block-transitively. Let G_{α} be the stabilizer in G of a point α of \mathcal{D} and suppose the socle T of G is a simple group of Lie type. If the intersection of G_{α} and T is a parabolic subgroup of T, then G acts on \mathcal{D} flag-transitively.

3. PROOF OF THEOREM 1

Suppose that there exists a 2 - (v, k, 1) ($k \le 2793$) design \mathcal{D} satisfying the conditions of the Main Theorem. We will derive contradictions to prove the Main Theorem.

Since $T = E_8(q) \leq G \leq Aut(E_8(q))$, then $G = T : \langle x \rangle$ and |Out(T)| = a, where $x \in Out(T)$. Let o(x) = m. Then we obtain that m|a and $|G| = q^{120}(q^{30} - 1)(q^{24} - 1)(q^{20} - 1)(q^{14} - 1)(q^{12} - 1)(q^8 - 1)(q^2 - 1)m$. Since G is point-primitive, G_{α} is the maximal subgroup of G for any $\alpha \in \mathcal{P}$. Then $M = G_{\alpha}$ satisfies one of the three cases in Lemma 1. If $G_{\alpha} \cap T$ is a parabolic subgroup of T, then by Lemma 6 we see that G is flag-transitive, which is a contradiction. Therefore, the case (2) in Lemma 1 does not occur and it suffices to consider the following two cases.

Case 3.1: $|G_{\alpha}| < q^{110}|G:T|$.

Since G is block-transitive, by Lemma 2, T is point-transitive. Hence $|G_{\alpha}| = |T_{\alpha}||G:T|$ and so $|T_{\alpha}| < q^{110}$. Then $v = |T:T_{\alpha}|$ is not a prime power and by Lemma 3 we have that G is non-solvable. Note that m = |G:T|. It follows by

Lemma 5(3) that

$$|T| \le \frac{k(k-1)+1}{2} |T_{\alpha}|^2 |G:T| \le \frac{7798057}{2} q^{220} m$$

This gives,

$$\begin{split} \frac{|T|}{q^{220}} &= \frac{(q^2-1)(q^8-1)(q^{12}-1)(q^{14}-1)(q^{18}-1)(q^{20}-1)(q^{24}-1)(q^{30}-1)}{q^{100}} \\ &< \frac{7798057}{2}m. \end{split}$$

Since

$$(q^{2}-1)(q^{8}-1)(q^{12}-1)(q^{14}-1)(q^{18}-1)(q^{20}-1)(q^{24}-1)(q^{30}-1) > \frac{7}{10}q^{128},$$

it implies that

$$\frac{7}{10}q^8 < \frac{7798057}{2}m.$$

Recall that $m|a, q = p^a, p \ge 2$. We can conclude therefore that

$$\frac{7}{10} \cdot 2^{8a} \le \frac{7}{10} \cdot p^{8a} = \frac{7}{10} q^8 < \frac{7798057}{2} a, \tag{3.1}$$

which forces $a \le 2$. We calculate to obtain all possibilities for the values of p and a satisfying the inequality 3.1: (1) a = 1, $p \le 5$, a prime; (2) a = 2, p = 2. This contradicts q > 5.

Case 3.2: $G_{\alpha} \cap T$ is case (3) in Lemma 1. Now we consider three cases. **Subcase 3.2.1:** $T_{\alpha} = (SL_2(q) \circ E_7(q)).d$ where d = (2, q - 1). We observe that

$$|T_{\alpha}| = q^{64}(q^{18} - 1)(q^{14} - 1)(q^{12} - 1)(q^{10} - 1)(q^8 - 1)(q^6 - 1)(q^2 - 1)^2$$

and

$$v = \frac{q^{56}(q^{30}-1)(q^{24}-1)(q^{20}-1)}{(q^{10}-1)(q^6-1)(q^2-1)}.$$

Hence

$$|T_{\alpha}|_{v'} \le (q^2 - 1)^8 (q^{12} + q^6 + 1)(1 + q^2 + q^4 + q^6 + q^8 + q^{10} + q^{12}) < \frac{7}{5}q^{40}$$

Since

$$v = \frac{q^{56}(q^{30}-1)(q^{24}-1)(q^{20}-1)}{(q^{10}-1)(q^6-1)(q^2-1)} > \frac{1}{50}q^{112},$$

we can appeal to Lemma 5(2) to observe that

$$\frac{1}{50}q^{112} < v \le 1 + k(k-1)|T_{\alpha}|_{v'}|G:T| < 1 + 7798056 \cdot \frac{7}{5} \cdot q^{40}a.$$

This implies the following inequality

$$\frac{1}{50} \cdot 2^{72a} \le \frac{1}{50} \cdot q^{72} < \frac{1}{2^{40a}} + 7798056 \cdot \frac{7}{5} \cdot a < \frac{4}{5} \cdot 2^{24}a,$$

which is impossible.

Subcase 3.2.2: $T_{\alpha} = D_8(q).d$, where d = (2, q - 1). We calculate that

$$|T_{\alpha}| = \frac{dq^{56}(q^8 - 1)\prod_{i=1}^{7}(q^{2i} - 1)}{d_1}$$

and

$$v = \frac{d_1 q^{64} (q^{30} - 1)(q^{24} - 1)(q^{20} - 1)(q^{18} - 1)}{d(q^{10} - 1)(q^8 - 1)(q^6 - 1)(q^4 - 1)},$$

where $d_1 = (4, q^8 - 1)$. Since (v - 1, q) = 1, by Lemma 4 (2), there exists in $\mathcal{P} \setminus \{\alpha\}$ a T_{α} -orbit of size y such that $y ||T_{\alpha}|_{p'}$. Hence

$$y \le |T_{\alpha}|_{p'} \le 2(q^8 - 1) \prod_{i=1}^{\gamma} (q^{2i} - 1).$$

Thus

$$\begin{split} & \frac{v}{y} \geq \frac{d_1 q^{64} (q^{30} - 1) (q^{24} - 1) (q^{20} - 1) (q^{18} - 1)}{2d(q^{14} - 1)(q^{12} - 1)(q^{10} - 1)^2 (q^8 - 1)^3 (q^6 - 1)^2 (q^4 - 1)^2 (q^2 - 1)} \\ & > \frac{\frac{1}{10} \cdot q^{108}}{4 \cdot \frac{15}{2} \cdot q^{44}} = \frac{1}{300} q^{64}. \end{split}$$

Note that $k_2 \leq k$. We now apply Lemma 4 (1) to conclude that

$$\frac{1}{300} \cdot 2^{64a} \le \frac{1}{300} q^{64} < \frac{v}{y} < (k(k-1)+1)|G:T| \le 7798057a < \frac{19}{20} \cdot 2^{23}a,$$

which is a contradiction.

Subcase 3.2.3: $T_{\alpha} = E_8(q^{\frac{1}{2}}).$

We obtain that

$$|T_{\alpha}| = q^{60}(q^{15} - 1)(q^{12} - 1)(q^{10} - 1)(q^9 - 1)(q^7 - 1)(q^6 - 1)(q^4 - 1)(q - 1)$$

and

$$v = q^{60}(q^{15} + 1)(q^{12} + 1)(q^{10} + 1)(q^9 + 1)(q^7 + 1)(q^6 + 1)(q^4 + 1)(q + 1).$$

Then it deduces that

$$\begin{aligned} |T_{\alpha}|_{v'} &\leq (q-1)^8 (q^2+q+1)^4 (q^6+q^3+1)(1+q+q^2+q^3+q^4)^2 \\ &\cdot (1+q+q^2+q^3+q^4+q^5+q^6)(1-q+q^3-q^4+q^5-q^7+q^8) < 48q^{44} \end{aligned}$$

Since

$$v = q^{60}(q^{15}+1)(q^{12}+1)(q^{10}+1)(q^9+1)(q^7+1)(q^6+1)(q^4+1)(q+1) > q^{124}$$

by Lemma 5(2) this implies that

$$q^{124} < v \le 1 + k(k-1)|T_{\alpha}|_{v'}|G:T| < 1 + 7798056 \cdot 48 \cdot q^{44} \cdot a.$$

This leads to the following result

$$2^{80a} \le q^{80} < \frac{1}{2^{44a}} + 7798056 \cdot 48a < \frac{4}{5} \cdot 2^{29}a,$$

which gives a contradiction.

This completes the proof of **Theorem 1**.

ACKNOWLEDGEMENT

The author is grateful to the editor and reviewer for pointing out errors in the original version of this paper and their valuable comments and suggestions.

REFERENCES

- R. E. Block, "On the orbits of collineation groups," *Math. Z.*, vol. 96, no. 1, pp. 33–49, 1967, doi: 10.1007/BF01111448.
- [2] F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck, and J. Saxl, "Linear spaces with flag-transitive automorphism groups," *Geom. Dedicata*, vol. 36, no. 1, pp. 89–94, 1990.
- [3] A. R. Camina and J. Siemons, "Block transitive automorphism groups of 2 (v, k, 1) block designs," J. Comb. Theory, Ser. A, vol. 51, no. 2, pp. 268–276, 1989, doi: 10.1016/0097-3165(89)90052-6.
- [4] P. C. Clapham, "Steiner systems with block transitive automorphism groups," *Discrete Math.*, vol. 14, no. 2, pp. 121–131, 1976, doi: 10.1016/0012-365X(76)90055-8.
- [5] S. J. Dai and K. Zhao, "Block transitive 2-(v, 13, 1) designs and Suzuki groups," Ars Comb., vol. 105, no. 5, pp. 369–373, 2012.
- [6] A. Delandtsheer and J. Doyen, "Most block-transitive *t*-designs are point-primitive," *Geom. Ded-icata*, vol. 29, no. 3, pp. 307–310, 1989, doi: 10.1007/BF00572446.
- [7] S. F. Ding, "The existence and construction of a family of block-transitive 2 (v, 6, 1) designs," J. Comb. Theory, Ser. A, vol. 116, no. 1, pp. 215–222, 2009.
- [8] S. F. Ding and W. J. Liu, "Existence of 2 (v, k, 1) designs admitting a block-transitive group of affine type," *Electron. J. Comb.*, vol. 19, no. 3, pp. 1–12, 2012.
- [9] W. D. Fang and H. L. Li, "A generalisation of Camina-Gagens Theorem," *Math. Mag.*, (Wuhan), vol. 13, no. 13, pp. 437–441, 1993 (in Chinese).
- [10] G. G. Han, "Block-transitive 2 (v, k, 1) designs and the twisted simple groups ${}^{2}E_{6}(q)$," *Appl. Math. Comput.*, vol. 242, no. 9, pp. 109–115, 2014, doi: 10.1016/j.amc.2014.05.027.
- [11] H. L. Li, "On block-transitive 2 (v, 4, 1) designs," J. Comb. Theory, Ser. A, vol. 69, no. 1, pp. 115–124, 1995.
- [12] H. L. Li and Y. Liu, "Automorphism groups of linear spaces and their parabolic subgroups," J. Comb. Theory, Ser. A, vol. 116, no. 1, pp. 1–11, 2009, doi: 10.1016/j.jcta.2008.04.001.
- [13] S. Z. Li, S. J. Dai, and L. Y. Jiang, "Unsolvable block-transitive automorphism groups of 2 (v, 31, 1) designs," Ars Comb., vol. 117, no. 5, pp. 469–476, 2014.
- [14] S. Z. Li, G. G. Han, and W. J. Liu, "Block-transitive 2 (v, k, 1) designs and the Chevalley groups $F_4(q)$," *Appl. Math. Comput.*, vol. 248, no. 12, pp. 380–385, 2014.

- [15] M. W. Liebeck and J. Saxl, "On the orders of maximal subgroups of the finite exceptional groups of Lie type," *Proc. Lond. Math. Soc.*, vol. 55, no. 2, pp. 299–330, 1987, doi: 10.1093/plms/s3-55[•]2.299.
- [16] W. J. Liu, "Block transitive 2 (v, k, 1) designs," Ph. D. Thesis, Zhejiang University, Hangzhou, 1998.
- [17] W. J. Liu, H. L. Li, and C. G. Ma, "Soluble block-transitive automorphism groups of 2 (v, 7, 1) designs," *Adv. Math.*, vol. 30, no. 1, pp. 56–62, 2001 (in Chinese).
- [18] W. J. Liu, S. Z. Li, and L. Z. Gong, "Almost simple groups with socle Ree(*q*) acting on finte linear spaces," *Eur. J. Comb.*, vol. 27, no. 6, pp. 788–800, 2006, doi: 10.1016/j.ejc.2005.05.008.
- [19] W. W. Tong and H. L. Li, "Solvable block transitive automorphism groups of 2 (v, 5, 1) designs," *Discrete Math.*, vol. 260, no. 1-3, pp. 267–273, 2003, doi: 10.1016/S0012-365X(02)00763-X.

Author's address

Shangzhao Li

Changshu Institute of Technology, School of Mathematics and Statistics, 99 Hushan St., Changshu, China

E-mail address: lszfd2004@126.com