
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 16 (2015), No. 2, pp. 1091–1103 DOI: 10.18514/MMN.2015.1469

COMPLEX B-SPLINE COLLOCATION METHOD FOR SOLVING
WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS OF
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Abstract. In this paper we propose a new collocation type method for solving Volterra integral
equations of the second kind with weakly singular kernels. In this method we use the complexB-
spline basics in collocation method for solving Volterra integral. We compare the results obtained
by this method with exact solution. A few numerical examples are presented to demonstrate the
effectiveness of the proposed method.
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1. INTRODUCTION

In this paper we consider the Volterra integral equation with the second kind
weakly singular kernel, namely

u.t/D f .t/C

Z t

0

k.t; s/u.s/ds; t 2 .a;b� ; (1.1)

where k.t; s/ and f .t/ are known and u.t/ is unknown. The function k.t; s/ is called
a polar kernel if

k.t; s/D
g.t; s/

.t � s/˛
; ˛ 2 .0;1/;

where g is bounded on s, g.t; t/¤ 0 and for all

t; s 2 C Œa;b�Ig.t; s/ 2 C.Œa;b�� Œa;b�/:

We rewrite the equation (1.1) in the following operator form:

.I �K/uD f;

where the operator K is assumed to be compact on a Banach Space X to X .
During the past few decades, this equation has been used to study various problems

of mathematical chemistry and physics, such as reactions including stereology, heat
conduction with mixed boundary conditions [10], crystal growth, electrochemistry,

c 2015 Miskolc University Press

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/145235649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1092 M. RAMEZANI, H. JAFARI, S.J. JOHNSTON, AND D. BALEANU

super fluidity and the radiation of heat [7], electrochemistry, semi-conductors, scat-
tering theory, seismology, heat conduction, metallurgy, fluid flow, chemical reactions
and population dynamics [12, 13, 27], the particle transport problems of astrophys-
ics, potential theory and Dirichlet problem, electrostatic and radiative heat transfer
problems and in some engineering fields [29, 30], astronomy, optics, computational
electromagnetic, quantum mechanics, seismology image processing [1, 6].

In addition a method with exponential order convergence rate has been developed
by Riley [23] for Volterra integral equations of the form

u.t/�

Z t

a

.t � s/p�1k.t; s/u.s/ds D f .t/; a � t � b; (1.2)

where the kernel is also assumed to be weakly singular and the solution u is generally
not differentiable at t D a. In [16], the equation (1.2) has been solved with fractional
B-spline basics.

In most of the cases, it is difficult to obtain analytical solution of integral equa-
tions, therefore many numerical methods such as collocation method with different
basics [2,19,20], orthogonal bases and wavelets [17,21], Galerkin methods have been
developed to solve equation (1.1) [4–6, 14].

Recently, many different basic functions have been utilized to estimate the result of
integral equations, such as modified quadrature [24], optimal homotopy asymptotic
method [15], Tau approximate method [18].

Spline functions are very efficient and useful in signal processing, mathematical
and computer graphics [8, 9, 22, 25, 26]. In [3], Blu and Unser gave an extension of
B-splines to fractional orders and later in [11], Forster et. al. gave an extension to
complex power.

In this paper, we solve equation (1.1) by using complex B-spline to obtain ap-
proximate solution. The paper is organized as follows: In Section 2, we recall some
basic definitions and theorems of complex B-splines and its properties. Section 3
is devoted to the solution of weakly singular integral equation of second kind us-
ing collocation methods with complex B-spline basics. In Section 4, by considering
numerical examples reported in our work, the accuracy of the proposed scheme is
demonstrated.

2. COMPLEX B -SPLINES

In this section we state some definitions and theorems [11, 20] that will be used
later in our work.

Definition 1. The inner product
R
f .x/g.x/dx between two complex L2 func-

tions f , g is denoted by .f;g/, and the associated Euclidean norm is written as k:k2.

Definition 2. The Riemann zeta function is defined as �.s/ D
P
n�1n

�s for all
real s > 1.
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Definition 3. The basic functions for Schoenberg’s polynomial splines with uni-
form knots [3, 20] are defined as

ˇn.x/D
1

nŠ

nC1X
jD0

.�1/j

 
nC1

j

!
.x�j /nC x 2 R; n 2N;

where

.x�j /nC D

�
.x�j /n if x > j;

0 if x � j:

Definition 4. x´
C

denotes the truncated power function of complex degree ´ with
knot zero:

x´
C
D

�
x<´ei=´ lnx; x > 0;

0; elsewhere.

Definition 5. The complex B-spline ˇ´ of complex degree ´ is defined in L2.R/
via its Plancherel transform as

Ǒ´.!/D .
1� e�i!

i!
/´C1; (2.1)

where ´D ˛C i with parameters ˛;  2 R and ˛ > �1
2

.

Theorem 1 (cf. [11]). The complex B-spline ˇ´ is well-defined, uniformly con-
tinuous and belongs to the space L2.R/.

Theorem 2 (cf. [11]). The time domain representation of the complex B-spline
ˇ´ is given by

ˇ´.x/D
1

� .´C1/

X
k�0

.�1/k

 
´C1

k

!
.x�k/´

C
: (2.2)

This equation is valid pointwise for all x 2 R and L2.R/.

The complex B-splines generate dyadic multiresolution analysis; i.e. they gener-
ate a sequence of spaces:

f0g � :::� V�1 � V0 � V1 � :::� L
2.R/

with the following properties:

(1) \iVi D f0g and [iVi D L2.R/,
(2) f .�/ 2 Vi if and only if f .2�i�/ 2 V0,
(3) f .�/ 2 V0 if and only if f .��k/ 2 V0 for all k 2Z,
(4) there exists a function ' 2 V0, called a scaling function, such that

'.��k/k2Z forms an orthonormal basis of V0.
Vi is the complex B-spline of order ´ 2C with knot points k:2i ;k 2Z.
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Theorem 3 (cf. [11]). Let Re´ > 0. Then the spaces

Vi D spanfˇ´.
x�2ik

2i
/gL

2.R/ ; i 2Z (2.3)

form a dyadic multiresolution analysis with scaling function ˇ´.

The complex B-spline spaces at scale a is defined as

S´a D fsa W 9c 2 `
2; sa.x/D

X
k2Z

c.k/ˇ´.
x

a
�k/g: (2.4)

Then given an arbitrary function f 2 L2.R/, we determine its least-squares approx-
imation in S´a by applying the following orthogonal projection operator

Paf D
X
k2Z

.f;
1

a
Q̌´.
�

a
�k//ˇ´.

�

a
�k/: (2.5)

This defines a projector because the functions ˇ´ and Q̌´ are biorthonormal [11],
where Q̌´ 2 S´a is the dual B-spline whose Fourier transform is

OQ̌´.�/D
Ǒ´.�/qP

k2Z j
Ǒ´.�C2�k/j2

: (2.6)

Theorem 4 (cf. [28]). The complex B-splines have a fractional order of approx-
imation ˛C1. Specifically, the least-squares approximation error is bounded by:

8f 2W ˛C1
2 ;kf �Paf k2 �

q
2�.˛C2/� 1

2

�˛C1
kD˛C1k2a

˛C1: (2.7)

3. THE COMPLEX B -SPLINE COLLOCATION METHOD

To solve approximately the integral equation equation (1.1), we assume that K
is compact on a Banach space X to X . We choose a finite dimensional family of
functions Qu.x/ which is close to the exact solution u.x/. In practice, we choose a
sequence of dimensional subspaces Xn � X; n � 1, with Xn having dimension dn.
Let Xn have a basis f'1; :::;'d g with d � dn for notational simplicity. We seek
un.x/ 2Xn, which can be written as

un.x/D

dX
jD0

cj'j .x/; x 2D: (3.1)

This is substituted into equation (1.1), and coefficients fc1; :::; cd g are determined by
forcing the equation to be exact in some sense. For later use, we introduce

rn.x/D un.x/�

Z
D

k.x;s/un.s/ds�f .x/;
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D

dX
jD1

cj f'j .x/�

Z
D

k.x;s/'j .s/dsg�f .x/; x 2D: (3.2)

We pick distinct node x1; � � � ;xd 2D, and require

rn.xi /D 0; i D 1; � � � ;d: (3.3)

This leads to determining fc1; :::; cd g as the solution of the linear system
dX
jD1

cj fu.xi /�

Z
D

k.xi ; s/u.s/dsg D f .xi /; i D 1; � � � ;d: (3.4)

In following we show that this method can be used to solve equation (1.1), In this
regard we give the following Lemma 1 and Theorem 5.

Lemma 1 (cf. [2]). Let X be a Banach space and Pn be a family of bounded
projections on X with

Pnu �! u as n �!1;u 2X

and K WX �!Xbe compact. Then

kK�PnKk �! 0 as n �!1:

Theorem 5 (cf. [11]). If G 2 R be an integral equation with a weakly singular
kernel then it is a compact operator on C.G/, where C.G/ is space of continuous
real or complex valued functions on compact subsets G 2 R.

Theorem 6. Equation (1.1) can be solved with collocation method by using com-
plex B-spline basis.

Proof. If we introduce equation (3.1) to projection operator Pn that maps X onto
Xn, definePnu.x/ to be that element ofXn that interpolatesX at the nodes fx1; :::;xd g.
This means writing

Pnu.x/D

dX
jD1

cj'j .x/

with the coefficients fcj g determined by solving the linear system
dX
jD1

cj'j .xi /D u.xi /; i D 1; � � � ;d

Then this linear system has a unique solution if

detŒ'j .xj /�¤ 0:

From Theorem 1, complex B-spline basis belong toL2.R/ and with the help Theorem
2 this method is convergent. Then in view of Lemma 1 and Theorem 5 we can use
collocation method for these type of integral equations. �
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Now we can use collocation methods for solving weakly singular integral equation
of second kind with complex B-spline basis.

In equation (1.1), letX DL2.R/ and VnDXn. Then if u.x/2L2.R/ and un.x/2
Vn, where

un.x/D
X
j2Z

c.j /ˇ´.2nx�j /; j 2Z;

with 0� t � b and n 2N then we have

u2
n

n .x/D

bX
jD1�2n

c.j /ˇ´.2nx�j /; b 2 R; (3.5)

with nodes xi D bi
2n . Then

r2
n

n .xi /D

bX
jD1�2n

cj fu.xi /�

Z
D

k.xi ; s/u.s/dsg�f .xi /D 0 i D 0; � � � ;b: (3.6)

We define the absolute error

E2
n

n .u.x//D ku.x/�u
2n

n .x/k2 D

 Z b

0

ju.x/�u2
n

n .x/j
2

! 1
2

; (3.7)

and note that when n!1 and d !1 then u2
n

n .x/! u.x/.
Using the Theorem 1 and Lemma 1, the relatively error is defined as

en D
max0�i�2n jE2

n

n .u.xi //j

max0�x�b ju.x/j
: (3.8)

4. ILLUSTRATIVE EXAMPLES

In order to show better the theoretical results of the previous sections, we now
consider the numerical solution of the equation (1.1), with various choices of f .x/
for x 2 Œ0;1�DD. By using equation (3.6), we obtain fc1; :::; cd g. Then in view of
(3.7) and (3.8) at several points of interval D we obtain the absolute and the relative
errors.

Example 1. Let b D 1, g.t; s/ D ts and f .x/ D x.1�x/C 16
105
x

7
2 .7� 6x/ with

the exact solution u.x/ D x.1�x/. Table 1 shows the absolute errors obtained by
the knot points xi D i

2n I i D 0; :::;2
n with ´D 0:5C i .

In Figure 1, the horizontal axis represents the n index’s Vn the vertical axis repres-
ents the relative error en is intentional, as can be seen, by increasing the index of n,
the relative error decreases.

From Table 1 we see that the maximum error occurs at point x D 1. We now show
the relative error for different interval of ´ this point .x D 1/ in Tables 3, 4 and 5.
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TABLE 1. Absolute Errors

x E2
0

0 .u.x// E2
1

1 .u.x// E2
2

2 .u.x// E2
3

3 .u.x// E2
4

4 .u.x//

0 0 0 0 0 0
0.25 0.180375 0.119014 0.0013166 0.0008720 0.0005532
0.5 0.1676936 0.126606 0.019329 0.013126 0.00670011
0.75 0.1676936 0.126606 0.019329 0.0131267 0.00670011
1 0.0720055 0.0578148 0.0425467 0.0263254 0.0111375

TABLE 2. Relatively Errors

n 0 1 2 3 4
en 0.837556 0.506424 0.1701868 0.10530168 0.04455

1 2 3 4 5
n

0.2

0.4

0.6

0.8

e
n

FIGURE 1. Points relative error in spaces Vn.

TABLE 3. The relative error for j´j< 1

´ 0.1+0.01i 0.5+0.1i 0.2+0.9i
E2

4

4 .u.x// 0.00913271 0.00301154 0.01920683

TABLE 4. The relative error for 1� j´j< 2

´ 1+i 1+0.5i 1+0.9i
E2

4

4 .u.x// 0.00745215 0.00248121 0.00842375
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TABLE 5. The relative error for 2� j´j< 3

´ 2+0.1i 2+0.5i 2+1i
E2

4

4 .u.x// 0.0054914 0.00949278 0.0301505

We note that when 1� j´j< 2 , the error is minimum.

Example 2. Let bD 1, g.x;s/D 1 and f .x/D 1
2
�xC

p
x with the exact solution

u.x/ D
p
x and ´ D 0:5C 0:5i . Table 6 shows the absolute error obtained by the

knot points xi D i
2n ; i D 0; :::;2n with ´D 0:5C0:5i .

TABLE 6. The absolute errors

x E2
0

0 .u.x// E2
1

1 .u.x// E2
2

2 .u.x// E2
3

3 .u.x// E2
4

4 .u.x//

0 0 0 0 0 0
0.25 0.290563 0.126959 0.0413826 0.0199285 0.000803727
0.5 0.168809 0.0702198 0.0333131 0.0130709 0.0044490
0.75 0.0356813 0.0508203 0.00297352 0.00907127 0.00297352
1 0.1156 0.0540076 0.0205252 0.0067599 0.00221725

TABLE 7. The relatively error

m 0 1 2 3 4
em 0.290563 0.1269598 0.0413826 0.0199285 0.00803727

In Figure 2, the horizontal axis represents the n index’s Vn and vertical axis rep-
resents the relative error en is intentional, as can be seen by increasing the index of n
relative error decreases.

From Table 6 we see that the maximum error occurs at point x D 0:5. We now
show the relative error for different interval of ´ this point.x D 0:5/ in Tables 8, 9
and 10.

TABLE 8. The relative error for j´j< 1

´ 0.01+0.1i 0.5+0.01i 0.9+0.1i
E2

4

4 .u.x// 0.0156468 0.000083763 0.00115488

Here we note that when j´j< 1, the error is minimum.
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1 2 3 4
n

0.002

0.004

0.006

0.008

0.01

0.012

e
n

FIGURE 2. Points relative error in spaces Vn.

TABLE 9. The relative error for 1� j´j< 2

´ 1+0.1i 0.5+i 0.9+i
E2

4

4 .u.x// 0.00112826 0.019533 0.00526669

TABLE 10. The relative error for 2� j´j< 3

´ 1.5+i 2+0.1i 2+0.5i
E2

4

4 .u.x// 0.022596 0.0175306 0.0224039

Example 3. Let aD�1 , bD 1, g.x;s/D 1 and f .x/D
p
xC1C 1

9
.xC1/

3
2 .3 ln.xC1/2�

16C ln.4096// with the exact solution u.x/D
p
xC1.

Table 11 shows the absolute error obtained by the knot points xi D i
2n � 1; i D

0; :::;2n with ´D 1C0:5i .

TABLE 11. The absolute errors

x E2
0

0 .u.x// E2
1

1 .u.x// E2
2

2 .u.x// E2
3

3 .u.x// E2
4

4 .u.x//

-1 0 0 0 0 0
-0.5 0.016592 0.0056849 0.0026678 0.0012071 0.00052264
0 0.016534 0.0077106 0.0034793 0.0015144 0.00063639
0.5 0.007966 0.00063781 0.0030579 0.0013167 0.00060392
1 0.019279 0.00068 0.0004755 0.00002275 0.00001357
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TABLE 12. The relative errors

n 0 1 2 3 4
en 0.0117325 0.0054522 0.0024602 0.0010708 0.00044999

In Figure 3, the horizontal axis represents the n index’s Vn, axis represents the
relative error en is intentional, as can be seen by increasing the index of n relative
error decreases.

1 2 3 4
n

0.002

0.004

0.006

0.008

0.01

0.012

e
n

FIGURE 3. Points relative error in spaces Vn.

From Table 12 see that the maximum error occurs at point x D 0:5. Now show the
relative error for different interval of ´ this point.x D 0:5/ in Tables 13, 14 and 15.

TABLE 13. The relative error for j´j< 1

´ 0.1+0.1i 0.5+0.1i 0.2+0.9i
E2

4

4 .u.x// 0.080492 0.00864855 0.086332

TABLE 14. The relative error for 1� j´j< 2

´ 0.1+i 1+0.5i 0.9+i
E2

4

4 .u.x// 0.100855 0.0415961 0.0482324

We see that when j´j< 1, the error is minimum.
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TABLE 15. The relative error for 2� j´j< 3

´ 1+i 2+0.5i 2+i
E2

4

4 .u.x// 0.0298086 0.0398539 0.0419062

5. CONCLUSION

In this paper, we proposed an efficient algorithm for solving Volterra integral equa-
tions of second kind with weakly singular kernels by collocation type method. We
used complex B-spline basics as basic functions in the collocation method. This ap-
proach gives better solution with respect to ordinary B-spline basics function. We
presented three numerical examples which demonstrated That our proposal method
is very attractive. Mathematica has been used in this paper for computation.
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