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Abstract. In this paper, the existence of solution for generalized equilibrium problems under
compactness or non-compactness assumptions in abstract convex spaces is proved. The closed-
ness and the convexity of the solution set are also obtained. Our results generalize and improve
some recent results in the literature.
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1. INTRODUCTION

LetK be a convex subset of topological vector spaceX and let F W X �X!R be
a scalar bifunction such that F.x; x/� 0, for all x 2K. By an equilibrium problem,
Blum and Oettli understood the problem of finding x 2K such that F.x; y/� 0 for
all y 2K, which is called equilibrium problem (for short EP). Many authors extended
EP to vector case in different ways, see for example [4, 9, 10, 13].

The equilibrium problem contains many important problems like optimization,
variational inequalities, minimax inequalities, Nash equilibrium problems, and com-
plementarity problems. Recently, many researchers investigated different models of
equilibrium problem and established general results on the existence of the equilib-
rium problem. For more details see [1–3, 5–7, 11, 17].
In order to establish existence results, convexity plays an important role, which is
a rather restrictive assumption. On the other hand, the concept of abstract convex
spaces, which include convex subsets of topological vector space, C-spaces and G-
convex spaces, was introduced by Sehie Park [14] in 2006.

In this paper, using KKM theorem in abstract convex spaces, the convexity as-
sumption is relaxed to � �convexity, in order to obtain existence of the solution of

For the third author, this work was made possible by the research grant GSCE offered by Babeş-
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generalized equilibrium problem (for short GEP) in abstract convex space is presen-
ted. Our results extend and generalize various existence theorems for similar prob-
lems. Although in general the solution set fails to be convex, here a sufficient con-
dition such that the solution set is to be convex is stated. A characterization of the
closedness of the solution set is also given. Meanwhile, Theorem 3.1 of [10] is ex-
tended.

2. PRELIMINARIES

Let X and Y be topological vector spaces and K be a convex subset of X . Let
F W K �K ( Y be a set-valued function and W � Y . There are several possible
ways to generalized equilibrium problems. The following problem was extensively
studied:

F ind x 2K such that F.x; y/�W 8y 2 Y:

Consider a closed convex cone C in Y . If W D Y n � intC (where intC ¤ ¿)
then the generalized vector equilibrium problem may be formulated as one of the
following three problems:

.GVEP / W F ind x 2K such that F.x; y/� .Y n� intC / 8y 2 Y;

or
F ind x 2K such that F.x; y/ª �intC 8y 2 Y;

or
F ind x 2K such that F.x; y/\ .Y n� intC /¤¿ 8y 2 Y:

Furthermore, ifW DC then the strong version ofGVEP is considered as follows:

.SGVEP / W F ind x 2X such that F.x; y/� C 8y 2 Y;

GVEP has been extensively studied by many authors in recent years (see [1–3, 5–7,
11, 17]).

We give now some notation and recall some definitions, which are intended to be
used in the sequel.

Let A be a subset of topological space X . We denote by A the closure of A in X .
Let < D > be the set of all nonempty finite subsets of a set D. A multimap (or a
set-valued mapping) F W X ( Y is a mapping F W X ! 2Y to the power set of Y ,
while F� W Y (X is defined by F�.y/ WD fx 2X j y 2 F.x/g for y 2 Y .

An abstract convex space .E; DI � / (see [16]) consists of a topological spaceE, a
nonempty setD and a multimap � W<D>(E with nonempty values �A WD� .A/
for A 2<D >. For any nonempty D0 �D, the � �convex hull of D0 is denoted and
defined by

co�D
0
WD

[
f�A j A 2<D

0 >g �E:
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A subset X of E is called a � � convex subset of .E; DI � / relative toD0 if for any
N 2<D0 >, we have �N �X , that is, co�D0 �X .
WhenD �E, a subset X of E is said to be � �convex if co� .X \D/�X ; in other
words, X is � �convex relative to D0 WD X \D. In case E D D, let .EI � / WD
.E; EI � /. If E is compact, then .E; DI � / is called a compact abstract convex
space.

It is obvious that any vector space E is an abstract convex space with � D co,
where co is the convex hull in a vector space. In specially, .RI co/ is an abstract
convex space. Several examples of abstract convex spaces are given in [15] and the
references therein.

Definition 1 ([16]). Let .E;DI� / be an abstract convex space. If G W D ( E

satisfies
�A �G.A/ WD

[
y2A

G.y/ for al l A 2<D >;

then G is called a KKM map.

Definition 2 ([16]). The partial KKM principle for an abstract convex space .E; DI � /
means that, for any closed-valued KKM mappingG W D(E, the family fG.´/g´2D
has the finite intersection property. The KKM principle means that the same property
also holds for any open-valued KKM map.

Definition 3. Let .E;DI� / be an abstract convex space. The set-valued mapping
G W D (E is called:
(a) Intersectionally closed-valued if

T
´2DG.´/D

T
´2DG.´/;

(b) Transfer closed-valued if
T
´2DG.´/D

T
´2DG.´/.

Luc et al. [12] noted that .a/( .b/ and gave examples of multimaps satisfying
.a/ but not .b/.

Definition 4 ([16]). For an abstract convex space .E; DI � /, a subset X of E is
said to be intersectionally closed (resp., transfer closed) if there is an intersectionally
(respectively, transfer) closed-valued mapG W D (E such that X DG.´/ for some
´ 2D.

We state now a theorem proved by Park in [15] which will be used in the main
section.

Theorem 1 ([15], Generalized Partial KKM Principle). Let .E;DI� / be a com-
pact abstract convex space satisfying the partial KKM principle and G WD ( E a
mapping such that:
.1/ G is closed-valued;
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.2/ G is a KKM map.(that is, �A �G.A/ for al l A 2<D >).
Then \

fG.´/ j ´ 2Dg ¤¿:

3. MAIN RESULTS

Let .X I � / be an abstract convex space, Y be a topological space and W � Y .
Suppose that K is a nonempty � � convex subset of X and F W K �K ( Y . We
consider the system of generalized equilibrium problem:

F ind x 2K such that F.x; y/�W 8 y 2 Y:

We give an existence theorem for the above generalized equilibrium problem in com-
pact abstract convex space, which is a generalization of Theorem 3.1. in [10] (indeed,
if .KI� /D .RnIco/ and F is a vector-valued function, then we get Theorem 3.1 in
[10]).

Theorem 2. Let .X I� / be an abstract convex space satisfying the partial KKM
principle and K be a compact and � �convex subset of X . Let Y be a topological
space and W W K ( Y be any set-valued mapping with nonempty values. Let F W
K�K ( Y be a set-valued mapping satisfying the following conditions:
.i/ F.x; x/�W.x/, for every x 2K;
.i i/ for all x; y 2K, F.x; y/�W.x/ implies F.y; x/��W.y/;
.i i i/ for all x 2K, the set fy 2K j F.x; y/��W.x/g is closed;
.iv/ for all x 2K, the set fy 2K j F.x; y/ªW.x/g is � �convex;
.v/ for all y 2K, F.x; y/� �W.x/ for all x 2K implies F.y; x/�W.y/ for all
x 2K;
Then, the solution set to the problem

f ind x 2K such that F.x; y/�W.x/ for al l y 2K;

and that of the problem

f ind x 2K such that F.y; x/��W.y/ for al l y 2K;

are nonempty and closed. Moreover, they both coincide.

Proof. SetG.y/ WD fx 2K j �F.y; x/�W.y/g. For the beginning, we prove that
� .A/�G.A/ for all A 2<K >. If there exists N 2<K > such that � .N/ªG.N/

then there exists x 2 � .N/ and x 62 G.N/ ( in other word x 62 G.y/; 8y 2 N ).
Thus �F.y; x/ ª W.y/, 8y 2 N , which implies F.x; y/ ª W.x/ for all y 2 N
by assumption .i i/. So, N 2< fy 2 K j F.x; y/ ªW.x/g >. By assumption .iv/,
�N � fy 2K j F.x; y/ªW.x/g. Since x 2 �N , we have

x 2 fy 2K j F.x; y/ªW.x/g
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or F.x; x/ªW.x/ this contradicts .i/. This proves that � .A/�G.A/ for all A 2<
K >. Now we find x 2K such that

x 2
\
y2K

fx 2K j �F.y; x/�W.y/g:

Because of assumption .i i i/ each set G.y/ is closed. An application of the gener-
alized partial KKM principle (see Theorem 1) yields the existence of x 2 K such
that x 2

T
y2KG.y/, i. e, F.y; x/ � �W.y/ for all y 2 K. In other words, the

second problem has a solution. By the assumption .v/ we conclude that such a solu-
tion is also a solution of the first problem. Both solution sets coincide by .i i/. The
closedness is a consequence of .i i i/. �

Example 1. Let E denote R2 with metric dr which defined as follow for any
x; y 2E:

dr.x; y/D

�
d.x; y/ 9� 2 R W x D �y
d.x; 0/Cd.0; y/ otherwise

;

where d denote the Euclidean metric and 0 denote the origin. If there exists � 2 R
such that x D �y, then segment joining x and y .Œx; y�/ is the geodesic segment,
otherwise, union of the segments Œx; 0� and Œ0; y� is the geodesic segment. So, E is
a complete R�tree space.
Also, we recall that a subset A in R�tree space E is convex if for any x; y 2 A, all
geodesic segments joining x and y are contained in A.
Let �A WD conv.A/ for each A 2 E, where conv.A/ is intersection of all closed
convex subsets of the R�tree E, that contains A. .E; � / is an abstract convex space
which satisfies the partial KKM principle, see [15].

Let X D .E; � /, Y D R2, K D f.x; y/ 2 Œ�1; 1�� Œ�1; 1� j x D y _ x D�yg
and W D f.r; s/ 2 R2 j r � 0 _ s � 0g. Suppose F W K�K ( R2 defined by

F..x1; y1/; .x2; y2//

D

8<: .�1; �1/ x1; y1 < 0 and .x2 � 0; y2 � 0 or x2 � 0; y2 � 0/

.1; 1/ .x1 � 0; y1 � 0 or x1 � 0; y1 � 0/ and x2; y2 < 0

.0; 0/ otherwise

:

Then F satisfies the assumptions of Theorem 2 and so the solution set of

”f ind x 2K such that F.x; y/�W.x/ for al l y 2K”;

is nonempty and closed. In fact the solution set is

f.x; y/ 2K j y D�x _ y D x � 0g:

Note that we can not apply Theorem 3.1 in [10] for the set-valued F , because in
spite of convexity of K the set fy 2 K j F.x; y/ ª W.x/g in .E; � /, they are not
convex in Euclidean space R2:
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To deal with the unbounded case, inspired by Theorem 5.1 in [16], we state now
the following lemma.

Lemma 1. Let .E; DI � / be an abstract convex space satisfying the partial KKM
principle and G W D (E is intersectionally closed-valued mapping. Suppose there
exists a mapping H W E (E satisfying:
.i/ For each x 2E, x 2H.x/;
.i i/ For each x 2E, co� .D nG�.x//�E nH�.x/:
Then \

fG.´/ j ´ 2Dg ¤¿:

Proof. It is sufficient to show that .i/ and .i i/ imply that G is a KKM map. Sup-
pose that there exists an N 2< D > such that �N ª G.N/. That is, there exists an
x 2 �N such that x 62 G.y/ for all y 2 N: In other words, N 2< D nG�.x/ >. By
.i i/, �N � E nH�.x/. Since x 2 �N , we have x 62H�.x/ or x 62H.x/. This con-
tradicts .i/. ThusG is a KKM mapping so �N �G.N/�G.N/ for anyN 2<D >.
Therefore, G.N/ is a KKM mapping. Since .E;DI� / satisfies the partial KKM
principle and G has closed values, the family fG.´/g´2D has the finite intersection
property. Since G is intersectionally closed-valued, we have that\

´2D

G.´/D
\
´2D

G.´/¤¿:

Since
T
´2DG.´/¤¿ we get that

T
fG.´/ j ´ 2Dg ¤¿; which proves the lemma.

�

Theorem 3. Let .X I� / be an abstract convex space satisfying the partial KKM
principle, K be a � �convex subset of X and Y be a topological space. Let F W
K�K ( Y be a set-valued map, W be a nonempty subset of Y and suppose that:
.i/ F.x; x/�W , for every x 2K.
.i i/ For each ´ 2K, fy 2K j F.y; ´/�W g is intersectionally closed.
.i i i/ For every fixed y 2K, co� f´ 2K j F.y; ´/ªW g � fx 2K j F.x; y/ªW g.
Then, there exists a point x0 2K such that F.x0; y/�W for every y 2K.

Proof. For each ´ 2 K, let G.´/ WD fy 2 K j F.y; ´/ � W g (we proof thatT
´2KG.´/ ¤ ¿). By .i i/, G.´/ is intersectionally closed. For each x 2 K, let

H.x/ WD fy 2K j F.x; y/�W g. Then, .i/ and .i i i/ imply conditions .i/ and .i i/
of Lemma 1 respectively. By .i/, x 2H.x/ for every x 2K. By .i i i/,

co� .D nG
�.x//�K nH�.x/

So, by Lemma 1, we get that \
fG.´/ j ´ 2Kg ¤¿:

�
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Theorem 4. Let .X I � / be an abstract convex space,K be a � �convex subset of
X and Y be a topological space. Let F W K �K ( Y be a set-valued mapping and
W be a nonempty subset of Y . If for each ´ 2K, fy 2K j F.y; ´/�W g be transfer
closed-valued, then the solution set is closed.

Proof. Let G.´/ WD fy 2 K j F.y; ´/ � W g. Then G W K ( K is a transfer
closed-valued mapping. So, we have\

´2K

G.´/D
\
´2K

G.´/:

Since G also is an intersectionally closed-valued map, we have\
´2K

G.´/D
\
´2K

G.´/:

So, we conclude that \
´2K

G.´/D
\
´2K

G.´/:

Therefore, the solution set is closed. �

Motivated by Balaj and Lin [8], we define the following concept.

Definition 5. Let X be a � �convex set in an abstract convex space and Y be a
convex set in a vector space. A mapping F W X ( Y is said to be:
.a/ quasiconvex if F.x1/\C ¤ ¿ and F.x2/\C ¤ ¿ then F.x/\C ¤ ¿ for all
convex sets C � Y , x1;x2 2X and for any x 2 co� fx1;x2g.
.b/ quasiconcave if F.x1/ � C and F.x2/ � C then F.x/ � C for all convex sets
C � Y , x1;x2 2X and for any x 2 co� fx1;x2g.

Then, we can prove the following result.

Theorem 5. Let .X I� / be an abstract convex space, K be a � �convex subset of
X , Y be a vector space and W be a convex subset of Y . Let F W K �K ( Y be a
set-valued map. If F.�;y/ is a quasiconcave mapping for all y 2K, then solution set
is � �convex set.

Proof. If x1; x2 2 Ew WD \y2Kfx 2 K j F.x; y/ � W g with x1 ¤ x2, then
F.x1; y/�W and F.x2; y/�W for all y 2K. For any y 2K, the quasiconcave-
ness of F.:; y/ implies F.co� fx1; x2g; y/�W . Hence, co� fx1; x2g �Ew . Since
x1 and x2 were arbitrary, we obtain that

co�Ew D
[
f�A j A 2<Ew >g �Ew :

This means that Ew is convex. �
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REFERENCES

[1] Q. Ansari and F. Flores-Bazán, “Recession methods for generalized vector equilibrium problems,”
J. Math. Anal. Appl., vol. 321, no. 1, pp. 132–146, 2006, doi: 10.1016/j.jmaa.2005.07.059.

[2] Q. Ansari, I. Konnov, and J. Yao, “Existence of a solution and variational principles for vec-
tor equilibrium problems,” J. Optim. Theory Appl., vol. 110, no. 1, pp. 481–492, 2001, doi:
10.1023/A:1017581009670.

[3] Q. Ansari, I. Konnov, and J. Yao, “On generalized vector equilibrium problems,” Nonlinear Anal.,
vol. 47, no. 1, pp. 543–554, 2001, doi: 10.1016/S0362-546X(01)00199-7.

[4] Q. Ansari, I. Konnov, and J. Yao, “Characterizations of solutions for vector equilibrium problems,”
J. Optim. Theory Appl., vol. 113, no. 3, pp. 435–447, 2002, doi: 10.1023/A:1015366419163.

[5] Q. Ansari, W. Oettli, and D. Schläger, “A generalization of vectorial equilibria,” Math. Methods
Oper. Res., vol. 46, no. 2, pp. 147–152, 1997, doi: 10.1007/BF01217687.

[6] Q. Ansari, A. Siddiqi, and S. Wu, “Existence and duality of generalized vector equilibrium prob-
lems,” J. Math. Anal. Appl., vol. 259, no. 1, pp. 115–126, 2001, doi: 10.1006/jmaa.2000.7397.

[7] Q. Ansari and J. Yao, “An existence result for the generalized vector equilibrium problem,” Appl.
Math. Lett., vol. 12, no. 1, pp. 53–56, 1999, doi: 10.1016/S0893-9659(99)00121-4.

[8] M. Balaj and L. Lin, “Equivalent forms of a generalized kkm theorem and their applications,”
Nonlinear Anal., vol. 73, no. 3, pp. 673–682, 2010, doi: 10.1016/j.na.2010.03.055.

[9] M. Bianchi, N. Hadjisavvas, and S. Schaible, “Vector equilibrium problems with general-
ized monotone bifunctions,” J. Optim. Theory Appl., vol. 92, no. 3, pp. 527–542, 1997, doi:
10.1023/A:1022603406244.

[10] F. Flores-Bazán and F. Flores-Bazán, “Vector equilibrium problems under asymptotic analysis,” J.
Global Optim., vol. 26, no. 2, pp. 141–166, 2003, doi: 10.1023/A:1023048928834.

[11] I. Konnov and J. Yao, “Existence of solutions for generalized vector equilibrium problems,” J.
Math. Anal. Appl., vol. 233, no. 1, pp. 328–335, 1999, doi: 10.1006/jmaa.1999.6312.

[12] D. Luc, E. Sarabi, and A. Soubeyran, “Existence of solutions in variational relation prob-
lems without convexity,” J. Math. Anal. Appl., vol. 364, no. 2, pp. 399–407, 2010, doi:
10.1016/j.jmaa.2009.10.040.
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