Miskolc Mathematical Notes

A NOTE ABOUT ITERATED ARITHMETIC FUNCTIONS

COLIN DEFANT

Received 01 December, 2014

Abstract

Let $f: \mathbb{N} \rightarrow \mathbb{N}_{0}$ be a multiplicative arithmetic function such that for all primes p and positive integers $\alpha, f\left(p^{\alpha}\right)<p^{\alpha}$ and $f(p) \mid f\left(p^{\alpha}\right)$. Suppose also that any prime that divides $f\left(p^{\alpha}\right)$ also divides $p f(p)$. Define $f(0)=0$, and let $H(n)=\lim _{m \rightarrow \infty} f^{m}(n)$, where f^{m} denotes the $m^{t h}$ iterate of f. We prove that the function H is completely multiplicative.

2010 Mathematics Subject Classification: 11A25; 11N64
Keywords: arithmetic function, iteration, multiplicative, Euler totient, Schemmel totient

1. Introduction

The study of iterated arithmetic functions, especially functions related to the Euler totient function φ, has burgeoned over the past century. In 1943, H. Shapiro's monumental work on a function $C(n)$, which counts the number of iterations of φ needed for n to reach 2, paved the way for subsequent number-theoretic research [5]. In this paper, we study a problem concerning the limiting behavior of iterations of functions related to the Euler totient function.

Throughout this paper, we let $\mathbb{N}, \mathbb{N}_{0}$, and \mathbb{P} denote the set of positive integers, the set of nonnegative integers, and the set of prime numbers, respectively. We will let $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ be a multiplicative arithmetic function which has the following properties for all primes p and positive integers α.
I. $f\left(p^{\alpha}\right)<p^{\alpha}$.
II. $f(p) \mid f\left(p^{\alpha}\right)$.
III. If q is prime and $q \mid f\left(p^{\alpha}\right)$, then $q \mid p f(p)$.
IV. $f(0)=0$.

First, note that property IV does not effectively restrict the choice of f. Indeed, we may let f be any multiplicative arithmetic function that satisfies properties I, II, and III and then simply define $f(0)=0$. One class of arithmetic functions which satisfy I, II, and III are the Schemmel totient functions. For each positive integer r, the

Schemmel totient function S_{r} is a multiplicative arithmetic function which satisfies

$$
S_{r}\left(p^{\alpha}\right)= \begin{cases}0, & \text { if } p \leq r \\ p^{\alpha-1}(p-r), & \text { if } p>r\end{cases}
$$

for all primes p and positive integers α [4]. These interesting generalizations of the Euler totient function have applications in the study of magic squares [3, page 184] and in the enumeration of cliques in certain graphs [1].

Because f is multiplicative, properties I and II of f are equivalent to the following properties, which we will later reference.
A. For all integers $n>1, f(n)<n$.
B. If p is a prime divisor of a positive integer n, then $f(p) \mid f(n)$.

Let $f^{0}(n)=n$ and $f^{k+1}(n)=f\left(f^{k}(n)\right)$ for all nonnegative integers k and n. Observe that, for any $n \in \mathbb{N}, f^{n}(n) \in\{0,1\}$. Furthermore, $f^{n}(n)=\lim _{m \rightarrow \infty} f^{m}(n)$, so we will define $H(n)=\lim _{m \rightarrow \infty} f^{m}(n)$. The author has shown that the function $H: \mathbb{N} \rightarrow\{0,1\}$ is completely multiplicative for the case in which f is a Schemmel totient function [2]. Our purpose is to prove that H is completely multiplicative for any choice of a multiplicative arithmetic function f that satisfies properties I, II, III, and IV. To help do so, we define the following sets.

$$
\begin{gathered}
P=\{p \in \mathbb{P}: H(p)=1\} \\
Q=\{q \in \mathbb{P}: H(q)=0\} \\
S=\{n \in \mathbb{N}: q \nmid n \forall q \in Q\}
\end{gathered}
$$

We define T to be the unique set of positive integers defined by the following criteria:

- $1 \in T$.
- If p is prime, then $p \in T$ if and only if $f(p) \in T$.
- If x is composite, then $x \in T$ if and only if there exist $x_{1}, x_{2} \in T$ such that $x_{1}, x_{2}>1$ and $x_{1} x_{2}=x$.

Note that T is a set of positive integers; in particular, $0 \notin T$. We may now establish a couple of lemmas that should make the proof of the desired theorem relatively painless.

Lemma 1. Let $k \in \mathbb{N}$. If all the prime divisors of k are in T, then all the positive divisors of k (including k) are in T. Conversely, if $k \in T$, then every positive divisor of k is an element of T.

Proof. First, suppose that all the prime divisors of k are in T, and let d be a positive divisor of k. Then all the prime divisors of d are in T. Let $d=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ be the canonical prime factorization of d. As $p_{1} \in T$, the third defining criterion of T tells us that $p_{1}^{2} \in T$. Then, by the same token, $p_{1}^{3} \in T$. Eventually, we find that
$p_{1}^{\alpha_{1}} \in T$. As $p_{1}^{\alpha_{1}}, p_{2} \in T$, we have $p_{1}^{\alpha_{1}} p_{2} \in T$. Repeatedly using the third criterion, we can keep multiplying by primes until we find that $d \in T$. This completes the first part of the proof. Now we will prove that if $k \in T$, then every positive divisor of k is an element of T. The proof is trivial if k is prime, so suppose k is composite. We will induct on $\Omega(k)$, the number of prime divisors (counting multiplicities) of k. If $\Omega(k)=2$, then, by the third defining criterion of T, the prime divisors of k must be elements of T. Therefore, if $\Omega(k)=2$, we are done. Now, suppose the result holds whenever $\Omega(k) \leq h$, where $h>1$ is an integer. Consider the case in which $\Omega(k)=h+1$. By the third defining criterion of T, we can write $k=k_{1} k_{2}$, where $1<k_{1}, k_{2}<k$ and $k_{1}, k_{2} \in T$. By the induction hypothesis, all of the positive divisors of k_{1} and all of the positive divisors of k_{2} are in T. Therefore, all of the prime divisors of k are in T. By the first part of the proof, we conclude that all of the positive divisors of k are in T.

Lemma 2. The sets S and T are equal.

Proof. First, note that $1 \in S \cap T$. Let $m>1$ be an integer such that, for all $k \in$ $\{1,2, \ldots, m-1\}$, either $k \in S \cap T$ or $k \notin S \cup T$. We will show that $m \in S$ if and only if $m \in T$. First, we must show that if $k \in\{1,2, \ldots, m-1\}$, then $k \in S$ if and only if $f(k) \in S$. Suppose, by way of contradiction, that $f(k) \in S$ and $k \notin S$. As $k \notin S$, we have that $k>1$ and $k \notin T$. Lemma 1 then guarantees that there exists a prime q such that $q \mid k$ and $q \notin T$. As $q \notin T$, the second defining criterion of T implies that $f(q) \notin T$. As $f(k) \in S, f(k) \neq 0$. By property B of $f, f(q) \mid f(k)$, so $f(q) \neq 0$. Therefore, $f(q) \in\{1,2, \ldots, m-1\}$, and $f(q) \notin T$. By the induction hypothesis, $f(q) \notin S$. Therefore, there exists some $q_{0} \in Q$ such that $q_{0} \mid f(q)$. Thus, $q_{0}|f(q)| f(k)$, which contradicts the assumption that $f(k) \in S$.

Conversely, suppose that $f(k) \notin S$ and $k \in S$. The fact that $f(k) \notin S$ implies that $k>1$, and the fact that $k \in S$ implies (by the induction hypothesis) that $k \in T$. By Lemma 1, all prime divisors of k are elements of T. The second criterion defining T then implies that $f(p) \in T$ for all prime divisors p of k. Using Lemma 1 again, we conclude that, for any prime divisor p of k, all prime divisors of $f(p)$ are in T. By property III of f, all prime divisors of $f(k)$ are elements of T. Therefore, Lemma 1 guarantees that $f(k) \in T$. From property A of f and the fact that $0 \notin T$, we see that $f(k) \in\{1,2, \ldots, m-1\}$. The induction hypothesis then implies that $f(k) \in S$, which is a contradiction. Thus, we have established that if $k \in\{1,2, \ldots, m-1\}$, then $k \in S$ if and only if $f(k) \in S$.

We are now ready to establish that $m \in S$ if and only if $m \in T$. Assume, first, that m is prime. By the second criterion defining $T, m \in T$ if and only if $f(m) \in T$. By the induction hypothesis and property A of $f, f(m) \in T$ if and only if $f(m) \in S$. From the preceding argument, we see that $f(m) \in S$ if and only if $f^{2}(m) \in S$. Similarly, $f^{2}(m) \in S$ if and only if $f^{3}(m) \in S$. Continuing this pattern, we eventually find that $m \in T$ if and only if $f^{m}(m) \in S$. Observe that $f^{m}(m)=H(m)$ and that $0 \notin S$ and $1 \in S$. Hence, $m \in T$ if and only if $H(m)=1$. Because m is prime, $H(m)=1$ if and
only if $m \notin Q$. Finally, it follows from the definition of S that $m \notin Q$ if and only if $m \in S$. This completes the proof of the case in which m is prime.

Assume, now, that m is composite. By Lemma $1, m \in T$ if and only if all the prime divisors of m are in T. Because m is composite, all the prime divisors of m are elements of $\{1,2, \ldots, m-1\}$. Therefore, by the induction hypothesis, all the prime divisors of m are in T if and only if all the prime divisors of m are in S. It should be clear from the definition of S that all the prime divisors of m are in S if and only if $m \in S$. Hence, $m \in T$ if and only if $m \in S$.

We may now use the sets S and T interchangeably. In addition, part of the above proof gives rise to the following corollary.

Corollary 1. Let $k, r \in \mathbb{N}$. Then $f^{r}(k) \in S$ if and only if $k \in S$.
Proof. The proof follows from the argument in the above proof that $f(k) \in S$ if and only if $k \in S$ whenever $k \in\{1,2, \ldots, m-1\}$. As we now know that we can make m as large as we need, it follows that $f(k) \in S$ if and only if $k \in S$. Repeating this argument, we see that $f^{2}(k) \in S$ if and only if $f(k) \in S$. The proof then follows from repeated application of the same argument.

Corollary 2. For any positive integer $k, H(k)=1$ if and only if $k \in S$.
Proof. It is clear that $H(k)=1$ if and only if $H(k) \in S$. Therefore, the proof follows immediately from setting $r=k$ in Corollary 1.

Notice that Corollary 2, Lemma 2, and the defining criteria of T provide a simple recursive means of constructing the set of positive integers x that satisfy $H(x)=1$. We also have the following theorem.

Theorem 1. The function $H: \mathbb{N} \rightarrow\{0,1\}$ is completely multiplicative.
Proof. Corollary 2 tells us that H is the characteristic function of the set S of positive integers that are not divisible by primes in Q. If $x, y \in \mathbb{N}$, then it is clear that $x y \in S$ if and only if $x \in S$ and $y \in S$. The proof follows immediately.

REFERENCES

[1] C. Defant, "Unitary Cayley graphs of Dedekind domain quotients," Submitted, 2014.
[2] C. Defant, "On arithmetic functions related to iterates of the Schemmel totient functions," Journal of Integer Sequences, vol. 18, no. 2, p. 3, 2015.
[3] J. Sándor and B. Crstici, Handbook of number theory II. Springer Science \& Business Media, 2004, vol. 2.
[4] V. Schemmel, "Über relative Primzahlen," Journal für die reine und angewandte Mathematik, pp. 191-192, 1869.
[5] H. Shapiro, "An arithmetic function arising from the ϕ function," American Mathematical Monthly, pp. 18-30, 1943, doi: 10.2307/2303988.

Author's address

Colin Defant

University of Florida, Department of Mathematics, 1400 Stadium Rd., 32611 Gainesville, FL, United States

E-mail address: cdefant@uf1.edu

