
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 16 (2015), No. 2, pp. 763–767 DOI: 10.18514/MMN.2015.1448
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Abstract. Let f WN!N0 be a multiplicative arithmetic function such that for all primes p and
positive integers ˛, f .p˛/ < p˛ and f .p/jf .p˛/. Suppose also that any prime that divides
f .p˛/ also divides pf .p/. Define f .0/D 0, and let H.n/D lim

m!1
f m.n/, where f m denotes

the mth iterate of f . We prove that the function H is completely multiplicative.
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1. INTRODUCTION

The study of iterated arithmetic functions, especially functions related to the Euler
totient function ', has burgeoned over the past century. In 1943, H. Shapiro’s monu-
mental work on a function C.n/, which counts the number of iterations of ' needed
for n to reach 2, paved the way for subsequent number-theoretic research [5]. In this
paper, we study a problem concerning the limiting behavior of iterations of functions
related to the Euler totient function.

Throughout this paper, we let N, N0, and P denote the set of positive integers, the
set of nonnegative integers, and the set of prime numbers, respectively. We will let
f WN0!N0 be a multiplicative arithmetic function which has the following proper-
ties for all primes p and positive integers ˛.

I. f .p˛/ < p˛.
II. f .p/jf .p˛/.

III. If q is prime and qjf .p˛/, then qjpf .p/.
IV. f .0/D 0.

First, note that property IV does not effectively restrict the choice of f . Indeed, we
may let f be any multiplicative arithmetic function that satisfies properties I, II, and
III and then simply define f .0/D 0. One class of arithmetic functions which satisfy
I, II, and III are the Schemmel totient functions. For each positive integer r , the
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Schemmel totient function Sr is a multiplicative arithmetic function which satisfies

Sr.p
˛/D

(
0; if p � r I
p˛�1.p� r/; if p > r

for all primes p and positive integers ˛ [4]. These interesting generalizations of the
Euler totient function have applications in the study of magic squares [3, page 184]
and in the enumeration of cliques in certain graphs [1].

Because f is multiplicative, properties I and II of f are equivalent to the following
properties, which we will later reference.
A. For all integers n > 1, f .n/ < n.
B. If p is a prime divisor of a positive integer n, then f .p/jf .n/.

Let f 0.n/ D n and f kC1.n/ D f .f k.n// for all nonnegative integers k and n.
Observe that, for any n 2 N, f n.n/ 2 f0;1g. Furthermore, f n.n/ D lim

m!1
f m.n/,

so we will define H.n/D lim
m!1

f m.n/. The author has shown that the function

H WN! f0;1g is completely multiplicative for the case in which f is a Schemmel
totient function [2]. Our purpose is to prove that H is completely multiplicative for
any choice of a multiplicative arithmetic function f that satisfies properties I, II, III,
and IV. To help do so, we define the following sets.

P D fp 2 P WH.p/D 1g

QD fq 2 P WH.q/D 0g

S D fn 2NWq − n8q 2Qg
We define T to be the unique set of positive integers defined by the following criteria:

� 1 2 T .
� If p is prime, then p 2 T if and only if f .p/ 2 T .
� If x is composite, then x 2 T if and only if there exist x1;x2 2 T such that
x1;x2 > 1 and x1x2 D x.

Note that T is a set of positive integers; in particular, 0 62 T . We may now establish
a couple of lemmas that should make the proof of the desired theorem relatively
painless.

Lemma 1. Let k 2N. If all the prime divisors of k are in T , then all the positive
divisors of k (including k) are in T . Conversely, if k 2 T , then every positive divisor
of k is an element of T .

Proof. First, suppose that all the prime divisors of k are in T , and let d be a

positive divisor of k. Then all the prime divisors of d are in T . Let d D
rY
iD1

p
˛i

i

be the canonical prime factorization of d . As p1 2 T , the third defining criterion of
T tells us that p21 2 T . Then, by the same token, p31 2 T . Eventually, we find that



ITERATED ARITHMETIC FUNCTIONS 765

p
˛1

1 2 T . As p˛1

1 ;p2 2 T , we have p˛1

1 p2 2 T . Repeatedly using the third criterion,
we can keep multiplying by primes until we find that d 2 T . This completes the first
part of the proof. Now we will prove that if k 2 T , then every positive divisor of
k is an element of T . The proof is trivial if k is prime, so suppose k is composite.
We will induct on ˝.k/, the number of prime divisors (counting multiplicities) of
k. If ˝.k/ D 2, then, by the third defining criterion of T , the prime divisors of k
must be elements of T . Therefore, if ˝.k/ D 2, we are done. Now, suppose the
result holds whenever ˝.k/ � h, where h > 1 is an integer. Consider the case in
which ˝.k/D hC 1. By the third defining criterion of T , we can write k D k1k2,
where 1 < k1;k2 < k and k1;k2 2 T . By the induction hypothesis, all of the positive
divisors of k1 and all of the positive divisors of k2 are in T . Therefore, all of the
prime divisors of k are in T . By the first part of the proof, we conclude that all of the
positive divisors of k are in T . �

Lemma 2. The sets S and T are equal.

Proof. First, note that 1 2 S \T . Let m > 1 be an integer such that, for all k 2
f1;2; : : : ;m� 1g, either k 2 S \T or k 62 S [T . We will show that m 2 S if and
only if m 2 T . First, we must show that if k 2 f1;2; : : : ;m� 1g, then k 2 S if and
only if f .k/ 2 S . Suppose, by way of contradiction, that f .k/ 2 S and k 62 S . As
k 62 S , we have that k > 1 and k 62 T . Lemma 1 then guarantees that there exists
a prime q such that qjk and q 62 T . As q 62 T , the second defining criterion of T
implies that f .q/ 62 T . As f .k/ 2 S , f .k/ ¤ 0. By property B of f , f .q/jf .k/,
so f .q/ ¤ 0. Therefore, f .q/ 2 f1;2; : : : ;m� 1g, and f .q/ 62 T . By the induction
hypothesis, f .q/ 62 S . Therefore, there exists some q0 2Q such that q0jf .q/. Thus,
q0jf .q/jf .k/, which contradicts the assumption that f .k/ 2 S .

Conversely, suppose that f .k/ 62 S and k 2 S . The fact that f .k/ 62 S implies that
k > 1, and the fact that k 2 S implies (by the induction hypothesis) that k 2 T . By
Lemma 1, all prime divisors of k are elements of T . The second criterion defining T
then implies that f .p/ 2 T for all prime divisors p of k. Using Lemma 1 again, we
conclude that, for any prime divisor p of k, all prime divisors of f .p/ are in T . By
property III of f , all prime divisors of f .k/ are elements of T . Therefore, Lemma
1 guarantees that f .k/ 2 T . From property A of f and the fact that 0 62 T , we see
that f .k/ 2 f1;2; : : : ;m� 1g. The induction hypothesis then implies that f .k/ 2 S ,
which is a contradiction. Thus, we have established that if k 2 f1;2; : : : ;m�1g, then
k 2 S if and only if f .k/ 2 S .

We are now ready to establish that m 2 S if and only if m 2 T . Assume, first, that
m is prime. By the second criterion defining T ,m2T if and only if f .m/2T . By the
induction hypothesis and property A of f , f .m/ 2 T if and only if f .m/ 2 S . From
the preceding argument, we see that f .m/ 2 S if and only if f 2.m/ 2 S . Similarly,
f 2.m/ 2 S if and only if f 3.m/ 2 S . Continuing this pattern, we eventually find that
m 2 T if and only if f m.m/ 2 S . Observe that f m.m/DH.m/ and that 0 62 S and
1 2 S . Hence,m 2 T if and only ifH.m/D 1. Becausem is prime,H.m/D 1 if and
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only if m 62Q. Finally, it follows from the definition of S that m 62Q if and only if
m 2 S . This completes the proof of the case in which m is prime.

Assume, now, that m is composite. By Lemma 1, m 2 T if and only if all the
prime divisors ofm are in T . Becausem is composite, all the prime divisors ofm are
elements of f1;2; : : : ;m� 1g. Therefore, by the induction hypothesis, all the prime
divisors of m are in T if and only if all the prime divisors of m are in S . It should be
clear from the definition of S that all the prime divisors of m are in S if and only if
m 2 S . Hence, m 2 T if and only if m 2 S . �

We may now use the sets S and T interchangeably. In addition, part of the above
proof gives rise to the following corollary.

Corollary 1. Let k;r 2N. Then f r.k/ 2 S if and only if k 2 S .

Proof. The proof follows from the argument in the above proof that f .k/ 2 S if
and only if k 2 S whenever k 2 f1;2; : : : ;m�1g. As we now know that we can make
m as large as we need, it follows that f .k/ 2 S if and only if k 2 S . Repeating this
argument, we see that f 2.k/ 2 S if and only if f .k/ 2 S . The proof then follows
from repeated application of the same argument. �

Corollary 2. For any positive integer k, H.k/D 1 if and only if k 2 S .

Proof. It is clear that H.k/ D 1 if and only if H.k/ 2 S . Therefore, the proof
follows immediately from setting r D k in Corollary 1. �

Notice that Corollary 2, Lemma 2, and the defining criteria of T provide a simple
recursive means of constructing the set of positive integers x that satisfy H.x/D 1.
We also have the following theorem.

Theorem 1. The function H WN! f0;1g is completely multiplicative.

Proof. Corollary 2 tells us that H is the characteristic function of the set S of
positive integers that are not divisible by primes inQ. If x;y 2N, then it is clear that
xy 2 S if and only if x 2 S and y 2 S . The proof follows immediately. �

REFERENCES

[1] C. Defant, “Unitary Cayley graphs of Dedekind domain quotients,” Submitted, 2014.
[2] C. Defant, “On arithmetic functions related to iterates of the Schemmel totient functions,” Journal

of Integer Sequences, vol. 18, no. 2, p. 3, 2015.
[3] J. Sándor and B. Crstici, Handbook of number theory II. Springer Science & Business Media,

2004, vol. 2.
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