

Miskolc Mathematical Notes Vol. 17 (2016), No. 1, pp. 471–481 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2016.1424

# MODULES THAT HAVE A WEAK SUPPLEMENT IN EVERY EXTENSION

#### EMINE ÖNAL, HAMZA ÇALIŞICI, AND ERGÜL TÜRKMEN

Received 13 November, 2014

Abstract. We say that over an arbitrary ring a module M has the property (WE) (respectively, (WEE)) if M has a weak supplement (respectively, ample weak supplements) in every extension. In this paper, we provide various properties of modules with these properties. We show that a module M has the property (WEE) iff every submodule of M has the property (WE). A ring R is left perfect iff every left R-module has the property (WEE). A ring R is semilocal iff every left R-module has a weak supplement in every extension with small radical. We also study modules that have a weak supplement(respectively, ample weak supplements) in every coatomic extension, namely the property ( $WE^*$ )(respectively, ( $WEE^*$ )).

2010 Mathematics Subject Classification: 16D10; 16L30

Keywords: weak supplement, coatomic extension, semilocal ring, left perfect ring

#### 1. INTRODUCTION

Throughout this paper, R is an associative ring with identity and all modules are unital left R-modules, unless otherwise stated. Let M be an R-module. The notation  $U \le M$  means that U is a submodule of M. A submodule U of M is called *small* in M, denoted as  $U \ll M$ , if  $M \ne U + L$  for every proper submodule L of M. By Rad(M) we denote the intersection of all maximal submodules of M, equivalently the sum of all small submodules of M (see [14]). A module M is called *radical* if M has no maximal submodules, that is, M = Rad(M).

As a proper generalization of direct summands of a module, the notion of supplement submodules is defined. For U, V submodules of a module M, V is called a *supplement* of U in M if it is minimal with respect to M = U + V, equivalently M = U + V and  $U \cap V \ll V$ . Then, it is natural to introduce a generalization of supplement submodules by [14, Section 19.3.(2)]. A submodule V of M is called a *weak supplement* of U in M if U + V = M and  $U \cap V \ll M$ . A module M is called *weakly supplemented* if every submodule of M has a weak supplement in M (see [9], [14] and [17]). A submodule U of M has *ample (weak) supplements* in M

© 2016 Miskolc University Press

if, whenever M = U + L, L contains a (weak) supplement of U in M. Under given definitions, we clearly have the following implication on submodules:

direct summand  $\implies$  supplement  $\implies$  weak supplement

Let R be a ring and M be an R-module. An R-module N is called an *extension* of M provided  $M \subseteq N$ . A module M is said to be *injective* if it is a direct summand in its every extension N.

Modules that have a supplement (resp. ample supplements) in every extension, i.e. modules with *the property* (E) (resp. (EE)), was first introduced by H. Zöschinger in [16], as a generalization of injective modules. The author determined in the same paper the structure of modules with these properties.

Adapting his concepts, we introduce the properties (WE) and (WEE) as a generalization of the properties (E) and (EE) in Section 2. We call a module that has *the property* (WE) (resp. (WEE)) if it has a weak supplement (resp. ample weak supplements) in every extension. Moreover in this section, we show that a module M has the property (WEE) if and only if every submodule of M has the property (WE). This gives us that every submodule of a module with the property (WEE) is weakly supplemented. We prove that the property (WE) is inherited by direct summands. In Corollary 2, we obtain that if a ring R is left hereditary, then every factor module of an R-module with the property (WE) has the property (WE). Thanks to Lemma 3.3 of Zöschinger's paper [16], we directly say that over a complete local dedekind domain R, an R-module M has the property (WE) if and only if M has the property (E). We also give new characterizations of left perfect rings via the modules with the properties (WE) and (WEE).

Let R be a ring and M be an R-module. R. Alizade et al. [1] say a submodule U of M cofinite in M if the factor module  $\frac{M}{U}$  is finitely generated. In [5], H. Çalışıcı and E. Türkmen called an extension N of M cofinite extension if M is cofinite in N. Following [5], the authors studied modules that have a supplement (resp. ample supplements) in every cofinite extension, namely the property (CE)(resp. (CEE)), as a generalization of the property (E) (resp. (EE)). In addition, they showed in [5, Theorem 2.12] that a ring R is semiperfect if and only if every left R-module has the property (CE).

In [15], a module M is said to be *coatomic* if  $Rad(\frac{M}{K}) = \frac{M}{K}$  implies that K = M for some submodule K of M, that is, every radical factor module of M is zero. M is coatomic if and only if every proper submodule of M is contained in a maximal submodule of M. Note that semisimple modules are coatomic.

Let R be a ring and M, N be R-modules. N is called a *coatomic extension* of M in case  $M \subseteq N$  and  $\frac{N}{M}$  is coatomic. In [11], B. N. Türkmen studied on modules that have a supplement (resp. ample supplements) in every coatomic extension and termed these modules  $E^*$ -modules (resp.  $EE^*$ -modules). Since finitely generated modules are coatomic,  $E^*$ -modules (resp.  $EE^*$ -modules) have the property (CE) (resp. (CEE)).

In Section 3, we also call a module that has *the property*  $(WE^*)$  (resp.  $(WEE^*)$ ) if it has a weak supplement (resp. ample weak supplements) in every coatomic extension. We prove that over a left V-ring R, every left R-module with  $(WE^*)$  is injective. In addition, we give also a characterization of semilocal rings via the modules that have a weak supplement in every extension with small radical. Finally, we give an example of modules that have a weak supplement in every extension with small radical but not have the property (CEE).

# 2. MODULES WITH THE PROPERTIES (WE) AND (WEE)

It is shown in [16, Lemma 1.3.(a)] that direct summands of modules with the property (E) have the property (E). Now we give an analogue of this fact for the modules with the property (WE).

**Proposition 1.** Let M be a module. If M has the property (WE), then every direct summand of M has the property (WE).

*Proof.* Let  $M_1$  be a direct summand of M. Then there exists a submodule  $M_2$  of M such that  $M = M_1 \oplus M_2$ . Let N be any extension of  $M_1$ . Let N' be the external direct sum  $N \oplus M_2$  and  $\vartheta : M \to N'$  be the canonical embedding. Then  $M \cong \vartheta(M)$  has the property (*WE*). Hence, there exists a submodule V of N' such that  $N' = \vartheta(M) + V$  and  $\vartheta(M) \cap V \ll N'$ . By the projection  $\pi : N' \to N$ , we have that  $M_1 + \pi(V) = N$ . Also since  $Ker(\pi) \subseteq \vartheta(M), \pi(\vartheta(M) \cap V) = \pi(\vartheta(M)) \cap \pi(V) = M_1 \cap \pi(V) \ll N$ . Hence  $\pi(V)$  is a weak supplement of  $M_1$  in N.

**Proposition 2.** A module M has the property (WEE) if and only if every submodule of M has the property (WE).

*Proof.* Suppose that every submodule of M has the property (WE). For any extension N of M, let N = M + K for some submodule K of N. Since  $M \cap K$  has the property (WE), there exists a submodule L of K such that ( $M \cap K$ ) + L = K and ( $M \cap K$ )  $\cap L = M \cap L \ll K$ . Note that  $N = M + K = M + ((M \cap K) + L)) = M + L$ . It follows that L is a weak supplement of M in N.

Conversely, let M be a module with the property (WEE) and  $M_1$  be any submodule of M. For any extension N of  $M_1$ , let  $F = \frac{M \oplus N}{H}$ , where the submodule H is the set of all elements (m', -m') of  $M \oplus N$  with  $m' \in M_1$  and let  $\gamma : M \to F$  via  $\gamma(m) = (m, 0) + H$ ,  $\psi : N \to F$  via  $\psi(n) = (0, n) + H$  for all  $m \in M, n \in N$ . For inclusion homomorphisms  $\iota_1 : M_1 \to N$  and  $\iota_2 : M_1 \to M$ , we can draw the following pushout:



It is clear that  $F = Im(\gamma) + Im(\psi)$ . Since  $\gamma$  is monomorphism, by assumption,  $Im(\gamma)$  has the property (*WEE*). It means that  $Im(\gamma)$  has a weak supplement V in F such that  $V \leq Im(\psi)$ , i.e.  $F = Im(\gamma) + V$  and  $Im(\gamma) \cap V \ll F$ . Then we obtain that  $N = \psi^{-1}(Im(\gamma)) + \psi^{-1}(V) = M_1 + \psi^{-1}(V)$  and  $M_1 \cap \psi^{-1}(V) \ll N$ . Hence  $\psi^{-1}(V)$  is a weak supplement of  $M_1$  in N.

**Corollary 1.** Every submodule of a module with the property (WEE) is weakly supplemented.

**Lemma 1.** Every simple submodule S of a module M is either a direct summand of M or small in M.

*Proof.* Suppose that S is not small in M, then there exists a proper submodule K of M such that S + K = M. Since S is simple and  $K \neq M$ ,  $S \cap K = 0$ . Thus  $M = S \oplus K$ .

Let R be a ring and M be an R-module. M is called *local* if the sum of all proper submodules of M is a proper submodule of M. R is called a *local ring* if  $_RR$  (or  $R_R$ ) is a local module.

### **Proposition 3.** Local modules have the property (WE).

*Proof.* Let S be a module and N be any extension of S. If S is small in N, N is a weak supplement of S in N. Suppose that S is not small in N. Then there is a proper submodule S' of N such that S + S' = N. From Lemma 1, if S is simple, S' is a direct summand of N. If S is local,  $S \cap S'$  is small in S. In both cases, S' is a weak supplement of S in N.

Let *M* be a module and *U* be a submodule of *M*. If the factor module  $\frac{M}{U}$  has the property (*WE*), *M* does not need to have the property (*WE*). For example, for the ring  $R = \mathbb{Z}$ , the *R*-module  $M = \frac{2\mathbb{Z}}{6\mathbb{Z}}$  has a weak supplement in every extension because it is simple. But  $2\mathbb{Z}$  does not have a weak supplement in its extension  $\mathbb{Z}$ . Now we show that the statement mentioned above is true under a special condition.

**Proposition 4.** Let M be a module and U be a submodule of M. If  $U \ll M$  and the factor module  $\frac{M}{U}$  has the property (WE), M has the property (WE).

*Proof.* Let *N* be any extension of *M*. Since  $\frac{M}{U}$  has the property (*WE*), there exists a submodule  $\frac{V}{U}$  of  $\frac{N}{U}$  such that  $\frac{M}{U} + \frac{V}{U} = \frac{N}{U}$  and  $\frac{M \cap V}{U} \ll \frac{N}{U}$ . Note that M + V = N. Suppose that  $M \cap V + S = N$  for a submodule *S* of *N*. Then we obtain  $\frac{M \cap V}{U} + \frac{S+U}{U} = \frac{N}{U}$ . Since  $\frac{M \cap V}{U} \ll \frac{N}{U}$ , we have that  $\frac{S+U}{U} = \frac{N}{U}$ . By hypothesis, it follows that N = S + U = S. Hence  $M \cap V \ll N$ .

For a module M, we will denote by Soc(M) the sum of all simple submodules of M. Note that Soc(M) is the largest semisimple submodule of M.

*Remark* 1. Let *M* be a finitely generated semisimple module. Then *M* is artinian. Since artinian modules have the property (*E*), it has the property (*WE*). Note that here the condition "finitely generated" is necessary. For example, consider the left  $\mathbb{Z}$  -module  $M = \prod_{p \in \Omega} \frac{\mathbb{Z}}{p\mathbb{Z}}$ , where  $\Omega$  is the set of all prime numbers. Then, the semisimple module  $Soc(M) = \bigoplus_{p \in \Omega} \frac{\mathbb{Z}}{p\mathbb{Z}}$ . By [3, Lemma 2.9], there exists a submodule *N* of *M* such that  $\frac{N}{Soc(M)} \cong \mathbb{Q}$ . If Soc(M) has a weak supplement *K* in *N*, we have  $N = Soc(M) \oplus K$  since Rad(M) = 0. Therefore, *K* is injective and so  $K = Rad(K) \subseteq Rad(M) = 0$ , a contradiction.

In [7] a ring R is said to be a *left V-ring* if every simple left R-module is injective. It is well known that a ring R is a left V-ring if and only if Rad(M) = 0 for every left R-module M. A ring R is called *left hereditary* if every left ideal of R is projective. R is a left hereditary ring if and only if every factor module of an injective left R-module is injective [14, Section 39.16].

The next example shows that every factor module of a module with the property (WE) does not need to have the property (WE). Firstly we need the following lemma.

**Lemma 2.** Let R be a left V-ring. An R-module M has the property (WE) if and only if M is injective.

*Proof.* Let *M* has the property (*WE*) and *N* be any extension of *M*. Then *M* has a weak supplement *V* in *N*. We have M + V = N,  $M \cap V \ll N$ . Hence  $M \cap V \leq Rad(N)$ . Since Rad(N) = 0, we have  $N = M \oplus V$ .

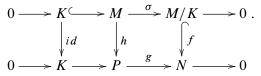
Conversely, let M be injective and N be any extension of M. Then there exists a submodule K of N such that  $N = M \oplus K$ . Hence K is a weak supplement of M in N.

*Example* 1. Let *R* be the product of the family  $\{F_i\}_{i \in I}$ , where each  $F_i$  is a field for an infinite index set *I*. The ring *R* is a commutative Von Neumann regular but not hereditary [10, Example 2.15]. Then by [14, Section 23.5], *R* is a left *V*-ring. *R* is injective from [8, Corollary, 3.11.B]. By Lemma 2, the left *R*-module  $_R R$  has the property (*WE*). Since *R* is not hereditary, there is at least one factor module of *R* which is not injective. This factor module does not have the property (*WE*) by using Lemma 2.

Next we prove that under proper conditions a factor module of a module with the property (WE) has the property (WE).

**Proposition 5.** Let  $K \subseteq M \subseteq L$  be modules with  $\frac{L}{K}$  injective. If M has the property (WE), then  $\frac{M}{K}$  has the property (WE).

*Proof.* Let N be any extension of  $\frac{M}{K}$ . Since  $\frac{L}{K}$  is injective, by [10, Lemma 2.16] we have the following commutative diagram with exact rows:



Since *h* is monomorphism and *M* has the property (WE),  $M \cong Im(h)$  has a weak supplement *V* in *P*, that is, Im(h) + V = P and  $Im(h) \cap V \ll P$ . We claim that g(V) is a weak supplement of  $\frac{M}{K}$  in *N*.

$$N = g(P) = g(h(M)) + g(V) = (f\sigma)(M) + g(V) = \frac{M}{K} + g(V) \text{ and}$$
$$\frac{M}{K} \cap g(V) = f(\sigma(M)) \cap g(V) = g[h(M) \cap V] \ll g(P). \text{ Hence } \frac{M}{K} \cap g(V) \ll N.$$

**Corollary 2.** If R is a left hereditary ring and M is an R-module with the property (WE), then every factor module of M has the property (WE).

If a module M has a supplement in its injective envelope, M need not to have a weak supplement in every extension. For example, for the ring  $R = \mathbb{Z}$ , the R-module  $M = 2\mathbb{Z}$  has a supplement in its injective envelope  $\mathbb{Q}$ . But  $M = 2\mathbb{Z}$  does not have a weak supplement in its extension  $\mathbb{Z}$ . Now we prove that over a local dedekind domain, a module M has a supplement in its injective envelope if and only if M has a weak supplement in every extension.

**Lemma 3.** Let R be a local dedekind domain and M be an R-module. The following statements are equivalent:

- (1) *M* has a supplement in its injective envelope.
- (2) *M* has the property (WE).
- (3) *M* is an  $E^*$ -module.

*Proof.* It is clear by [16, Lemma 3.3].

**Proposition 6.** Let R be a complete local dedekind domain and M be an R-module. M has the property (WE) if and only if M has the property (E).

*Proof.* Let M has the property (WE) and N be any extension of M. Since M has the property (WE), there exists a submodule X of N such that M + X = N,  $M \cap X \ll N$ . By [16, Section 3, Corollary 5], there exists a supplement V of M in N with  $V \subset X$ . Hence M has the property (E).

**Proposition 7.** Let R be a non-local dedekind domain and M be a semisimple R-module. Then, the following three statements are equivalent:

- (1) M has the property (WE).
- (2) M has the property (E).
- (3) *M* is of the form  $K \oplus \prod_p A_p$ , where *K* is injective and  $A_p$  is a bounded *p*-primary module for every prime element  $p \in R$ .

*Proof.* (1)  $\iff$  (2) It follows from [12, Proposition 2.1]. (2)  $\iff$  (3) By [16, Theorem 5.6].

It is known from [14, Section 43.9] that a ring R is left perfect if and only if every left R-module has the property (E). The next theorem gives new characterizations of left perfect rings via their modules which have the property (WE).

**Theorem 1.** For a ring R the following statements are equivalent:

- (1) *R* is left perfect.
- (2) Every left R-module is weakly supplemented.
- (3) Every left R-module has the property (WE).
- (4)  $R^{(\mathbb{N})}$  is weakly supplemented.
- (5)  $R^{(\mathbb{N})}$  has the property (WEE).
- (6) Every left R-module has the property (WEE).

*Proof.* (1)  $\Leftrightarrow$  (2)  $\Leftrightarrow$  (4) is clear from [4, Theorem 1]. (3)  $\Rightarrow$  (6) and (5)  $\Rightarrow$  (4) follow from Proposition 2. (1)  $\Rightarrow$  (3) follows from [14, Section 43.9]. (6)  $\Rightarrow$  (5) is clear.

The following definitions are given in the paper [6], and we recall them for the convenience of the reader:

By a *valuation ring* (also called a *chain ring*) we mean a commutative ring R whose ideals are totally ordered by inclusion. Equivalently, if  $a, b \in R$ , then either  $a \in Rb$  or  $b \in Ra$ . A valuation ring that is a domain will be called a *valuation domain*. A valuation ring R is called *maximal* if  $_RR$  is *linearly compact*, i.e., every family of cosets  $\{a_i + L_i | i \in I\}$  with the finite intersection property has a non-empty intersection. Since linearly compact modules have ample supplements in every extension, a maximal ring R has the property (*WEE*).

The following example shows that a ring with the property (WEE) need not be left perfect, in general.

*Example 2.* Let *R* be the localization ring  $\mathbb{Z}_{(p)}$  of the ring  $\mathbb{Z}$  of integers at a prime ideal  $p\mathbb{Z} \neq 0$ . Then, the completion of  $\mathbb{Z}_{(p)}$ , the ring  $J_{(p)}$  of *p*-adic integers, is a maximal valuation domain which is not field. Hence,  $J_{(p)}$  has the property (*WEE*) but not perfect.

# 3. Modules with the properties $(WE^*)$ and $(WEE^*)$

In this section, we study on modules with the property  $(WE^*)$  (resp.  $(WEE^*)$ ), which have a weak supplement (resp. ample weak supplements) in every coatomic extension, as a generalization of modules with the property (WE) (resp. (WEE)). We prove that over a left V-ring R, every left R-module with the property  $(WE^*)$  is injective.

**Proposition 8.** Let M be a module. If M has the property ( $WE^*$ ), then every direct summand of M has the property ( $WE^*$ ).

*Proof.* Let  $M_1$  be a direct summand of M and N be a coatomic extension of  $M_1$ . Then there exists a submodule  $M_2$  of M such that  $M = M_1 \oplus M_2$ . Let N' be the external direct sum  $N \oplus M_2$  and  $\varphi : M \longrightarrow N'$  be the canonical embedding. Then  $M \cong \varphi(M)$  has the property  $(WE^*)$ . Note that  $\frac{N}{M_1} \cong \frac{N \oplus M_2}{\varphi(M)} = \frac{N'}{\varphi(M)}$  is coatomic. Since  $\varphi(M)$  has the property  $(WE^*)$ , there exists a submodule V of N' such that  $N' = \varphi(M) + V$  and  $\varphi(M) \cap V \ll N'$ . For the projection  $\phi : N' \longrightarrow N$ , we have that  $M_1 + \phi(V) = N$ . Also since  $Ker(\phi) \subseteq \varphi(M), \phi(\varphi(M) \cap V) \subseteq \phi(\varphi(M)) \cap \phi(V) = M_1 \cap \phi(V) \ll \phi(N') = N$ . Hence  $\phi(V)$  is a weak supplement of  $M_1$  in N.

**Proposition 9.** A module M has the property (WEE<sup>\*</sup>) if and only if every submodule of M has the property (WE<sup>\*</sup>).

*Proof.* Assume that every submodule of M has the property  $(WE^*)$ . For a coatomic extension N of M, let N = M + V for some submodule V of N. Then  $\frac{N}{M} \cong \frac{V}{M \cap V}$  is coatomic and so V is a coatomic extension of  $M \cap V$ . Since  $M \cap V$  has the property  $(WE^*)$ , there exists a submodule K of V such that  $V = M \cap V + K$  and  $M \cap K \ll V$ . Note that  $N = M + V = M + (M \cap V + K) = M + K$ . It follows that K is a weak supplement of M in N.

Conversely, let M be a module with the property  $(WEE^*)$  and let  $M_1$  be any submodule of M. For a coatomic extension N of  $M_1$ , let  $S = \frac{M \oplus N}{L}$ , where the submodule L is the set of all elements (m', -m') of  $M \oplus N$  with  $m' \in M_1$  and let  $f : M \to S$ via f(m) = (m, 0) + L,  $g : N \to S$  via g(n) = (0, n) + L for all  $m \in M, n \in N$ . For the inclusion homomorphisms  $\tau_1 : M_1 \to N$  and  $\tau_2 : M_1 \to M$ , we can draw the following pushout:

$$\begin{array}{cccc}
M_1 & \xrightarrow{\tau_1} & N \\
& & \downarrow \\
& & \downarrow \\
M & \xrightarrow{f} & S
\end{array}$$

It is clear that S = Im(f) + Im(g). Now we define  $\theta: S \to \frac{N}{M_1}$  by  $\theta((m,n) + L) = n + M_1$  for all  $(m,n) + L \in S$ . Note that  $\theta$  is an epimorphism and  $Ker(\theta) = Im(f)$ . It follows that  $\frac{N}{M_1} \cong \frac{S}{Im(f)}$  is coatomic. Since f is monomorphism, by assumption, Im(f) has the property ( $WEE^*$ ). Then it follows immediately that Im(f) has a weak supplement V in S such that  $V \leq Im(g)$ , i.e. S = Im(f) + V and  $Im(f) \cap V \ll S$ . Then we obtain that  $N = g^{-1}(Im(f)) + g^{-1}(V) = M_1 + g^{-1}(V)$  and  $M_1 \cap g^{-1}(V) \ll N$ . Hence  $g^{-1}(V)$  is a weak supplement of  $M_1$  in N.

Recall from [2] a module M is called *cofinitely weak supplemented* if every cofinite submodule of M has a weak supplement in M. It is clear from Proposition 9 that if a module M has the property ( $WEE^*$ ), then every maximal submodule of M has a weak supplement in M, equivalently M is cofinitely weak supplemented by [2, Theorem 2.16].

In [13], a module M is called *weakly radical supplemented (namely wrs-module)* if every submodule U of M with  $Rad(M) \subseteq U$  has a weak supplement in M. A module M is called *semilocal* if  $\frac{M}{Rad(M)}$  is semisimple. A ring R is semilocal if the left R-module  $_RR$  is semilocal.

**Corollary 3.** Let R be a semilocal ring and M be an R-module. If M has the property ( $WEE^*$ ), then M is wrs-module.

*Proof.* Let U be a submodule of M with  $Rad(M) \subseteq U$ . Since R is semilocal ring, it follows from [9, Theorem 3.5] that  $\frac{M}{U}$  is semisimple as a factor module of the semisimple module  $\frac{M}{Rad(M)}$ . Hence  $\frac{M}{U}$  is coatomic. By assumption and Proposition 9, U has a weak supplement in M. Hence M is a wrs-module.

**Proposition 10.** Over a left V-ring R, every left R-module with  $(WE^*)$  is injective.

*Proof.* Let M be an R-module with  $(WE^*)$ . Let N be any extension of M. Suppose that  $Rad(\frac{N}{K}) = \frac{N}{K}$  for a submodule K of N. Since R is a left V-ring,  $Rad(\frac{N}{K}) = 0$ . Then it immediately follows that N = K. Hence N is coatomic. Then, by assumption, M has a weak supplement V in N, i.e. N = M + V and  $M \cap V \ll N$ . Since R is a left V-ring, we obtain that  $M \cap V \subseteq Rad(N) = 0$ . This completes the proof.

The next result can be directly obtained from Proposition 10 and Lemma 2.

**Corollary 4.** Let R be a left V-ring and M be an R-module. The following statements are equivalent:

- (1) M has the property (WE).
- (2) *M* has the property  $(WE^*)$ .
- (3) M is injective.

Now we shall give a characterization for semilocal rings via the modules that have a weak supplement in every extension with small radical.

**Theorem 2.** For any ring R the following statements are equivalent:

- (1) R is semilocal.
- (2) Every left R-module with small radical is weakly supplemented.
- (3) Every left R-module has a weak supplement in every extension with small radical.

*Proof.* (1)  $\Leftrightarrow$  (2) follows from [9, Theorem 3.5].

(2)  $\Leftrightarrow$  (3) *M* be a left *R*-module and *N* be an extension of *M* with small radical. By hypothesis, *M* has a weak supplement in *N*. Conversely, let *M* be an *R*-module with small radical and *U* be a submodule of *M*. By assumption, *U* has a weak supplement in *M*. Finally, we give an example of modules that have a weak supplement in every extension with small radical but not have the property (*CEE*).

*Example* 3. (see [14, Section 42.13, Exercise 4]). Let R be the following subring of the rational numbers:

 $R = \{\frac{m}{n} | m, n \in \mathbb{Z}, (m, n) = 1, 2 \text{ and } 3 \text{ are not divisors of } n \}$ 

Since  $\frac{R}{Rad(R)}$  is semisimple, the left *R*-module  $_RR$  is a module which has a weak supplement in every extension with small radical by Theorem 2. Whereas, since *R* is not semiperfect,  $_RR$  does not have the property (*CEE*) by [5, Theorem 2.12].

### ACKNOWLEDGEMENT

The authors would like to thank the referee for many valuable suggestions and comments in the revision of this paper.

#### REFERENCES

- R. Alizade, G. Bilhan, and P. Smith, "Modules whose maximal submodules have supplements," *Comm. Algebra*, vol. 29, no. 6, pp. 2389–2405, 2001, doi: 10.1081/AGB-100002396.
- [2] R. Alizade and E. Büyükaşık, "Cofinitely weak supplemented modules," *Comm. Algebra*, vol. 31, no. 11, pp. 5377–5390, 2003.
- [3] R. Alizade and E. Büyükaşık, "Extensions of weakly supplemented modules," *Math. Scand.*, vol. 103, no. 2, pp. 161–168, 2008.
- [4] E. Büyükaşik and C. Lomp, "Rings whose modules are weakly supplemented are perfect. Applications to certain ring extensions," *Math. Scand.*, vol. 105, pp. 25–30, 2009.
- [5] H. Çalışıcı and E. Türkmen, "Modules that have a supplement in every cofinite extension," *Georgian Math. J.*, vol. 19, no. 2, pp. 209–216, 2012, doi: 10.1515/gmj-2012-0018.
- [6] L. Fuchs and S. L., *Modules over Non-Noetherian Domains*, ser. Math. Surveys Monographs. American Mathematical Society, Providence, 2000.
- [7] S. K. Jain, A. K. Srivastava, and A. A. Tuganbaev, *Cyclic modules and the structure of rings*, ser. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2012. doi: 10.1093/acprof:oso/9780199664511.001.0001.
- [8] T. Lam, *Lectures on Modules and Rings*, ser. Graduate texts in mathematics. Springer New York, 1999. doi: 10.1007/978-1-4612-0525-8.
- [9] C. Lomp, "On semilocal modules and rings," Comm. Algebra, vol. 27, no. 4, pp. 1921–1935, 1999.
- [10] S. Özdemir, "Rad-supplementing modules," arXiv: 1210.2893v1 [math.RA], 10 Oct. 2012.
- [11] B. N. Türkmen, "Modules that have a supplement in every coatomic extension," *Miskolc Mathematical Notes*, vol. 16, no. 1, pp. 543–551, 2015.
- [12] B. N. Türkmen, "On generalizations of injective modules," *Publications de l'Institut Mathematique*, (accepted).
- [13] B. N. Türkmen and E. Türkmen, "On a generalization of weakly supplemented modules," Analele Stiintifice ale Universitatii "Al. I. Cuza" din Iasi, Matematica, 2015, doi: 10.1515/aicu-2015-0012.
- [14] R. Wisbauer, *Foundations of module and ring theory*, ser. Algebra, Logic and Applications. Gordon and Breach Science Publishers, Philadelphia, PA, 1991, vol. 3, a handbook for study and research.
- [15] H. Zöschinger, "Komplementierte Moduln über Dedekindringen," J. Algebra, vol. 29, pp. 42–56, 1974, doi: 10.1016/0021-8693(74)90109-4.

- [16] H. Zöschinger, "Moduln, die in jeder Erweiterung ein Komplement haben," Math. Scand., vol. 35, pp. 267–287, 1974.
- [17] H. Zöschinger, "Invarianten wesentlicher Überdeckungen," Math. Annalen, vol. 237, no. 3, pp. 193–202, 1978, doi: 10.1007/BF01420175.

Authors' addresses

### Emine Önal

Ahi Evran University, Faculty of Art and Science, Department of Mathematics, Bağbaşi/Kirşehir, Turkey

*E-mail address:* emine.onal@ahievran.edu.tr

### Hamza Çalışıcı

Ondokuz Mayis University, Faculty of Education, Department of Mathematics, Kurupelit/Atakum, Turkey

*E-mail address:* hcalisici@omu.edu.tr

#### Ergül Türkmen

Amasya University, Faculty of Art and Science, Department of Mathematics, İpekköy/Amasya, Turkey *E-mail address:* ergulturkmen@hotmail.com