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Abstract. In the present work, we introduce the notion of algebraic cone b-metric space, which
is a generalization of algebraic cone metric space. Then we prove that for every complete algeb-
raic b-metric space there exists a correspondent isomorphic complete usual (associated) b-metric
space via two approach (nonlinear scalarization function and Minkowski functional).
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1. INTRODUCTION AND PRELIMINARIES

Consistent with Niknam et al. [15, 23], Du [9] and Nikolskij [16], the following
definitions and results will be needed in the sequel.

Let Y be a real vector space andK be a convex subset of Y . A point x 2K is said
to be an algebraic interior point of K if for each v 2 Y there exists � > 0 such that
xC tv 2K, for all t 2 Œ0;��. This definition is equivalent to the following statement:

A point x is called an algebraic interior point of the convex set K � Y if x 2 K
and for each v 2 Y there exists � > 0 such that Œx;xC �v��K, where Œx;xC �v�D
f�xC .1��/.xC �v/ W 8� 2 Œ0;1�g. The set of all algebraic interior points of K is
called algebraic interior and is denoted by aint K. Also, K is called algebraically
open if K D aint K.

Let Y be vector space with the zero vector � . A proper nonempty and convex
subset K of E is called an algebraic cone if KCK � K, �K � K for � � 0 and
K\ .�K/D f�g. Given a algebraic cone K �E, a partial ordering �a with respect
to K is defined by x �a y, y�x 2K. We shall write x �a y to mean x �a y and
x ¤ y. Also, we write x�a y if and only if y�x 2 aint K, where aint K is the
algebraic interior of K. Also, Y is said to be Archimedean if for each x;y 2 Y there
exists n 2N such that x �a ny.

Lemma 1 ([15, 23]). Let Y be a real vector space and K be an algebraic cone in
Y with non-empty algebraic interior.

(i) KCaint K � aint K;
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(ii) ˛aint K � aint K, for each ˛ > 0;
(iii) For any x;y;´ 2X , x �a y and y�a ´ implies that x�a ´.

Definition 1 ([15, 23]). Let X be a nonempty set and .Y;K/ be an algebraic cone
space with aint K ¤ ¿. Suppose that a vector valued function da W X �X ! Y

satisfies the following conditions:
.ACM1/ � �a da.x;y/ for all x;y 2X and da.x;y/D � if and only if x D y;
.ACM2/ da.x;y/D da.y;x/ for all x;y 2X ;
.ACM3/ da.x;´/�a da.x;y/Cda.y;´/ for all x;y;´ 2X .
Then da is called an algebraic cone metric and .X;da/ is called an algebraic cone
metric space.

Ordered normed spaces and cones have many applications in applied mathematics
and optimization theory [8, 19, 24]. Fixed point theory in K-metric and K-normed
spaces was developed in the mid-20th century ([17], see also [2, 19, 24]). The main
idea consists in using an ordered Banach space instead of the set of real numbers, as
the codomain for a metric. Huang and Zhang [10] reintroduced such spaces under
the name of cone metric spaces and obtained some fixed point results (see also [1,11,
18, 20–22] and references contained therein).

On the other hand, topological vector space-valued cone metric space (or tvs-cone
metric space) introduced by Du [9] as a generalization of the Banach-valued cone
metric space. Actually, Du has shown that some of fixed point results in cone metric
spaces can be obtained in an easier way, using the so-called nonlinear scalarization
function. Also, in 2011, Kadelburg et al. [13] have shown that the same can be
obtained even more easily using Minkowski functionals in topological vector spaces.
Their approach is even easier than that of Du [9]. The nonlinear scalarization function
[6, 9] �e WE! R is defined as follows:

�e.y/D inffr 2 R W y 2 re�Kg

for all y 2 E, where e 2 int K is fixed. Consider real vector spaces Y instead of
topological vector spaces E. Thus, we have the following definition.

Definition 2 ([15, 23]). Let Y be a real vector space, K be an algebraic cone in Y
and e 2 aint K. The nonlinear scalarization functio �e W Y ! R is defined as follow:

�e.y/D infMe;y ;

where
Me;y D fr 2 R W y 2 re�Kg:

Lemma 2 ([15, 23]). For each e 2 aint K, r 2 R and y 2 Y , the following state-
ments are satisfied:

(i) �e.y/ < r if and only if y 2 re�aint K;
(ii) �e.:/ is positively homogeneous on Y ;

(iii) if y1 2 y2CK (indeed, y2 �a y1), then �e.y2/� �e.y1/;
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(iv) �e.y1Cy2/� �e.y1/C �e.y2/ for all y1;y2 2 Y ;
(v) �e.y/� 0 and if y 2 aint K, then �e.y/ > 0.

Also, the notion of a b-metric space was introduced by Bakhtin [4] and Czerwik
[7] as a generalization of metric space.

Definition 3. Let X be a nonempty set and s � 1 be a real number. Suppose the
mapping ds WX �X ! Œ0;1/ satisfies
.d1/ ds.x;y/D 0 if and only if x D y;
.d2/ ds.x;y/D ds.y;x/ for all x;y 2X ;
.d3/ ds.x;´/� s.ds.x;y/Cds.y;´// for all x;y;´ 2X .
.X;ds/ is called a b-metric space [4, 7] or metric type space [14].

Obviously, for s D 1, b-metric space (or type metric space) is a metric space. In
the sequel of this section we suppose that K has the Archimedean property.

2. MAIN RESULTS

Definition 4. Let X be a nonempty set, .Y;K/ be an algebraic cone space with
aint K ¤¿ and s � 1 be a given real number. Suppose that a vector valued function
da WX �X ! Y satisfies the following conditions:
.ACbM1/ � �a da.x;y/ for all x;y 2X and da.x;y/D � if and only if x D y
.ACbM2/ da.x;y/D da.y;x/ for all x;y 2X ;
.ACbM3/ da.x;´/�a sŒda.x;y/Cda.y;´/� for all x;y;´ 2X .
Then da is called an algebraic cone b-metric and .X;da/ is called an algebraic cone
b-metric space.

Definition 5. Let .X;da/ be an algebraic cone b-metric space, fxng a sequence in
X and x 2X . Then the following statements hold:

(i) fxng algebraic b-cone converges to x if, for every c 2 Y with � �a c there
exists an n0 2N such that da.xn;x/�a c for all n > n0. We denote this by
da� limn!1xn D x or xn!da

x as n!1;
(ii) fxng is called an algebraic b-cone Cauchy sequence if, for every c 2 Y with

� �a c there exists an n0 2N such that da.xn;xm/�a c for all m;n > n0;
(iii) .X;da/ is complete algebraic cone b-metric space if every algebraic b-cone

Cauchy sequence in X is convergent in X .

The following theorem is one of the main results in this paper.

Theorem 1. Let .X;da/ be an algebraic cone b-metric space and e 2 aint K.
Then ds WX �X ! Œ0;1/ defined by ds D �e ıda is a b-metric on X .

Proof. Clearly, ds.x;y/ D ds.y;x/ for all x;y 2 X . By Lemma 2, we have
ds.x;y/ � 0 for all x;y 2 X . If x D y, then, by .ACbM1/, we have da.x;y/D 0.
Conversely, if ds.x;y/D 0, then, by Lemma 1 and .ACbM1/, we have da.x;y/ 2
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K \ .�K/ D f�g for all x;y 2 X which implies that da.x;y/ D � . Consequently,
x D y. Also, by applying .i i/, .i i i/ and .iv/ of Lemma 2 and .ACbM3/, we have

�e.da.x;´//� s.�e.da.x;y//C �e.dsa.y;´///

or

ds.x;´/� sŒds.x;y/Cds.y;´/�

for all x;y;´ 2X with s � 1. Thus, the proof of the theorem is complete. �

Theorem 2. Let .X;da/ be an algebraic cone b-metric space, fxng a sequence in
X , x 2X and e 2 aint K. Set ds D �e ıda. Then the following statements hold:

(i) fxng converges to x in algebraic cone b-metric space .X;da/ if and only if
ds.xn;x/! 0 as n!1;

(ii) fxng is a Cauchy sequence in algebraic cone b-metric space .X;da/ if and
only if fxng is a Cauchy sequence in .X;ds/;

(iii) .X;da/ is complete if and only if .X;ds/ is complete.

Proof. Using a similar argument as in Niknam et al’s works [15, 23], the reader
can prove this theorem. �

The following theorem is a version for algebraic cone b-metric spaces of Banach
contraction principle [5].

Theorem 3. Let .X;da/ be a complete algebraic cone b-metric space with s � 1
and � 2 Œ0;1=s/. If f WX !X satisfies the contractive condition

da.f x;fy/�a �da.x;y/;

for all x;y 2 X . Then f has a unique fixed point in X . Moreover, for each x 2 X ,
the iterative sequence ffnxgn2N converges to the unique fixed point of f .

Proof. Set ds D �e ıda. Theorem 1 implies that .X;da/ is a b-metric spaces and
Theorem 2 implies that the b-metric space .X;da/ is complete. On the other hand,
by applying Theorem 1 and Lemma 2, we conclude that

da.f x;fy/�a �da.x;y/H) ds.f x;fy/� �ds.x;y/

for all x;y 2 X . Therefore, the conclusion follows from the Theorem 3.3 of Jovan-
ović et al [12]. The proof is completed. �

Note that we just prove the Banach fixed point theorem in the setting of algebraic
cone b-metric space can be easily derived from the existing result in the context of b-
metric space. Using this approach, other fixed point results in algebraic cone b-metric
spaces can be obtained from the existing result in b-metric space.
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3. OTHER APPROACH AND APPLICATION

Now, we obtain other procedure to obtain above results and Shamsi et al. [23].
Let V be an absolutely convex and absorbing subset of a tvs E, its Minkowski

functional is defined by qV .x/D inff� > 0 W x 2 �V g for x 2E. It is a semi-norm on
E and V �W implies that qW .x/ � qV .x/ for x 2 E. If V is an absolutely convex
neighborhood of �E 2E, then qV is continuous and

fx 2E W qV .x/ < 1g D int V � V � NV D fx 2E W qV .x/� 1g:

Similar to the case of scalarization method mentioned above, set real vector spaces
Y instead of topological vector spaces E.

Now, let .Y;K/ be an algebraic cone space and let e 2 aint K. Then Œ�e;e� D
.K � e/\ .e �K/ D f´ 2 E W �e � ´ � eg is an absolutely convex neighborhood
of � ; its Minkowski functional qŒ�e;e� will be denoted by qe. Also, aint Œ�e;e� D
.aint K� e/\ .e�aint K/.

Theorem 4. Let .X;da/ be an algebraic cone b-metric space and e 2 aint K.
Let qe be the corresponding Minkowski functional of Œ�e;e�. Then ds D qe ıda is a
b-metric on X .

Proof. Clearly, ds.x;y/D ds.y;x/ for all x;y 2X and xDy implies that ds.x;y/

D 0. Also, since qe is a semi-norm and da is an algebraic cone b-metric space, we
have

qe.da.x;´//� s.qe.da.x;y//Cqe.aa.y;´///

or
ds.x;´/� sŒds.x;y/Cds.y;´/�

for all x;y;´ 2 X with s � 1. Now, we prove ds.x;y/D 0 implies that x D y. Let
qe ı da.x;y/ D 0. Then inff� > 0 W da.x;y/ 2 �Œ�e;e�g D 0. Thus, there exists a
sequence of positive scalars �n ! 0 such that da.x;y/ 2 �nŒ�e;e�. Suppose that
x ¤ y (by contrary). Then, since �E �a da �a �ne, for each c 2 aint K there exists
n0 such that da.x;y/�a c for n� n0. Since c is an arbitrary algebraic interior point
of the cone K it follows that da.x;y/D � . This is a contradiction. Thus, the proof
of the theorem is complete. �

The following consequences of Theorem 4 are evident.

Theorem 5. Let .X;da/ be an algebraic cone b-metric space, fxng a sequence in
X , x 2X and e 2 aint K. Set ds D qe ıda. Then the following statements hold:

(i) fxng converges to x in algebraic cone b-metric space .X;da/ if and only if
ds.xn;x/! 0 as n!1;

(ii) fxng is a Cauchy sequence in algebraic cone b-metric space .X;da/ if and
only if fxng is a Cauchy sequence in .X;ds/;

(iii) .X;da/ is complete if and only if .X;ds/ is complete.
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Theorem 6. Let .X;da/ be a complete algebraic cone b-metric space with s � 1
and � 2 Œ0;1=s/. If f WX !X satisfies the contractive condition

da.f x;fy/�a �da.x;y/;

for all x;y 2 X . Then f has a unique fixed point in X . Moreover, for each x 2 X ,
the iterative sequence ffnxgn2N converges to the unique fixed point of f .

Proof. Set ds D qe ıda. Theorem 4 implies that .X;ds/ is a b-metric spaces and
Theorem 5 implies that the b-metric space .X;ds/ is complete. On the other hand, by
applying Theorem 4, we conclude that

da.f x;fy/�a �da.x;y/H) ds.f x;fy/� �ds.x;y/

for all x;y 2 X . Therefore, the conclusion follows from the Theorem 3.3 of Jovan-
ović et al [12]. This complete the proof. �

In Theorems 4, 5 and 6, consider s D 1. Then, we can obtain these results in the
setting of algebraic cone metric spaces (as well as Niknam et al. [15,23] proved these
results). Very recently, Akbari and Bagheri [3] proved several fixed point results in
setting of algebraic cone metric spaces. Using our results in Section 2 and Section 3,
then some results of Akbari and Bagheri [3] are not such actual.

As an application, we prove the equivalence between algebraic cone norm and
usual norm.

Example 1. Let X be a vector space over F (R or C) and jj:jja W X ! E be a
mapping that satisfies:
.ACN1/ � �a jjxjj for all x 2X nf�Xg and jjxjja D � if and only if x D �X , where

�X is the zero vector in X ;
.ACN2/ jj˛xjja D jajjjxjja for all x 2X and ˛ 2 F ;
.ACN3/ jjxCyjja �a jjxjjaCjjyjja.
Then, jj:jja is called an algebraic cone norm onX and .X; jj:jja/ is called an algebraic
cone normed space [23]. Now, for all e 2 aint K, jj:jj W X ! Œ0;1/ defined by
jj:jj D qe ı jj:jja is a usual norm on X .
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