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Abstract. We will define the second order Cesaro operator spaces and we will show that those
spaces are Banach spaces, are separable, fulfill dominant Lebesgue theorem, are not rearrange-
ment invariant, not reflexive and strictly convex.
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1. INTRODUCTION

In [3] the Cesaro function space is defined as follows:

X p
Cesp(X) = ;f ELO(X):/;;(%/() |f(t)|dt) du(x) < oo}.

And for this space several properties are shown, such as separability, dominant Le-
besgue theorem etc. In [4] the second order Cesaro sequence space is defined and
some of the topological properties are given . In this paper we will define the Cesaro
second order function space.

Let (X,s, 1) be a o—finite measure space and let L? = L%(X) denote the set of
all equivalence classes of complex valued measurable functions defined on X, where
X =[0,1] or X =[0,00). Then, for I < p < oo, the Cesaro second function space is
denoted by Ceslz,(X), where X = [0,1] or X = [0, 00) and is defined as follows for
1 <p<oo,

x
0

1 D
ces;(X)={feL°(X):/X(x—2f |(2x—t)f(t)|dt) d,,L(x)<oo} (1.1)

and for p = 00

Cesgo(X) =

fel%X): sup Lz/x|(2x—t)f(t)|dt <oo} . (1.2)
X< Jo

x€X, x>0
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In what follows we will use this inequality: For any numbers A, B and for any
1 < p < o0, we have

|A+ B|? <2771 (JA|? +|B|?). (1.3)

Proposition 1. The Cesaro function space Ces,(X) is a subset of the Cesaro
second order function space Cesg (X), for1 < p <oo.

Proof. Let us suppose that f € Ces,(X), then we get:

J, (%/ox 'f(f)ldt)pdx <.

On the other side, taking into consideration (1.3), we have:

1 X p
fx(x_z/o |(2x—t)f(z)|dt) dx
X D X P
<ot [ [Cvroiar) a2t [ (5 [Cirorar) an

Hence, inclusion follows from the last relation. O

Based in the above Proposition and in Hardy inequalities (see [1])

14
I lleessco = (575 ) 17,

we get the following result.

Proposition 2. C esg(X ), for 2 < p < oo is a generalization of cesp(X), in the
sense of inclusion and inclusion is strict.

Proof. The first part follows directly from Hardy’s inequality and Proposition 1.
In what follows we will prove that inclusion is strict. Let

£ = an sprog 2 (3,

n=1
where y is the characteristic function of the interval subscripted and for 2 < p < oo,
set a, = (0,0,---, n ,0,-++). Then
~——

n—th position

/};(%/(;x|f(l)|dt)pdx>/x(%N_ln)pdx,

n=1
for (N —1)? < x < N2. Also,
N-1

1 N-1 4 oo N4p—3
/X(;Z”) dx—Z/N 1)2xp< n) NZzp(l_p)N4p—4=

n=1 n=1 N=1
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Which proves that f(x) ¢ cesp(X). On the other side f(x) € ces?(p), for2 < p <
oo. In fact

1 [x P NIN+1) (N-1)*\"
/}(()7/() |(2x—t)f(t)|dt) dx</x((N—1)2 BTy ) dx

1 )4
v \2N

for0 <t <xand (N —1)2 <x < N2

LGy) o= [0 ) o~ 3
o) =2 (_) PN DL
—1 ’
x \2N = -2 2N o NP
for p > 2. Hence, f(x) € cesg(X).
For p = o0, set a, = (0,0, l: ,0,--+). Then
n—th position
1 * 1 N—-1
sup —/ | f(t)|dt > sup — Z n?
x>0,xeX X Jo x>0,x€X,(N—1)2<x<N2 X i
(N-1)NQ@2N -1)
= sup
x>0,x€X,(N—1)2<x<N?2 6x
(N—1)NQ2N —1)
> sup = 0,
N>1 6N 2

which implies that f(x) ¢ Cesco(X). On the other side,

1 X 1
sup —[ [2x —t|| f(¢)|dt < sup — < o0,
x>0,xeX x2 0 N>12N

which shows that f(x) € Ces2 (X). O

Theorem 1. The Cesaro second order function space C esg(X ) is a normed linear
metric space with norm given by the relation:

1 [x N
||f||C(p):( /X [F /0 |(2x—t)f(t)|dt} dx)

1 X
flleer = sw <5 [Clex=ns@idn for p=ce.

xeX, x>0

and

Lemma 1. If f € Cesg(X), 1 < p<oo,then f € L1(0,k) for any fixed positive
number k.
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Proof. To prove this Lemma, we will follow ideas given in [2]. Let 1 < p < o0
and k any fixed positive number, then using into consideration relation (1.3), we get:

[e’e) P p
W= [ |55 [ 1er=n s ax

oo [ k P
3/ _2/ (@x—1)f()ldt | dx. (1.4)
k| X% Jo
On the other side

o[ k P
-1
27 /k [;[G |(2x—t)f(t)|dt:| dx
o[ 1 k P - o k P
z/k [;/O |(2x)f(t)|dti| dx—2 /k {;/0 |tf(t)|dti| dx

271 £11F 2r-1 k P
- (p—l)kl’l—l * (2p—k2p—1 |:_ (/(; l|f(t)|dl) :|

- 2711 A117 22T NILAIT
T (p—DkP7t (2p—Dkr1
_ GBp- D227 £11]
(p—1D@2p—1)kr~1
Hence, from relations (1.4) and (1.5), we get the desired result.
Second case where p = oo.
Let us denote by £ = {x : 35 [ [(2x =1) f()ld1 > || f||(oc) | - From definition

of the space C es;(X ) it follows that w(E) = 0. In E€, we can choose real number
Xj such that x; > k and

(1.5)

1 X X
72/0 |<2x—z)f(z>|dzs||f||C(oo):/0 @x =0 FOldt < 2211l
On the other side we have this estimation:
/0 Qe —1) f(0)]d = fo 2 f ()| di — [0 LF ()]t = x /0 FOldr.

Hence,

11l = Xk 11 f e (o0)-
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Theorem 2. The Cesaro second order function space C esg(X ), for 1 < p < o0,
is a Banach space under the norm:

x poNh
IIfIIC(p)z(/X [%/ﬁ |(2x—t)f(t)|dt} dx) .

Proof. Let (f;) be any Cauchy sequence of functions belonging to C eslz,(X ).
Then for every € > 0, there exists an integer #n(€) such that

|| fm — full <€ forall m,n>n(e).

By Lemma 1 every (f,) € L1(0,k) for any fixed k € N. Let us denote by f =
fm — fn, from Lemma 1 it follows that ( f;;) is a Cauchy sequence related to the
norm in the L1(0,k). In particular, for £k = 1 the sequence ( f;) has a subsequence
converging a.e., on (0,1). Let £,2 = f,, and for any positive integer k, let ( fnk)
be a subsequence of fnk_1 converging a.e., on (0,k). Then diagonal sequence ( fkk)
converges a.e., on (0,k) to some measurable function f. Now we will estimate the
difference || /' — fullc(p) as n — oo. For any fixed x and Fatou’s Lemma we have:

/ @x =) (f() = fal0))ldt = f lim |(2x —1)(f (1) = fu())|d1
0 0 k—oo
< liminf [ |2x =) (SO = fal0))]dt.
k 0

p
Let ¢y (x) = (é f12x— D(f*@) = f,(0) |dt) . Then by applying Fatou’s Lemma
again we get:

o0 o0
/ liminf¢y (x)dx < liminf/ dr(x)dx
0 0
= liminf||fkk—fn||g(p) <eP, for n> N(e).
Thus || f — fullc(p) < € for every n > N(¢) and fixing one such 7, the inequalities
lgllcpy =11 = falle) + 1 fnllcp) < oo,
shows that f € Cesg(X). O

Theorem 3. Let (f,) be a sequence of measurable functions on C esI%(X ) such
that

Jim £,(0 = f(0)

exists for almost every x € (0,00). If there is a function g € Ceslz,(X), 1 <p<oo,
such that

[ ()] <glx) aen=1.2,--
then f € Cesg(X) and || fn— fllc(p) = 0, as n — oo

We omit the proof of the Theorem, because it is similar to Theorem 4 in [2].
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Theorem 4. C esg (X) is a separable space for 1 < p < oo.

Proof. Proof of the Theorem is similar to the Theorem 5 given in [2]. For this
reason we omit it. g

Theorem 5. The Cesaro second order function space C esg (X), for p=o00,isa
Banach space under the norm:

1 X
1 llce, (0= s 5 [Cex=0f@ldr. for p=oce,

x€X,x>0

Theorem 6. The Cesaro second order function space C esgo (X) is not a separable
space.

Theorem 7. The Cesaro second order function spaces C esgo (X), are:
(1) Not rearrangement invariant

(2) Not reflexive

(3) Strictly convex, that is, if||f||Ces},(X) = ||g||Ces,2,(X) = land f # g, then

“ —f tg <1
2 Ceslz,(X)

Proof. (1) Let us consider the function f(x) = ﬁ for x € [0,1). Then from
Theorem 1-c, in [5], it follows that f* € Cesp[0,1], for 1 < p < co. And from Propos-
ition 2 we get f(x) e C es’% [0, 1]. In other hand, rearrangement function f* = % for

t € (0,1] is notin C esl% [0,1]. And therefore C esl% [0, 1] is not rearrangement invari-

ant. In case where p = 0o, we can take the function g(x) = —4—, for x € [0, 1) and

J1=x’
l1gllcesaof0,1] = 2. respectively from Proposition 2 if follows that g(x) € C es2.[0,1].

The rearrangement function for g is g* = JL; for t € [0,1) and after some calcula-

tions we have that ||g||ces200[0,1] = 00- Hence, g* ¢ Ces2,[0,1].

(2) It follows directly from Proposition 2, and fact that Ces, (/) contains a copy of the
space L1([1). It is known that L (/) are not reflexive spaces and therefore C esI%(I )
are not reflexive spaces.

(3) Proof is similar to the proof of Theorem 1-h given in [5]. For this reason we omit
it. 0
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