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Abstract. In recent years, differential inclusions with fractional order have been extensively
studied by many authors. However, up to now fractional evolution inclusions with Riemann-
Liouville derivative have not been considered in the literature. In order to fill this gap, in this
paper we establish sufficient conditions for the existence of solutions of fractional evolution in-
clusions involving the Riemann-Liouville fractional derivative. The cases of convex-valued and
nonconvex-valued right-hand sides are considered and we present a version of Filippov’s theorem
for fractional semilinear differential inclusions with Riemann-Liouville derivative.
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1. INTRODUCTION

Due to the fact that fractional order derivatives and integrals have extensive ap-
plications in viscoelasticity, analytical chemistry, electromagnetic, neuron modeling
and biological sciences, the theory of fractional calculus has attracted great interest
from the mathematical science research community. There has been a significant de-
velopment in fractional differential equations in recent years, see the monographs of
Samako et al. [14], Kilbas et al. [13], Miller and Ross [20], Podlubny [22] and the
references therein.

Differential inclusions arise in the mathematical modelling of certain problems in
economics, optimal control, stochastic analysis, etc. and are widely investigated by
many authors, see [1, 4, 15, 17, 18] and references therein.

Recently, fractional differential equations and inclusions with Caputo and Riemann-
Liouville fractional derivative with different conditions were studied by many au-
thors.
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In [10], J. Henderson and A. Ouahab investigated the existence of solutions for
fractional differential inclusions with infinite delay�

LD˛x.t/ 2 F.t;xt /; t 2 J WD Œ0;b�; 0 < ˛ < 1;

x.t/D �.t/; t 2 Œ�r;0�;

where LD˛ is the Riemann-Liouville fractional derivative, F W J �C.Œ�r;0�;R/!
P .R/ is a multivalued map with compact values, P .R/ is the family of all nonempty
subsets of R, � 2 C.Œ�r;0�;R/ and �.0/ D 0. yt is the element of C.Œ�r;0�;R/
defined by yt .�/D y.tC�/; � 2 Œ�r;0�.

In [21], A. Ouahab studied the existence of solutions for fractional semilinear
differential inclusions of the form�

.cD˛x�Ax/.t/ 2 F.t;x.t//; a:e: t 2 J WD Œ0;b�; 0 < ˛ < 1;

x.0/D x0 2X;

where cD˛ is the Caputo fractional derivative, F W J �X ! P .X/ is a multivalued
map, A is an almost sectorial operator and X is a sparable Banach space.

In [25], Y. Zhou, L. Zhang and X.H. Shen researched the existence of solutions
for fractional evolution equation with Riemann-Liouville fractional derivative of the
form (

LDqx.t/D Ax.t/C .F x/.t/; t 2 J 0 WD .0;a�; 0 < q < 1;

.I
1�q

0C
x/.0/Cg.x/D x0;

where LD˛ is the Riemann-Liouville fractional derivative of order q, I 1�q
0C

is Rie-
mann-Liouville integral of order 1� q, A is the infinitesimal generator of a C0-
semigroup fT .t/; t � 0g on a Banach space X . F W C.J 0;X/! L.J 0;X/ and g W
C.J 0;X/! L.J 0;X/ are given functions satisfying some assumptions.

Motivated by the above work, the goal of the present paper is to study the existence
of solutions for fractional evolution inclusions with Riemann-Liouville fractional de-
rivative of the form�

LD˛0Cx.t/ 2 Ax.t/CF.t;x.t//; a:e: t 2 .0;b�; 0 < ˛ < 1;

I 1�˛
0C

x.t/jtD0 D x0 2X
(1.1)

where LD˛0C is the Riemann-Liouville fractional derivative of order ˛ with the lower
limit zero, I 1�˛

0C
is Riemann-Liouville integral of order 1�˛. A WD.A/ � X ! X

is the infinitesimal generator of a C0-semigroup fT .t/; t � 0g on a Banach space X .
F W J �X ! P .X/ WD 2Xn f¿g is a multivalued map satisfying some assumptions
and J D Œ0;b�.

The existence of mild solutions for the fractional evolution inclusions with Caputo
fractional derivative has been researched in several recent papers (see [19, 21, 23]),
much less is known about the fractional evolution inclusions with Riemann-Liouville
fractional derivative. In this paper, our goal is to give the existence results in both
convex and nonconvex cases for (1.1) and present a version of Filippov’s theorem.
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The results we obtained are a generalization and continuation of the recent results on
this issue.

The rest of this paper is organized as follows. In Section 2, some notations and
preparation results are given. In Section 3, using the nonlinear alternative of Leray-
Schauder, we present an existence result for problem (1.1) in the case where the
right-hand side is convex-valued. In Section 4, we use a fixed point theorem for
contraction multivalued maps to (1.1), for the nonconvex case. In Section 5, we shall
be concerned with Filippov’s theorem for .1:1/. In the end, we present an example to
demonstrate our main results in Section 6.

2. PRELIMINARIES

In this section, we introduce the notations, definitions, and preliminary facts that
will be used in the remainder of this paper.

Let C.J;X/ denotes the Banach space of all X-value continuous functions from
J D Œ0;b� into X with the norm kxkC.J;X/ D supt2J kx.t/k. For measurable func-

tionsm W J !R; we define the norm kmkLP .J;R/ WD .
R
J jm.t/j

pdt/
1
p ; 1� p <1:

Lp.J;R/ .1 � p <1/ be the Banach space of all Lebesgue measurable functions
from J into R with kmkLP .J;R/ <1. Let Lp.J;X/ be the Banach space of func-
tionsm W J !X which are Bochner integrable normed by kmkLP .J;X/. Throughout
this paper, we suppose M WD supt2Œ0;1/ kT .t/k <1. Let J 0 D .0;b�, to define
the mild solutions of (1.1), we also consider the Banach space C1�˛.J;X/ D fx 2
C.J 0;X/ W t1�˛x.t/ 2 C.J;X/g with the norm kxkC1�˛ D supt2J ft

1�˛kx.t/kXg:

It is easy to see
�
C1�˛.J;X/;k � kC1�˛

�
is a Banach space.

First, let us recall the following definitions from fractional calculus. For more
details, one can see [13, 20, 22].

Definition 1. The fractional integral of order q with the lower limit zero for a
function f is defined as

I
q

0C
f .t/D

1

� .q/

Z t

0

f .s/

.t � s/1�q
ds; t > 0; q > 0;

provided the right side is point-wise defined on Œ0;1/, where � .�/ is the gamma
function.

Definition 2. The Riemann-Liouville derivative of order q with the lower limit
zero for a function f W Œ0;1/!R can be written as

LD
q
0Cf .t/D

1

� .n�q/
.
d

dt
/n
Z t

0

f .s/

.t � s/q�nC1
ds; t > 0; n�1 < q < n:
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Definition 3. The Caputo derivative of order q for a function f W Œ0;1/!R can
be written as

cD
q

0C
f .t/DL DqŒf .t/�

n�1X
kD0

tk

kŠ
f .k/.0/�; t > 0; n�1 < q < n:

Remark 1. .i/ If f .t/ 2 C nŒ0;1/, then

cD
q

0C
f .t/D

1

� .n�q/

Z t

0

f .n/.s/

.t � s/qC1�n
ds D I

n�q

0C
f .n/.t/; t > 0; n�1 < q < n:

.i i/ The Caputo derivative of a constant is equal to zero.

.i i i/ If f is an abstract function with values in X , then integrals which appear in
Definition 1 and 2 are taken in Bochner’s sense.

Now, we also introduce some basic definitions on multivalued maps. For more
details, see [2, 7, 12].
We use the notations:

Pcl.X/D fY 2P .X/ W Y is closed g; Pb.X/D fY 2P .X/ W Y is bounded g;

Pcv.X/D fY 2P .X/ W Y is convex g; Pcp.X/D fY 2P .X/ W Y is compact g:
A multivalued map G W X ! P .X/ is convex (closed) valued if G.x/ is convex
(closed) for all x 2 X . G is bounded on bounded sets if G.B/ D

S
x2BG.x/ is

bounded inX for any bounded set B ofX , i.e., supx2B
˚

supfkyk W y 2G.x/g
	
<1.

G is called upper semicontinuous (u.s.c.) on X if for each x0 2 X , the set G.x0/
is a nonempty closed subset of X , and if for each open set U of X containing G.x0/,
there exists an open neighborhood V of x0 such that G.V /� U .
G is said to be completely continuous if G.B/ is relatively compact for every

B 2Pb.X/.
If the multivalued map G is completely continuous with nonempty compact val-

ues, thenG is u.s.c. if and only ifG has a closed graph (i.e., xn! x�; yn! y�; yn 2

G.xn/ imply y� 2G.x�/).
A multivalued map G W J ! Pcl.X/ is said to be measurable if for each x 2 X

the function Y W J !RC defined by Y.t/D d.x;G.t//D inffkx�´k W ´ 2G.t/g is
measurable.

Let .X;d/ be a metric space induced from the normed space.X;k � k/. Consider
Hd WP .X/�P .X/!RC[f1g, given by

Hd .A;B/Dmaxfsup
a2A

d.a;B/; sup
b2B

d.b;A/g;

where d.a;B/D infb2B d.a;b/; d.b;A/D infa2Ad.a;b/.
Then .Pb;cl.X/;Hd / is a metric space and .Pcl.X/;Hd / is a generalized metric

space (see [15]).

Definition 4 ([6]). A multivalued operator G WX !Pcl.X/ is called
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(1)  -Lipschitz if and only if there exists  > 0 such that

Hd .G.x/;G.y//� d.x;y/; for each x;y 2X;

(2) a contraction if and only if it is  -Lipschitz with  < 1:

Lemma 1 ([6]). Let .X;d/ be a complete metric space. If G W X ! Pcl.X/ is a
contraction, then F ixG ¤¿.

Lemma 2 ([8]). Let X be a separable complete metric space and let G W Œ0;b�!
P .X/ be a measurable multivalued map with nonempty closed values. Then G has
a measurable selection.

Lemma 3 ([26]). Let G W Œ0;b�! P .X/ be a measurable multivalued map and
u W Œ0;b�!X a measurable function. Then for any measurable v W Œ0;b�! .0;C1/

there exist a measurable selection fv of G such that for a.e. t 2 Œ0;b�,

ku.t/�fv.t/k � d.u.t/;G.t//Cv.t/:

Lemma 4. Let G W Œ0;b�! Pcp.X/ be a measurable multivalued map and u W
Œ0;b�! X a measurable function. Then there exists a measurable selection f of G
such that for a.e. t 2 Œ0;b�,

ku.t/�f .t/k � d.u.t/;G.t//:

Lemma 5 (Lasota and Opial [16]). Let J be a compact real interval and E be
a Banach space. The multivalued map F W J �E ! Pb;cl;cv.E/ is measurable to
t for each fixed x 2 E, u.s.c. to x for a.e. t 2 J , and for each x 2 C.J;E/ the
set SF;x D ff 2 L1.J;E/ W f .t/ 2 F.t;x.t//; a:e: t 2 J g is nonempty. Let � be a
linear continuous mapping from L1.J;E/ to C.J;E/, then the operator

� ıSF W C.J;E/!Pb;cl;cv.C.J;E//; x 7! .� ıSF /.x/D � .SF;x/;

is a closed graph operator in C.J;E/�C.J;E/:

Lemma 6 (Nonlinear alternative for Kakutani maps [9]). Let E be a Banach
space, C a closed convex subset of E. U an open subset of C and 0 2 U . Suppose
that G W U !Pcp;cv.E/ is an upper semicontinuous compact map. Then either:
(i) G has a fixed point in U , or
(ii) there is u 2 @U and � 2 .0;1/ with u 2 �G.u/.

On the basis of [25], we give the following definition of mild solution of system
(1.1).

Definition 5. A function x 2 C1�˛.J;X/ is called a mild solution of (1.1) if
I 1�˛
0C

x.t/jtD0 D x0 and there exists f 2 L1.J;X/ such that f .t/ 2 F.t;x.t// for
a.e. t 2 J and

x.t/D t˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/f .s/ds; t 2 .0;b�
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where

T˛.t/D ˛

Z 1
0

�M˛.�/T .t
˛�/d�;

and M˛ is a probability density function which is defined by

M˛.�/D

1X
nD1

.��/n�1

.n�1/Š� .1�˛n/
; 0 < ˛ < 1; � 2C:

Lemma 7 ([24]). The operator T˛.t/ has the following properties:
(i) For any fixed t � 0; T˛.t/ is linear and bounded operators, i.e., for any x 2X;

kT˛.t/xk �
M

� .˛/
kxk:

(ii) T˛.t/.t � 0/ is strongly continuous.
.i i i/ For every t > 0, T˛.t/ is also compact operator if T .t/ is compact.

Now we state the following generalization of Gronwall’s lemma for singular ker-
nels whose proof can be found in ([11], Lemma 7.1.1). This will be essential for the
main result of Section 3.

Lemma 8. Let v W Œ0;b�! Œ0;1/ be a real function and !.�/ is a nonnegative,
locally integrable function on Œ0;b� and there are constants a > 0 and 0 < ˛ < 1 such
that

v.t/� !.t/Ca

Z t

0

.t � s/�˛v.s/ds:

Then there exists a constant K DK.˛/ such that

v.t/� !.t/CKa

Z t

0

.t � s/�˛!.s/ds;

for every t 2 Œ0;b�.

3. EXISTENCE OF MILD SOLUTIONS FOR CONVEX CASE

Assume in this section that F W J �X ! P .X/ is a convex valued multivalued
map. Before stating and proving the main results, we introduce the following hypo-
theses.

(1) T .t/ is a compact operator for every t > 0.
(2) F W J �X !Pcp;cv.X/ is a multivalued map such that

.a/ for each fixed u 2X , the map t 7! F.t;u/ is measurable,

.b/ for a.e. t 2 J , the map u 7! F.t;u/ is u.s.c.,

.c/ for each x 2 C1�˛.J;X/ the set

SF;x D ff 2 L
1.J;X/ W f .t/ 2 F.t;x.t//g

is nonempty.
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(3) There exists a function �.t/ 2 L
1
q .J;RC/; q 2 .0;˛/ and a constant c > 0

such that

kF.t;x.t//kX D supfkf .t/kX W f .t/ 2 F.t;x.t//g � �.t/C ct1�˛kx.t/k;

for a.e. t 2 J and all x 2 C1�˛.J;X/.

Theorem 1. Assume that hypotheses .1/� .3/ hold, then system (1.1) has at least
one mild solution.

Proof. Consider the multivalued operator N W C1�˛.J;X/ ! P .C1�˛.J;X//

defined by

N.x/D

�
h 2 C1�˛.J;X/ W

h.t/D t˛�1T˛.t/x0C
R t
0 .t � s/

˛�1T˛.t � s/f .s/ds; f 2 SF;x; t 2 J
0

�
:

Using .1/� .3/ and Lemma 7, one can easily prove that N.x/� C1�˛.J;X/ for any
x 2 C1�˛.J;X/.

Clearly, the fixed points of the operator N are mild solutions of problem (1.1). We
shall show that N satisfies all conditions of Lemma 6. The proof will be given in
several steps.

Step 1: N.x/ is convex for each x 2 C1�˛.J;X/.
Since SF;x is convex (because F has convex values) then one can easily show that
N.x/ is convex for each x 2 C1�˛.J;X/.

Step 2: N maps bounded sets into relatively compact sets in C1�˛.J;X/.
Define

Br D fx 2 C1�˛.J;X/ W kxkC1�˛ � rg;

˝ D
˚
y 2 C.J;X/ W y.t/D t1�˛h.t/; h 2N.Br/

	
We shall show that N.Br/ is relatively compact set. We subdivide the proof into
several claims.

Claim 1: ˝ is a bounded set of C.J;X/.
Let x 2 Br and h 2 N.x/, then there exists f 2 SF;x such that, for each t 2 J , we
have

y.t/D t1�˛h.t/D T˛.t/x0C t
1�˛

Z t

0

.t � s/˛�1T˛.t � s/f .s/ds:

Taking into account the imposed assumptions, applying Lemma 7 and Hölder in-
equality, we obtain

ky.t/k �
M

� .˛/
kx0kC

Mt1�˛

� .˛/

Z t

0

.t � s/˛�1kf .s/kds

�
M

� .˛/
kx0kC

Mt1�˛

� .˛/

Z t

0

.t � s/˛�1Œ�.s/C cs1�˛kx.s/k�ds

�
M

� .˛/
kx0kC

M

� .˛/

�
1�q

˛�q
b

�1�q
k�k

L
1
q .J;X/

C
cMbr

� .˛C1/
WD l:
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Thus, for each y 2˝, we have kykC.J;X/ � l .
Claim 2: ˝ � C.J;X/ is equicontinuous.

For any y 2˝, let 0D t1 < t2 � b, by using .3/, Lemma 7 and Holder inequality, we
get

ky.t2/�y.0/k � kT˛.t2/x0�T˛.0/x0kCkt
1�˛
2

Z t2

0

.t2� s/
˛�1T˛.t2� s/f .s/dsk

� kT˛.t2/x0�T˛.0/x0kC
M

� .˛/

�
1�q

˛�q
t2

�1�q
k�k

L
1
q .J;X/

C
Mcrt2

� .˛C1/
! 0; as t2! 0C:

For 0 < t1 < t2 � b, selecting " > 0 sufficiently small and taking into account the
imposed assumptions, we have

ky.t2/�y.t1/k � kT˛.t2/x0�T˛.t1/x0kCkt
1�˛
2

Z t2

t1

.t2� s/
˛�1T˛.t2� s/f .s/dsk

Ck

Z t1

0

�
t1�˛2 .t2� s/

˛�1
� t1�˛1 .t1� s/

˛�1
�
T˛.t2� s/f .s/dsk

Ckt1�˛1

Z t1

0

.t1� s/
˛�1 ŒT˛.t2� s/�T˛.t1� s/�f .s/dsk

� kT˛.t2/x0�T˛.t1/x0kC
Mb1�˛

� .˛/

Z t2

t1

.t2� s/
˛�1Œ�.s/C cr�ds

C
M

� .˛/

Z t1

0

�
t1�˛1 .t1� s/

˛�1
� t1�˛2 .t2� s/

˛�1
�
.�.s/C cr/ds

Ck

Z t1�"

0

t1�˛1 .t1� s/
˛�1 ŒT˛.t2� s/�T˛.t1� s/�f .s/dsk

Ck

Z t1

t1�"

t1�˛1 .t1� s/
˛�1 ŒT˛.t2� s/�T˛.t1� s/�f .s/dsk

� I1CI2CI3CI4CI5;

where
I1 D kT˛.t2/x0�T˛.t1/x0k;

I2 D
Mb1�˛

� .˛/

Z t2

t1

.t2� s/
˛�1Œ�.s/C cr�ds;

I3 D
M

� .˛/

Z t1

0

�
t1�˛1 .t1� s/

˛�1
� t1�˛2 .t2� s/

˛�1
�
.�.s/C cr/ds;

I4 D sup
s2Œ0;t1�"�

kT˛.t2� s/�T˛.t1� s/k

"�
1�q

˛�q
b

�1�q
k�k

L
1
q .J;X/

C
bcr

˛

#
;
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I5 D
2Mb1�˛

� .˛/

Z t1

t1�"

.t1� s/
˛�1Œ�.s/C cr�ds:

According to Lemma 7(ii), it is easy to see that I1! 0 as t2! t1. Appling the abso-
lute continuity of the Lebesgue integral, we have I2 and I5 tend to zero independently
of x 2 Br as t2! t1; "! 0: Noting that

0 < Œt1�˛1 .t1� s/
˛�1
� t1�˛2 .t2� s/

˛�1�.�.s/C cr/ < t1�˛1 .t1� s/
˛�1.�.s/C cr/;

and
R t1
0 t

1�˛
1 .t1� s/

˛�1.�.s/C cr/ds exists, then by the Lebesgue dominated con-
vergence theorem, we have I3 tends to zero independently of x 2 Br as t2 ! t1.
Since .1/ and Lemma 7 imply that the continuity of T˛.t/.t > 0/ in t in the uniform
operator topology, it is easy to see that I4 tends to zero independently of x 2 Br as
t2 ! t1. Thus, ky.t2/� y.t1/k tends to zero independently of x 2 Br as t2 ! t1,
which means that ˝ is equicontinuous.

Claim 3: For any t 2 J , ˝.t/ is relatively compact in X .
This is trivial for t D 0, since ˝.0/ D f x0

� .˛/
g. So it is only necessary to consider

0 < t � b. Let 0 < t � b be fixed. For x 2 Br and h 2 N.x/ there exists f 2 SF;x
such that

y.t/D t1�˛h.t/D T˛.t/x0C t
1�˛

Z t

0

.t � s/˛�1T˛.t � s/f .s/ds:

For 8" 2 .0; t/; 8ı > 0, define

y";ı.t/D ˛

Z 1
ı

�M˛.�/T .t
˛�/x0d�

C˛t1�˛
Z t�"

0

Z 1
ı

.t � s/˛�1�M˛.�/T ..t � s/
˛�/f .s/d�ds

� T ."˛ı/

�
˛

Z 1
ı

�M˛.�/T .t
˛� � "˛ı/x0d�

C˛t1�˛
Z t�"

0

Z 1
ı

.t � s/˛�1�M˛.�/T ..t � s/
˛� � "˛ı/f .s/d�ds

�
:

Then from the compactness of T ."˛ı/."˛ı > 0/, we obtain that the set ˝";ı.t/ D
fy";ı.t/;y 2˝g is relatively compact in X for 8" 2 .0; t/ and 8ı > 0.
Moreover, we have

ky.t/�y";ı.t/k � k˛

Z ı

0

�M˛.�/T .t
˛�/x0d�k

Ck˛t1�˛
Z t

0

Z ı

0

.t � s/˛�1�M˛.�/T ..t � s/
˛�/f .s/d�dsk

Ck˛t1�˛
Z t

t�"

Z 1
ı

.t � s/˛�1�M˛.�/T ..t � s/
˛�/f .s/d�dsk
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� ˛Mkx0k

Z ı

0

�M˛.�/d�C˛Mb1�˛
Z t

0

.t � s/˛�1Œ�.s/C cr�ds

Z ı

0

�M˛.�/d�

C˛Mb1�˛
Z t

t�"

.t � s/˛�1Œ�.s/C cr�ds

Z 1
0

�M˛.�/d�

� ˛Mkx0k

Z ı

0

�M˛.�/d�C˛Mb1�˛
Z t

0

.t � s/˛�1Œ�.s/C cr�ds

Z ı

0

�M˛.�/d�

C
Mb1�˛

� .˛/

Z t

t�"

.t � s/˛�1Œ�.s/C cr�ds! 0; as "! 0; ı! 0:

Therefore, there are relatively compact sets arbitrarily close to the set ˝.t/; t > 0.
Hence the set ˝.t/; t > 0 is also relatively compact in X .

As a consequence of Claims 1-3 together with the Arzola-Ascoli theorem, we can
conclude that˝ �C.J;X/ is relatively compact set. Thus, one can easily obtain that
N.Br/ is relatively compact set in C1�˛.J;X/.

Step 3: N has a closed graph.
For any x 2 C1�˛.J;X/, according to .2/, there exists f 2 SF;x . Set y.t/ D

t1�˛x.t/ and define eN as follows

eN.y/D� eh 2 C.J;X/ Weh.t/D T˛.t/x0C t1�˛ R t0 .t � s/˛�1T˛.t � s/f .s/ds; f 2 SF;x; t 2 J
�
:

Taking into account the imposed assumptions, we see that eN W C.J;X/! C.J;X/.
Let yn ! y�.n!1/, ehn 2 eN.yn/; ehn !eh�.n!1/. We shall prove thateh� 2 eN.y�/. Sinceehn 2 eN.yn/, there exists fn 2 SF;xn , such that, for each t 2 J ,

ehn.t/D T˛.t/x0C t1�˛ Z t

0

.t � s/˛�1T˛.t � s/fn.s/ds:

We have to prove that there exists f� 2 SF;x� such that, for each t 2 J ,

eh�.t/D T˛.t/x0C t1�˛ Z t

0

.t � s/˛�1T˛.t � s/f�.s/ds:

Sinceehn!eh�.n!1/, we can obtain�ehn.t/�T˛.t/x0���eh�.t/�T˛.t/x0�! 0; as n!1:

Consider the linear continuous operator

� W L
1
q .J;X/! C.J;X/;

.�f /.t/D t1�˛
Z t

0

.t � s/˛�1T˛.t � s/f .s/ds:

Clearly it follows from Lemma 5 that � ıSF is a closed graph operator. Moreover,
we have ehn.t/�T˛.t/x0 2 � .SF;xn/:
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Since yn! y�, it follows from Lemma 5 thateh�.t/�T˛.t/x0 2 � .SF;x�/:
Therefore, eN has a closed graph. Thus, one can easily obtain that N has a closed
graph. Since N is a completely continuous multivalued map with compact valued,
we have N is u.s.c.

Step 4: A priori bounds on solutions.
Let x be a possible solution of (1.1). Then x 2 N.x/ and there exists f 2 SF;x

such that

x.t/D t˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/f .s/ds; t 2 J
0:

Moreover

t1�˛kx.t/k � kT˛.t/x0kCkt
1�˛

Z t

0

.t � s/˛�1T˛.t � s/f .s/dsk

�
M

� .˛/
kx0kC

t1�˛M

� .˛/

Z t

0

.t � s/˛�1
�
�.s/C cs1�˛kx.s/k

�
ds

�
M

� .˛/
kx0kC

M

� .˛/

�
1�q

˛�q
b

�1�q
k�k

L
1
q .J;X/

C
cb1�˛M

� .˛/

Z t

0

.t � s/˛�1s1�˛kx.s/kds

Let

v.t/D t1�˛kx.t/k; !.t/D
M

� .˛/

"
kx0kC

�
1�q

˛�q
b

�1�q
k�k

L
1
q .J;X/

#
;

from Lemma 8, we concluded that there exists a constant K DK.1�˛/ such that

t1�˛kx.t/k � !.t/C
cb1�˛MK

� .˛/

Z t

0

.t � s/˛�1!.s/ds

�
M

� .˛/

�
1C

cbMK

� .˛C1/

�"
kx0kC

�
1�q

˛�q
b

�1�q
k�k

L
1
q .J;X/

#
WDfM:

Hence
kxkC1�˛ �

fM:

Let U D fx 2 C1�˛.J;X/ W kxkC1�˛ <fM g, and consider the operator N W U !
Pcp;cv.X/. From the choice of U , there is no x 2 @U such that x 2 �N.x/ for some
� 2 .0;1/. As a consequence of Lemma 6, we deduce that N has a fixed point x in
U which is a mild solution of problem (1.1). The proof is complete. �
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4. EXISTENCE OF MILD SOLUTIONS FOR NONCONVEX CASE

In this section, we study the case when F not necessarily convex valued. Through-
out this section, we assume that X is a separable Banach space.

Let us introduce the following hypotheses.
.A1/: F W J �X !Pcp.X/ is a multivalued map such that

(1) the map t 7! F.t;u/ is measurable for each u 2X ,
(2) there exists a function � 2 L

1
 .J;RC/;  2 .0;˛/ and a constant d > 0 such

that
kF.t;x.t//kX � �.t/Cdt

1�˛
kx.t/k:

for a.e. t 2 J and all x 2 C1�˛.J;X/:

.A2/: There exist two functions l; m 2 L
1
ˇ .J;RC/; ˇ 2 .0;˛/ such that

Hd .F.t;x.t//;F .t;y.t///� l.t/kx�ykC1�˛ ; for a.e. t 2J and all x;y 2C1�˛.J;X/:

Theorem 2. Assume that .A1/� .A2/ are satisfied. If

M

� .˛/

�
1�ˇ

˛�ˇ
b

�1�ˇ
klk

L
1
ˇ .J;X/

< 1;

then problem (1.1) has at least one mild solution.

Proof. Define an operator N on C1�˛.J;X/ by

N.x/D

�
h 2 C1�˛.J;X/ W

h.t/D t˛�1T˛.t/x0C
R t
0 .t � s/

˛�1T˛.t � s/f .s/ds; f 2 SF;x; t 2 J
0

�
:

According to .A1/ and .A2/, N W C1�˛.J;X/! P .C1�˛.J;X// is well defined.
We will show thatN satisfies the assumptions of Lemma 1. The proof is given in two
steps.

Step 1: N.x/ 2Pcl.C1�˛.J;X// for each x 2 C1�˛.J;X/.
Indeed, let fhngn�0 2 N.x/ be such that hn! h in C1�˛.J;X/. Then there exists
fn 2 SF;x such that

hn.t/D t
˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/fn.s/ds; t 2 J
0:

According to .A1/, we infer that for a:e: t 2 J , we have

kfn.t/kX � �.t/Cdt
1�˛
kx.t/k

� �.t/CdkxkC1�˛ ;

which implies that fn is bounded in L
1
 .J;X/, and hence weakly converges to f in

L
1
 .J;X/. Let

h.t/D t˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/f .s/ds; t 2 J
0:
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Then, we get

khn�hkC1�˛ D sup
t2J

kt1�˛
Z t

0

.t � s/˛�1T˛.t � s/Œfn.s/�f .s/�dsk

� b1�˛ sup
t2J

k

Z t

0

.t � s/˛�1T˛.t � s/Œfn.s/�f .s/�dsk:

We can easily show that, the mapping g!
R �
0.��s/

˛�1T˛.��s/g.s/ds WL
1
 .J;X/!

C.J;X/ is compact. Then khn�hkC1�˛ ! 0; as n!1, which implies that h 2
N.x/.

Step 2: There exists 0 < � < 1 such that

Hd .N.x/;N.y//� �kx�ykC1�˛ ; 8 x;y 2 C1�˛.J;X/:

Let x;y 2 C1�˛.J;X/ and h 2N.x/. Then there exists f 2 SF;x such that

h.t/D t˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/f .s/ds; t 2 J
0:

According to .A2/ it follows that

Hd .F.t;x.t//;F .t;y.t///� l.t/kx�ykC1�˛ :

Hence there is ! 2 F.t;y.t// such that

kf .t/�!k � l.t/kx�ykC1�˛ ; t 2 J:

Consider the multivalued map U W J !P .X/ given by

U.t/D
˚
x 2X W kf .t/�xk � l.t/kx�ykC1�˛

	
:

The set V.t/DU.t/\F.t;y.t// is nonempty since it contains !. Since the multival-
ued operator V is measurable with nonempty, closed values (see [3, 5]), there exists
a function f , which is a measurable selection for V . Thus, f .t/ 2 F.t;y.t// and

kf .t/�f .t/k � l.t/kx�ykC1�˛ ; for a.e. t 2 J:

Let

h.t/D t˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/f .s/ds:

Then

kt1�˛h.t/� t1�˛h.t/k D kt1�˛
Z t

0

.t � s/˛�1T˛.t � s/Œf .s/�f .s/�dsk

�
Mt1�˛

� .˛/

Z t

0

.t � s/˛�1l.s/kx�ykC1�˛ds

�
M

� .˛/

�
1�ˇ

˛�ˇ
b

�1�ˇ
klk

L
1
ˇ .J;X/

kx�ykC1�˛ :
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Thus

kh�hkC1�˛ �
M

� .˛/

�
1�ˇ

˛�ˇ
b

�1�ˇ
klk

L
1
ˇ .J;X/

kx�ykC1�˛ :

By an analogous relation, obtained by interchanging the roles of x and y, it follows
that

Hd .N.x/;N.y//�
M

� .˛/

�
1�ˇ

˛�ˇ
b

�1�ˇ
klk

L
1
ˇ .J;X/

kx�ykC1�˛ :

Thus, N is a contraction. Therefore, applying Lemma 1 we conclude that N has a
fixed point x, which is a mild solution of problem (1.1). The proof is complete. �

5. FILIPPOV’S THEOREM

In this section, we assume that X is a separable Banach space.
Let y0 2X; g 2 L

1
q .J;X/; q 2 .0;˛/; and y 2 C1�˛.J;X/ be a mild solution of

the following semilinear problem:�
LD˛y.t/D Ay.t/Cg.t/; t 2 .0;b�; 0 < ˛ < 1;

I 1�˛
0C

y.t/jtD0 D y0:

Then

y.t/D t˛�1T˛.t/y0C

Z t

0

.t � s/˛�1T˛.t � s/g.s/ds:

We introduce the following hypotheses.
.B1/ F W J �X !Pcp.X/ is a multivalued map such that

(1) for all u 2X the map t 7! F.t;u/ is measurable,
(2) there exists a function �.t/ 2 L

1
q .J;RC/; q 2 .0;˛/ and a constant k > 0

such that

kF.t;x.t//kX D supfkf .t/kX W f .t/ 2 F.t;x.t//g � �.t/Ckt1�˛kx.t/k;

a.e. t 2 J , for all x 2 C1�˛.J;X/
(3) the map � W t ! d.g.t/;F .t;x.t// is L

1
q .q 2 .0;˛// integrable.

.B2/ There exists K > 0 such that

Hd .F.t;x.t//;F .t;´.t///�Kt
1�˛
kx.t/�´.t/k; 8x;´ 2 C1�˛.J;X/:

For convenience, let us introduce some notations.

N1 D
1

� .˛/

�
1�q

˛�q
b
˛�q
1�q

�1�q
k�kL 1

q
.J;X/; N2 D

1

� .˛/
ky0�x0k:

Theorem 3. Suppose that hypotheses .B1/ and .B2/ are satisfied. If KMb < 1,
then problem (1.1) has at least one mild solution x satisfying the estimates

kx�ykC1�˛ �MN2C
KM 2b.b1�˛N1CN2/

.1�KMb/� .˛C1/
CMN1b

1�˛:
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Proof. We construct a sequence of functions fxngn2N which will be shown to
converge to some solution of problem (1.1) on the interval Œ0;b�, namely to�

LD˛x.t/ 2 Ax.t/CF.t;x.t//; a:e: t 2 .0;b�; 0 < ˛ < 1;

I 1�˛
0C

x.t/jtD0 D x0:

Let f0 D g on Œ0;b� and x0.t/D y.t/; t 2 .0;b�, i.e.

x0.t/D t
˛�1T˛.t/y0C

Z t

0

.t � s/˛�1T˛.t � s/f0.s/ds; t 2 .0;b�:

Then define the multivalued map U1 W Œ0;b� ! P .X/ by U1.t/ D F.t;x0.t//

\B.f0.t/;�.t//. Since g and � are measurable, the ball B.f0.t/;�.t// is meas-
urable (see [5]). Moreover F.t;x0.t// is measurable (see [3]) and U1 is nonempty.
Indeed, according to Lemma 4, we obtain a measurable selection u of F.t;x0.t//
such that

ku.t/�g.t/k � d.g.t/;F .t;x0.t///D�.t/:

Then u.t/2U1.t/, proving our claim. We deduce that the multivalued operatorU1.t/
is measurable (see [3,5]). X is a separable Banach space, by Lemma 2, there exists a
function t ! f1.t/ which is a measurable selection for U1 and

kf1.t/�f0.t/k ��.t/:

Consider

x1.t/D t
˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/f1.s/ds; t 2 .0;b�:

For each t 2 Œ0;b�, we have

t1�˛kx1.t/�x0.t/k

D kT˛.t/x0�T˛.t/y0kCkt
1�˛

Z t

0

.t � s/˛�1T˛.t � s/Œf1.s/�f0.s/�dsk

�
M

� .˛/
ky0�x0kC

Mt1�˛

� .˛/

Z t

0

.t � s/˛�1�.s/ds

�
M

� .˛/
ky0�x0kC

Mt1�˛

� .˛/

�
1�q

˛�q
b
˛�q
1�q

�1�q
k�k

L
1
q .J;RC/

�MN2CMN1t
1�˛:

Using the fact thatF.t;x1.t// is measurable, the ballB.f1.t/;Kt1�˛kx1.t/�x0.t/k/
is also measurable (see [5]). From .B2/ we have

Hd .F.t;x1.t//;F .t;x0.t///�Kt
1�˛
kx1.t/�x0.t/k:

Hence there exists ! 2 F.t;x1.t// such that

kf1.t/�!k �Kt
1�˛
kx1.t/�x0.t/k:
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Consider the following multivalued map U2.t/ D F.t;x1.t// \ B.f1.t/;Kt
1�˛

kx1.t/�x0.t/k/, which is nonempty since it contains !. Therefore U2.t/ is meas-
urable with nonempty, closed values (see [3, 5]). Thus there exists a measurable
selection f2.t/ 2 U2.t/ and

kf2.t/�f1.t/k �Kt
1�˛
kx1.t/�x0.t/k:

Define

x2.t/D t
˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/f2.s/ds; t 2 .0;b�:

Then for every t 2 Œ0;b�, we have

t1�˛kx2.t/�x1.t/k D kt
1�˛

Z t

0

.t � s/˛�1T˛.t � s/Œf2.s/�f1.s/�dsk

�
t1�˛MK

� .˛/

Z t

0

.t � s/˛�1ŒMN1s
1�˛
CMN2�ds

�
KM 2N1t

2�˛� .2�˛/

� .2/
C
tM 2KN2

� .˛C1/
:

Let U3.t/D F.t;x2.t//\B.f2.t/;Kt1�˛kx2.t/�x1.t/k/. Arguing as for U2, we
can prove that U3 is a measurable multivalued map with nonempty closed values.
Then there exists a measurable selection f3.t/ 2 U3.t/ and

kf3.t/�f2.t/k �Kt
1�˛
kx2.t/�x1.t/k:

Define

x3.t/D t
˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/f3.s/ds; t 2 .0;b�:

For t 2 Œ0;b�, we have

t1�˛kx3.t/�x2.t/k

D kt1�˛
Z t

0

.t � s/˛�1T˛.t � s/Œf3.s/�f2.s/�dsk

�
t1�˛MK

� .˛/

Z t

0

.t � s/˛�1
�
KM 2N1s

2�˛� .2�˛/

� .2/
C
sM 2KN2

� .˛C1/

�
ds

�
t3�˛M 3K2N1� .2�˛/� .3�˛/

� .2/� .3/
C
t2M 3K2N2� .2/

� .˛C1/� .˛C2/
:

Repeating the process for nD 0;1;2;3; :::, we have

t1�˛kxn.t/�xn�1.t/k �
Kn�1M ntn�˛N1� .2�˛/� .3�˛/:::� .n�˛/

� .2/� .3/:::� .n/

C
Kn�1M ntn�1N2� .2/� .3/:::� .n�1/

� .˛C1/� .˛C2/:::� .˛Cn�1/
: (5.1)
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By induction, suppose that (5.1) holds for some n and check (5.1) for nC 1. Let
UnC1.t/D F.t;xn.t//\B.fn;Kt

1�˛kxn.t/�xn�1.t/k/. Since UnC1 is a measur-
able multivalued map with nonempty closed values, there exists a measurable selec-
tion fnC1.t/ 2 UnC1.t/ and

kfnC1.t/�fn.t/k �Kt
1�˛
kxn.t/�xn�1.t/k;

which allows us to define

xnC1.t/D t
˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/fnC1.s/ds; t 2 .0;b�:

Then, for a.e. t 2 Œ0;b�, we have

t1�˛kxnC1.t/�xn.t/k

D kt1�˛
Z t

0

.t � s/˛�1T˛.t � s/ŒfnC1.s/�fn.s/�dsk

�
t1�˛MK

� .˛/

Z t

0

.t � s/˛�1
�
Kn�1M nsn�˛N1� .2�˛/� .3�˛/:::� .n�˛/

� .2/� .3/:::� .n/

�
ds

C
t1�˛MK

� .˛/

Z t

0

.t � s/˛�1
�
Kn�1M nsn�1N2� .2/� .3/:::� .n�1/

� .˛C1/� .˛C2/:::� .˛Cn�1/

�
ds

�
KnM nC1tnC1�˛N1� .2�˛/� .3�˛/:::� .nC1�˛/

� .2/� .3/:::� .nC1/

C
KnM nC1tnN2� .2/� .3/:::� .n/

� .˛C1/� .˛C2/:::� .˛Cn/
: (5.2)

Consequently, (5.2) holds true for all n 2N . According to (5.2), we have

t1�˛kxnC1.t/�xn.t/k �K
nM nC1bnC1�˛N1CK

nM nC1bnN2:

Since KMb < 1, we infer that fxngn2N is a cauchy sequence in C1�˛.J;X/, con-
verging uniformly to a limit function x 2 C1�˛.J;X/. Hence there exists a constant
L> 0, such that kxnkC1�˛ � L. Since fn.t/ 2 F.t;xn�1.t//, from B1.b/ we have

kfn.t/k � �.t/Ckt
1�˛
kxn�1.t/k � �.t/Ckkxn�1kC1�˛ � �.t/CkL;

which means that ffngn2N is uniformly bounded in L
1
q .J;X/ and hence weakly

converges to f in L
1
q .J;X/. Let

x.t/D t˛�1T˛.t/x0C

Z t

0

.t � s/˛�1T˛.t � s/f .s/ds; t 2 .0;b�:

Then we have

kxn�xkC1�˛ D sup
t2J

kt1�˛
Z t

0

.t � s/˛�1T˛.t � s/Œfn.s/�f .s/�dsk
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� b1�˛ sup
t2J

k

Z t

0

.t � s/˛�1T˛.t � s/Œfn.s/�f .s/�dsk:

Noting that the mapping g!
R �
0.� � s/

˛�1T˛.� � s/g.s/ds W L
1
q .J;X/! C.J;X/

is compact, then kxn � xkC1�˛ ! 0; as n!1. We find that the function x is a
solution to problem (1.1) on Œ0;b�. Moreover, we have

t1�˛kx.t/�y.t/k D kT˛.t/x0�T˛.t/y0k

Ckt1�˛
Z t

0

.t � s/˛�1T˛.t � s/Œf .s/�g.s/�dsk

�MN2Ckt
1�˛

Z t

0

.t � s/˛�1T˛.t � s/Œf .s/�fn.s/�dsk

Ckt1�˛
Z t

0

.t � s/˛�1T˛.t � s/Œfn.s/�g.s/�dsk:

Noting that

kfn.t/�g.t/k �

nX
iD1

kfi .t/�fi�1.t/k

�

nX
iD2

Kt1�˛kxi�1.t/�xi�2.t/kC�.t/

�

1X
iD1

Kt1�˛kxi .t/�xi�1.t/kC�.t/

�

1X
iD1

ŒKiM ibi�˛N1CK
iM ibi�1N2�C�.t/

�
KM.b1�˛N1CN2/

1�KMb
C�.t/;

we have

t1�˛kx.t/�y.t/k �MN2Ckt
1�˛

Z t

0

.t � s/˛�1T˛.t � s/Œf .s/�fn.s/�dsk

Ckt1�˛
Z t

0

.t � s/˛�1T˛.t � s/Œfn.s/�g.s/�dsk

�MN2C
KM 2b.b1�˛N1CN2/

.1�KMb/� .˛C1/
CMN1b

1�˛; n!1:

Then, we have

kx�ykC1�˛ �MN2C
KM 2b.b1�˛N1CN2/

.1�KMb/� .˛C1/
CMN1b

1�˛:
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The proof is complete. �

6. AN EXAMPLE

Let X D L2.Œ0;��;R/. As an application of our results, consider the following
fractional partial differential inclusions.8̂̂<̂
:̂

LD
3
4

0Cx.t;y/ 2
@2

@y2
x.t;y/CF.t;x.t;y//; a:e: t 2 .0;b�; y 2 Œ0;��;

x.t;0/D x.t;�/D 0; t 2 .0;b�;

I
1
4

0C
x.t;y/jtD0 D x0.y/; y 2 Œ0;��:

(6.1)

where LD
3
4

0C is the Riemann-Liouville fractional derivative of order 3
4
; b > 0, I

1
4

0C

is Riemann-Liouville integral of order 1
4

, J D Œ0;b�. F is a given multivalued map.
Define the operator A by Ax D x00, with the domain

D.A/D fx 2X W x; x0 are absolutely continuous, x00 2X; x.t;0/D x.t;�/D 0g:

Then A can be written as

Ax D�

1X
nD1

n2 < x;en > en; x 2D.A/;

where en.y/D
q
2
�

sinny; 0� y ��; nD 1;2; :::: is an orthonormal basis ofX . It is
well known that A is the infinitesimal generator of a strongly continuous semigroup
T .t/ on X which is compact, given by

T .t/x D

1X
nD1

e�n
2t < x;en > en; x 2X; and kT .t/k � e�t � 1DM; t � 0:

Define x.t;y/D x.t/.y/, then system (6.1) can be written in the abstract form given
by (1.1). We assume that F W J �X !P .X/ satisfy the following conditions.
.F1/: F W J �X !Pcp;cv.X/ is measurable to t for each fixed u 2X , u.s.c. to u

for a.e. t 2 J , and for each x 2 C 1
4
.J;X/ the set

SF;x D ff 2 L
1.J;X/ W f .t/ 2 F.t;x.t//g

is nonempty.
.F2/: There exists a function �.t/ 2 L

1
q .J;RC/; q 2 .0; 3

4
/ and a constant c > 0

such that

kF.t;x.t//kX D supfkf .t/kX W f .t/ 2 F.t;x.t//g � �.t/C ct
1
4 kx.t/k;

for a.e. t 2 J and all x 2 C 1
4
.J;X/.

Thus by Theorem 1, system (6.1) has at least one mild solution.
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