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Abstract. In this paper, we give the definition of harmonic curvature function some special
curves such as helix, slant curves, Mannheim curves and Bertrand curves. Then, we recall the
characterizations of helices [7], slant curves (see [19]) and Mannheim curves (see [12]) in three
dimensional Lie groups using their harmonic curvature function.

Moreover, we define Bertrand curves in a three dimensional Lie group G with a bi-invariant
metric and the main result in this paper is given as (Theorem 7): A curve ˛ W I � R!G with the
Frenet apparatus fT;N;B;�;�g is a Bertrand curve if and only if

��C��H D 1

where �, � are constants and H is the harmonic curvature function of the curve ˛:
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1. INTRODUCTION

The general theory of curves in a Euclidean space (or more generally in a Rieman-
nian manifolds) have been developed a long time ago and we have a deep knowledge
of its local geometry as well as its global geometry. In the theory of curves in Eu-
clidean space, one of the important and interesting problem is characterizations of a
regular curve. In the solution of the problem, the curvature functions k1 .or �/ and
k2 .or �/ of a regular curve have an effective role. For example: if k1 D 0D k2, then
the curve is a geodesic or if k1 Dconstant¤ 0 and k2 D 0; then the curve is a circle
with radius .1=k1/, etc. Thus we can determine the shape and size of a regular curve
by using its curvatures. Another way in the solution of the problem is the relationship
between the Frenet vectors of the curves (see [15]).

For instance Bertrand curves: In the classical diferential geometry of curves, J.
Bertrand studied curves in Euclidean 3-space whose principal normals are the prin-
cipal normals of another curve. In [3], he showed that a necessary and sufficient
condition for the existence of such a second curve is that a linear relationship with
constant coefficients shall exist between the first and second curvatures of the given
original curve. In other word, if we denote first and second curvatures of a given
curve by k1 and k2 respectively, then for �;� 2 R we have �k1C�k2 D 1. Since
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the time of Bertrand’s paper, pairs of curves of this kind have been called Conjugate
Bertrand Curves, or more commonly Bertrand Curves (see [15]):

In 1888, C. Bioche [4] give a new theorem to obtaining Bertrand curves by using
the given two curves C1 and C2 in Euclidean 3�space. Later, in 1960, J. F. Burke [5]
give a theorem related with Bioche’s thorem on Bertrand curves.

The following properties of Bertrand curves are well known: If two curves have
the same principal normals, (i) corresponding points are a fixed distance apart; (ii)
the tangents at corresponding points are at a fixed angle. These well known prop-
erties of Bertrand curves in Euclidean 3-space was extended by L. R. Pears in [21]
to Riemannian n�space and found general results for Bertrand curves. When we
applying these general result to Euclidean n-space, it is easily find that either k2
or k3 is zero; in other words, Bertrand curves in ,En.n > 3/ are degenerate curves.
This result is restated by Matsuda and Yorozu [18]. They proved that there is no
special Bertrand curves in En.n > 3/ and they define new kind, which is called
.1;3/�type Bertrand curves in 4�dimensional Euclidean space. Bertrand curves and
their characterizations were studied by many authours in Euclidean space as well
as in Riemann–Otsuki space, in Minkowski 3- space and Minkowski spacetime (for
instance see [1, 2, 10, 14, 17, 22, 23].)

The degenarete semi-Riemannian geometry of Lie group is studied by Çöken
and Çiftçi [8]. Moreover, they obtanied a naturally reductive homogeneous semi-
Riemannian space using the Lie group. Then Çiftçi [7] defined general helices in
three dimensional Lie groups with a bi-invariant metric and obtained a generalization
of Lancret’s theorem. Also he gave a relation between the geodesics of the so-called
cylinders and general helices. Then, Okuyucu et al. [19] defined slant helices in
three dimensional Lie groups with a bi-invariant metric and obtained some character-
izations using their harmonic curvature function.

Recently, Izumiya and Takeuchi [13] have introduced the concept of slant helix in
Euclidean 3-space. A slant helix in Euclidean space E3 was defined by the property
that its principal normal vector field makes a constant angle with a fixed direction.
Also, Izumiya and Takeuchi showed that ˛ is a slant helix if and only if the geodesic
curvature of spherical image of principal normal indicatrix .N / of a space curve ˛

�N .s/D

 
�2�

�2C �2
�3=2 ��� �0

!
.s/

is a constant function .
Harmonic curvature functions were defined by Özdamar and Hacısalihoğlu [20].

Recently, many studies have been reported on generalized helices and slant helices
using the harmonic curvatures in Euclidean spaces and Minkowski spaces [6,11,16].
Then, Okuyucu et al. [19] defined slant helices in three dimensional Lie groups
with a bi-invariant metric and obtained some characterizations using their harmonic
curvature function.
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In this paper, first of all, we give the definition of harmonic curvature function
some special curves such as helix, slant curves. Then, we recall the characterizations
of helices [7], slant curves (see [19]) and Mannheim curves (see [12]) in three di-
mensional Lie groups using their harmonic curvature function. Moreover, we define
Bertrand curves in a three dimensional Lie group G with a bi-invariant metric and
then the main result to this paper is given as (Theorem 7): A curve ˛ W I � R!G
with the Frenet apparatus fT;N;B;�;�g is a Bertrand curve if and only if

��C��H D 1

where �, � are constants and H is the harmonic curvature function of the curve ˛:
Note that three dimensional Lie groups admitting bi-invariant metrics are SO .3/ ;

SU 2 and Abelian Lie groups. So we believe that our characterizations about Bertrand
curves will be useful for curves theory in Lie groups.

2. PRELIMINARIES

Let G be a Lie group with a bi-invariant metric h ;i and D be the Levi-Civita
connection of Lie group G: If g denotes the Lie algebra of G then we know that g is
isomorphic to TeG where e is neutral element of G: If h ;i is a bi-invariant metric on
G then we have

hX;ŒY;Z�i D hŒX;Y � ;Zi (2.1)

and

DXY D
1

2
ŒX;Y � (2.2)

for all X;Y and Z 2 g:
Let ˛ W I � R!G be an arc-lenghted regular curve and fX1;X2;:::;Xng be an

orthonormal basis of g: In this case, we write that any two vector fields W and Z
along the curve ˛ as W D

Pn
iD1wiXi and Z D

Pn
iD1´iXi where wi W I ! R and

´i W I ! R are smooth functions. Also the Lie bracket of two vector fields W and Z
is given

ŒW;Z�D

nX
iD1

wi´i
�
Xi ;Xj

�
and the covariant derivative of W along the curve ˛ with the notation D˛ÍW is given
as follows

D˛ÍW D
�

W C
1

2
ŒT;W � (2.3)

where T D ˛0 and
�

W D
Pn
iD1

�
wiXi or

�

W D
Pn
iD1

dw
dt
Xi : Note that if W is the

left-invariant vector field to the curve ˛ then
�

W D 0 (see for details [9]).
Let G be a three dimensional Lie group and .T;N;B;�;�/ denote the Frenet ap-

paratus of the curve ˛. Then the Serret-Frenet formulas of the curve ˛ satisfies:
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DT T D �N , DTN D��T C �B , DTB D��N

where D is Levi-Civita connection of Lie group G and � D
�

kT k:

Definition 1 ([7]). Let ˛ W I � R!G be a parametrized curve. Then ˛ is called a
general helix if it makes a constant angle with a left-invariant vector field X . That is,

hT .s/;Xi D cos� for all s 2 I;

for the left-invariant vector fieldX 2g is unit length and � is a constant angle between
X and T , which is the tangent vector field of the curve ˛.

Proposition 1 ([7]). Let ˛ W I � R!G be a parametrized curve with the Frenet
apparatus .T;N;B;�;�/ then �G is defined by

�G D
1

2
hŒT;N � ;Bi (2.4)

or

�G D
1

2�2�

�� �

hT; ŒT;T �iC
1

4�2�

�

kŒT;T �k2:

Definition 2 ([19]). Let ˛ W I � R!G be an arc length parametrized curve. Then
˛ is called a slant helix if its principal normal vector field makes a constant angle
with a left-invariant vector field X which is unit length. That is,

hN.s/;Xi D cos� for all s 2 I;

where � ¤ �
2

is a constant angle between X and N which is the principal normal
vector field of the curve ˛.

Definition 3 ([19]). Let ˛ W I � R!G be an arc length parametrized curve with
the Frenet apparatus fT;N;B;�;�g : Then the harmonic curvature function of the
curve ˛ is defined by

H D
� � �G

�

where �G D 1
2 hŒT;N � ;Bi.

Theorem 1 ([7]). Let ˛ W I � R!G be a parametrized curve with the Frenet
apparatus .T;N;B;�;�/. The curve ˛ is a general helix, if and only if

� D c�C �G

where c is a constant.

Also, the next theorem can be given by using the definition of the harmonic curvature
function of the curve ˛.

Theorem 2. Let ˛ W I �R!G be a parametrized curve with the Frenet apparatus
.T;N;B;�;�/. The curve ˛ is a general helix, if and only if the harmonic curvature
function of the curve ˛ is a constant function.
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Proof. It is obvious using Definition 3 and Theorem 1. �

Theorem 3 ([19]). Let ˛ W I � R!G be a unit speed curve with the Frenet
apparatus .T;N;B;�;�/. Then ˛ is a slant helix if and only if

�N D
�.1CH 2/

3
2

H Í
D tan�

is a constant where H is a harmonic curvature function of the curve ˛ and � ¤ �
2

is
a constant.

Theorem 4 ([12]). Let ˛ W I � R!G be a parametrized curve with arc length
parameter s and the Frenet apparatus .T;N;B;�;�/. Then, ˛ is Mannheim curve if
and only if

��
�
1CH 2

�
D 1; for all s 2 I (2.5)

where � is constant and H is the harmonic curvature function of the curve ˛.

Theorem 5. Let ˛ W I � R!G be a parametrized curve with arc length para-
meter s. Then ˇ is the Mannheim partner curve of ˛ if and only if the curvature �ˇ
and the torsion �ˇ of ˇ satisfy the following equation

d�ˇHˇ

ds
D
�ˇ

�
.1C�2�2ˇH

2
ˇ /

where � is constant and Hˇ is the harmonic curvature function of the curve ˇ:

3. BERTRAND CURVES IN A THREE DIMENSIONAL LIE GROUP

In this section, we define Bertrand curves and their characterizations are given in
a three dimensional Lie group G with a bi-invariant metric h ;i. Also we give some
characterizations of Bertrand curves using the special cases of G.

Definition 4. A curve ˛ in 3-dimensional Lie group G is a Bertrand curve if there
exists a special curve ˇ in 3-dimensional Lie groupG such that principal normal vec-
tor field of ˛ is linearly dependent principal normal vector field of ˇ at corresponding
point under  which is bijection from ˛ to ˇ: In this case ˇ is called the Bertrand
mate curve of ˛ and .˛;ˇ/ is called Bertrand curve couple.

The curve ˛ W I � R!G in 3-dimensional Lie group G is parametrized by the
arc-length parameter s and from Definition 4 Bertrand mate curve of ˛ is given ˇ W
I � R!G in 3-dimensional Lie group G with the help of Figure 1 such that

ˇ .s/D ˛ .s/C�.s/N .s/ ; s 2 I

where � is a smooth function on I and N is the principal normal vector field of ˛.
We should remark that the parameter s generally is not an arc-length parameter of ˇ:
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FIGURE 1. Bertrand Partner Curves

So, we define the arc-length parameter of the curve ˇ by

s D  .s/D

sZ
0

dˇ .s/ds

ds
where  W I �! I is a smooth function and holds the following equality

 0 .s/D �H

q
�2C�2 (3.1)

for s 2 I:

Proposition 2 ([19]). Let ˛ W I �R!G be an arc length parametrized curve with
the Frenet apparatus fT;N;Bg. Then the following equalities

ŒT;N �D hŒT;N � ;BiB D 2�GB

ŒT;B�D hŒT;B� ;N iN D�2�GN

hold.

Theorem 6. Let ˛ W I � R!G and ˇ W I � R!G be a Bertrand curve couple
with arc-length parameter s and s; respectively. Then corresponding points are a
fixed distance apart for all s 2 I , that is,

d .˛ .s/ ;ˇ .s//D constant, for all s 2 I

Proof. From Definition 4, we can simply write

ˇ .s/D ˛ .s/C�.s/N .s/ (3.2)
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Differentiating Eq. (3.2) with respect to s and using Eq. (2.3), we get

dˇ .s/

ds
 0 .s/D

d˛ .s/

ds
C�0 .s/N .s/C�.s/

�

N .s/

D .1��.s/� .s//T .s/C�0 .s/N .s/C�.s/� .s/B .s/�
1

2
ŒT;N �

and with the help of Proposition 2, we obtain

dˇ .s/

ds
 0 .s/D .1��.s/� .s//T .s/C�0 .s/N .s/C�.s/..� � �G/.s//B .s/

or

Tˇ .s/D
1

 0 .s/

�
.1��.s/� .s//T .s/C�0 .s/N .s/C�.s/..� � �G/.s//B .s/

�
:

And then, we know that
˚
Nˇ ..s//;N .s/

	
is a linearly dependent set, so we have˝

Tˇ .s/ ;Nˇ .s/
˛
D

1

 0 .s/

�
.1��.s/� .s//

˝
T .s/;Nˇ .s/

˛
C�0 .s/

˝
N.s/;Nˇ .s/

˛
C�.s/� .s/

˝
B.s/;Nˇ .s/

˛ �
Since

˝
Tˇ .s/ ;Nˇ .s/

˛
D 0, we get �0 .s/D 0 from the last formula. That is, �.s/

is a constant function on I: This completes the proof. �

Theorem 7. If ˛ W I � R!G is a parametrized Bertrand curve with arc length
parameter s and the Frenet apparatus .T;N;B;�;�/, then ˛ satisfy the following
equality

�� .s/C�� .s/H .s/D 1; for all s 2 I (3.3)

where �, � are constants and H is the harmonic curvature function of the curve ˛:

Proof. Let ˛ W I � R!G be a parametrized Bertrand curve with arc length para-
meter s then we can write

ˇ .s/D ˛ .s/C�N .s/

Differentiating the above equality with respect to s and by using the Frenet equations,
we get

dˇ .s/

ds
 0 .s/D

d˛ .s/

ds
C�.s/

�

N

D .1��.s/� .s//T .s/C�.s/� .s/B .s/�
1

2
ŒT;N �

and with the help of Proposition 2, we obtain

Tˇ .s/D
.1��� .s//

 0 .s/
T .s/C

�..� � �G/.s//

 0 .s/
B .s/ :

As
˚
Nˇ ..s//;N .s/

	
is a linearly dependent set, we can write

Tˇ .s/D cos� .s/T .s/C sin� .s/B.s/ (3.4)
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where

cos� .s/D
.1��� .s//

 0 .s/
;

sin� .s/D
�..� � �G/.s//

 0 .s/
:

If we differentiate Eq. (3.4) and consider
˚
Nˇ .s/ ;N .s/

	
is a linearly dependent set

we can easily see that � is a constant function. So, we obtain
cos�
sin�

D
1��� .s/

�..� � �G/.s//

or taking c D
cos�
sin�

; we get

�� .s/C c�..� � �G/.s//D 1:

Then denoting �D c�D constant and using Definition 3, we have

�� .s/C�� .s/H .s/D 1; for all s 2 I;

which completes the proof. �

Corollary 1. The measure of the angle between the tangent vector fields of the
Bertrand curve couple .˛;ˇ/ is constant.

Proof. It is obvious from the proof of the above Theorem. �

Remark 1. It is unknown whether the reverse of the above Theorem holds. Be-
cause, for the proof of the reverse we must consider a special Frenet curve ˇ .s/ D
˛ .s/C�N .s/ in its proof. So, we give the following Theorem.

Theorem 8. Let ˛ W I �R!G be a parametrized Bertrand curve whose curvature
functions � and harmonic curvature function H of the curve ˛ satisfy �� .s/C
�� .s/H .s/ D 1; for all s 2 I . If the curve ˇ given by ˇ .s/ D ˛ .s/C�N .s/ for
all s 2 I is a special Frenet curve, then .˛;ˇ/ is the Bertrand curve couple.

Proof. Let ˛ W I �R!G be a parametrized Bertrand curve whose curvature func-
tion � and harmonic curvature function H of the curve ˛ satisfy �� .s/C

�� .s/H .s/ D 1 for all s 2 I . If the curve ˇ given by ˇ .s/ D ˛ .s/C�N .s/ for
all s 2 I is a special Frenet curve, then differentiating this equality with respect to s
and by using Eq. (3.1) with the equation �� .s/C�� .s/H .s/D 1, we have

Tˇ .s/D
�p

�2C�2
T .s/C

�p
�2C�2

B .s/ : (3.5)

Then, if we differentiate the last equation with respect to s and by using the Frenet
formulas we obtain

�ˇ .s/Nˇ .s/ 
0 .s/D

� .s/p
�2C�2

.���H .s//N .s/ : (3.6)
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Thus, for each s 2 I; the vector fieldNˇ .s/ of ˇ is linearly dependent the vector field
N .s/ of ˛ at corresponding point under the bijection from ˛ to ˇ: This completes the
proof. �

Proposition 3. Let ˛ W I � R!G be an arc-lenghted Bertrand curve with the
Frenet vector fields fT;N;Bg and ˇ W I � R!G be a Bertrand mate of ˛ with the
Frenet vector fields

˚
Tˇ ;Nˇ ;Bˇ

	
: Then �Gˇ D �G for the curves ˛ and ˇ where

�G D
1
2 hŒT;N � ;Bi and �Gˇ D

1
2

˝�
Tˇ ;Nˇ

�
;Bˇ

˛
:

Proof. Let ˛ W I �R!G be an arc-lenghted Bertrand curve with the Frenet vector
fields fT;N;Bg and ˇ W I � R!G be a Bertrand mate of ˛ with with the Frenet
vector fields

˚
Tˇ ;Nˇ ;Bˇ

	
: From Eq. (3.5) and considering Nˇ D�N we have

Bˇ .s/D�
�p

�2C�2
T .s/C

�p
�2C�2

B .s/ : (3.7)

Since �Gˇ D 1
2

˝�
Tˇ ;Nˇ

�
;Bˇ

˛
, using the equalities of the Frenet vector fields Tˇ ;Nˇ

and Bˇ we obtain �Gˇ D �G ; which completes the proof. �

Theorem 9. Let ˛ W I � R!G be a parametrized Bertrand curve with curvature
functions �, � and ˇ W I � R!G be a Bertrand mate of ˛ with curvatures functions
�ˇ , �ˇ : Then the relations between these curvature functions are

�ˇ .s/D
�� .s/��� .s/H .s/�
�2C�2

�
H .s/

; (3.8)

�ˇ .s/D
�� .s/C�� .s/H .s/�
�2C�2

�
H .s/

C �G (3.9)

Proof. If we take the norm of Eq. (3.6) and use Eq. (3.1), we get Eq. (3.8). Then
differentiating Eq. (3.7) and using the Frenet formulas, we have

�

Bˇ .s/ 
0 .s/D�

�p
�2C�2

�

T .s/C
�p

�2C�2

�

B .s/ ;

D�
�p

�2C�2
�.s/N.s/C

�p
�2C�2

�
��.s/N.s/�

1

2
ŒT;B�

�
In the above equality, using Eq. (3.1) and Proposition 2, we get�

�ˇ � �Gˇ
�
Nˇ .s/D

1

�H
�
�2C�2

� .��C��H/N.s/:
If we take the norm of the last equation and use Proposition 3, we get Eq. (3.9),
which completes the proof. �

Theorem 10. Let ˛ W I � R!G be a parametrized curve with Frenet apparatus
fT;N;B;�;�g and ˇ W I � R!G be a curve with Frenet apparatus
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Tˇ ;Nˇ ;Bˇ ;�ˇ ; �ˇ

	
: If .˛;ˇ/ is a Bertrand curve couple then ��ˇHHˇ is a con-

stant function.

Proof. We assume that .˛;ˇ/ is a Bertrand curve couple. Then we can write

˛ .s/D ˇ .s/��.s/Nˇ .s/ : (3.10)

If we use the similar method as in the proof of Theorem 7 and consider Eq. (3.10),
then we can easily see that ��ˇHHˇ is a constant function. �

Theorem 11. Let ˛ W I � R!G be a parametrized Bertrand curve with Frenet
apparatus fT;N;B;�;�g and ˇ W I � R!G be a Bertrand mate of the curve ˛ with
Frenet apparatus

˚
Tˇ ;Nˇ ;Bˇ ;�ˇ ; �ˇ

	
: Then ˛ is a slant helix if and only if ˇ is a

slant helix.

Proof. Let �N and �Nˇ be the geodesic curvatures of the principal normal curves
of ˛ and ˇ; respectively. Then using Theorem 9 we can easily see that

�Nˇ D�
�.1CH 2/

3
2

H Í
D��N :

So, with the help of Theorem 3 we complete the proof. �

Theorem 12. Let ˛ W I �R!G be a parametrized Bertrand curve with curvature
functios �, � and ˇ W I � R!G be a Bertrand mate of the curve ˛ with curvature
functions �ˇ ; �ˇ : Then ˛ is a general helix if and only if ˇ is a general helix.

Proof. Let ˛ be a helix. From Theorem 1, we have that H is a constant function.
Then using Theorem 9, we get

�ˇ � �Gˇ

�ˇ
D
�C�H

���H
: (3.11)

Since H is a constant function, Eq. (3.11) is constant. So, ˇ is a general helix.
Conversely, assume that ˇ be a general helix. So, �ˇ��Gˇ

�ˇ
D constant. From Eq.

(3.11) c D �C�H
���H

D constant and then H D c���
�C�c

Dconstant. Consequently ˛ is a
general helix and this completes the proof. �
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