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Abstract. For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a
function f from the vertex set V.G/ to the set of all subsets of the set f1;2; : : : ;kg such that
for any vertex v 2 V.G/ with f .v/ D ¿, the condition

S
u2N.v/f .u/ D f1;2; : : : ;kg is ful-

filled, where N.v/ is the neighborhood of v. The weight of a kRDF f is the value !.f / DP
v2V jf .v/j. A kRDF f is called a global k-rainbow dominating function (GkRDF) if f is

also a kRDF of the complement G of G. The global k-rainbow domination number of G, de-
noted by 
grk.G/, is the minimum weight of a GkRDF on G. In this paper, we initiate the study
of the global k-rainbow domination number and we establish some sharp bounds for it.
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1. INTRODUCTION

In this paper, G is a simple graph with vertex set V.G/ and edge set E.G/ (briefly
V;E). The order jV j of G is denoted by n D n.G/. Denote by Kn the complete
graph, by Cn the cycle and by Pn the path of order n, respectively. For every vertex
v 2 V.G/, the open neighborhoodNG.v/DN.v/ is the set fu 2 V.G/ j uv 2E.G/g
and its closed neighborhood is the set NG Œv� D NŒv� D N.v/[ fvg. The degree
of a vertex v 2 V is degG.v/ D deg.v/ D jN.v/j. The open neighborhood of a set
S � V is the set NG.S/DN.S/D[v2SN.v/, and the closed neighborhood of S is
the set NG ŒS�D NŒS�D N.S/[S . The minimum and maximum degrees of G are
respectively denoted by ı.G/ D ı and �.G/ D �. A leaf of a graph is a vertex of
degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex
is a vertex adjacent to at least two leaves. For a vertex v in a rooted tree T , let C.v/
denote the set of children of v. Let D.v/ denote the set of descendants of v and
DŒv�DD.v/[fvg. The maximal subtree at v is the subtree of T induced by DŒv�,
and is denoted by Tv. We use [12, 19] for terminology and notation which are not
defined here.

A subset S of vertices ofG is a dominating set ifNŒS�DV . The domination num-
ber 
.G/ is the minimum cardinality of a dominating set ofG. A dominating set S of
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G is global dominating set ofG if S is a dominating set both ofG andG. The global
domination number 
g.G/ of G is the minimum cardinality of a global dominating
set. The global domination number was introduced independently by Brigham and
Dutton [7] (the term factor domination number was used) and Sampathkumar [15]
and has been studied by several authors (see for example [3, 20]). Since then some
variants of the global domination parameter, such as connected (total) global dom-
ination, global minus domination, and global Roman domination, have been studied
[4, 5, 10, 13].

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is
a function f from the vertex set V.G/ to the set of all subsets of the set f1;2; : : : ;kg
such that for any vertex v 2 V.G/ with f .v/ D ¿, the condition

S
u2N.v/f .u/ D

f1;2; : : : ;kg is fulfilled. The weight of a kRDF f is the value !.f /D
P

v2V jf .v/j.
The k-rainbow domination number of a graphG, denoted by 
rk.G/, is the minimum
weight of a kRDF of G. A 
rk.G/-function is a k-rainbow dominating function of
G with weight 
rk.G/. Note that 
r1.G/ is the classical domination number 
.G/.
The k-rainbow domination number was introduced by BreLsar, Henning, and Rall
[6] and has been studied by several authors (see for example [1, 2, 8, 9, 11, 14, 16–
18]). A 2-rainbow dominating function (briefly, rainbow dominating function) f W
V �! P .f1;2g/ can be represented by the ordered partition .V0;V1;V2;V1;2/ (or
.V

f
0 ;V

f
1 ;V

f
2 ;V

f
1;2/ to refer f ) of V , where V0 D fv 2 V j f .v/D ¿g, V1 D fv 2

V j f .v/D f1gg, V2 D fv 2 V j f .v/D f2gg and V1;2 D fv 2 V j f .v/D f1;2gg. In
this representation, its weight is !.f /D jV1jC jV2jC2jV1;2j.

A kRDF f is called a global k-rainbow dominating function (GkRDF) if f is also
a kRDF of the complement G of G. The global k-rainbow domination number of G,
denoted by 
grk.G/, is the minimum weight of a GkRDF onG. A 
grk.G/-function
is a GkRDF of G with weight 
grk.G/. Since every global k-rainbow dominating
function f ofG is a kRDF ofG andG, and assigning 1 to the vertices with nonempty
label under f is a global dominating set of G, and since assigning f1;2; : : : ;kg to the
vertices of a global dominating set yields a GkRDF, we deduce that

maxf
g.G/;
rk.G/;
rk.G/g � 
grk.G/� k
g.G/: (1.1)

We note that the global k-rainbow domination number can differ significantly from
the k-rainbow domination number. For example, for n � kC 1, 
rk.Kn/ D k and

grk.Kn/D n.

Our purpose in this paper is to initiate the study of the global k-rainbow domina-
tion number in graphs. We study basic properties of the global k-rainbow domination
number and we establish some bounds for it.

We make use of the following results in this paper.

Theorem A ([14]). For any graph G of order n and maximum degree �.G/ � 1,


rk.G/�
kn

�.G/Ck
.
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Theorem B ([6]). For n� 1,


r2.Pn/D
jn
2

k
C1:

Theorem C ([6]). For n� 3,


r2.Cn/D
jn
2

k
C

ln
4

m
�

jn
4

k
:

Theorem D ([1]). If G is a graph of order n, then 
rk.G/� n��.G/Ck�1.

Theorem E ([9]). LetG be a connected graph. If there is a path v3v2v1 inG with
deg.v2/ D 2 and deg.v1/ D 1, then G has a 
r2.G/-function f such that f .v1/ D

f1g, and 2 2 f .v3/.

Since the function f defined by f .v/D f1g for each v 2 V.G/ is a GkRDF of a
graph G, we have the first part of the following observation. The second part is easy
to see and therefore its proof is omitted.

Observation 1. If G is a graph of order n, then 
grk.G/ � n. Furthermore, if
1� n� 4, then 
grk.G/D n.

2. GRAPHS WITH 
rk.G/D 
grk.G/

In this section we provide some sufficient conditions for a graph to satisfy 
rk.G/D


grk.G/.

Proposition 1. IfG is a disconnected graph with at least two components of order
at least k, then


grk.G/D 
rk.G/:

Proof. Let G1;G2; : : : ;Gk be the components of G. Assume, without loss of
generality, that jV.Gi /j � k for i D 1;2. Let f be a 
rk.G/-function. Obviously,P

v2V.Gi / jf .v/j � k for i D 1;2. If f .x/ D ¿ for some x 2 V.Gi /, then clearlyS
v2V.Gi /f .v/ D f1;2; : : : ;kg, otherwise we may assume

S
v2V.Gi /f .v/ D

f1;2; : : : ;kg for i D 1;2 because jV.G1/j � k and jV.G2/j � k. Then f is a GkRDF
of G and hence 
grk.G/� 
rk.G/. Now the result follows from (1.1). �

According to Proposition 1, ifG is the disjoint union of two copies of the complete
graph Kn .n� k/, then 
grk.G/D 
rk.G/:

Proposition 2. If G is a disconnected graph with r � 2 components G1;G2; : : :,
Gr of order at most k�1 such that

Pr
iD1 jV.Gi /j � k, then


grk.G/D 
rk.G/:

Proof. Assume that
Sr

iD1V.Gi /Dfv1;v2; : : : ;vsg, and let f be a 
rk.G/-function.
Then clearly f .vi /¤¿ for each i . Define g W V.G/�!P .f1;2; : : : ;kg/ by g.vi /D

fk� i � 1g for 1 � i � k� 1, g.vi / D f1g for i D k;kC 1; : : : ; s and g.x/ D f .x/
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for x 2 V.G/� fv1;v2; : : : ;vsg. Then obviously g is a GkRDF of G of weight
!.g/D 
rk.G/ and the proof is complete. �

According to Proposition 2, if G is the disjoint union of k copies ofK1 and a copy
of the complete graph Kn .n� k/, then 
grk.G/D 
rk.G/:

Theorem 1. For any connected graph G with radius rad.G/ � 4, 
gr2.G/ D


r2.G/.

Proof. Let f D .V0;V1;V2;V1;2/ be a 
r2.G/-function such that jV1;2j is max-
imum. We show that f is a G2RDF of G. Suppose to the contrary that f is not
a 2RDF of G. Then there exists a vertex v 2 V0 such that V1;2 � N.v/ and either
V1 �N.v/ or V2 �N.v/. Assume, without loss of generality, that V1 �N.v/. Let u
be an arbitrary vertex in V.G/. If u 2 V1[V1;2, then d.u;v/D 1. If u 2 V0, then u
and v have a common neighbor in V1 or V1;2 implying that d.u;v/ � 2. Let u 2 V2.
If u has a neighbor in V1[V1;2, then d.u;v/ � 2 as above. If u has a neighbor w
in V0, then d.u;v/ � d.u;w/C d.w;v/ � 3. Otherwise, since G is connected, u
has a neighbor x in V2. Then the function g defined by g.u/ D ¿;g.x/ D f1;2g
and g.y/D f .y/ for y 2 V.G/�fu;xg, is a 
r2.G/-function which contradicts the
choice of f . Thus f is a G2RDF of G and the proof is complete. �

Corollary 1. Let G be a connected graph of diameter diam.G/� 7. Then


gr2.G/D 
r2.G/:

The next results is an immediate consequence of Theorems B, C and 1.

Corollary 2. For n� 8,


gr2.Pn/D
jn
2

k
C1:

Corollary 3. For n� 8,


gr2.Cn/D
jn
2

k
C

ln
4

m
�

jn
4

k
:

3. BOUNDS ON THE GLOBAL k-RAINBOW DOMINATION NUMBER

In this section we present some sharp lower and upper bounds on 
grk.G/.

Proposition 3. For any integer k � 2 and any graph G of order n� 2k,


grk.G/� 2k:

Proof. Let f be a 
grk.G/-function, and let V0 D fv 2 V.G/ jf .v/ D ¿g. If
V0 D¿, then 
grk.G/D n � 2k. Let V0 ¤¿ and v 2 V0. Then

S
x2NG.v/f .x/D

f1;2; : : : ;kg and
S

x2NG.v/f .x/ D f1;2; : : : ;kg. Since NG.v/\NG.v/ D ¿, we
obtain 
grk.G/D !.f /� 2k, as desired. �
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This bound is sharp for the disjoint union of two copies of the complete graph
Kn .n� kC1/.

Proposition 4. For any graph G of order n � 4, 
gr2.G/D 4 if and only if of G
satisfies one of the following properties.
(i) nD 4,
(ii) there exist two vertices u and v in G such that N.u/\N.v/ D ¿ and NŒu�[
NŒv�D V ,
(iii) there exist three distinct vertices u;v;w inG such thatN.u/\.N.v/[N.w//D
¿ and N.u/[ .N.v/\N.w//D V �fu;v;wg,
(iv) there exist four distinct vertices u;v;w;x inG such that .N.u/\N.v//nfw;xgD
¿; .N.w/\N.x//n fu;vg D ¿, .N Œu�[NŒv�/n fw;xg D V �fw;xg and .N Œw�[
NŒx�/n fu;vg D V �fu;vg.

Proof. If n D 4, then it is clear that 
gr2.G/ D 4. Let n � 5. If (ii) holds, then
the function f W V �!P .f1;2g/ defined by f .u/D f .v/D f1;2g and f .´/D¿ for
´2V.G/�fu;vg, is a 2RDF ofG andG which yields 
gr2.G/D 4 by Proposition 3.
If (iii) holds, then the function f W V �!P .f1;2g/ defined by f .u/D f1;2g;f .v/D
f1g;f .w/Df2g and f .´/D¿ for ´2V.G/�fu;v;wg, is a 2RDF ofG andG which
yields 
gr2.G/ D 4 again. Let (iv) hold. Then the function f W V �! P .f1;2g/

defined by f .u/D f .v/D f1g;f .w/D f .x/D f2g and f .´/D ¿ for ´ 2 V.G/�
fu;v;x;wg, is a 2RDF of G and G. This implies that 
gr2.G/D 4.

Conversely, Let 
gr2.G/D 4 and let f D .V0;V1;V2;V1;2/ be a 
gr2.G/-function
such that jV1;2j is maximum. We consider three cases.
Case 1. jV1;2j D 2.
Let V1;2 D fu;vg. Then V0 D V.G/�fu;vg. Since f is a G2RDF, each vertex in
w 2 V.G/�fu;vg must be adjacent to a vertex in fu;vg in both G and G. It follows
that NŒu�[NŒv�D V and N.u/\N.v/D¿, i.e. G satisfies (ii).
Case 2. jV1;2j D 1.
Then jV1j D jV2j D 1. Let V1;2 D fug;V1 D fvg and V2 D fwg. Hence V0 D V.G/�

fu;v;wg. Every vertex of w 2 V.G/�fu;v;wgmust be adjacent to u or both of v;w
in G and G because f is a 2RDF of G and G. This yields N.u/\ .N.v/[N.w//D
¿ and N.u/[ .N.v/\N.w//D V �fu;v;wg. Thus G satisfies (iii) in this case.
Case 3. jV1;2j D 0.
If V0D¿, then V1[V2DV.G/which implies that 4D 
gr2.G/D jV1[V2j D n, i.e.
G satisfies (i). Now assume that V0 ¤¿ and let ´ 2 V0. Since f is a 2RDF of G and
G,

S
v2NG.´/f .v/Df1;2g and

S
v2NG.´/f .v/Df1;2g. Assume that u;w 2NG.´/

and x;v 2 NG.´/ such that f .u/ D f .v/ D f1g and f .w/ D f .x/ D f2g. Since
f is a G2RDF, each vertex in V.G/� fu;v;w;xg must be adjacent to a vertex in
fu;vg and a vertex in fw;xg in G and G. It follows that .N.u/\N.v// n fw;xg D
¿; .N.w/\N.x//n fu;vg D ¿, .N Œu�[NŒv�/n fw;xg D V �fw;xg and .N Œw�[
NŒx�/n fu;vg D V �fu;vg. Thus G satisfies (iv). This completes the proof. �



754 J. AMJADI, S.M. SHEIKHOLESLAMI, AND L. VOLKMANN

Proposition 5. Let k � 2 be an integer. If the graph G has r � 1 components
G1;G2; : : : ;Gr with

Pr
iD1 jV.Gi /j � k�1 then


grk.G/� 
rk.G/Ck�

rX
iD1

jV.Gi /j:

Proof. Let
Sr

iD1V.Gi /Dfv1;v2; : : : ;vsg, and let f be a 
rk.G/-function. Clearly,
f .vi / ¤ ¿ for each i . Define g W V.G/ �! P .f1;2; : : : ;kg/ by g.vs/ D fs;sC

1; : : : ;kg;g.vi / D fig for i D 1;2; : : : ; s � 1 and g.x/ D f .x/ for
x 2 V.G/�fv1;v2; : : : ;vsg. Then obviously g is a GkRDF ofG with weight !.g/D

rk.G/Ck� s and so 
grk.G/� 
rk.G/Ck�

Pr
iD1 jV.Gi /j. �

Let H be the disjoint union of r � k � 1 isolated vertices and a star K1;s with
s � k. Then 
rk.H/D rCk and 
grk.H/D 2k. This example demonstrates that
Proposition 5 is tight.

Proposition 6. Let G be a graph of order n � 4 and u;v 2 V.G/. If uv 62 E.G/,
then


grk.G/� n�deg.u/�deg.v/C2jN.u/\N.v/jC2k�2;

and if uv 2E.G/, then


grk.G/� n�deg.u/�deg.v/C2jN.u/\N.v/jC2k:

Proof. Define f W V.G/ �!P .f1;2; : : : ;kg/ as follows

f .´/D

8̂̂<̂
:̂
f1;2; : : : ;kg if ´ 2 fu;vg

¿ if ´ 2 ..N.u/[N.v//�fu;vg/n .N.u/\N.v//

f1g otherwise:

It is easy to see that f is a GkRDF of G which attains the bound. This completes
the proof. �

Corollary 4. If G is a connected triangle-free graph of order n� 4, then


grk.G/�minfn��.G/� ı.G/C2k;
rk.G/C2k�1g:

Proof. By considering a vertex of maximum degree and one of its neighbors, it
follows from Proposition 6 that 
grk.G/ � n��.G/� ı.G/C 2k. Hence, it is
sufficient to show that 
grk.G/� 
rk.G/C2k�1. If n� 
rk.G/C2k�1, the result
is immediate. Let n > 
rk.G/C2k�1 and let f be a 
rk.G/-function. Then there
exists a vertex u such that f .u/D¿. Then u has a neighbor v such that jf .v/j � 1.
Define g W V.G/ �! P .f1;2; : : : ;kg/ by g.u/ D g.v/ D f1;2; : : : ;kg and g.x/ D
f .x/ otherwise. Clearly, g is a GkRDF ofG and hence 
grk.G/� 
rk.G/C2k�1.
This completes the proof. �
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Proposition 7. Let k� 2 be an integer, and letG be a graph of diameter diam.G/�
5. Then


grk.G/� 
rk.G/C2k�2:

Proof. If G is disconnected, then the result follows from Propositions 1 and 5.
Henceforth, we assume that G is connected. Let f be a 
rk.G/-function. Let
v1v2 : : :vd be a diametral path in G. If f .v1/ D f .vd / D ¿, then we haveS

x2N.v1/f .x/Df1;2; : : : ;kg and
S

x2N.vd /f .x/Df1;2; : : : ;kg. Since diam.G/�
5, we have N.v1/\N.vd / D ¿. It follows that f is a GkRDF of G and hence

grk.G/ D 
rk.G/. If f .v1/ ¤ ¿ and f .vd / ¤ ¿, then the function g W V �!
P .f1;2; : : : ;kg/ defined by g.v1/D g.vd /D f1;2; : : : ;kg and g.x/D f .x/ for x 2
V.G/�fv1;vd g, is a GkRDF ofG of weight at most!.f /C2k�2 and so 
grk.G/�


rk.G/C 2k � 2. Now let f .v1/ D ¿ and f .vd / ¤ ¿ (the case f .v1/ ¤ ¿ and
f .vd / D ¿ is similar). Define g W V �! P .f1;2; : : : ;kg/ by g.vd / D f1;2; : : : ;kg

and g.x/D f .x/ for x 2 V.G/�fvd g. Obviously, g is a GkRDF of G of weight at
most !.f /Ck�1 and so 
grk.G/� 
rk.G/Ck�1. This completes the proof. �

Proposition 8. If G is a graph of diameter 3 or 4, then


grk.G/� 
rk.G/C2k:

Proof. Let f be a 
rk.G/-function, and let u and v be two vertices of G such
that d.u;v/ D diam.G/. Then the function g W V �! P .f1;2; : : : ;kg/ defined by
g.u/D g.v/D f1;2; : : : ;kg and g.x/D f .x/ for x 2 V.G/�fu;vg, is a GkRDF of
G and therefore 
grk.G/� 
rk.G/C2k. �

Theorem 2. If G is a graph of order n� 4 with minimum degree ı.G/, then


grk.G/� 
rk.G/C ı.G/Ck�1:

This bound is sharp for stars K1;t .t � 2k�1/ by Proposition 3.

Proof. If G is disconnected, then the result follows from Propositions 1 and 5.
Therefore we assume that G is connected. Let u be a vertex of minimum degree
ı.G/, f be a 
rk.G/-function and B D fx 2N.u/ j f .x/D¿g.

If f .u/D¿, then
S

v2N.u/�B f .v/D f1;2; : : : ;kg. Then obviously the function
g W V.G/ �! P .f1;2; : : : ;kg/ defined by g.u/ D f1;2; : : : ;kg;g.x/ D f1g if x 2 B
and g.´/D f .´/ otherwise, is a GkRDF of G with weight at most 
rk.G/C ı.G/C

k�1 and hence 
grk.G/� 
rk.G/C ı.G/Ck�1.
Let jf .u/j � 1. Define g W V.G/ �! P .f1;2; : : : ;kg/ by g.u/ D f1;2; : : : ;kg,

g.v/ D f1g if v 2 B and g.´/ D f .´/ for each ´ 2 V.G/� .B [ fug/. It is clear
that g is a GkRDF of G with weight at most 
rk.G/C ı.G/C k � 1 and hence

grk.G/� 
rk.G/C ı.G/Ck�1. This completes the proof. �
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4. GLOBAL RAINBOW DOMINATION NUMBERS OF TREES

According to Theorem 2, for any tree T of order n� 4 we have


gr2.T /� 
r2.T /C2: (4.1)

In this section we characterize all extremal trees attaining equality in (4.1). We begin
with some lemmas giving some sufficient conditions for a tree to have global 2-
rainbow domination number less than 
r2.T /C 2. As a special case, Corollary 1
and Proposition 3 imply the next results.

Corollary 5. For any tree T with diam.T /� 7, 
gr2.T /D 
r2.T /.

Corollary 6. If T is a star of order n� 4, then 
gr2.T /D 
r2.T /C2.

Lemma 1. Let T be a tree. If T has two strong support vertices, then 
gr2.T / �


r2.T /C1.

Proof. Let u and v be two strong support vertices of T and let f be a 
r2.T /-
function. Obviously we may assume that f .u/D f .v/D f1;2g. Since T is a tree, u
and v have at most one common neighbor. If u and v have no common neighbor, then
clearly f is a G2RDF of T and hence 
gr2.T /D 
r2.T /. If u and v has a common
neighbor, sayw, then the function g defined by g.w/D f .w/[f1g and g.x/D f .x/
otherwise, is a G2RDF of T of weight at most 
r2.T /C1 and the result follows. �

Lemma 2. Let T be a tree. If diam.T /D 6, then 
gr2.T /D 
r2.T /.

Proof. Let P D v1v2 : : :v7 be a diametral path of T and let f be a 
r2.T /-
function. Root T at v1. If v2 and v6 are strong support vertices, then f is a 
gr2.T /-
function since v2 and v6 have no common neighbor. Hence 
gr2.T /D 
r2.T /. As-
sume, without loss of generality, that deg.v2/D 2. By Theorem E, we may assume
f .v1/ D f1g and 2 2 f .v3/. If v6 is a strong support vertex, then we can assume
f .v6/ D f1;2g and clearly f is a G2RDF of T implying that 
gr2.T / D 
r2.T /.
Henceforth, we assume deg.v6/D 2. By Theorem E, we may assume f .v7/D f1g

and 2 2 f .v5/. Define the function g by g.v/D f1g if v 2 V.Tv5
/ and f .v/D f2g,

g.v/D f2g if v 2 V.Tv5
/ and f .v/D f1g and g.x/D f .x/ otherwise. Clearly, g is

a G2RDF of T of weight 
r2.T / and hence 
gr2.T /D 
r2.T /. This completes the
proof. �

Lemma 3. Let T be a tree. If diam.T /D 5, then 
gr2.T /� 
r2.T /C1.

Proof. Let P D v1v2 : : :v6 be a diametral path of T , and let f be a 
r2.T /-
function. If v2 and v5 are strong support vertices, then f is a 
gr2.T /-function
and hence 
gr2.T / D 
r2.T /. Assume, without loss of generality, that all support
vertices adjacent to v4 have degree 2. By Theorem E, we may assume f .v6/D f1g

and 22 f .v4/. Then the function g defined by g.v3/D f .v3/[f1g and g.x/D f .x/
otherwise, is a G2RDF of T of weight at most 
r2.T /C 1 that implies 
gr2.T / �


r2.T /C1. �
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A subdivision of an edge uv is obtained by removing the edge uv, adding a new
vertex w, and adding edges uw and wv. The subdivision graph S.G/ is the graph
obtained fromG by subdividing each edge ofG. The subdivision star S.K1;t / for t �
2, is called a healthy spider. A wounded spider St is the graph formed by subdividing
at most t �1 of the edges of a starK1;t for t � 2. The center of a spider, is the center
of the star whose subdivision produced the spider.

Definition 1. For 1� i � 2, let Bi be the family of trees T defined as follows and
let B D

S2
iD1 Bi .

B1 W T is a spider St for some t � 2 with exception of stars, wounded spiders
St .t � 3/ with exactly one wounded leg or wounded spiders St .t � 3/ with at least
four healthy legs.
B2 W T is obtained from stars K1;r1

;K1;r2
; : : : ;K1;rj

where rk � 3 for 1 � k � j ,
with centers y1;y2; : : : ;yj .j � 2/ by adding a new vertex x and joining x to all
vertices yj and adding at most one pendant edge at x.

Lemma 4. Let T be a tree. If diam.T / D 4, then 
gr2.T / � 
r2.T /C 1 and
equality holds if and only if T 2B.

Proof. Let diam.T /D 4 and let P D v1v2v3v4v5 be a diametral path of T . Let f
be a 
r2.T /-function. Consider the following cases.
Case 1. deg.v2/D 3.
Suppose u;v1 are the leaves adjacent to v2. Then we can assume that f .v2/D f1;2g.
If deg.v4/ � 3, then we may assume f .v4/ D f1;2g and if deg.v4/ D 2 then by
Theorem E we can assume f .v5/D f1g and 2 2 f .v3/. Define g W V.T /!P .f1;2g/

by g.v1/D f1g;g.u/D f2g;g.v2/D¿ and g.x/D f .x/ otherwise. Obviously g is
a G2RDF of T of weight 
r2.T / and hence 
gr2.T /D 
r2.T /.

By Case 1, we may assume that all support vertices adjacent to v3 have degree
different from 3.
Case 2. deg.v2/ > 3.
Then f .v2/Df1;2g. If deg.v4/D 2, then by Theorem E we may assume f .v5/Df1g

and 2 2 f .v3/, and clearly f is a G2RDF of T and hence 
gr2.T / D 
r2.T /. So
we assume that each support vertex adjacent to v3 has degree at least 4. If v3 is
a strong support vertex, then f .v3/ D f1;2g and clearly f is a G2RDF of T and
hence 
gr2.T /D 
r2.T /. Let v3 be not a strong support vertex. Then T 2B2 and
T has at most two 
r2.T /-functions which none of them is G2RDF of T and hence

gr2.T / � 
r2.T /C 1. On the other hand, the function g defined by g.v3/ D f1g

and g.x/ D f .x/ otherwise is a G2RDF of T of weight 
r2.T /C 1 implying that

gr2.T /D 
r2.T /C1.

By Cases 1 and 2, we may assume that all support vertices adjacent to v3 have
degree 2. Thus T is a spider of diameter 4. If T is a wounded spiders St .t � 3/ with
exactly one wounded leg, then the function g that assigns ¿ to all support vertices
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of T with exception of the center of spider, f1g to the center of spider and the leaf
adjacent to the center of spider, and f2g to the other leaves, is a G2RDF of T of weight

r2.T / implying that 
gr2.T / D 
r2.T /. Now T is a wounded spider St .t � 3/

with at least four healthy legs. Suppose x is the center of T and u1;u2;u3;u4 are
leaves at distance two from x. Then the function g that assigns f1;2g to x, ¿ to all
support vertices of T , f1g to u1;u2, and f2g to the other leaves, is a G2RDF of T
of weight 
r2.T / implying that 
gr2.T /D 
r2.T /. Finally let T be a spider that is
not a wounded spider St .t � 3/ with exactly one wounded leg or a wounded spider
St .t � 3/ with at least four healthy legs, that is T 2B1. It is easy to see that in this
case 
gr2.T /D 
r2.T /C1 and the proof is complete. �

For p;q � 1, a double starDS.p;q/ is a tree with exactly two vertices that are not
leaves, with one adjacent to p leaves and the other to q leaves.

Lemma 5. Let T be a tree. If diam.T / D 3, then 
gr2.T / � 
r2.T /C 1 and
equality holds if and only if T DDS.p;q/ with q � p D 1.

Proof. Let diam.T /D 3. Then T is a double star DS.p;q/ with q � p � 1. Let
u;v be the vertices of T of degree p and q, respectively. If p � 2, then u;v are strong
support vertices with no common neighbor and it follows from the proof of Lemma
1 that 
gr2.T / D 
r2.T /. Henceforth, assume p D 1. If q D 1, then T D P4 and
clearly 
gr2.T /D 
r2.T /C 1. Let q � 2 and u0 be the leaf adjacent to u. Then T
has exactly two 
r2.T /-functions fi .i D 1;2/ defined by fi .v/Df1;2g;fi .u

0/Dfig

and fi .x/D¿ otherwise. Obviously, none of f1 or f2 is not a G2RDF of T and also
the function g defined by g.u/ D f1g and g.x/ D f1.x/ for x 2 V.T /� fug is a
G2RDF of T that yields 
gr2.T /� 
r2.T /C1. �

The next theorem is an immediate consequence of (4.1), Corollaries 5, 6 and Lem-
mas 2, 3, 4, 5.

Theorem 3. Let T be a tree of order n � 4. Then 
gr2.T /D 
r2.T /C 2 if and
only if T is the star K1;t for some t � 3.
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