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Abstract. For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a
function f from the vertex set V(G) to the set of all subsets of the set {1,2,..., k} such that
for any vertex v € V(G) with f(v) = @, the condition UueN(v) fu) ={1,2,...,k} is ful-
filled, where N(v) is the neighborhood of v. The weight of a kRDF f is the value w(f) =
> vey | f(v)|. AKRDF f is called a global k-rainbow dominating function (GKRDF) if f is
also a kRDF of the complement G of G. The global k-rainbow domination number of G, de-
noted by yg £ (G), is the minimum weight of a GKRDF on G. In this paper, we initiate the study
of the global k-rainbow domination number and we establish some sharp bounds for it.

2010 Mathematics Subject Classification: 05C69

Keywords: k-rainbow dominating function, k-rainbow domination number, global k-rainbow
dominating function, global k-rainbow domination number

1. INTRODUCTION

In this paper, G is a simple graph with vertex set V(G) and edge set E(G) (briefly
V,E). The order |V| of G is denoted by n = n(G). Denote by K, the complete
graph, by C, the cycle and by P, the path of order n, respectively. For every vertex
v € V(G), the open neighborhood Ng(v) = N(v) is the set {u € V(G) |uv € E(G)}
and its closed neighborhood is the set Ng[v] = N[v] = N(v) U {v}. The degree
of a vertex v € V is degg (v) = deg(v) = |N(v)|. The open neighborhood of a set
S CVistheset Ng(S) = N(S) = Uyes N(v), and the closed neighborhood of S is
the set Ng|[S] = N[S] = N(S)U S. The minimum and maximum degrees of G are
respectively denoted by 6(G) = § and A(G) = A. A leaf of a graph is a vertex of
degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex
is a vertex adjacent to at least two leaves. For a vertex v in a rooted tree T, let C(v)
denote the set of children of v. Let D(v) denote the set of descendants of v and
D[v] = D(v) U{v}. The maximal subtree at v is the subtree of T induced by D|[v],
and is denoted by T,. We use [12, 19] for terminology and notation which are not
defined here.

A subset S of vertices of G is a dominating set if N[S]= V. The domination num-
ber y(G) is the minimum cardinality of a dominating set of G. A dominating set S of
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G is global dominating set of G if S is a dominating set both of G and G. The global
domination number yg(G) of G is the minimum cardinality of a global dominating
set. The global domination number was introduced independently by Brigham and
Dutton [7] (the term factor domination number was used) and Sampathkumar [15]
and has been studied by several authors (see for example [3,20]). Since then some
variants of the global domination parameter, such as connected (total) global dom-
ination, global minus domination, and global Roman domination, have been studied
[4,5,10,13].

For a positive integer k, a k-rainbow dominating function (KRDF) of a graph G is
a function f from the vertex set V(G) to the set of all subsets of the set {1,2,...,k}
such that for any vertex v € V(G) with f(v) = &, the condition [ J,,¢ Nw) J @) =
{1,2,....k} is fulfilled. The weight of a kRDF f is the value w(f) =Y,y | f(v)].
The k-rainbow domination number of a graph G, denoted by y, 1 (G), is the minimum
weight of a kRDF of G. A y,1(G)-function is a k-rainbow dominating function of
G with weight y, 1 (G). Note that y,1(G) is the classical domination number y(G).
The k-rainbow domination number was introduced by Bresar, Henning, and Rall
[6] and has been studied by several authors (see for example [1,2,8,9, 11, 14, 16—

1). A 2-rainbow dominating function (briefly, rainbow dominating function) f :
V — P({1,2}) can be represented by the ordered partition (Vp, V1, V2,V1,2) (or
(Vf,Vlf,sz,VI{Z) torefer f)of V, where Vo ={veV | f(v) =3}, Vi={ve
VIifwy =1} Va={veV]| fv)={2}}and Vip ={ve V| f(v) ={1.2}}. In
this representation, its weight is w(f) = |V1| + | V2| +2|V1,2|.

A KRDF f is called a global k-rainbow dominating function (GKRDF) if f is also
a kRDF of the complement G of G. The global k-rainbow domination number of G,
denoted by yg 1 (G), is the minimum weight of a GKRDF on G. A Y, (G)-function
is a GKRDF of G with weight y,,£(G). Since every global k-rainbow dominating
function f of G is akRDF of G and G, and assigning 1 to the vertices with nonempty
label under f is a global dominating set of G, and since assigning {1,2,...,k} to the
vertices of a global dominating set yields a GKRDF, we deduce that

max{yg(G),vk(G), vk (G)} < vgrk (G) < kyg(G). (1.1)

We note that the global k-rainbow domination number can differ significantly from
the k-rainbow domination number. For example, for n > k + 1, y,1(K,) = k and
Yerk(Kn) =n.

Our purpose in this paper is to initiate the study of the global k-rainbow domina-
tion number in graphs. We study basic properties of the global k-rainbow domination
number and we establish some bounds for it.

We make use of the following results in this paper.

Theorem A ([14]). For any graph G of order n and maximum degree A(G) > 1,
kn

Yrk(G) = m
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Theorem B ([6]). Forn > 1,
n
VrZ(Pn) = LEJ +1.
Theorem C ([6]). Forn > 3,

n n n
o = 5]+[5]-13)
Theorem D ([1]1). If G is a graph of order n, then y,;.(G) <n—A(G) +k —1.

Theorem E ([9]). Let G be a connected graph. If there is a path v3v,vy in G with
deg(vy) = 2 and deg(vy) = 1, then G has a yr2(G)-function f such that f(vi) =
{1}, and 2 € f(v3).

Since the function f defined by f(v) = {1} for each v € V(G) is a GKRDF of a
graph G, we have the first part of the following observation. The second part is easy
to see and therefore its proof is omitted.

Observation 1. If G is a graph of order n, then yg,x(G) < n. Furthermore, if
1 <n <4, then yg, r(G) =n.

2. GRAPHS WITH ¥, (G) = Y,k (G)

In this section we provide some sufficient conditions for a graph to satisfy y,; (G) =
Ygrk (G).

Proposition 1. If G is a disconnected graph with at least two components of order
at least k, then

Yerk (G) = vrk(G).

Proof. Let G1,G>,...,Gi be the components of G. Assume, without loss of
generality, that |V(G;)| > k fori = 1,2. Let f be a y,;(G)-function. Obviously,
ZveV(G,—) | f(v)| =k fori =1,2. If f(x) = @ for some x € V(G;), then clearly
Uver,) f() = {1,2,....k}, otherwise we may assume Uyeyp(g,)f(v) =
{1,2,...,k} fori = 1,2 because |V(G1)| > k and |V (G2)| > k. Then f is a GKRDF
of G and hence yg,1(G) < ¥,£(G). Now the result follows from (1.1). O

According to Proposition 1, if G is the disjoint union of two copies of the complete
graph K, (n > k), then Verk (G) = vrk(G).

Proposition 2. If G is a disconnected graph with r > 2 components G1,G»,...,
G, of order at most k — 1 such that > ; _, |[V(G;)| > k, then

Yerk (G) = Vrk (G)

Proof. Assume that | J!_; V(G;) = {v1,v2,...,vs}, and let f be a y,« (G )-function.
Then clearly f(v;) # @ foreachi. Define g : V(G) — P ({1,2,...,k}) by g(v;) =
{k—i—1}forl <i<k-—1,g;))={1}fori =k,k+1,...,5s and g(x) = f(x)
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for x € V(G) —{v1,v2,...,v5}. Then obviously g is a GKRDF of G of weight
w(g) = y,x(G) and the proof is complete. O

According to Proposition 2, if G is the disjoint union of k copies of K; and a copy
of the complete graph K (n > k), then yg,x(G) = y,£(G).

Theorem 1. For any connected graph G with radius rad(G) > 4, yg,2(G) =
Yr2(G).

Proof. Let f = (Vo,V1,V2,V1,2) be a yr2(G)-function such that V] »| is max-
imum. We show that f is a G2RDF of G. Suppose to the contrary that f is not
a 2RDF of G. Then there exists a vertex v € Vp such that V1,2 € N(v) and either
Vi € N(v) or V, € N(v). Assume, without loss of generality, that I'; € N(v). Let u
be an arbitrary vertex in V(G). If u € V1 U Vi 5, thend(u,v) = 1. If u € Vp, then u
and v have a common neighbor in V; or V7 > implying that d(u,v) <2. Letu € V5.
If u has a neighbor in V7 U V1 2, then d(u,v) < 2 as above. If u has a neighbor w
in Vp, then d(u,v) < d(u,w) + d(w,v) < 3. Otherwise, since G is connected, u
has a neighbor x in V,. Then the function g defined by g(u) = &, g(x) = {1,2}
and g(y) = f(y) for y € V(G) —{u, x}, is a y,2(G)-function which contradicts the
choice of f. Thus f is a G2RDF of G and the proof is complete. O

Corollary 1. Let G be a connected graph of diameter diam(G) > 7. Then
Yer2(G) = yr2(G).
The next results is an immediate consequence of Theorems B, C and 1.

Corollary 2. Forn > 8,

n

Vgrz(Pn) = LEJ + L.

Corollary 3. Forn > 8,
Vng(Cn) = L%J + ’7%—‘ — L%J .

3. BOUNDS ON THE GLOBAL k-RAINBOW DOMINATION NUMBER
In this section we present some sharp lower and upper bounds on y, £ (G).
Proposition 3. For any integer k > 2 and any graph G of order n > 2k,
Yerk(G) = 2k.

Proof. Let f be a yg,1(G)-function, and let Vo = {v € V(G)| f(v) = @}. If
Vo = @, then yg,1(G) =n > 2k. Let Vo # @ and v € Vp. Then U ep, ) f(¥) =
{1,2,...,k} and UxeNg(v) f(x) =1{1,2,....k}. Since Ng(v) N Ng(v) = &, we
obtain yg,1(G) = w(f) > 2k, as desired. d
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This bound is sharp for the disjoint union of two copies of the complete graph
Kn(n>k+1).

Proposition 4. For any graph G of order n > 4, y¢,2(G) = 4 if and only if of G
satisfies one of the following properties.
Hn=4,
(ii) there exist two vertices u and v in G such that N(u) N N(v) = @ and N[u]U
Nv] =V,
(iii) there exist three distinct vertices u, v, w in G such that N(u) N (N(v) UN(w)) =
gand Nu)UN@W)NNw)) =V —{u,v,w},
(iv) there exist four distinct vertices u, v, w, x in G such that (N(u) NN (v))\{w,x} =
F,(Nw)NNx) \{u,v} =9, (Nu]UN[)\{w,x} =V —{w,x} and (N[w]U
NxD\{u, v} =V —{u,v}.

Proof. If n = 4, then it is clear that yg,2(G) = 4. Let n > 5. If (ii) holds, then
the function f : V — P ({1,2}) defined by f(u) = f(v) ={1,2} and f(z) = @ for
2 e V(G)—{u,v},isa2RDF of G and G which yields vgr2(G) = 4 by Proposition 3.
If (iii) holds, then the function f : V — P ({1,2}) defined by f(u) ={1,2}, f(v) =
{1}, f(w)={2}and f(z) = @ forz € V(G)—{u,v,w}, is a 2RDF of G and G which
yields y¢r2(G) = 4 again. Let (iv) hold. Then the function f : V — P ({1,2})
defined by f(u) = f(v) ={1}, f(w) = f(x) ={2}and f(z) = @ forz € V(G)—
{u,v,x,w},is a 2RDF of G and G. This implies that yg,2(G) = 4.

Conversely, Let yg2(G) =4 andlet f = (Vo, V1, V2, V1,2) be a yg,2(G)-function
such that |7 2| is maximum. We consider three cases.

Case 1. |V 2| =2.

Let V12 = {u,v}. Then Vo = V(G) —{u,v}. Since f is a G2RDF, each vertex in
w € V(G) — {u, v} must be adjacent to a vertex in {u,v} in both G and G. It follows
that N[u]UN[v] =V and N(u) N N(v) = @, i.e. G satisfies (ii).

Case 2. V12| = 1.

Then |Vi| = |V2| = 1. Let Vi 2 = {u}, Vi = {v} and V, = {w}. Hence Vo = V(G) —
{u,v,w}. Every vertex of w € V(G)—{u,v,w} must be adjacent to u or both of v, w
in G and G because f is a 2RDF of G and G. This yields N(u) N (N(v) UN(w)) =
Zand Nw)U(N@w)NN(w)) =V —{u,v,w}. Thus G satisfies (iii) in this case.
Case 3. |V12| = 0.

If Vo = @, then V1 UV, = V(G) which implies that 4 = yg,2(G) = |V1 U V2| =n,ie.
G satisfies (i). Now assume that Vg # @ and let z € Vj. Since f is a 2RDF of G and
G, Upeng ) f(v) =1{1,2} and UveNg(z) f(v) =1{1,2}. Assume thatu,w € Ng(z)
and x,v € Ng(z) such that f(u) = f(v) = {1} and f(w) = f(x) = {2}. Since
f is a G2RDF, each vertex in V(G) — {u,v,w,x} must be adjacent to a vertex in
{u,v} and a vertex in {w,x} in G and G. It follows that (N(u) N N(v)) \ {w,x} =
B, (Nw)NNx)\{u,v} =, (Nul]UN]) \{w,x} =V —{w,x} and (N [w] U
N[x])\{u,v} =V —{u,v}. Thus G satisfies (iv). This completes the proof. O
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Proposition 5. Let k > 2 be an integer. If the graph G has r > 1 components
G1,Ga,...,Gr with >;_, |V(G;)| <k —1 then

-
Verk(G) < vric(G)+k =Y |V(Gi).
i=1

Proof. Let ! _; V(Gi) ={v1,v2,...,vs}, and let f be ay,x(G)-function. Clearly,
f(vi) # @ for each i. Define g : V(G) — P({1,2,...,k}) by g(vs) = {s,5 +
1,....,k},g(v;) = {i} for i = 1,2,....,s — 1 and gkx) = f(x) for
x € V(G)—{v1,v2,...,vs}. Then obviously g is a GKRDF of G with weight w(g) =
Vri(G) +k —s and 50 g (G) < v,k (G) +k =31 |[V(G)). O

Let H be the disjoint union of r < k —1 isolated vertices and a star K1 with
s > k. Then y,x(H) = r +k and yg,r(H) = 2k. This example demonstrates that
Proposition 5 is tight.

Proposition 6. Let G be a graph of order n > 4 and u,v € V(G). If uv € E(G),
then

Verk(G) = n—deg(u) —deg(v) +2|N(u) N N(v)[ 42k -2,
and if uv € E(G), then
Yerk(G) < n—deg(u) —deg(v) +2|N(u) N N(v)| + 2k.
Proof. Define f : V(G) — £ ({1,2,...,k}) as follows
{1,2,....k} ifz e{u,v}
f)=4 2 ifz € (Nw)UN@))—{u,vp) \ (Nu) N N(v))
{1} otherwise.

It is easy to see that f is a GKRDF of G which attains the bound. This completes
the proof. U

Corollary 4. If G is a connected triangle-free graph of order n > 4, then
Verk(G) = min{n — A(G) =8(G) + 2k, yri(G) + 2k — 1.

Proof. By considering a vertex of maximum degree and one of its neighbors, it
follows from Proposition 6 that yg,1(G) < n— A(G) —3(G) + 2k. Hence, it is
sufficient to show that yg,x(G) < v,k (G) +2k —1. If n <y, (G) + 2k — 1, the result
is immediate. Let n > y,;,(G) 4+ 2k — 1 and let f be a y,;(G)-function. Then there
exists a vertex u such that f(u) = &. Then u has a neighbor v such that | f(v)| > 1.
Define g : V(G) — P ({1,2,...,k}) by g(u) = g(v) = {1,2,...,k} and g(x) =
f(x) otherwise. Clearly, g is a GKRDF of G and hence yg,x(G) < y,£(G) +2k —1.
This completes the proof. O
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Proposition 7. Let k > 2 be an integer, and let G be a graph of diameter diam(G) >
5. Then

Vgrk(G) =< Vrk(G) + 2k —2.

Proof. If G is disconnected, then the result follows from Propositions 1 and 5.
Henceforth, we assume that G is connected. Let f be a y,;(G)-function. Let
V1V2...vg be a diametral path in G. If f(vy) = f(vg) = @, then we have
Uxenw) S =11.2,... .k} and U ey, f(x) ={1,2,....k}. Since diam(G) >
5, we have N(v1) N N(vg) = @. Tt follows that f is a GKRDF of G and hence
Yerk(G) = v, (G). If f(v1) # @ and f(vg) # @, then the function g : V —>
P{1,2,...,k}) defined by g(vq) = g(vg) =1{1,2,....k} and g(x) = f(x) for x €
V(G)—{v1.vg4},is a GKRDF of G of weight at most w( ) +2k —2 and s0 y¢ £ (G) <
Vrk(G) +2k —2. Now let f(v1) = @ and f(vg) # @ (the case f(v1) # @ and
f(vg) = @ is similar). Define g: V — P({1,2,...,k}) by g(vg) ={1,2,....k}
and g(x) = f(x) for x € V(G)—{vg}. Obviously, g is a GKRDF of G of weight at
most w(f)+k —1andso yg,k(G) < y,x(G)+k — 1. This completes the proof. []

Proposition 8. If G is a graph of diameter 3 or 4, then

ygrk(G) < vrk(G) +2k.

Proof. Let f be a y,;(G)-function, and let u and v be two vertices of G such
that d(u,v) = diam(G). Then the function g : V — £ ({1,2,...,k}) defined by
guw)=gw)=1{1,2,...,k} and g(x) = f(x) for x € V(G)—{u,v}, is a GKRDF of
G and therefore y4,£(G) < y,x(G) +2k. O

Theorem 2. If G is a graph of order n > 4 with minimum degree §(G), then
Verk(G) < yri(G) +8(G) +k —1.
This bound is sharp for stars K (t > 2k — 1) by Proposition 3.

Proof. If G is disconnected, then the result follows from Propositions 1 and 5.
Therefore we assume that G is connected. Let u be a vertex of minimum degree
8(G), f beay,(G)-functionand B ={x € N(u) | f(x) = @}.

If f(u) =@, then UveN(u)—B f(v) =1{1,2,...,k}. Then obviously the function
g:V(G)— P£({1,2,...,k}) defined by g(u) = {1,2,...,k},g(x) ={1}if x € B
and g(z) = f(z) otherwise, is a GKRDF of G with weight at most y,x(G) +6(G) +
k —1 and hence g,k (G) < v, (G) +68(G) +k —1.

Let | f(u)| > 1. Define g : V(G) — P ({1,2,....k}) by g(u) = {1,2,...,k},
g)={1}if v e B and g(z) = f(z) for each z € V(G)— (B U {u}). It is clear
that g is a GKRDF of G with weight at most y,(G) 4+ §(G) + k — 1 and hence
Yerk(G) < Vi (G) +8(G) + k — 1. This completes the proof. O
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4. GLOBAL RAINBOW DOMINATION NUMBERS OF TREES

According to Theorem 2, for any tree 7' of order n > 4 we have

Vng(T) < yr2(T)+2. “4.1)

In this section we characterize all extremal trees attaining equality in (4.1). We begin
with some lemmas giving some sufficient conditions for a tree to have global 2-
rainbow domination number less than y,»(7T) + 2. As a special case, Corollary 1
and Proposition 3 imply the next results.

Corollary 5. For any tree 7' with diam(7T") > 7, yg,2(T) = yr2(T).
Corollary 6. If T is a star of order n > 4, then yg,2(T) = yr2(T) + 2.

Lemma 1. Let T be a tree. If 7" has two strong support vertices, then yg,2(7T) <
yr2(T) + L.

Proof. Let u and v be two strong support vertices of 7" and let f be a y,2(T)-
function. Obviously we may assume that f(u) = f(v) = {1,2}. Since T is a tree, u
and v have at most one common neighbor. If ¥ and v have no common neighbor, then
clearly f is a G2RDF of T and hence yg,2(T) = yr2(T). If u and v has a common
neighbor, say w, then the function g defined by g(w) = f(w)U{1}and g(x) = f(x)
otherwise, is a G2RDF of T of weight at most y;2(7) + 1 and the result follows. [

Lemma 2. Let T be a tree. If diam(7") = 6, then yg,2(T") = y,2(T).

Proof. Let P = v1vy...v7 be a diametral path of T and let f be a y,2(T)-
function. Root T" at vy. If v, and v are strong support vertices, then f is a yg,2(T)-
function since v, and ve have no common neighbor. Hence yg,2(T) = yr2(T). As-
sume, without loss of generality, that deg(v,) = 2. By Theorem E, we may assume
f(v1) ={1} and 2 € f(v3). If vg is a strong support vertex, then we can assume
f(ve) = {1,2} and clearly f is a G2RDF of T implying that yg,2(T) = y,2(T).
Henceforth, we assume deg(vg) = 2. By Theorem E, we may assume f(v7) = {1}
and 2 € f(vs). Define the function g by g(v) = {1} if v € V(Tys) and f(v) = {2},
g(w) ={2}ifv e V(Tys) and f(v) = {1} and g(x) = f(x) otherwise. Clearly, g is
a G2RDF of T of weight y,2(T') and hence yg,2(T) = y2(T). This completes the
proof. O

Lemma 3. Let T be a tree. If diam(7") = 5, then yg,2(T) < yr2(T) + 1.

Proof. Let P = vjvs...v¢ be a diametral path of 7', and let f be a y,2(7T)-
function. If v, and vs are strong support vertices, then f is a yg,2(T)-function
and hence yg,2(T) = y2(T). Assume, without loss of generality, that all support
vertices adjacent to v4 have degree 2. By Theorem E, we may assume f(vg) = {1}
and 2 € f(v4). Then the function g defined by g(v3) = f(v3)U{l}and g(x) = f(x)
otherwise, is a G2RDF of T of weight at most y,2(7') 4 1 that implies yg,2(7T) <
yr2(T) + 1. O
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A subdivision of an edge uv is obtained by removing the edge uv, adding a new
vertex w, and adding edges uw and wv. The subdivision graph S(G) is the graph
obtained from G by subdividing each edge of G. The subdivision star S(K ) forz >
2, is called a healthy spider. A wounded spider Sy is the graph formed by subdividing
at most ¢ — 1 of the edges of a star K; ; for ¢ > 2. The center of a spider, is the center
of the star whose subdivision produced the spider.

Definition 1. For 1 <i <2, let B; be the family of trees 7" defined as follows and
let B8 =J7_, B;.
By : T is a spider S; for some ¢ > 2 with exception of stars, wounded spiders
St (¢t > 3) with exactly one wounded leg or wounded spiders S; (¢ > 3) with at least
four healthy legs.
By : T is obtained from stars Kl,erl,rga-u,Kl,rj where rp >3 for 1 <k < j,
with centers yi1,y2,...,¥; (j > 2) by adding a new vertex x and joining x to all
vertices y; and adding at most one pendant edge at x.

Lemma 4. Let T be a tree. If diam(7) = 4, then yg,2(T) < yr2(T) + 1 and
equality holds if and only if T € 8.

Proof. Letdiam(T') = 4 and let P = v{v2v3v4V5 be a diametral path of T'. Let f
be a y,2(T)-function. Consider the following cases.

Case 1. deg(vy) = 3.
Suppose u, v; are the leaves adjacent to v,. Then we can assume that f(v,) = {1,2}.
If deg(vq) > 3, then we may assume f(vq) = {1,2} and if deg(v4) = 2 then by
Theorem E we can assume f(vs) = {1} and2 € f(v3). Define g: V(T) — P ({1,2})
by g(v1) = {1},g(u) = {2},g(v2) = @ and g(x) = f(x) otherwise. Obviously g is
a G2RDF of T of weight y,»(T) and hence yg,2(T) = yr2(T).

By Case 1, we may assume that all support vertices adjacent to v3 have degree
different from 3.

Case 2. deg(vp) > 3.

Then f(vy) ={1,2}. If deg(v4) = 2, then by Theorem E we may assume f(vs) = {1}
and 2 € f(v3), and clearly f is a G2RDF of T and hence yg,2(T) = yr2(T). So
we assume that each support vertex adjacent to v3 has degree at least 4. If vs is
a strong support vertex, then f(v3) = {1,2} and clearly f is a G2RDF of T and
hence yg,2(T) = yr2(T). Let vz be not a strong support vertex. Then 7" € B> and
T has at most two y,2(T)-functions which none of them is G2RDF of T and hence
Yer2(T) = yr2(T) + 1. On the other hand, the function g defined by g(v3) = {1}
and g(x) = f(x) otherwise is a G2RDF of T of weight y,»(T) + 1 implying that
Yer2(T) = yr2(T) + 1.

By Cases 1 and 2, we may assume that all support vertices adjacent to vs have
degree 2. Thus T is a spider of diameter 4. If T is a wounded spiders S; (¢ > 3) with
exactly one wounded leg, then the function g that assigns & to all support vertices
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of T with exception of the center of spider, {1} to the center of spider and the leaf
adjacent to the center of spider, and {2} to the other leaves, is a G2RDF of T of weight
Yr2(T) implying that yg,2(T) = yr2(T). Now T is a wounded spider S; (¢t > 3)
with at least four healthy legs. Suppose x is the center of T and u1,u5,u3,u4 are
leaves at distance two from x. Then the function g that assigns {1,2} to x, & to all
support vertices of T, {1} to u1,uz, and {2} to the other leaves, is a G2RDF of T
of weight y,2(7T") implying that yg,2(T) = y,2(T). Finally let T be a spider that is
not a wounded spider S; (¢ > 3) with exactly one wounded leg or a wounded spider
St (¢ > 3) with at least four healthy legs, that is 7 € B;. It is easy to see that in this
case yYgr2(T) = yr2(T) + 1 and the proof is complete. O

For p,q > 1, adouble star DS(p,q) is a tree with exactly two vertices that are not
leaves, with one adjacent to p leaves and the other to g leaves.

Lemma 5. Let T be a tree. If diam(7") = 3, then yg,2(T) < yr2(T) + 1 and
equality holds if and only if 7 = DS(p,q) withg > p = 1.

Proof. Let diam(T') = 3. Then T is a double star DS(p,q) withg > p > 1. Let
u, v be the vertices of 7" of degree p and ¢, respectively. If p > 2, then u, v are strong
support vertices with no common neighbor and it follows from the proof of Lemma
1 that yg,2(T) = yr2(T). Henceforth, assume p = 1. If ¢ = 1, then T' = P4 and
clearly yg,r2(T) = yr2(T)+ 1. Let ¢ > 2 and u’ be the leaf adjacent to u. Then T
has exactly two Y2 (T)-functions f; (i = 1,2) defined by f;(v) = {1,2}, fi(u') ={i}
and f;(x) = & otherwise. Obviously, none of f or f> is not a G2RDF of T and also
the function g defined by g(u) = {1} and g(x) = fi(x) for x € V(T)—{u} is a
G2RDF of T that yields yg,2(T) > yr2(T) + 1. g

The next theorem is an immediate consequence of (4.1), Corollaries 5, 6 and Lem-
mas 2, 3,4, 5.

Theorem 3. Let T be a tree of order n > 4. Then yg,2(T) = yr2(T) + 2 if and
only if T is the star K1 ; for some ¢ > 3.
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