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1. INTRODUCTION

We shall denote by N the set of all natural numbers. Let K € N and K, = {k <
n : k € K}. Then the natural density of K is defined by d(K) = limy— o Knl if the

n
limit exists, where the vertical bars indicate the number of elements in the enclosed
set. The sequence x = (xj) is said to be statistically convergent to L if for every
€ > 0, the set K¢ = {k € N : |x; — L| > €} has natural density zero (cf. [1,6]), i.e.

foreach € > 0,

1
lim —[{k <n:|xx—L|>¢€}|=0.

n—oon

In this case, we write L = st —limx. Note that every convergent sequence is
statistically convergent but not conversely.

The idea of A-statistical convergence was introduced in [5] as follows: Let A =
(An) be a non-decreasing sequence of positive numbers tending to oo such that
Ant+1 <An+ 1,141 = 1,n—1 < A,. The generalized de la Vallée-Poussin mean is
defined by T, (x) =: ﬁ Zjeln xj, where I, = [n — A, 4+ 1,n]. A sequence x = (x;)
is said to be (V, A)-summable to a number L (see [2]) if T;,(x) — L as n — o0. In this
case L is called the A-limit of x. And we say that x = (x,) is A-statistical convergent
to L, if

1
lim— [{n—A,+1<k<n:|xx—L|>€}| =0,
noA,
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for every given € > 0. And will write sty —lim, x, = L.

In paper of Mursaleen et al. [4], the definition of the statistically A— convergent
sequences was given as follows:

A sequence x = (xj) is said to be statistically A—convergent to L if for every € > 0
the following relation

1
lim—{k <n:[Tp(x)—L| = €} =0, (1.1
n

holds. In this case we write that st —lim, 7,, = L.

In what follows we will define the following type of the statistical convergence. A
sequence x = (x5) is said to be (V, A)—statistically convergent to L if for every € > 0
the following relation

1
li’gn/\—|{n—)tn—|—15k§n:|Tk(x)—L|ze}|=O, (1.2)
n

holds. In this case we write that sty —lim, 7, = L.
In the sequel we will show conditions under which for every bounded sequence
(x1) the implication

St —lilgnxk =L implies st —lilgnTk =L

holds.

Theorem 1. Let us suppose that (xy.) is a bounded sequence such that exists sty —
limg x; = L, then it follows that sty —limy Ty, = L, but not conversely.

Proof. Let us suppose that st; —limy x; = L. Let € > 0 be any given number, and
Be={n—Ay,+1<k<n:|xy—L|>c¢€}. Then

1 1 1
| Tk (x)—L| = szj_lz = EZ(XJ‘—L) < EZ(XJ'—L) <

Jelk JEly J€B
1
—(sup|x; —L|)-Be = 0,
Ak
as k — oo. Hence Ty (x) — L, as k — oo, respectively st; —limg Ty, = L.
Example 1. Let us consider that A,, = n and x = (x;) defined as follows:

1 if k isodd

X, = i )
n —1 if k iseven

Of course this sequence is not sz)- convergent. On the other hand, x is (V,A)-
summable to 0 and hence (V, A)—statistically convergent to 0. U
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In this paper our aim is to find conditions (so-called Tauberian) under which
the converse implication holds, for the defined type of convergence. Exactly, we
will prove under which conditions A—statistical convergence follows from (V, A)-
statistically convergence. This method generalize the method given in [3], as it is
shown by the following example.

Example 2. In case where A, = n, then (V, A)— summability method is the Cesaro
summability method (C, 1) as given in [3].

2. MAIN RESULTS

Theorem 2. Let (A,) be a sequence of real numbers defined as above and

A,

sty —liminf >1, t>1 2.1
n n

where t,,, denotes the integral parts of the [tn] for every n € N, and let (T}) be a

sequence of real numbers such that sty —limy Ty, = L. Then (x}) is st)— convergent

to the same number L if and only if the following to conditions holds:

Ik
1 1
inf limsup —— kely:——— > (xj—xp)<—€|=0 (22

t>1 n n Atk_kkj=k+l
and
1 1 £
ogtl£1hf£nsuPE ke[n m] t2:+1(xk_xj)§_€ =0. 2.3)
=k

Remark 1. Let us suppose that sty —limg x; = L; st) —limy T; = L and relation
(2.1) satisfies, then for every ¢ > 1, the following relation is valid:

Ik
1
siy—lim———— Y x; =0 (2.4)
" Ay _Akj=k+1
and in case where 0 < ¢ < 1,
1 k
sty —lim ——— x;i =0. (2.5
n Ak—kth‘:;—i_l ]

In what follows we will show some auxiliary lemmas which are going to be used
in the sequel.

Lemma 1. For the sequence of real numbers A = (Ay), condition given by relation
(2.1) is equivalent to this one:

A
sty —liminf— > 1, 0<1t < 1. (2.6)
n A’tn
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Proof. Let us suppose that relation (2.1) is valid, 0 <t <l and m = ¢, = [t - n],

n € N. Then it follows that
1 m [t-n]
->1=—= <n
t t t

now by the nondecreasing property of the sequence A = (4,), we get:

A Afm 2 Aim
> el = sty —liminf —% > st —liminf—[ 7] > 1.
Atn m n A’tn n In

Conversely, let use suppose that relation (2.6) is valid. Let ¢ > 1 be given and let #;
be chosen such that 1 <y <t.Setm =t, = [t -n]. From 0 < % < % < 1, it follows

that:
tn—1 [tn] m
n< < —- = —
51 51 I
provided t; <t — ,ll which is a case where if n is large enough. Under this conditions
we have:

’

A A LA A
S 2 — o4y —liminf 22 > st —liminf —2— > 1.

n M) - " M)
]

Lemma 2. Let us suppose that relation (2.1) is satisfied and let x = (xy) be a
sequence of complex numbers which is (V,A)—statistically convergent to L. Then for
everyt >0,

St _li,{nTtn, =L.

Proof. Letus consider that ¢ > 1, then from construction of the sequence A = (1),

we get:

lim(n —A,) =lim(t, — A4,), 2.7)

n n
and for every € > 0 we have:

tkely, Ty, —L|>e} Clkel,: |Ty—L| > €U

1 k 1 tr

k k=41 T j=ti—Ay +1
Now proof of the lemma in this case follows from relation (2.7) and st), —lim, T3, =
L.
(IT) In this case we have that 0 < ¢ < 1. For t,, = [t - n], for any natural number n, we
can conclude that (77,) does not appears more than [1 + ¢ 1] times in the sequence
(Ty). In fact if there exists a integers k,/ such that

n<tk<ttk+)<--<ttk+l-1)<n+1<tk+]1),
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then .
n+t(l—1)§t(k+l—1)<n+1$l<1+;.

And we have this estimation:

n

1
21405tk € In: | Te =L = €}].
n

From the last relation it follows that sty —lim, 77, = L.

699

1 1\ 1
— kel Ty —Llze}| < (1+-)—Hk el |Tx—L| =€}| <
A t) Ag,

O

Lemma 3. Let us suppose that relation (2.1) is satisfied and let x = (xy) be a
sequence of complex numbers which is (V,A)—statistically convergent to L. Then for

everyt > 1,

In
. -1 .
sty —hlgn()ttn —An) E xj =L;
j=n+1
and for every 0 <t < 1,

n
. -1
st,x—h;n(kn—)\t”) Z xj=1L.
Jj=th+1

Proof. Let us suppose that ¢t > 1. After some calculations we get:

In
Aoy =An)™" Y X =To+As, (s, —An) (1, = Tw)+

j=n+1
th tn
PR TS B YW ¢ PAE ¥ R N S
j=n—An+1 J=th—Ar, +1

respectively

In
Aoy =) ™" Y Xy =To+As, (s, —An) (1, = T)+

j=n+1
tn tn
—1
(At = An) DO DR
j=n—An+1 J=tn—Ag,+1

From definition of the sequence A = (1,), we obtain
In tn

sty —limsu x; = sty —limsu Xi.
a—limsup ) xj=sp—limsup )y
j=n—Ap+1 J=tn—Ay, +1

2.8)

(2.9)

(2.10)

2.11)
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Really, let us suppose that st —lim,, sup Z;’; ey +1

we get:

xj = L, and for every € > 0,

13
et 22

A,
et
< .
N “k €ly: Z;k:tk_;k,k+1 xj # Z;k:k_;tk_H x]'}“

An

The first summand in the right side of the inequality tends statistically to zero as
n — oo and second summands tends to zero, too (from relations (2.7)). And this
. tn
means that s¢; —lim,, sup Zj=tn—kzn+1 xj=L.
Since by (2.1)

sty —limsup Ay, (A, —An) "' < 00,5ty —limsup(As, —An) "' <00,  (2.12)
n n
now relation (2.8) follows from (2.10), (2.11), (2.12), Lemma 2 and statistical con-

vergence of T,.
Case where 0 < ¢t < 1. In this case we have:

n
An=2)™" D xj =T+ Ay, (An—A0,) " (Tn = Ty, )+

j=th+1
n n
Gn=2e)™" ) =y =A™ Y
j=n—kn+1 j:tn_xtn'i'l

Following Lemma 2 and the conclusions like in the previous case, we get that relation
(2.9) is valid. 0

In what follows we will prove Theorem 1.

Proof of Theorem 2. Necessity. Let us suppose that st —limg x; = L, and st) —
limy Ty = L. For every t > 1 following Lemma 2, we get relation (2.2) and in case
where 0 < ¢ < 1, again applying Lemma 2 we obtain relation (2.3).

Sufficient: Assume that s¢) —lim, T, = L, and conditions (2.1), (2.2) and (2.3) are
satisfied. In what follows we will prove that st) —lim, x, = L. Or equivalently,
sty —limy, (T, —x,) = 0.

First we consider the case where ¢t > 1. We will start from this estimation:
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In
Xn—=Tn =Xty Ay = 2n) " (Tt = T) = oty = An) ™" D (xj —xn).
Jj=n+1

For any € > 0, we obtain:

kely:xn—Tp>e€lC {k €1y Ay, (A, —An) N (Ty, —Tp) = g}u

tn

- €
keln:Gu, =27 D0 (5 —xm) =—5
Jj=n+1
From relation (2.2), it follows that for every y > 0, exists a t > 1 such that

Tk
Y (j-x)<—ep| <.

j=k+1

I "Weer !
msup — L
n Py " e — Ak

By Lemma 2 and relation (2.12) we get:

. 1 _ €
hrI:nSUP)T {k el Ay, Ay, —An) N (Ty, —Tp)| = 5} =0.

n

Combining last three relations we have:
1
limsup— [{k €l :x,— Ty = €}| <y,
n An

and y is arbitrary, we conclude that for every € > 0,

1
limsupk—|{keln ixpn—Ty > €} =0. (2.13)
n n
Now we consider case where 0 < ¢ < 1. From above we get that:

n
Xn=Tn = Aty On=20,) " (T =Tt,) + Qn=25,) ™" Y (xn—xj).
j=ty+1
For any € > 0,

kel xn—Ty<—€) C {k €y iy, An—Ay) N (Ty—T,,) < —%}U

n
- €
kely:(An—A,)"! | Y (—xj) < =)
J=th+1
For same reasons as in the case where ¢ > 1, by Lemma 2, we have that for every
€>0,
1
limr|{keln ixp—Tp <—€}|=0. (2.14)
n

n
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Finally from relations (2.13) and (2.14) we get:
1
lim— |{k € I, : |xn — Ty| = €}| = 0.
no Ay
O

In the next result we will consider the case where x = (x,) is a sequence of com-
plex numbers.

Theorem 3. Let (A,) be a sequence of complex numbers defined above,which
satisfied relation (2.1) and let us consider that sty —lim Ty, = L. Then (xy) is st)—
statistically convergent to the same number L if and only if the following to conditions
holds: for every € > 0,

Tk

1 1

inf li —|skel,: — i — > =0 2.15
v e e TR TR o

j=k+1

and

1 1 k
Oirtlglhignsupkn kEIn'kk—Atkj ZE +1(xk Xj)>e€ 0. (2.16)

=iy

Remark 2. Let us suppose that sty —limg xx = L, sty —limy T = L and relation
(2.1) satisfies. Then for every ¢ > 1, relation (2.15) holds, and in case where 0 <7 < 1,
relation (2.16) is valid.

Proof of Theorem 3. We omit it, because it is similar to that of Theorem 1. O
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