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Abstract. This paper deals with the study of the generalized hypergeometric matrix function
and obtains some of its properties. We rephrase some results from the previous (earlier) works
that will be used in this study. We get the hypergeometric matrix function representation, mat-
rix differential equation, generating matrix functions, bilinear generating matrix functions, mat-
rix recurrence relations, finite summation formulas and related results for the Konhauser mat-
rix polynomials given in [34]. Finally, we give some important results involving properties of
Mittag-Leffler and Bessel-Maitland matrix functions as applications.
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1. INTRODUCTION

In mathematics, the Konhauser polynomials, introduced by Konhauser [20], are
biorthogonal polynomials for the distribution function of the Laguerre polynomials
[23,24]. Special matrix functions are very closed to statistics, Lie group theory and
number theory are well known in [0, 10,22]. In the recent work, matrix polynomi-
als have significant emergent in [1-3,5,8,11,12,14-19,21,26-31,33,35]. Results
in the theory of classical orthogonal polynomials have been extended to orthogonal
matrix polynomials in [4, 13]. Hence we feel that the expansions of some functions
in terms of the family of Konhauser matrix polynomials Z ,‘ll (x;k) may be of interest
to their intrinsic mathematical importance and to the fact that these polynomials have
applications in physics.

Throughout this paper, for a matrix 4 in CV*V _its spectrum o' (A4) denotes the set
of all eigenvalues of A. The two-norm will be denoted by || 4[|, and it is defined by
(see [17])

|[Ax|[2
|A]l2 = sup ———-—=,

X#0 [1x1]2

© 2016 Miskolc University Press


https://core.ac.uk/display/145235584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

606 AYMAN SHEHATA

where for a vector x in C¥V, ||x||» = (xTx)% is the Euclidean norm of x. Let us
denote the real numbers M (A) and m(A) as in the following

M(A) = max{Re(z):z€0(A)}; m(A) =min{Re(z):z €0 (A)}. (1.1)

If f(z) and g(z) are holomorphic functions of the complex variable z, which are
defined in an open set £2 of the complex plane, and A, B are matrices in CV*V
with 0(A4) C 2 and o(B) C 2, such that AB = BA, then from the properties of the
matrix functional calculus in [9], it follows that

f(A)g(B) = g(B)f(A). (1.2)

Throughout this study, a matrix polynomial of degree n in x means an expression of
the form

Pp(x) = Apx + Ap_1x" L+ + A1x + Ag (1.3)

where x is a real variable or complex variable, A;, for 0 < j <n and A, # 0, where
0 is the null matrix or zero matrix in CV*¥
We recall that the reciprocal gamma function denoted by I'~!(z) = ﬁ is an en-

tire function of the complex variable z and thus for any matrix 4 in CV*¥_ 7=1(4)
is a well defined matrix. Furthermore, if 4 is a matrix such that

A+4nl is aninvertible matrix for all integersn >0 (1.4)

where 7 is the identity matrix in CV*¥ | then from [8, | 1], it follows that

(A =AA+1) ... A+n—-D))=TA+nT Y (A): n>1; (A)o=1.

(1.5)
If k is large enough so then for £ > || B||, then we will mention to the following
relation which existed in Jodar and Cortés [14, 16] in the form
I(B+kD)™| < . k> B]. (1.6)
k—| Bl

If A(k,n) and B(k,n) are matrices in CV*¥ forn > 0, k > 0, then in an analogous
way to the proof of Lemma 11 [8], it follows that

o) [%n]

DO AGen)y =" A(k.n—2k),

n=0k=0 n=0k=0 (L7)
> > Blkiny=>_Y Blk.n—k).

n=0k=0 n=0k=0
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Similarly to (1.7), we can write

o0 [%n] oo o0

SO Ay =" > Ak.n+2k),

n=0k=0 n=0k=0 (1.8)
> > Blk.n)y=)_Y Blk.n+k).

n=0k=0 n=0k=0

The hypergeometric matrix function , F1 (A, B; C;z) has been given in the form

00 -1
2F1(A,B;C;z) = Z (A)k(B)z![(C)k] zF, (1.9)

k=0

for matrices A, B and C in CV*¥ guch that C + n[ is an invertible matrix for all

integers n > 0 and for |z| < 1. It has been seen by Jodar and Cortés [14] that the
series is absolutely convergent for |z| = 1 when

m(C) > M(A)+ M(B),

where m(P) and M(P) in (1.1) for any matrix P in CV*V

The outline of this paper is as follows: In Section 2, we define generalized hyper-
geometric matrix function and give the convergence properties, matrix differential
equation, matrix recurrence relations and integrals. Section 3, we give the hypergeo-
metric matrix function representation, matrix differential equation, matrix recurrence
relations, finite summation formulas, an explicit expression, and a different approach
to proof of generating functions of the Konhauser matrix polynomials. Finally in
Section 4, we give the definition of the Mittag-Leffler and Bessel-Maitland matrix
functions and some properties have also been obtained.

2. GENERALIZED HYPERGEOMETRIC MATRIX FUNCTION

In this section, the generalized hypergeometric matrix function is defined as in the
following.

Definition 1. Let us suppose that A; ; 1 <i < p and B; ; 1 < j < g are matrices
in CV*N such that

B;j +nl are invertible matrices for all integersn >0 2.1)
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where p and ¢ are finite positive integers. Then we define a generalized hypergeo-
metric matrix function as

qu(Al,Az,...,Ap;Bl,Bz,...,Bq;Z)
ok
= Z %(Al)k(AZ)k o (Apk(BDER T (B2 (Bl ™!
— k! 2.2)
00 Zk p q -1
:ZFH(Ai)k[H(Bj)k} :
k=0 " i=1

Jj=1

For simplicity, we can write
pFq(A1,A2,...,Ap; B1, B2, ..., By;z) in the form , Fy,
pFg(A1£, Az, ..., Ap; B1,Bs,..., By;2) in the form , Fy(A1£),
pFq(A1,A2E, ..., Ap;B1,B>, ..., By;z) in the form , F,;(A>%),
pFq(A1, Az, ..., ApE;B1, B2, ..., By;z) in the form , Fy(A,=),
pFq(A1, Az, ..., Ap; B1%£, B>, ..., By;z) in the form , F,;(B1%),
pFq(A1, Az, ..., Ap; B1,B,...,Bg=%;z) in the form , F,;(By+),

%(Al)k(Az)k o (Api(BDE) (B2l ™! .. [(Bg)k] ™! in the form Uy (z),

and 25 (AD)k(A2)k ... (Apk [(BDK] T (B2)k] ™" ... [(Bg)x] ™" in the form U.

Now, we are going to study the convergence properties of the generalized hy-
pergeometric matrix function. If k is large enough so that k > || B; ||, then by the
perturbation lemma, see [14], it follows

(o

i 1(1 !
I(B; +kI)~"| = H—(—BJH)

I
wIBil - k=lIBsl

_ ! 1B~+I B
T k|\k

=7 l=<j=q

and

kK (2.3)
<—— k>|Bil;:1=j=gq
k—1Bjll ’
Let’s consider the expression
Ti(k) = B (B + D7 (B + (k=)D 7! 24

fork>1and1<j <gq.
From (1.5), we obtain

ICADEl = (14i Dz T =i < p. (2.5)
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For k > | Bj||, by using (2.3), (2.4) and (2.5) can be written

k
AV (A (A BRI B2 (Bl

1
< Sl AD A |- A i O Ta k). Ty k) 20
< k,\zk|<HA1H)k(Hl4zu>k (| Ap DT (k) T2 (k) ... Ty (k).
Now, we will investigate the convergence of the following series
1
> 1A A D A2 ([ Ap i T O T (K) ... Ty ).
k=0

By the ratio test and using the relation (1.6), one gets

i | 48D Al  UAp Dea i 6 + DTk +1)... Ty + Dk 241
k—>00 (1AL IDe U A2IDr - N Ap D T2 (k) T2(K) . .. Ty (k) (k + D! zk
‘(HA il +6) . (LA | +R)IBL + D7 I(Bg + kD)7 24!

k—>oo k+1) zk

o (Al + 0 A2] +5) ... (14,1l + &)
" koo (k= [ B1|D(k —[|B2|)) ... (k — || B4l (k +1)
The last limit shows that
(1) If p <gq, then the power series (2.2) converges for all finite z.
(2) If p =g+ 1, then the power series (2.2) is convergent for |z| < 1 and diverges
for |z| > 1.
(3) If p > g + 1, then the power series (2.2) diverges for all z, z # 0.

|z].

In analogous to Theorem 3 in [14], we can state the following:

Theorem 1. (1) If p = g + 1, then the power series (2.2) is absolutely con-
vergent for |z| = 1 when

Zm(B,) > ZM(A, (2.7)
j=1
(2) If p = q + 1, then the power series ( 2.2) is conditionally convergent for |z| =
1, z # 1 when
b4 q b4
Y OM(A)—1<) m(B) <Y M(4)). (2.8)
i=1 j=1 j=1

(3) If p = q + 1, then the power series (2.2) is diverges for |z| = 1 when

q p
> m(Bj) <Y M(4)~1 (2.9)
e =
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where M(A;) and m(Bj) are defined in (1.1).

Consider the differential operator 6 = zf—z, D, di 0z% = kz*. For these
matrices which commute with one another, thus we have

6 ]’[(91+B, 1)qu_Z ]’[(k1+B,—1)
j= ! i=1

Z —1)11_[(/‘ )k|:1_[(BJ)k 1} ;

k=1 i=1

l_[(A )k[li[ B/)k]_

Replace k by k + 1, we have

o k—HP |:q

-1
0 ]_[(01+B, I)qu—Z H(A k+1 H(Bj)ki|

j=1 ! i=1 j=1

=zl_[(9 I+ A;)pFy.
i=1
Thus, we have shown that ,Fj; is a solution of the following matrix differential
equation

[9 ]_[(91+B ~I)— zl_[(91+A)] F;=0 (2.10)

j= i=1
where 0 is the null matrix in CV>*¥ | These results are summarized below.

Theorem 2. Let A;; 1 <i < pand Bj; 1 < j <q be matrices in CN*N satisfy-
ing (2.1) and all matrices are commutative. The generalized hypergeometric matrix
function satisfies the matrix differential equation in (2.10).

The solution is valid for all finite z when p < g. If p = ¢ 4 1, the solution is valid
in |z| < 1. We are not concerning ourselves with the case p > g + 1, when the series
for , Fy has a zero radius of convergence unless the series terminates.

If p < g+ 1, the matrix differential equation (2.10) of the preceding section is a
linear matrix differential equation of order (¢ + 1). We have, in the neighborhood of
the origin, one solution,

wo = qu = qu(Al,Az,...,Ap;Bl,Bz,...,Bq;Z)
0k
- ];0 S ADK(A2)g - (A [(BOK T (B2 [(Bo] ™

Naturally we wish to obtain g other solutions near z = 0.
Let Dy be the complex plane cut along the negative real axis, and let us denote
z21=Bm = exp((I — By,)logz) where log represents the principal logarithm [25]. We
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shall now verify that wy, satisfies equation (2.10) for all commutative matrices. Let
us seek a solution, as before, for m any one of the integers 1, 2, 3, ..., ¢, of the form

W =217Bm JFy(Ay—Bm+1,A2—Bm+1,....,Ap— By +1,Bi—Bp+1,...,

Bm1—Bm+1.21 —Bp. By — By +1.....By— By +1:2)
-1

00 )4 q -1
=) EDI=Bn [H(Ai — B + I)k:||:1_[(Bj — B + [)k] [(21 - Bm)k] ;
k=0 i=1 j=1

|z| <1,z € Dy.
(2.11)

Whenever, in addition to the above restrictions, B, hasn’t any positive integer ei-
genvalue (j = 1,2,...,¢q), then the linear combination (2.11) is the general solution
of equation (2.10) around z = 0. Note also that if p < g, then the series for wy;
m=0,1,2,...,q, converges for all finite z and that for p = g + 1, the series for w,,

converges for |z| < 1. From (2.11), we get

q
0 [[61+B;—Dwn
j=1

o0
=) KD Bm ((k + 1)1 — Bm) [
k=0

p q -1 -1
[l ][ [T 0] Ter-am]

J=1

q
H((k+l)I—Bm+Bj—I)]

Jj=1

i=1

Now (Bj — By, 4 k1) is the last factor in the product (B; — By, 4 I )i and (k1 41 —
B,) is the last factor in the product (21 — By, ).
Hence,

p
[ Jc4i - Bn +1)k}

i=1

q 0o
0 1‘[(9 [+ Bj—Dwpy = Zz(k+1)I—Bm|:
k=1

J=1
-1

q -1
[1‘[(3,- — B + 1>k_1] [(21 - Bm>k_1]

Jj=1
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Next, with a shift of index from k to (k + 1), we get

q
0 [ 1+B;—Dw,

j=1
e} y4 q —1 —1
=Zz<k+2>’—3m[1"[<A,~—Bm+1)k+1}[1"[(3j—3m+1>k] [(21—Bm)k]
k=0 i=1 i=1

o0 )4 ' p
:zZz(kH)I_Bm[l_[(A,-—Bm+(k+1)1):|[H(Ai—Bm+1)k}

k= i=1 i=1

‘IO —1 -1

[H(Bj—BmH)k} [(21—Bm>k] .

j=1

Therefore, we have

q D
0 [101+B—Dwn=z]]061+A)wn (2.12)
j=1 i=1

so that, wy,, ; m = 1,2,...,q, satisfies the matrix differential equation of (2.11) for
z€ Dgand |z| < 1.

Assume A;(i =1,2,...,p) and B;j(j =1,2,...,q) haven’t any integer eigenval-
ues are these matrices which commute with one another. The relation A; (4; + 1) =
(A; +kI)(A;)y together with the definitions of the matrix contiguous relations, yield
the formulas:

®  _k

pFa(A14) = 3 " (Ar+ DAk (A BRI B2 ™ [(Bo)e] ™
k=0

o0k -1
> S +k1)(A1) (A (A2 - (A (B Bl ™ (B i)™
k=0

o0 -1
> (A +kI)(A1) Uk (2).
k=0

2.13)
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Similarly, we get

-1 o©

pFa(Ai+) = (A,-) > (A + kDU (2),
k=0

oo —1
pFa(4i=) = (=Y (A G =DT) G2,
k=0 (2.14)

00 —1
pFa(Bj+)=(B) Y _ (Bj +k1) Uk (2),
k=0

—1 o©

pFq(Bj—) = (Bj —1) > (B + (k=) DUx(2).

k=0

For all integers m > 1, we deduce that

m -1 o0 m
pFg(Ai+mD)=T] (Ai +(r—1)]) ST+ k+r=DDUk(2).

r=1 k=0r=1

m oo m -1
pFg(Ai—mD) =Ti-rD)Y T] (Ai + (k—r)I) Uk (2),
r=1 k=0r=1

m oo m —1
pFaBj+mD) =[[B;+¢-1DDY ] (B,- +(k+r—1)1) Ui (2)
r=1 k=0r=1
and
m —1 o0 m
pFa(Bj—mI) =[] (Bj —rl) STB + k=nDUk ().
r=1 k=0r=1

Using the differential operator 6 = z j—z, we see that

(01 + Ai) pFy = > (Ai + kD Ug(2).

k=0
Hence, with the aid of (2.14),
O +Aj) pFy=Ai pFy(Ai+);1=1,2,...,p. (2.15)
Similarly, we have
(01 +Bj—1)pF;=(Bj—1)pFg(Bj—);j =1.2,....q. (2.16)

The result is the set of simple relations,

(A1—Ai) pFyg = A1 pFg(A1+) — Ai pFg(Ai+);i =2,3,...,p 2.17)
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and
(A1=Bj+1) pFy = A1 pFy(A1+)—(B; —1) pFy(Bj—); j =1,2,... 4.

(2.18)
It is well known that
-1 -1
szFq:Al...Ap(Bl) ...(Bq) qu(A1+I,...,
4 (2.19)
Ap+I1;B1+1,....Bg+1;2); D; = —
dz
and in general
-1 -1 -1
DX ,Fy =(ADr(A2)k ... (Ap)k |:(Bl)k:| [(Bz)k] |:(Bq)k:| (2.20)

pFg(Av+kl,...,Ap +kI;B1+kl,....,B;+kI;z).

2.1. Integrals involving generalized Hypergeometric matrix function

The integral representation Eq. (45) in [14] of the generalized hypergeometric
matrix function can be extended to obtain the following result:

Theorem 3. Let A;; 1 <i < pand B;; 1 < j <q be matrices in CN*N such
that Bj 4+ k1 are invertible matrices for all integers k > 0. Suppose that the matrices
A1, By and By — Ay are positive stable matrices. If p < q + 1, then for |z| < 1 and
A;B; = Bj A, it follows that

pFa(A1, A2, ..., Ap; B1,Ba,...,Bg;z) =T Y (AT~ (B1— A1) T(By)

1 2.21)
/ tAl_I(l —Z)BI_AI_I p_qu_l(Az,. ..,Ap;Bz, cee Bq;zt)dt.
0

The proof is similar to the proof of Theorem 5 in [14].
These integral representation can be generalized through the following theorems.

Theorem 4. Let A;; 1 <i < pand B; ;1 < j < q be matrices in CN*N such
that Bj + k1 are invertible matrices for all integers k > 0. Suppose that A;, Bj and
Bj — A; are positive stable matrices. If p < q + 1, for |z| <1

qu (Al,Az,...,Ap;Bl,Bz,...,Bq;Z)
1
= P T (B ) P (By) [ A
0

A1,...,A,'_1,A,'+1...,Ap; .
XP‘IFq‘l( Bi....Bj_1.Bjy1...B; ')

(2.22)



SOME RELATIONS ON KONHAUSER MATRIX POLYNOMIALS 615

Proof. By extending Eq. (35) in [14], we have

(a8, = P70 T (B A T (8y) [ 4040-0E =t

where A; B; = B; A;. Also we have

Al,Az,...,Ap;
qu( B1 Bz,...,Bq; Z)

Al)k e (ADg - (Ap) (BT U(B), 1 1(Bg) 17!

»|N

Al)k (A At D - (Ap)  [BO) T U(Bj—1) 7 (B 1) 7

a-|'\!

"[(Bq)k]_lXF_l(Ai)F_I(Bi—Ai)F(Bj)/OltA"“”‘”’ (1—n)B Al g
=Y (A) I~ (B —A) T (Bj)/Ol,Ai—I (1) Bi—Ai-1

Z( (ADk - (Ai—Di (Ai+ 1) (Ap),

[(Bl)k] 1---[(Bj—l)k]_l[(Bjﬂ)k]_l...[(Bq)k]—ldz

1
=r! (Ai)F_l(Bj—Ai)F(BJ)/ (Al (=) B~ A=t Ry,
0

where yy Fy—1 =p_1 Fq—l( Ar,.o L Aic1 Aigrs . Aps zt). 0

Bl,...,Bj_l,Bj_H,...,Bq;

Now, we are going to evaluate some matrix integrals involving generalized Hyper-
geometric matrix function. Let us consider the integral representation

1
_ Al,Az,...,Ap; m s Cc—J1 D—1
J—/O qu( B1.Bo..... By; ax™(t—x) |x (t—x) dx

where C, D and C + D are positive stable matrices, CD = DC, and m, s € N and
B;C =CBj,B;jD =DBjforj =1,2,....m
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To evaluate the integral representation, let us substitute x = ty, which gives
1
J =/ qu (Al,Az,.. .,Ap; B, B,,. ..,Bq;Ol tm—i—sym (1 —y)s)
0

tC+D—IyC—I (1 _y)D—I dy

-1

1 X® _k(m+s) q
- [ T | TT 5,

k=0 i=1 j=1

yCHmk=DI (| _ 1) D+(k=DI ,C+D~1 4,
00k k(m+s) P a -

=Z [T | [](Bi)x| B(C+mkI.D+skl)t€tP,
k=0 i=1 j=

We can write
B(C+mkI,D+skI)=T(C+mkI)I (D+skI)I"Y(C+D+k(m+s)I)

-1
=T (C)I (D)I' " (C + D) (C) i (D) [(C+D)(m+s)k] :

Note that we have used here the following elementary result:

_am(A) (A+1 A+ (k=11
e min(2) (ALY (AHEDD)

By using (2.23), we have
mk sk

B«j+mkkl”+ﬂi)=——fl—i———B«LD)r](Eﬁtgjﬂli)
k

+s)k
(m~|—s)(m 5) =1 m

5 li[ (D+(w—1)1) m+s(C+D+(v—1)1)
w1 Ky k ] m-+s k

mksskcak k(m+s)

k! (m + s)m Ok

Hence we get

k=0

C+u—-DI\ &~ (D+w—-1I
Lo [T(“57), TL(745),

i=1 w=1

q T m+s -

B; t B(C,D
M| [T, eemen)

= p+m+qu+m+stC+D_IB (C.D),
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where
pt+m+s Fq+m+s =
F Al,...,AI,,%,...,%ﬂ,g,...,w; mmsSo t(m+s)
ptm+slg+m+s Blv~~~»Bq,€n-’_;.?’~~-’C+D+,,ET_::—S_1)I; —(m—{—s)(m'H) .

Theorem 5. Let A;; 1 <i < pand Bj;1 < j <q be matrices in CN*N such

that Bj + kI are invertible matrices for all integers k > 0. Suppose that C, D and
C + D are positive stable matrices such that CD = DC, B;C = CBj, BiD = DB;
andm,s € N. If p < q + 1, then the following integral representation is hold

1 )
/ qu( A Az Ay ax’"(t—x)s)xc_l(t—x)D_Idx
0

BlvBZ»u-»Bq;
F <A1, "AP’%W-’W»%-MM; mmssat(mﬂ))
= ptm+tslgt+m+ts C+D C+D+(m+s—11 . DN
B, ..,Bq, s s ; (m+s)(m+S)
t€+P-Ig(C, D).
(2.24)

Corollary 1. Let A;; 1 <i < pand Bj;1 < j < q be matrices in CN*N such
that Bj + k1 are invertible matrices for all integers k > 0. Let C, D and C + D
be positive stable matrices such that CD = DC and m € N. If p < g + 1, then the
following integral representation is hold

1
/0 qu( Bi.Bo..... By; ax™)x (t—x) dx

Ar. A, €. CHn=DI oDt

B I, PR -2 I B(C.,D),
B],...,Bq, m gy m )

(2.25)

= ptmFgim (

where B;jC = CBj and

1
Al,Az,...,AP; S C—I, __\D-I
/0 qu( Bi.Bs.....By; a(—x) |x-""(@—x)"" "dx

Al,...,Ap,

D
:p+qu+s C 5?--.
( Bl,...,Bq,

C+D+(—DI |
tD ., -

D+(s—1)1 .
at’|:€TP=1B(C, D),
(2.26)
where B; D = DB;.

3. ON KONHAUSER MATRIX POLYNOMIALS
Let A be a matrix in CV*V satisfying the condition

Re(p) > —1, for all eigenvalues € o (A) (3.1
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and A is a complex number with Re(A) > 0,k € N ={1,2,3,...}, and let us consider
the Konhauser matrix polynomials Z ,SA’A)(X; k) by means of the relation in the form

n _1\m mk
ZAM (k) =Tknl +A+1) ) %
m=0

I Yeml+A4+1) 3.2
)lm!

or

n m mk

m=0

(n—m)Im! (A~+Dgnl(A+ ])km]—l

given in [34].
From (3.2) and (2.23), we obtain the hypergeometric matrix function representa-
tion

A+T A+T  A+kI (Ax\F
7l iy = A Den p (AR ATKT (A (3.3)
nl k k k

which can alternatively be used to derive the following properties of the Konhauser
matrix polynomials Z ,(,A"U (x; k) by simply specializing those of the generalized hy-
pergeometric matrix function , Fy (see [34]).

The Konhauser matrix differential equation (3.4) below follows directly by using
(2.10),weset p=1,q =k, z = (ATx)k, 0 = k=15, where § = xj—x, and apply the
hypergeometric matrix function representation (3.3), and so we arrive at the following
theorem:

Theorem 6. Suppose that A be a matrix in CN*N satisfying the condition (3.1).
Then the Konhauser matrix polynomials is a solution of the matrix differential equa-
tion of order k + 1 in the form:

k
[5 [[er+4+G-D-Ax)kE —kn)1:| ZWM (x:k) = 0. (3.4)
i=1
3.1. Generating matrix functions for Konhauser matrix polynomials

The primary purpose of this section is to propose new generating matrix functions
of a certain matrix functions in terms of the Konhauser matrix polynomials.
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From (2.23) and (3.2), we have

00 m mk
Y ZEP A+ Dia) 1" = ZZ( ’ (AX) A+ Diom]™

n=0 n=0m=0 ann
&L (1) (A x)mE o
=’§’;—mm! [(A+ D] "™ T
] e (=DM x)mE m
—l;)a mX::OT[(A‘FI)km] t
R R Gl - T A
=2 ;W[U( ; ),,J !

+1 A+21 A+kI  (Ax)kt
—e OFk % y % seeey & s kk .

We can write the new generating matrix function which represents an explicit repres-
entation for the Konhauser matrix polynomials in the form

o0

3 ZAP (k) (A+ D] ' "
n=0

A+1 A+21 A+klI  (Ax)kt
=e' oF| —; ;— . (3.
e o k( Tk T I (3.5)

Now, we consider the double series

o0
2 v

=0

"FA+ Dimamy) ™" Z55D (k"

3

M2 i e

um(mn+n)[(A+I)k(m+n)] 1 Z(A A)(x;k)tn

M

m+n
n=0m=0
00 n
=33 A+ D] ZEP (k) (3.6)
n=0m=0

[(A+ Dyn] ™" ZEAD (xsk) (u+1)"

A+1 A 1 A
:e"+toFk(—; + Tk ;— ( x) (u+t))

M

3
II
o

kK77 k k
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By (3.5), we have
n+v

Z ( ( [(A +]) ] Z (nr;i-l,')[n+v—mum
=0 k’”:" (3.7)
0 —(A ni n—m v
=D DTS DR Rt AL R
m=0 n+v>m ’ ’

On equating the coefficients of u”, the new generating matrix function which rep-
resents an explicit representation for the Konhauser matrix polynomials gets in the
form

o0

Z(mn+n)[(A + I)k(m—i—n)] Zr(nA—l—/}l) (x; k)tn
n=0
(3.8)
_ k\n n—m
= 3 ) EE T G ) R DL m e D )

which holds true for every non-negative integer m.
Now, we prove a class of new generating matrix functions for the polynomials

Z,(,A’A) (x; k) in the following theorem:

Theorem 7. Let a and b are complex constants, not both zero. Then we have

o0

> 20 (k) b 4+ D]
n=0 (a + bl’l) (39)
eV (At A2l A+kl A x\*
= —: —u | —
b "\ 7Tk Tk Tk k
where
u=rteb?. (3.10)
Proof. Starting with the left-hand side of (3.9), we have
oo

Z(A’A)(L;k) a+bm) " [(A+1 —lyn

’; SO Tk )@+ b A+ Diid .

k r n
D 4 1y Y D

Now by setting f (x) = ¢%* and ¢(x) = e in the Lagrange expansion formula

n=0

f(v) 1" n
T—1¢'(0) :r;ﬁ[l) S (P(x)) :||x=0,u =1¢(x), (3.12)



SOME RELATIONS ON KONHAUSER MATRIX POLYNOMIALS 621

given in [7], we obtain the following elegant result

eV > (a+bn)" n
1—bu :Z n! (3.13)
n=0
where u is given by (3.10).
From (3.11), we have
> b
Z(A’A)(—;k) a+bn)"[(A+ D] "
’;0 SO Tk )@+ b A+ D]
S ky\r (a+br)v
—t(A
=2 CET (At 1y (3.14)
r! 1—bu
e p (L A+L A+ Atk Ax\*
= El L] ;_u Y
T—bu *'% k k k k
and the proof is completed. U

For instance, we mention the following particular case. Fora = 1 and b = 0, our
theorem yields the generating matrix function (3.5).

Theorem 8. Let A and B be matrices in CN*N such that A satisfies the condition
(3.1) and A is a complex number with Re(A) > 0. Then we have

o (1A )5 (B),
- Z r! :

> Bk ZEAM (k) [(A + il 1" [(A+ Dy,

n=0 r=0
B+rkl B k+ 1)1 B k+k—-1)1
Fo Bk BRUkADI  BAUkFk=DI k) k<1
k k k
(3.15)
Proof. This can be proved by using equations (2.23) and (3.2). 0

Substituting B = A + I in equation (3.15), we get the following corollary.

Corollary 2. Let A be a matrix in CN*VN satisfying the condition (3.1), |t k¥| < 1
and A is a complex number with Re(1) > 0. Then the Konhauser matrix polynomials
satisfy the following generating matrix function:

i Z,(,A’A)(x;k)t Z (— t(k x)k)r

' (3.16)
A+ (rk + 1)1 A+(rk+2)l AL Ck+RL
kFo tk

k ’ k k
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Theorem 9. Let A and B be matrices in CN*N such that A—knl satisfies the

(=k)k
1+(A x)kt
matrix polynomials have the linear generating matrix functions

condition (3.1), |(A x)kt| < 1, |(=k)*t| < 1 and

o0

S (B ZAD (ko™ = (1+ ()18

P (3.17)
F(B Al-4 (k=DI-A (- )

e A N T,

and
o0
> ZATFD (x1 k)" = exp(—(A x)F1)
n:o (3.18)
Al-A k-DI-A

kFo(_E’ PR T t)'

Proof. From (1.8), (2.23) and (3.2), we have

o0
DI el CHOT

n=0
X (=)™ (A x)mk

- Z Z %(B)nF(A+I)F_I(A+I—k(n—m)1
n=0m=0 : :

(=)™ (A x)™k
m!'n!

wr
N

3
Il
=
3
Il
S

(=)™ (R x)™*

m!n!

o
WK

3
Il
=
Il
o

X (1™ mk
(BT (A+ DI WA+ T —knD)t" ) %

[l
WK
=|,_. 3

!

3
II
o

m=0

(B)n(— D " (= A) ey (1 + (A x)kp)~(BAnDn

Il
WK
:l,_.

3
Il
o

k . \—B - l _1kn/_ ; !
1+ x)*r) r;)”!(B)n( D*( A)kn(lJr(Ax)k,)

)"

Bpam A+ DI YA+ T —kn)"™™m

(B)o(B4+nDyuF'(A+ DI Y (A+1—knl)"™™m

< 1, then the Konhauser

(B +nl),t™

t

(),

r=1

= (4 G083 (Bl (-1
n=0 "

14 (A x)kt

:
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00 k n
B kB l L kn r—1DI—-A t
=1+ A*Ax)1) r;)n'(B)n( k) rlzll( k )n(1+(/\x)k[)
_ k—1)I — —k)k

which gives (3.17). Again, using the relations (1.8), (2.23) and (3.2), we get

(e.¢]

ZZS’A—an,A)(x;k)tn
n=0
oo n —_1m mk
=Y > %rmﬂ)r—lmu —k(n—m)I)t"
== m!(n—m)!
oo 0 D™ (A mk
= Z Z %r(mr DI YA+1—knl)"tm
n—0m—=0 min!
> 1 > (=1)™(r x)mk
=Y —T(A+DI " A+1—knl)" )" CEDTAO™
n=0n! o m!

=exp(—(A 1) Y %F(A DI YA+ T —kn)"

n=0 "

(=1

n!

kn
(_A)kntn

k
(r—1DI—-A4 n
H( K ),f

r=1

= exp(—(A x)kz>kFo(—§, ’;A,..., (k‘I;"A;—;(—k)kt)

which leads to (3.18). Thus, the proof is completed. g

=exp(-(2 ) )
n=0

= exp(—( D) Y (DR
n=0 "'

3.2. Matrix recurrence relations for Konhauser matrix polynomials

In this section, we give the matrix recurrence relations for Konhauser matrix poly-
nomials Z ,SA’A) (x; k) together with their proofs.

Theorem 10. Let A be a matrix in CV*N satisfying the condition (3.1) and A is
a complex number with Re(A) > 0. The Konhauser matrix polynomials satisfy

(17D ZWAW (xik) = (k) ART ZATRILD (i kyin = >0, (3.19)

Proof. From (2.19) and (2.20), whence, by setting p =1, g =k, z = (ATx)k,
j—z = )L_k(g)k_l f—x, and applying (3.3), we obtain (3.19). 0
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Theorem 11. Let A and A— I be matrices in CV*N satisfying the condition (3.1)

and A is a complex number with Re(A) > 0. The Konhauser matrix polynomials
verify the following properties

xDy ZAP (xik) = (knl + A) ZATV (x1k)— A ZAP (x:1k) (3.20)
and

ZM (k) = ZA I (k)
=k (knl + AT Y k(n—1)I+A+1) Z%P (k). 321

n—1

Proof. Similarly, from the known results (2.15), (2.16) and (2.18), involving the
generalized hypergeometric matrix function (3.3), we readily obtain the following
mixed recurrence relations (3.20). It is not difficult to verify that the recurrence rela-

tion (3.21) results from (3.20) by eliminating their common term xD, Z ,SA’A) (x:k).
O

It is worth mentioning that the Konhauser matrix polynomials satisfy the three
terms recurrence relationship as given in the following theorem:

Theorem 12. Let A and A— I be matrices in CN*N satisfying condition (3.1)
and A is a complex number with Re(A) > 0. The Konhauser matrix polynomials
satisfying the following pure matrix recurrence relations:

k(A x)% ZWATKED (k) = 4 ZAD (x:k) — (knd + A)ZATP (x:k).  (3.22)

Proof. By derivation with respect to x in (3.20), we have desired relation. ]

3.3. Finite summation formulas for Konhauser matrix polynomials

As usual, we prefer to treat the problem by obtaining the finite summation formulas
and then using generating matrix functions techniques.

Theorem 13. Let A be a matrix in CN*N satisfying condition (3.1) and A is a
complex number with Re(1) > 0, then the finite summation formula for Konhauser
matrix polynomials are:

n kr
A
ZA P k) = 3 S 0 =Ry Z A (k). (3.23)
r=0

where A+ krl is a matrix in CV*N satisfying condition (3.1).
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Proof. Using (3.21) and (1.7), we have

o0 oo
Do ZAHF I (ki =exp(WF1 (v = xF)) Y7 Z AR (e
n=0 n=0

_xky Z(A —knlA) (g )T

00 00
pas

no_o ; kr
ZZ Ky ZAkn T LA () gy n

Comparing the coefficients of ", we get

n kr
_ A
Zr(zA an,K)(x;k) — Z . ( k)rz(A —knl+krl, A)(y,k)
r=0
Replacing A by A+ knl, we obtain (3.23). O

Theorem 14. Let A be a matrix in CV*N satisfying condition (3.1), then the
Konhauser matrix polynomials have the following finite summation formulas:

ZAM (x:k)

kn n K k)
:()yc) 2 (At Diall+ D)™ (yx—kx) Z D (vik) (3.24)

Jj=0

or equivalently,

Z4M M (x:k)

kn n 1 k_  k\n—J
=(§) ;(AH)MKAH)@-]—I(n_j)!(y =) ZPo,
’ (3.25)

k
Proof. From (3.5), if we set ¢t = (%) z, we get

o) nk
S A+ D] Z,SA’)L)(x;k)(%) o
n=0 (3.26)

(2 k b (AL ALK (Axy k
=exp X Z)olk Tk X ) 2 Z
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which, on interchanging x and y, gives us

[ele) nk
D [ A+ Dial ™! Z,EA’A)(y;k)(%) "
=0 (3.27)

x\* A+1 A+klI AXxy k
=exp T z2)oFr|—; R ;— 2 z .

Using (3.26) and (3.27), it follows that

[e'e) nk
T+ Dl zi k(7)) 2

k k 00 nk
—ewn(=[(7) - (3) |) Dt nelt Z80 00 (7)) 2

n=0
Comparing the coefficients of z”, we obtain (3.24). Thus the proof is completed. [J

Corollary 3. The Konhauser matrix polynomials satisfy the multiplication for-
mula follows:

n
1 -
ZA W (k) = 3 (At Dienl(A+ Diuen) ™' =i 00 (1= ) ZEED (a1 k).
r=0 '
(3.28)

Proof. The summation formula (3.24) can indeed be derived directly. ]

3.4. Expansions of Konhauser matrix polynomials

Now, we state and prove the following theorem which will be instrumental in the
sequel.

Theorem 15. Let A be a matrix in CN*N satisfy the condition (3.1). Then we
have

(A=) %Z&A’”(x:k)mw)knuﬂI)kmrl. (3.29)
m=0 )

Proof. From (3.5), we get

A+1 A+2] A+kI (A x)kt
OFk _’ ) 9oy =
k k k kk

(o.¢]
=™ Y ZWP (A + Diem] 1™

m=0
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Therefore, we can write the following

e (G ARG (G Nl

:Z Z( 1) - Z(M(x (A + D] ™"

Comparing the coefficients of " in (3.30), we have the proof. U

Expansions of Hermite and Legendre matrix polynomials in a series of Konhauser
matrix polynomials relevant to the present investigation are summarized following
theorem.

Theorem 16. Let A be a matrix in CN*N satisfy the condition (3.1) and A is a
complex number with Re(A) > 0. Hermite, Legendre and Konhauser matrix polyno-
mials satisfy respectively the relation:

n [*5%] -
2 (_l)m—{—S(M)n 2s
Ho(A ) ) =n! )" Y (n—m —25)!s! (3.31)

m=0 s=0
Zi P (k) (A + Diueas) [(A+ Diem] ™

where H, (x, A) stands for Hermite matrix polynomials [, 11].
n [%(n—m)]

( 1)s+m( ) (F)n —2s5
Pn((kx)k’A)zn!XZ:O ; 1 —m—2s)! (3.32)

Z P k) A+ Dirozg) [(A+ Dy '1"
where Py(x, A) is Legendre matrix polynomials [32].

Proof. We consider the series involving Hermite matrix polynomials

> H((Ax)" A)—exp((lx)kt«/_ :1) ZZ(‘”S(“)M(m":"M

¢!
n= 0 n=0s=0 mes:

— ZZ Z ( l)s(\/_)n ( l)m Z(A A)(x k)(A+l)kn[(A+])km] 1 n+2s

nls! (n—m)!

n=0s=0m=0

— ZZ Z ( 1)s+m(\/ﬂ)n+m Zr(nA,/l)(x;k)(A+I)k(n+m)[(A+I)km]—1tn+m+zs

In!
n=0s=0m=0 i

o oo [7]
2 -1 m-+s 2A n+m-—2s
> 3y R S A+ D20 A+ D™

n=0m=0s=0
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Replacing n by n —m, we get

> L H (G 00, 4)

oo n [*37]
2 (_1)”’!4‘6‘(@)7[-23‘
=22 2

(n—m—2s)ls! ZGP (e k) (A + Dioas) [(A+ D] ™' 1"

n=0m=0 s=0

Comparing the coefficients of ¢, we obtain (3.31). In a similar fashion, using the
result (3.29) in the generating relation for Legendre matrix polynomials, we get

3 S Pa ) A)

n

8
—_—
=

|
M=

(1 (3),_, (( 0)F V2A) >
sl(n—2s)!

(=1)5(3),,4, (A 0k v/2A)"
sln!
(—1)s(%)n+s(?L xR (V24)"

sln!

—1)stm \/—
Z : svgn)n;f)(' =k Z(AA)( YA+ Dipl(A+ D] 1" 128

o]
n,s,m=0

[(A+I)km]_1ln+m+2s

00 [%n]( 1)s+m( ) N (ﬂ)n+m—2s
n+m—s

- Z Z sl(n—2s)!

n.m=0s=0

[(A+ D]~

n

0

S
Il
(=
©
Il

tn+2s

o
WK

0

3
Il
=

N

Zn+23

M
||M8

B

|
u|| Mg g

1)s+m( )n+m+s(m)n+m

s'n!

ZAP (k) (A4 Dinam)

Zr(nA’A) (A + Di(rm—2s)
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Replacing n by n —m, we get
(o e]

> LGk A)

n=0
n [%(n—m)] 1 s+m (1 \/ﬂ n—2s
(=1) (E)n—s( )
= = sl(n—m—2s)!
[(A+ D] 12"
Comparing the coefficients of 1", we obtain (3.32). Thus the proof is completed. [J

Z8AD (k) (A + Din—2s)

In conclusion, we shall now show that there exist generating matrix functions
between Konhauser matrix polynomials and the various type of Mittag-Leffler and
Bessel-Maitland matrix functions, more results could be obtained, but the details are
omitted for reasons of brevity.

4. APPLICATIONS

Notice that the so-called Mittag-Leffler matrix function E lfl 447 and the Bessel-

Maitland matrix functions ¢(kI, A+ I;z), are indeed the familiar hypergeometric
matrix functions ; Fj and o Fy respectively, k is a positive integer. More precisely,
we define, for k = 1,2,3,...,

Ef ap1(@) = i B)mz” r~Ykeml +A+1)
k1,A+1\%) = m
m=0

4.1)
A+1 A+kl z
=I' Y A+1)F.(B: s
and
o0 Zm
¢l A+1:2)=>) =TI Nkml+A+1)
m!
m=0 4.2)
A+1 A+kI z
=" YA+1)oF|—: s
(A+1)o k( S . kk)

where A satisfies the condition (3.1).
As a consequence of the definitions (4.1) and (4.2) the following results hold:

Theorem 17. Let A and B be matrices in CN*N such that A satisfies the condi-
tion (3.1) and |t| < 1. There hold the following relations:

o0
Y BT knl + A+ DZAP (k" = (1-0"BEE, 4o, (

n=0

—(A x)kt
)
(4.3)
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and

o0
Y I Nknl + A+ DZED (k) = 'k A+ T —Ax)F1). (4.4
n=0

Proof. Using (1.8), (4.1) and (3.2), we get another representation for the Kon-
hauser matrix polynomials

o0
S BT knl + A+ DZAD (xikot"

(DB el + A+ DO
m!(n—m)!

o
(]

3
Il
=
3
Il
o

(=1 (B)pam I ~Y(kmI + A+ I)(A x)km -
m!n!

o
WK

3
Il
=
3
Il
=

(=D)™(B+mD)y(B) I Y kmI + A+ (A x)km
m'n! !

wr
WK

3
Il
=
3
Il
S

(B4+mI)y ,(~1)"(B) I "Y(kmI + A+ I)(A x)F™
n! ! m! !

ot
WK

3
II
=
3
II
o

Bamp) D™ (B)m I~ kmI + A+ 1)(A x)*™ m
m!

o

(I-1)"

Il
=

m

—(1-1)"B i (B)n " YkmI +A+1) (_(,\ x)k[)m

m! 1—¢

m=0
_ —(A x)kt
= (=07 E 441 (—1 —

which gives (4.3). From (1.7), (3.2) and (4.2), we have

okl A+ 11— x)*t) = ZZ( D™ @ X "M N eml + A+ 1)

n=0m=0 nim!
- Z Z %t rYkeml +A+1)
n=0m=0 U

o0
=Y I Mknl + A+ Dz (x:k)e"
=0

Thus the proof is completed. O
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In the forthcoming work, we will discuss the properties of these new families of
Mittag-Leffler and Bessel-Maitland matrix functions and we will analyze possible
developments and applications of the theory. Hence, new results and further applica-
tions can be obtained.
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