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STURM-LIOUVILLE PROBLEMS WITH FINITELY MANY POINT
ı�INTERACTIONS AND EIGEN-PARAMETER IN BOUNDARY
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Abstract. This paper deals with the Sturm-Liouville equation with a finite number of point
ı�interactions and eigenvalue parameter contained in the boundary condition. Sturm–Liouville
problem with discontinuities at one or two points and its different variants have already been
investigated. In this study we extend these results to a finite number of point ı�interactions case.
The crucial part of this study is the using graph demonstration to obtain asymptotic representation
of solutions.
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1. INTRODUCTION

We consider the boundary problem (BVP) for the differential equation

`y WD �y00Cq.x/y D �y (1.1)

on Œa;x1/[ .x1;x2/[� � �[ .xn�1;xn/[ .xn;b� and boundary condition at x D a

L1.y/ WD ˛1y.a/C˛2y
0.a/D 0; (1.2)

with transmission conditions at discontinuous points xi ; i D 1;n

Ui .y/ WD y.xi �0/D y.xi C0/D y.xi /; (1.3)

Vi .y/ WD y
0.xi C0/�y

0.xi �0/D 
iy.xi / (1.4)

and the eigenparameter-dependent boundary condition at x D b

L2.y/ WD �Œˇ
0
1y.b/Cˇ

0
2y
0.b/�C Œˇ1y.b/�ˇ2y

0.b/�D 0; (1.5)

where q.x/ is real-valued function and continuous inL1Œa;b�. We assume that ˛i , 
i ,
ˇi ; ˇ

0
i ; i D 1;2 are real numbers, satisfying j˛1jC j˛2j ¤ 0; � is a complex spectral

parameter. Throughout this paper, we assume that

r WD ˇ01ˇ2�ˇ1ˇ
0
2 > 0: (1.6)
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Notice that, we can understand problem (1.1), (1.3) and (1.4) as one of the treat-
ments of the equation

�y00C .p.x/Cq.x//y D �y; x 2 .a;b/; (1.7)

when p.x/D
Pn
iD1 
iı.x�xi /, where ı.x/ is the Dirac function, (see [2]).

Sturmian theory is one of the most extensively developing fields in theoretical and
applied mathematics. Particularly, there has been increasing interest in the spectral
analysis of BVPs with eigenvalue-dependent boundary conditions. There are quite
substantial literatures on such problems. Here we mention the results of [5], [6], [7],
[8], [10], [14], [18] and the corresponding references cited therein.

BVPs with discontinuities inside the interval and eigenvalue contained in the bound-
ary conditions often appear in many branches of natural sciences. We note that Sturm-
Liouville problems with eigen-dependent boundary conditions and with transmis-
sion conditions have been investigated in [1], [3], [9], [13], [11], [12]. Furthermore
Green’s formula for impulsive differential equation has been studied in [16] and [17].

In this paper we consider Sturm-Liouville problem with eigenparameter depend
boundary condition and ı�interactions at finite number of interior points. The aim of
this article is to carry results in [9] to the case of finitely many ı�interactions and the
main difference of this study is the using graph theory (see [4]) for the complicated
asymptotic formulas.

2. THE HILBERT SPACE CONSTRUCTION AND SOME PROPERTIES OF THE
SPECTRUM

In the Hilbert space H WD L2Œa;b�˚C of two component vectors, we define an
inner product by

hf;giH WD

bZ
a

f1.x/ Ng1.x/dxC
1

r
f2g2 (2.1)

for

f D

�
f1.x/

f2

�
; g D

�
g1.x/

g2

�
where f1.x/; g1.x/ 2 L2.a;b/; f2; g2 2C, the constant r is defined in (1.6). For
convenience we introduce

Rb.y/ WD ˇ1y.b/�ˇ2y
0.b/;

R0b.y/ WD ˇ
0
1y.b/�ˇ

0
2y
0.b/:

In the Hilbert space H we define the operator L

L WH !H
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with domain

D.L/ W

8̂̂<̂
:̂f 2H

ˇ̌̌̌
ˇ̌̌̌ f1; f 01 2 AC

�
Œa;x1/[

n�1S
iD1

.xi ;xiC1/[ .xn;b�

�
;

f̀1 2 L2Œa;b�; L1.f1/D 0;

Ui .f1/D Vi .f1/D 0 for i D 1;n; f2 DR
0
b
.f 1/

9>>=>>;
and operator rule

L.f / WD
�

f̀ 1
�Rb.f 1/

�
:

Here AC .:/ denotes the set of all absolutely continuous functions on related inter-
val. In particular, those functions will have limits at the boundary points xi :

It is clear that the eigenvalues of the operator L and the boundary value prob-
lem (1.1)-(1.5) are same and the eigenfunctions of (1.1)-(1.5) coincide with the first
components of corresponding eigenelements of the operator L.

Theorem 1. The operator L is symmetric.

Proof. Let f;g 2D.L/. From the inner product defined in (2.1), we obtain

hLf;giH �hf;LgiH D ŒW.f;gIx1�0/�W.f;gIa/� (2.2)

C ŒW.f;gIx2�0/�W.f;gIx1C0/�

C

n�1X
pD2

�
W.f;gIxpC1�0/�W.f;gIxpC0/

�
C ŒW.f;gIb/�W.f;gIxnC0/�

C
1

r

�
R0b.f /Rb.g/�Rb.f /R

0
b.g/

�
whereW.f;gIx/D f .x/g0.x/�f 0.x/g.x/ is the wronkskian of the functions f and
g. Since f and g satisfy the same boundary condition (1.2) and from the transmission
conditions (1.3) and (1.4), we get

W.f;gIa/D 0; (2.3)

W.f;gIxi �0/DW.f;gIxi C0/; .i D 1;n/; (2.4)
R0b.f /Rb.g/�Rb.f /R

0
b.g/D rW.f;gIb/: (2.5)

Substituting (2.3)-(2.5) in (2.2) we obtain hLf;giH D hf;LgiH for f;g 2D.L/. So
L is symmetric: �

Corollary 1. All eigenvalues of the problem (1.1)-(1.5) are real and if �1 and
�2 are two different eigenvalues of the problem (1.1)-(1.5) , then the corresponding
eigenfunctions y1 and y2 are orthogonal in the sense ofZ b

a

y1.x/y2.x/dxC
1

r
R0b.y1/R

0
b.y2/D 0:
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To define a solution of (1.1)-(1.5), we need the following lemma. The proof of this
assertion reproduces that of Theorem 1.1 in [15, p. 14] or [12].

Lemma 1. Let q.x/ be a real-valued, continuous function and let f .�/ and g.�/
are given entire functions. Then for any � 2C, the equation

�y00Cq.x/y D �y; x 2 Œa;b�

has a unique solution y D y.x;�/ such that

y.a/D f .�/; y0.a/D g.�/ (or y.b/D f .�/; y0.b/D g.�/)

and for each x 2 Œa;b�, y.x;�/ is an entire function of �.

Now we define two solutions of the equation (1.1) as follows:

��.x/D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�1�.x/; x 2 Œa;x1/

�2�.x/; x 2 .x1;x2/
:::

::: ;

�n�.x/; x 2 .xn�1;xn/

�.nC1/�.x/; x 2 .xn;b�

��.x/D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�1�.x/; x 2 Œa;x1/

�2�.x/; x 2 .x1;x2/
:::

:::

�n�.x/; x 2 .xn�1;xn/

�.nC1/�.x/; x 2 .xn;b�

Let �1�.x/D �1.x;�/ be a solution of the equation (1.1) on Œa;x1/ which satisfies
the initial conditions at the point a

y.a/D ˛2; y0.a/D�˛1 (2.6)

From Lemma 1, we can define a solution �iC1.x;�/ of the equation (1.1) on Œxi ;xiC1�,
(i D 1;n�1) by means of the solution �i .x;�/ by the nonstandard initial conditions

y.xi C0/D �i�.xi �0/; y0.xi C0/D�
0
i�.xi �0/C
i�i�.xi /: (2.7)

In the same manner, we define a solution �nC1.x;�/ of the equation (1.1) on Œxn;b�
by the nonstandard initial conditions

y.xnC0/D �n�.xn�0/; y0.xnC0/D�
0
n�.xn�0/C
i�n�.xn/: (2.8)

Therefore �.x;�/ satisfies the equation (1.1) on the interval Œa;x1/[ .x1;x2/[� � �[
.xn�1;xn/[.xn;b� and the boundary condition (1.2) and the transmission conditions
(1.3), (1.4).

Similarly let �.nC1/�.x/ D �nC1.x;�/ be a solution of (1.1) on .xn;b� which
satisfies the initial conditions

y.b/Dˇ02�Cˇ2; y0.b/Dˇ01�Cˇ1: (2.9)

Likewise let define the solution �i .x;�/, on Œxi�1;xi �, ( i D n;2) satisfies the condi-
tions

y.xi�0/D�.iC1/�.xiC0/; y
0.xi�0/D�

0
.iC1/�.xiC0/�
i�.iC1/�.xi /: (2.10)
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Finally we define a solution �1.x;�/ on Œa;x1/ satisfies the conditions

y.x1�0/D�2�.x1C0/; y0.x1�0/D�
0
2�.x1C0/�
i�2�.x1/: (2.11)

Hence �.x;�/ satisfies the equation (1.1) on Œa;x1/[ .x1;x2/[ � � � [ .xn�1;xn/[
.xn;b�, the boundary condition (1.5) and the transmission conditions (1.3), (1.4).

Let define the wronskians of �i and �i for x in the intervals Œa;x1/; .x1;x2/; :::;
.xn�1;xn/; .xn;b� respectively:

wi .�/DW�.�i ;�i ;x/ (2.12)

D �i .x;�/�
0
i .x;�/��

0
i .x;�/�i .x;�/; i D 1;nC1:

Lemma 2. For each � 2C w.�/ WD w1.�/D w2.�/D w3.�/D �� � D wnC1.�/:

Proof. From (2.7), (2.10), (1.3) and (1.4)

W�.�1;�1Ix1�0/D �1.x1�0;�/�
0
1.x1�0;�/��

0
1.x1�0;�/�1.x1�0;�/

D �2.x1C0;�/Œ�
0
2.x1C0;�/�
1�2.x1;�/�

� Œ�02.x1C0;�/�
1�2.x1;�/��2.x1C0;�/

DW�.�2;�2Ix1C0/�
1Œ�2.x1C0;�/�2.x1;�/

��2.x1;�/�2.x1C0;�/�

DW�.�2;�2Ix1C0/

Since the wronskians are independent of x (see [15, pp.7]), we get

W�.�2;�2Ix1C0/DW�.�2;�2Ix2�0/

and similar calculation gives

W�.�2;�2Ix2�0/DW�.�3;�3Ix2C0/:

Consequently we arrive at

W�.�1;�1Ix1�0/DW�.�2;�2Ix1C0/DW�.�3;�3Ix2C0/D �� �

DW�.�nC1;�nC1IxnC0/

�

Theorem 2. The eigenvalues of the problem (1.1)-(1.5) consist the zeros of the
function w.�/:

Proof. For the proof, we will follow the technique in [9]. Suppose that � is the
zero of w.�/. Then the wronskian of �1.x;�/ and �1.x;�/ is zero, so that �1.x;�/
is a constant multiple of �1.x;�/, say

�1.x;�/D k�1.x;�/; x 2 Œa;x1�

for some k ¤ 0: Therefore �1.x;�/ satisfies the boundary condition (1.2) and this
means that �1.x;�/ is an eigenfunction for the eigenvalue �:
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For the converse, let ˚.x/ be any eigenfunction corresponding to eigenvalue �.
Then the function ˚.x/ may be represented in the form

˚.x/D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

k1�1.x;�/Ck2�1.x;�/; x 2 Œa;x1/

k3�2.x;�/Ck4�2.x;�/; x 2 .x1;x2/
:::

:::

k2n�1�n.x;�/Ck2n�n.x;�/; x 2 .xn�1;xn/

k2nC1�nC1.x;�/Ck2nC2�nC1.x;�/; x 2 .xn;b�

where at least one of the constants kj; .j D 1;2nC2/ is not zero. By using the initial
conditions (2.6)-(2.11), the equations

L1.˚/D 0I Ui .˚/D 0; Vi .˚/D 0; i D 1;nI L2.˚/D 0 (2.13)

give a system of linear equations in the variables kj; .j D 1;2nC2/ and the coeffi-
cient matrix of this system is266666666666666666664

0 w1.�/ 0 0 � � � 0 0

N1 M1
0 0

0 0

0 0

0 0
N2 M2

N3
: : :

:::
:::

:::
:::

: : : Mn�1
0 0

0 0

0 0

0 0
Nn Mn

0 0 � � � 0 0 wnC1.�/ 0

377777777777777777775
.2nC2/�.2nC2/

(2.14)
where Mi and Ni are 2�2 matrices defined as follows

Mi D

�
��.iC1/�.xi C0/ ��.iC1/�.xi C0/

��0
.iC1/�

.xi C0/ ��
0
.iC1/�

.xi C0/

�
; i D 1;n;

Ni D

�
�i�.xi �0/ �i�.xi �0/

�0i�.xi �0/ �0i�.xi �0/

�
; i D 1;n:

The determinant of the matrix (2.14) is �
Qn
iD1wi .�/:w

nC1.�/ which must be zero
in order to the system (2.13) has a nontrivial solution and hence w.�/D 0. �
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3. ASYMPTOTIC FORM OF SOLUTIONS AND GRAPH REPRESENTATION

In this section, we shall derive the asymptotic formulas for the characteristic func-
tion w.�/ of (1.1), (1.5) in four different cases. The main difficulty is derivation of
asymptotic formulas for the solutions of (1.1), (1.5). Because these formulas fastly
lead to a very complicated equations for large values of n. A convenient way to man-
age the resulting asymptotic representation of solutions is by a graph analogy. For
further reading for graph based theory, see, for example, [4]. We start with some
lemmas.

Lemma 3. Let � D �2 and �.x;�/ be solution of the equation (1.1). Then the
following integral equations hold for k D 0;1

dk

dxk
�1�.x/D ˛2

dk

dxk
.cos�.x�a//�˛1

1

�

dk

dxk
.sin�.x�a// (3.1)

C
1

�

Z x1

a

dk

dxk
.sin�.x� t //q.t/�1�.t/dt;

dk

dxk
�.iC1/�.x/D �i�.xi �0/

dk

dxk
.cos�.x�xi // (3.2)

C
1

�
�0i�.xi �0/

dk

dxk
.sin�.x�xi //

C
1

�

Z x

xi

dk

dxk
.sin�.x� t //q.t/�.iC1/�.t/dt; i D 1;n:

Proof. The last terms in (3.1) and (3.2) are equal to

1

�

Z x1

a

dk

dxk
.sin�.x� t //f�2�1�.t/C�

00
1�.t/gdt;

1

�

Z x

xi

dk

dxk
.sin�.x� t //f�2�.iC1/�.t/C�

00
.iC1/�.t/gdt; i D 1;n

by the equation (1.1), respectively. On integrating by parts twice we obtain (3.1) and
(3.2). �
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Lemma 4. Let � WD Im� and ˛2 ¤ 0: As j�j ! 1, the asymptotic formula for
�1�.x/ is

dk

dxk
�1�.x/D ˛2

dk

dxk
.cos�.x�a//CO

�
j�jk�1 ej� j.x�a/

�
(3.3)

and the asymptotic formula for �.iC1/�.x/; i D 1;n , is obtained from the following
tree:

˛2
dk

dxk c �
dk

dxk s �.x�xn/

.& .&

c �s s c �.xn�xn�1/

.& .& .& .&

c �s s c c �s s c �.xn�1�xn�2/
:::
:::

:::
:::

:::
:::

:::
:::

.&.&.&.& .&.&.&.&

c� s s c c �ss c � � � c� s s c c �ss c �.x2�x1/

# # # # # # # # # # # # # # # #

c s c s c s c s � � � c s c s c s c s �.x1�a/

(3.4)

where c and s denote cosine and sine functions respectively. The roots consist of two
nodes dk

dxk c and� dk

dxk s. The children of roots are written by repeating the processing
s �s s c. The last children are written by repeating the processing c s. After con-
structing trees for any dk

dxk �i�.x/, i D 2;nC1 using rules above to get its formula,
first we write each terms by multiplying all notes on the branch from root to least
children and then sum these terms. Then, while if ˛2 D 0

dk

dxk
�1�.x/D�

˛1

�

dk

dxk
.sin�.x�a//CO

�
j�jk�2 ej� j.x�a/

�
(3.5)

and

�
˛1

�
dk

dxk c �
dk

dxk s �.x�xn/

.& .&

c s s �c �.xn�xn�1/

.& .& .& .&

c s s �c c s s �c �.xn�1�xn�2/
:::
:::

:::
:::

:::
:::

:::
:::

.&.&.&.& .&.&.&.&

c ss� c c s s �c � � � c ss� c c s s �c �.x2�x1/

# # # # # # # # # # # # # # # #

c s c s c s c s � � � c s c s c s c s �.x1�a/

(3.6)

Each result obtained from trees holds uniformly for the intervals a � x � x1; xi �
x � xiC1; i D 1;n�1 and xn � x � b respectively.
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Proof. The proof for i D 1;2 and 3 without graph representation were given in
[9] and [15]. Here, we propose an alternative proof in general sense by using graph
demonstration. As can be seen in studies [9], [15] the continuation of this process,
although theoretically clear, soon leads to very complicated formulas. It is there-
fore advantageous to use a graphical representation. Indeed, we can construct a link
about the array of the functions. Below, we exhibit the trees corresponding to each
dk

dxk �i�.x/; i D 1;nC1 and give a systematic pattern. We will write dk

dxk �i�.x/ for
i D 1;2;3 from [9, Lemma 3.2]. For ˛2 ¤ 0 and i D 1 we have

dk

dxk
�1�.x/D ˛2

dk

dxk
.cos�.x�a//CO

�
j�jk�1 ej� j.x�a/

�
:

The tree for this formula will consist of only one node will be named by root:

˛2
dk

dxk c �.x�a/

In order to work with trees we introduce the following notations: ˛2 is common

factor of all terms, dk

dxk shows the derivative of terms on root and �.x � a/ is at
values of functions which are on the same line with it. For i D 2;

dk

dxk
�2�.x/D ˛2

(
dk

dxk
.cos�.x�x1//cos�.x1�a/ (3.7)

�
dk

dxk
.sin�.x�x1//sin�.x1�a/

CO
�
j�jk�1 ej� jŒ.x�x1/C.x1�a/�

�o
:

For this formula the tree will consist of two roots and their one child:

�
˛1

�
dk

dxk c �
dk

dxk s �.x�x1/

# #

c s �.x1�a/

In this tree, the multiplication of terms on the vertical branch from root to its child
gives the first term of (3.7) and similarly, second branch gives the second term of
(3.7). Then the sum of these branches gives the formula (3.7). Finally, for i D 3

dk

dxk
�3�.x/D ˛2

(
dk

dxk
.cos�.x�x2//cos�.x2�x1/cos�.x1�a/

�
dk

dxk
.cos�.x�x2//sin�.x2�x1/sin�.x1�a/

�
dk

dxk
.sin�.x�x2//sin�.x2�x1/cos�.x1�a/
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�
dk

dxk
.sin�.x�x2//cos�.x2�x1/sin�.x1�a/

CO
�
j�jk�1 ej� jŒ.x�x2/C.x2�x1/C.x1�a/�

�o
and corresponds to:

˛2
dk

dxk c �
dk

dxk s �.x�x2/

.& .&

c �s s c �.x2�x1/

# # # #

c s c s �.x1�a/

The above trees help in giving a procedure to construct trees for i � 4. From using
the rules above we generalize a tree for dk

dxk �.nC1/�.x/ as in (3.4) and by using the

same technique we obtain a tree for dk

dxk �.nC1/�.x/ when ˛2 D 0 as in (3.6). �

Theorem 3. Let � D �2 and � WD Im�. Then the estimates obtained from the
following four trees for w.�/ are valid.

For ˇ02¤ 0; ˛2¤ 0, the estimate obtained from a tree which is the same as in (3.4)
except common factor and root changed by

�ˇ02˛2�
3 s c �.b�xn/

For ˇ02 ¤ 0; ˛2 D 0, the estimate obtained from a tree which is the same as in (3.6)
except common factor and root changed by

�ˇ02˛1�
2 s c �.b�xn/

For ˇ02 D 0; ˛2 ¤ 0, the estimate obtained from a tree which is the same as in (3.4)
except common factor and root changed by

�ˇ01˛2�
2 c �s �.b�xn/

For ˇ02 D 0; ˛2 D 0, the estimate obtained from a tree which is the same as in (3.6)
except common factor and root changed by

�ˇ01˛1� c s �.b�xn/

Proof. The case ˇ02 ¤ 0; ˛2 ¤ 0 will be considered; similar proof works for other
three cases. Since wnC1.�/ in (2.12) is independent of x 2 Œa;b�, from (2.9) we get

wnC1.�/D .ˇ
0
1�Cˇ1/�.nC1/�.b/� .ˇ

0
2�Cˇ2/�

0
.nC1/�.b/ (3.8)

Putting x D b in estimates obtained from trees (3.4) and (3.6) for the asymptotic
behavior of dk

dxk �.nC1/�.x/ and then substituting in (3.8) we obtain four different
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cases for the asymptotic behavior of wnC1.�/ and their trees as j�j !1. For ˇ02 ¤
0; ˛2 ¤ 0, we briefly write

wnC1.�/D ˇ
0
2˛2�

3
fsin�.b�xn/ Œ: : :�1C cos�.b�xn/ Œ: : :�2g (3.9)

CO
�
j�j2 ej� jŒ.b�xn/C.xn�xn�1/C���C.x2�x1/C.x1�a/�

�
where the terms in square brackets Œ: : :�1 and Œ: : :�2 are the same as the terms in estim-
ate obtained from (3.4). Therefore the tree for (3.9) is similar to the tree (3.4) except
common factor and root. The common factor and root are replaced by

�ˇ02˛2�
3 s c �.b�xn/

�

Putting � D i� .� > 0/ in these formula it follows that w.�/ ¤ 0 for � negative
and sufficiently large. The eigenvalues of the problem (1.1)-(1.5) are bounded below
in all cases.

4. ASYMPTOTIC BEHAVIOR OF THE EIGENVALUES AND EIGENFUNCTIONS

Our object in this section is to obtain asymptotic estimates for eigenvalues of prob-
lem (1.1)-(1.5). We know from Lemma 2 and Theorem 2 that the eigenvalues coin-
cide with the zeros of the entire functionwnC1.�/. Since the eigenvalues are real and
bounded below we can denote the eigenvalues by �n .nD 0;1; : : :/, where

�0 � �1 � �2 � � � �

Let ˇ02 ¤ 0; ˛2 ¤ 0: In the formula (3.9) and so in the corresponding tree, after
successive trigonometric operations from last children to the root we arrive at

wnC1.�/D ˇ
0
2˛2�

3
nY
kD1

sin�.b�a/CO
�
j�j2 ej� j.b�a/

�
: (4.1)

By applying Rouché’s theorem on a sufficiently large contour it follows thatwnC1.�/
has the same number of zeros inside the contour as

ˇ02˛2�
3
nY
kD1

sin�.b�a/:

Hence, if �0 � �1 � �2 � � � � , are the zeros of wnC1.�/ and �2m D �, we have for
sufficiently large m

�m D
.m�1/�

b�a
CO

�
1

m

�
: (4.2)

With the same idea, we obtain: For ˇ02 ¤ 0; ˛2 D 0 and for ˇ02 D 0; ˛2 ¤ 0,

�m D
.m�1=2/�

b�a
CO

�
1

m

�
: (4.3)
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For ˇ02 D 0; ˛2 D 0;

�m D
m�

b�a
CO

�
1

m

�
: (4.4)

Let �.x;�m/ is an eigenfunction corresponding to eigenvalue �m and ˇ02¤ 0; ˛2¤
0. After inserting (4.2) into (3.3) and (3.4) and taking into account the definition of
solutions defined in �2 we get

�.x;�m/D ˛2 cos
�
.m�1/�

b�a
.x�a/

�
CO

�
1

m

�
; x 2 Œa;b�;

and for ˇ02 ¤ 0; ˛2 D 0

�.x;�m/D�˛1
.b�a/

�.m�1=2/
sin
�
.m�1=2/�

b�a
.x�a/

�
CO

�
1

m2

�
; x 2 Œa;b�;

for ˇ02 D 0; ˛2 ¤ 0

�.x;�m/D ˛2 cos
�
.m�1=2/�

b�a
.x�a/

�
CO

�
1

m

�
; x 2 Œa;b�;

for ˇ02 D 0; ˛2 D 0

�.x;�m/D�˛1
.b�a/

�m
sin
� m�
b�a

.x�a/
�
CO

�
1

m2

�
; x 2 Œa;b�:
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[16] O. Uğur and M. Akhmet, “Boundary value problems for higher order linear impulsive differential
equations,” Journal of Mathematical Analysis and Applications, vol. 319, no. 1, pp. 139–156,
2006, doi: 10.1016/j.jmaa.2005.12.077.
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