

Miskolc Mathematical Notes Vol. 18 (2017), No. 1, pp. 507–514 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2017.416

BRUNN-MINKOWSKI INEQUALITY FOR L_p-MIXED INTERSECTION BODIES

CHANG-JIAN ZHAO AND MIHÁLY BENCZE

Received 02 October, 2013

Abstract. In this paper, we establish L_p -Brunn-Minkowski inequality for dual Quermassintegral of L_p -mixed intersection bodies. As application, we give the well-known Brunn-Minkowski inequality for mixed intersection bodies.

2010 Mathematics Subject Classification: 52A40

Keywords: the Brunn-Minkowski inequality, L_p -dual mixed volumes, L_p -mixed intersection bodies

1. INTRODUCTION

The intersection operator and the class of intersection bodies were defined by Lutwak [9]. The closure of the class of intersection bodies was studied by Goody, Lutwak, and Weil [5]. The intersection operator and the class of intersection bodies played a critical role in Zhang [12] and Gardner [2] on the solution of the famous Busemann-Petty problem (See also Gardner, Koldobsky, Schlumprecht [4]).

As Lutwak [9] shows (and as is further elaborated in Gardner's book [3]), there is a kind of duality between projection and intersection bodies. Consider the following illustrative example: It is well known that the projections (onto lower dimensional subspaces) of projection bodies are themselves projection bodies. Lutwak conjectured the "dualiy": When intersection bodies are intersected with lower dimensional subspaces, the results are intersection bodies (within the lower dimensional subspaces). This was proven by Fallert, Goodey and Weil [1].

In [7] (see also [10] and [8]), Lutwak introduced mixed projection bodies and proved the following Brunn-Minkowski inequality for mixed projection bodies:

Theorem 1. If $K, L \in \mathcal{K}^n$ and $0 \le i < n$, then $W_i(\mathbf{P}(K+L))^{1/(n-i)(n-1)} \ge W_i(\mathbf{P}K)^{1/(n-i)(n-1)} + W_i(\mathbf{P}L)^{1/(n-i)(n-1)}$, (1.1)

with equality if and only if K and L are homothetic.

© 2017 Miskolc University Press

The first author was supported in part by the National Natural Sciences Foundation of China, Grant No. 11371334.

Where, \mathcal{K}^n denotes the set of convex bodies in \mathbb{R}^n .

$$W_i(K) = V(\underbrace{K, \dots, K}_{n-i}, \underbrace{B, \dots, B}_{i})$$

denotes the classical Quermassintegral of convex body K. **P**K denotes the projection body of convex body K.

In 2008, the Brunn-Minkowski inequality for mixed intersection bodies was established as follows [13].

Theorem 2. If
$$K, L \in \varphi^n$$
, $0 \le i < n$, then

$$\tilde{W}_{i}(\mathbf{I}(K\tilde{+}L))^{1/(n-i)(n-1)} \le \tilde{W}_{i}(\mathbf{I}K)^{1/(n-i)(n-1)} + \tilde{W}_{i}(\mathbf{I}L)^{1/(n-i)(n-1)}, \quad (1.2)$$

with equality if and only if K and L are dilates.

Where, φ^n denotes the set of star bodies in \mathbb{R}^n . Associated with a compact subset K of \mathbb{R}^n , which is star-shaped with respect to the origin, is its radial function $\rho(K, \cdot)$: $S^{n-1} \to \mathbb{R}$, defined for $u \in S^{n-1}$, by

$$\rho(K, u) = Max\{\lambda \ge 0 : \lambda u \in K\}.$$

If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Moreover, IK denotes the intersection body of star body K and the sum $\tilde{+}$ denotes the radial Minkowski sum and $\tilde{W}_i(K) = \tilde{V}(\underbrace{K, \ldots, K}_{n-i}, \underbrace{B, \ldots, B}_{i})$ denotes the classical dual

Quermassintegral of star body K.

In 2006, Haberl and Ludwig [6] introduced L_p -intersection bodies(p < 1). For $K \in \mathcal{P}_0^n$, where \mathcal{P}_0^n denotes the set of convex polytopes in \mathbb{R}^n that contain the origin in their interiors. The star body $\mathbf{I}_p^+ K$ is defined for $u \in S^{n-1}$ by

$$\rho(\mathbf{I}_p^+ K, u)^p = \int_{K \cap u^+} |u \cdot x|^{-p} dx, \qquad (1.3)$$

where $u^+ = \{x \in \mathbb{R}^n : u \cdot x \ge 0\}$, and define $\mathbf{I}_p^- K = \mathbf{I}_p^+ (-K)$. For p < 1, the centrally symmetric star body $\mathbf{I}_p K = \mathbf{I}_p^+ K + \mathbf{I}_p^- K$ is called as the L_p intersection body of K. So for $u \in S^{n-1}$,

$$\rho^p(\mathbf{I}_p K, u) = \int_K |u \cdot x|^{-p} dx.$$
(1.4)

The purpose of this paper is to establish Brunn-Minkowski inequality for L_p -mixed intersection bodies as follows

Theorem 3. If
$$K, L \in \varphi^n$$
, and $0 \le i < n$, then for $p < 1$
 $\tilde{W}_i(\mathbf{I}_p(K + L))^{1/(n-i)(n-1)} \le \tilde{W}_i(\mathbf{I}_p K)^{1/(n-i)(n-1)} + \tilde{W}_i(\mathbf{I}_p L)^{1/(n-i)(n-1)}$, (1.5)

with equality if and only if K and L are dilates.

Where, $I_p K$ denotes the above L_p -intersection body of star body K which was defined by Haberl and Ludwig [6].

Remark 1. Let $p \to 1^-$ in (1.5), (1.5) changes to (1.2).

To prove Theorem 3, the paper first introduce a new notion L_p -dual mixed volumes, then generalize Haberl and Ludwig's L_p -intersection bodies to L_p -mixed intersection bodies (p < 1). Moreover, we use a new way which is different from the way of [13].

2. PRELIMINARIES

The setting for this paper is *n*-dimensional Euclidean space $\mathbb{R}^n (n > 2)$. Let \mathbb{C}^n denote the set of non-empty convex figures(compact, convex subsets) and \mathcal{K}^n denote the subset of \mathbb{C}^n consisting of all convex bodies (compact, convex subsets with non-empty interiors) in \mathbb{R}^n . We reserve the letter *u* for unit vectors, and the letter *B* is reserved for the unit ball centered at the origin. The surface of *B* is S^{n-1} . For $u \in S^{n-1}$, let E_u denote the hyperplane, through the origin, that is orthogonal to *u*. We will use K^u to denote the image of *K* under an orthogonal projection onto the hyperplane E_u . We use V(K) for the *n*-dimensional volume of convex body *K*. The support function of $K \in \mathcal{K}^n$, $h(K, \cdot)$, defined on \mathbb{R}^n by $h(K, \cdot) = Max\{x \cdot y : y \in K\}$. Let δ denote the Hausdorff metric on \mathcal{K}^n ; i.e., for $K, L \in \mathcal{K}^n$, $\delta(K, L) = |h_K - h_L|_{\infty}$, where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions, $C(S^{n-1})$. Let $\tilde{\delta}$ denote the radial Hausdorff metric, as follows, if $K, L \in \varphi^n$, then $\tilde{\delta}(K, L) = |\rho_K - \rho_L|_{\infty}$.

2.1. L_p -dual mixed volumes

We define vector addition $\tilde{+}$ on \mathbb{R}^n , which we shall call the radial addition, as follows. For any $x_1, \ldots, x_r \in \mathbb{R}^n$, $x_1 \tilde{+} \cdots \tilde{+} x_r$ is defined to be the usual vector sum of x_1, \ldots, x_r if they all lie in a 1-dimensional subspace of \mathbb{R}^n , and as the zero vector otherwise.

If $K_1, \ldots, K_r \in \varphi^n$ and $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$, then the radial Minkowski linear combination, $\lambda_1 K_1 + \cdots + \lambda_r K_r$, is defined by

$$\lambda_1 K_1 \tilde{+} \cdots \tilde{+} \lambda_r K_r = \{\lambda_1 x_1 \tilde{+} \cdots \tilde{+} \lambda_r x_r : x_i \in K_i\}.$$

The following property will be used later. If $K, L \in \varphi^n$ and $\lambda, \mu \ge 0$

$$\rho(\lambda K + \mu L, \cdot) = \lambda \rho(K, \cdot) + \mu \rho(L, \cdot).$$
(2.1)

For $K_1, \ldots, K_r \in \varphi^n$ and $\lambda_1, \ldots, \lambda_r \ge 0$, the volume of the radial Minkowski liner combination $\lambda_1 K_1 + \cdots + \lambda_r K_r$ is a homogeneous *n*th-degree polynomial in the λ_i [11],

$$V(\lambda_1 K_1 \tilde{+} \cdots \tilde{+} \lambda_r K_r) = \sum \tilde{V}_{i_1, \dots, i_n} \lambda_{i_1} \cdots \lambda_{i_n}$$
(2.2)

where the sum is taken over all *n*-tuples $(i_1, ..., i_n)$ whose entries are positive integers not exceeding *r*. If we require the coefficients of the polynomial in (2.1.2) to be symmetric in their arguments, then they are uniquely determined. The coefficient $\tilde{V}_{i_1,...,i_n}$ is nonnegative and depends only on the bodies $K_{i_1},...,K_{i_n}$. It is written as $\tilde{V}(K_{i_1},\ldots,K_{i_n})$ and is called the *dual mixed volume* of K_{i_1},\ldots,K_{i_n} . If $K_1 = \cdots =$ $K_{n-i} = K, K_{n-i+1} = \cdots = K_n = L$, the dual mixed volumes is written as $\tilde{V}_i(K, L)$. The dual mixed volumes $\tilde{V}_i(K, B)$ is written as $\tilde{W}_i(K)$.

If $K_i \in \varphi^n (i = 1, 2, ..., n - 1)$, then the dual mixed volume of $K_i \cap E_u (i = 1, 2, ..., n - 1)$ 1,2,...,n-1) will be denoted by $\tilde{v}(K_1 \cap E_u, \ldots, K_{n-1} \cap E_u)$. If $K_1 = \ldots = K_{n-1-i}$ = K and $K_{n-i} = \ldots = K_{n-1} = L$, then $\tilde{v}(K_1 \cap E_u, \ldots, K_{n-1} \cap E_u)$ is written $\tilde{v}_i(K \cap E_u, L \cap E_u)$. If L = B, then $\tilde{v}_i(K \cap E_u, B \cap E_u)$ is written $\tilde{w}_i(K \cap E_u)$.

 L_p -dual mixed volumes was defined as follows [14].

$$\tilde{V}_{p}(K_{1},...,K_{n}) = \omega_{n} \left(\frac{1}{n\omega_{n}} \int_{S^{n-1}} \rho^{p}(K_{1},u) \cdots \rho^{p}(K_{n},u) dS(u) \right)^{1/p}, \ p \neq 0,$$
(2.3)

where $K_1, \ldots, K_n \in \varphi^n$.

If $K_1 = \dots = K_{n-1-i} = K$ and $K_{n-i} = \dots = K_{n-1} = L$, will write $\tilde{V}_p(\underbrace{K,\dots,K}_{i-1-i},\underbrace{L,\dots,L}_{i})$ as $\tilde{V}_{p,i}(K,L)$. If $K_1 = \dots = K_n = K$, will write $\tilde{V}_p(\underbrace{K,\dots,K}_{n})$ as $\tilde{V}_p(K)$. If L = B, then write $\tilde{V}_p(\underbrace{K, \dots, K}_{n-i}, \underbrace{B, \dots, B}_{i})$ as $\tilde{V}_{p,i}(K)$ and is called L_p -

dual Quermassintegral as follows.

$$\tilde{V}_{p,i}(K) = \omega_n \left(\frac{1}{n\omega_n} \int_{S^{n-1}} \rho^{p(n-i)}(K,u) dS(u) \right)^{1/p}, \quad p \neq 0.$$
(2.4)

Remark 2. Apparently, let p = 1, then L_p -dual mixed volumes \tilde{V}_p and L_p -dual Quermassintegral $\tilde{V}_{p,i}$ change to the classical dual mixed volumes \tilde{V} and dual Quermassintegral \tilde{W}_i , respectively.

2.2. L_p -mixed intersection bodies

Since [6]

$$v(K \cap u^+) = \lim_{\varepsilon \to 0} \frac{\varepsilon}{2} \int_K |u \cdot x|^{-1+\varepsilon} dx.$$
 (2.5)

and

$$\rho(\mathbf{I}K, u) = \lim_{p \to 1^{-}} \frac{1 - p}{2} \rho^{p}(\mathbf{I}_{p}K, u), \qquad (2.6)$$

that is, the intersection body of K is obtained as a limit of L_p intersection bodies of K. Also note that a change to polar coordinates in (2.6) shows that up to a normalization factor $\rho^p(\mathbf{I}_p K, u)$ equals the Cosine transform of $\rho(K, u)^{n-p}$.

Here, we introduce the L_p -mixed intersection bodies of K_1, \ldots, K_{n-1} . It is written as $I_p(K_1, \ldots, K_{n-1})$ (p < 1), whose radial function is defined by

$$\rho^{p}(\mathbf{I}_{p}(K_{1},\ldots,K_{n-1}),u) = \frac{2}{1-p}\tilde{v}_{p}^{*}(K_{1}\cap E_{u},\ldots,K_{n-1}\cap E_{u}), \qquad (2.7)$$

where, $\tilde{v}_p^*(K_1 \cap E_u, \dots, K_{n-1} \cap E_u)$ denotes the *p*-dual mixed volumes of $K_1 \cap E_u, \dots, K_{n-1} \cap E_u$ in (n-1)-dimensional space. If $K_1 = \dots = K_{n-i-1} = K, K_{n-i} = \dots = K_{n-1} = L$, then $\tilde{v}_p^*(K_1 \cap E_u, \dots, K_{n-1} \cap E_u)$ is written as $\tilde{v}_{p,i}^*(K \cap E_u, L \cap E_u)$. If L = B, then $\tilde{v}_{p,i}^*(K \cap E_u, L \cap E_u)$ is written as $\tilde{v}_{p,i}^*(K \cap E_u)$.

Remark 3. From the definition, which introduces a new star body, namely the L_p -mixed intersection body of n-1 given bodies.

From the definition, $V_p(K_1, ..., K_n)$ is continuous function for any $K_i \in \varphi^n$, i = 1, 2, ..., n, then

$$\lim_{p \to 1^{-}} \frac{1-p}{2} \rho^{p} (\mathbf{I}_{p}(K_{1}, \dots, K_{n-1}), u)$$

=
$$\lim_{p \to 1^{-}} \omega_{n} \left(\frac{1}{n \omega_{n}} \int_{S^{n-1}} \rho^{p} (K_{1}, u) \cdots \rho^{p} (K_{n-1}, u) dS(u) \right)^{1/p}$$

=
$$\frac{1}{n} \int_{S^{n-1}} \rho(K_{1}, u) \cdots \rho(K_{n-1}, u) dS(u)$$

On the other hand, by using definition of mixed intersection bodies(see [3] and [14]), we have

$$\rho(\mathbf{I}(K_1,\ldots,K_{n-1}),u) = \tilde{v}(K_1 \cap E_u,\ldots,K_{n-1} \cap E_u)$$
$$= \frac{1}{n} \int_{S^{n-1}} \rho(K_1,u) \cdots \rho(K_{n-1},u) dS(u).$$

Hence

$$\lim_{p \to 1^{-}} \frac{1-p}{2} \rho^{p}(\mathbf{I}_{p}(K_{1}, \dots, K_{n-1}), u) = \rho(\mathbf{I}(K_{1}, \dots, K_{n-1}), u).$$

For the L_p -mixed intersection bodies, $\mathbf{I}_p(K_1, \ldots, K_{n-1})$, if $K_1 = \cdots = K_{n-i-1} = K$, $K_{n-i} = \cdots = K_{n-1} = L$, then $\mathbf{I}_p(K_1, \ldots, K_{n-1})$ is written as $\mathbf{I}_p(K, L)_i$. If L = B, then $\mathbf{I}_p(K, L)_i$ is written as \mathbf{I}_pK_i is called the *i*th L_p -intersection body of K. For \mathbf{I}_pK_0 simply write \mathbf{I}_pK , this is just the L_p -intersection bodies of star body K.

The following properties will be used later: If $K, L, M, K_1, ..., K_{n-1} \in \varphi^n$, and $\lambda, \mu, \lambda_1, ..., \lambda_{n-1} > 0$, then

$$\mathbf{I}_{p}(\lambda K + \mu L, M) = \lambda \mathbf{I}_{p}(K, M) + \mu \mathbf{I}_{p}(L, M), \qquad (2.8)$$

where $M = (K_1, ..., K_{n-2})$.

3. MAIN RESULTS

3.1. Some Lemmas

The following results will be required to prove our main Theorems.

Lemma 1. If $K, L \in \varphi^n$, $0 \le i < n, 0 \le j < n-1, i, j \in \mathbb{N}$ and p < 1, then

$$\tilde{W}_{i}(\mathbf{I}_{p}(K,L)_{j}) = \frac{1}{n} \left(\frac{2}{1-p}\right)^{\frac{n-1}{p}} \int_{S^{n-1}} \tilde{v}_{p,j}^{*}(K \cap E_{u},L \cap E_{u})^{\frac{(n-i)}{p}} dS(u).$$
(3.1)

From (2.4) and (2.7), identity (3.1) in Lemma 1 easy follows.

Lemma 2. If $K_1, ..., K_n \in \varphi^n$, $1 < r \le n$, $0 \le j < n-1$, $j \in \mathbb{N}$ and $p \ne 0$, then r

$$\tilde{V}_p(K_1,\ldots,K_n)^r \le \prod_{j=1}^r \tilde{V}_p(\underbrace{K_j,\ldots,K_j}_r,K_{r+1},\ldots,K_n),$$
(3.2)

with equality if and only if K_1, \ldots, K_n are all dilations [14].

From (3.1), (3.2) and in view of Hölder inequality for integral, we obtain

Lemma 3. If
$$K, L \in \varphi^n, 0 \le i < n, 0 < j < n-1, and p < 1, then$$

$$\tilde{W}_i(\mathbf{I}_p(K,L))^{n-1} \le \tilde{W}_i(\mathbf{I}_pK)^{n-j-1} \cdot \tilde{W}_i(\mathbf{I}_pL)^j, \qquad (3.3)$$

with equality if and only if K and K are dilations.

3.2. Brunn-Minkowski inequality for L_p -mixed intersection bodies

The Brunn-Minkowski inequality for L_p -intersection bodies, which will be established is: If $K, L \in \varphi^n$, p < 1 then

$$V(\mathbf{I}_{p}(K\tilde{+}L))^{1/n(n-1)} \le V(\mathbf{I}_{p}K)^{1/n(n-1)} + V(\mathbf{I}_{p}L)^{1/n(n-1)},$$
(3.4)

with equality if and only if K and L are dilates.

This is just the special case i = 0 of:

Theorem 4. If $K, L \in \varphi^n$, and $0 \le i < n$, then $\tilde{W}_i(\mathbf{I}_p(K + L))^{1/(n-i)(n-1)} \le \tilde{W}_i(\mathbf{I}_p K)^{1/(n-i)(n-1)} + \tilde{W}_i(\mathbf{I}_p L)^{1/(n-i)(n-1)}$, (3.5)

with equality if and only if K and L are dilates.

Proof. Let $M = (L_1, ..., L_{n-2})$, from (2.1), (2.4), (2.8) and in view of Minkowski inequality for integral, we obtain that

$$\widetilde{W}_{i}(\mathbf{I}_{p}(K + L, M))^{1/(n-i)} = n^{-1/(n-i)} \|\rho(\mathbf{I}_{p}(K + L, M), u)\|_{n-i}
= n^{-1/(n-i)} \|\rho(\mathbf{I}_{p}(K, M) + \mathbf{I}_{p}(L, M), u)\|_{n-i}
= n^{-1/(n-i)} \|\rho(\mathbf{I}_{p}(K, M), u) + \rho(\mathbf{I}_{p}(L, M), u)\|_{n-i}
\leq n^{-1/(n-i)} \left(\|\rho(\mathbf{I}_{p}(K, M), u)\|_{n-i} + \|\rho(\mathbf{I}_{p}(L, M), u)\|_{n-i} \right)
= \widetilde{W}_{i}(\mathbf{I}_{p}(K, M))^{1/(n-i)} + \widetilde{W}_{i}(\mathbf{I}_{p}(L, M))^{1/(n-i)}. \quad (3.6)$$

On the other hand, taking $L_1 = \cdots = L_{n-2} = K + L$ to (3.6) and apply Lemma 2 and Lemma 3, and get

$$\widetilde{W}_{i}(\mathbf{I}_{p}(K\tilde{+}L))^{1/(n-i)} \leq
\widetilde{W}_{i}\mathbf{I}_{p}(K, K\tilde{+}L)_{n-2})^{1/(n-i)} + \widetilde{W}_{i}(\mathbf{I}_{p}(L, K\tilde{+}L)_{n-2})^{1/(n-i)} \\
\leq \widetilde{W}_{i}(\mathbf{I}_{p}K)^{1/(n-1)(n-i)}\widetilde{W}_{i}(\mathbf{I}_{p}(K\tilde{+}L))^{(n-2)/(n-1)(n-i)} \\
+ \widetilde{W}_{i}(\mathbf{I}_{p}L)^{1/(n-1)(n-i)}\widetilde{W}_{i}(\mathbf{I}_{p}(K\tilde{+}L))^{(n-2)/(n-1)(n-i)}, \quad (3.7)$$

with equality if and only if K, L and M = K + L are dilates, combine this with the equality condition of (3.6), it follows that the condition holds if and only if K and L are dilates.

Dividing both sides of (3.7) by $\tilde{W}_i(\mathbf{I}_p(K+L))^{(n-2)/(n-1)(n-i)}$, we get the inequality (3.5).

The proof is complete.

Remark 4. Let i = 0 and $p \rightarrow 1^{-1}$ in (2.6), we get the well-known Brunn-Minkowski inequality for mixed intersection bodies as follows:

$$\tilde{V}(\mathbf{I}(K + L))^{1/n(n-1)} \le \tilde{V}(\mathbf{I}K)^{1/n(n-1)} + \tilde{V}(\mathbf{I}L)^{1/n(n-1)}$$

with equality if and only if K and L are dilates.

REFERENCES

- H. Fallert, P. Goodey, and W. Weil, "Spherical projections and centrally symmetric sets," *Advances in Mathematics*, vol. 129, no. 2, pp. 301–322, 1997.
- [2] R. J. Gardner, "A positive answer to the busemann-petty problem in three dimensions," Annals of Mathematics, pp. 435–447, 1994.
- [3] R. J. Gardner, Geometric tomography. Cambridge University Press Cambridge, 1995, vol. 6.
- [4] R. J. Gardner, A. Koldobsky, and T. Schlumprecht, "An analytic solution to the busemann-petty problem on sections of convex bodies," *Annals of Mathematics*, vol. 149, pp. 691–703, 1999.
- [5] P. Goodey, E. Lutwak, and W. Weil, "Functional analytic characterizations of classes of convex bodies," *Mathematische Zeitschrift*, vol. 222, no. 3, pp. 363–381, 1996.
- [6] C. Haberl and M. Ludwig, "A characterization of lp intersection bodies," *International Mathematics Research Notices*, vol. 2006, p. 10548, 2006.
- [7] E. Lutwak, "Mixed projection inequalities," *Transactions of the American Mathematical Society*, vol. 287, no. 1, pp. 91–105, 1985.
- [8] E. Lutwak, "Volume of mixed bodies," *Transactions of the American Mathematical Society*, vol. 294, no. 2, pp. 487–500, 1986.
- [9] E. Lutwak, "Intersection bodies and dual mixed volumes," *Advances in Mathematics*, vol. 71, no. 2, pp. 232–261, 1988.
- [10] E. Lutwak, "Inequalities for mixed projection bodies," *Transactions of the American Mathematical Society*, vol. 339, no. 2, pp. 901–916, 1993.
- [11] R. Schneider, *Convex bodies: the Brunn–Minkowski theory*. Cambridge University Press, 2013, no. 151.
- [12] G. Zhang, "A positive solution to the busemann-petty problem in r[^] 4," Annals of Mathematics, vol. 149, pp. 535–543, 1999.
- [13] C. Zhao and G. Leng, "Brunn-minkowski inequality for mixed intersection bodies," *Journal of mathematical analysis and applications*, vol. 301, no. 1, pp. 115–123, 2005.

[14] C. Zhao, "L p-mixed intersection bodies," Science in China Series A: Mathematics, vol. 51, no. 12, pp. 2172–2188, 2008.

Authors' addresses

Chang-Jian Zhao

Department of Mathematics, China Jiliang University, Hangzhou 310018, P.R.China *E-mail address:* chjzhao@163.com.com chjzhao@aliyun.com

Mihály Bencze

Str. Härmanului 6, 505600 Såcele-Něgyfalu, Jud, Braşov, Romania, Romania *E-mail address:* benczemihaly@yahoo.com benczemihaly@gmail.com