Miskolc Mathematical Notes

BRUNN-MINKOWSKI INEQUALITY FOR L_{p}-MIXED INTERSECTION BODIES

CHANG-JIAN ZHAO AND MIHÁLY BENCZE
Received 02 October, 2013

Abstract

In this paper, we establish L_{p}-Brunn-Minkowski inequality for dual Quermassintegral of L_{p}-mixed intersection bodies. As application, we give the well-known Brunn-Minkowski inequality for mixed intersection bodies.

2010 Mathematics Subject Classification: 52A40
Keywords: the Brunn-Minkowski inequality, L_{p}-dual mixed volumes, L_{p}-mixed intersection bodies

1. Introduction

The intersection operator and the class of intersection bodies were defined by Lutwak [9]. The closure of the class of intersection bodies was studied by Goody, Lutwak, and Weil [5]. The intersection operator and the class of intersection bodies played a critical role in Zhang [12] and Gardner [2] on the solution of the famous Busemann-Petty problem (See also Gardner, Koldobsky, Schlumprecht [4]).

As Lutwak [9] shows (and as is further elaborated in Gardner's book [3]), there is a kind of duality between projection and intersection bodies. Consider the following illustrative example: It is well known that the projections (onto lower dimensional subspaces) of projection bodies are themselves projection bodies. Lutwak conjectured the "dualiy": When intersection bodies are intersected with lower dimensional subspaces, the results are intersection bodies (within the lower dimensional subspaces). This was proven by Fallert, Goodey and Weil [1].

In [7] (see also [10] and [8]), Lutwak introduced mixed projection bodies and proved the following Brunn-Minkowski inequality for mixed projection bodies:

Theorem 1. If $K, L \in \mathcal{K}^{n}$ and $0 \leq i<n$, then
$W_{i}(\mathbf{P}(K+L))^{1 /(n-i)(n-1)} \geq W_{i}(\mathbf{P} K)^{1 /(n-i)(n-1)}+W_{i}(\mathbf{P} L)^{1 /(n-i)(n-1)}$,
with equality if and only if K and L are homothetic.
The first author was supported in part by the National Natural Sciences Foundation of China, Grant No. 11371334.

Where, \mathcal{K}^{n} denotes the set of convex bodies in \mathbb{R}^{n}.

$$
W_{i}(K)=V(\underbrace{K, \ldots, K}_{n-i}, \underbrace{B, \ldots, B}_{i})
$$

denotes the classical Quermassintegral of convex body $K . \mathbf{P} K$ denotes the projection body of convex body K.

In 2008, the Brunn-Minkowski inequality for mixed intersection bodies was established as follows [13].

Theorem 2. If $K, L \in \varphi^{n}, 0 \leq i<n$, then

$$
\begin{equation*}
\tilde{W}_{i}(\mathbf{I}(K \tilde{+} L))^{1 /(n-i)(n-1)} \leq \tilde{W}_{i}(\mathbf{I} K)^{1 /(n-i)(n-1)}+\tilde{W}_{i}(\mathbf{I} L)^{1 /(n-i)(n-1)} \tag{1.2}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Where, φ^{n} denotes the set of star bodies in \mathbb{R}^{n}. Associated with a compact subset K of \mathbb{R}^{n}, which is star-shaped with respect to the origin, is its radial function $\rho(K, \cdot)$: $S^{n-1} \rightarrow \mathbb{R}$, defined for $u \in S^{n-1}$, by

$$
\rho(K, u)=\operatorname{Max}\{\lambda \geq 0: \lambda u \in K\}
$$

If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Moreover, I K denotes the intersection body of star body K and the sum $\tilde{+}$ denotes the radial Minkowski sum and $\tilde{W}_{i}(K)=\tilde{V}(\underbrace{K, \ldots, K}_{n-i}, \underbrace{B, \ldots, B}_{i})$ denotes the classical dual Quermassintegral of star body K.

In 2006, Haberl and Ludwig [6] introduced L_{p}-intersection bodies $(p<1)$. For $K \in \mathcal{P}_{0}^{n}$, where \mathcal{P}_{0}^{n} denotes the set of convex polytopes in \mathbb{R}^{n} that contain the origin in their interiors. The star body $\mathbf{I}_{p}^{+} K$ is defined for $u \in S^{n-1}$ by

$$
\begin{equation*}
\rho\left(\mathbf{I}_{p}^{+} K, u\right)^{p}=\int_{K \cap u^{+}}|u \cdot x|^{-p} d x \tag{1.3}
\end{equation*}
$$

where $u^{+}=\left\{x \in \mathbb{R}^{n}: u \cdot x \geq 0\right\}$, and define $\mathbf{I}_{p}^{-} K=\mathbf{I}_{p}^{+}(-K)$. For $p<1$, the centrally symmetric star body $\mathbf{I}_{p} K=\mathbf{I}_{p}{ }^{+} K+\mathbf{I}_{p}{ }^{-} K$ is called as the L_{p} intersection body of K. So for $u \in S^{n-1}$,

$$
\begin{equation*}
\rho^{p}\left(\mathbf{I}_{p} K, u\right)=\int_{K}|u \cdot x|^{-p} d x \tag{1.4}
\end{equation*}
$$

The purpose of this paper is to establish Brunn-Minkowski inequality for $L_{p^{-}}$ mixed intersection bodies as follows

Theorem 3. If $K, L \in \varphi^{n}$, and $0 \leq i<n$, then for $p<1$

$$
\begin{equation*}
\tilde{W}_{i}\left(\mathbf{I}_{p}(K \tilde{+} L)\right)^{1 /(n-i)(n-1)} \leq \tilde{W}_{i}\left(\mathbf{I}_{p} K\right)^{1 /(n-i)(n-1)}+\tilde{W}_{i}\left(\mathbf{I}_{p} L\right)^{1 /(n-i)(n-1)} \tag{1.5}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Where, $\mathbf{I}_{p} K$ denotes the above L_{p}-intersection body of star body K which was defined by Haberl and Ludwig [6].

Remark 1. Let $p \rightarrow 1^{-}$in (1.5), (1.5) changes to (1.2).
To prove Theorem 3, the paper first introduce a new notion L_{p}-dual mixed volumes, then generalize Haberl and Ludwig's L_{p}-intersection bodies to L_{p}-mixed intersection bodies $(p<1)$. Moreover, we use a new way which is different from the way of [13].

2. Preliminaries

The setting for this paper is n-dimensional Euclidean space $\mathbb{R}^{n}(n>2)$. Let \mathbb{C}^{n} denote the set of non-empty convex figures(compact, convex subsets) and \mathcal{K}^{n} denote the subset of \mathbb{C}^{n} consisting of all convex bodies (compact, convex subsets with nonempty interiors) in \mathbb{R}^{n}. We reserve the letter u for unit vectors, and the letter B is reserved for the unit ball centered at the origin. The surface of B is S^{n-1}. For $u \in S^{n-1}$, let E_{u} denote the hyperplane, through the origin, that is orthogonal to u. We will use K^{u} to denote the image of K under an orthogonal projection onto the hyperplane E_{u}. We use $V(K)$ for the n-dimensional volume of convex body K. The support function of $K \in \mathcal{K}^{n}, h(K, \cdot)$, defined on \mathbb{R}^{n} by $h(K, \cdot)=\operatorname{Max}\{x \cdot y$: $y \in K\}$. Let δ denote the Hausdorff metric on \mathcal{K}^{n}; i.e., for $K, L \in \mathcal{K}^{n}, \delta(K, L)=$ $\left|h_{K}-h_{L}\right|_{\infty}$, where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions, $C\left(S^{n-1}\right)$. Let $\tilde{\delta}$ denote the radial Hausdorff metric, as follows, if $K, L \in \varphi^{n}$, then $\tilde{\delta}(K, L)=\left|\rho_{K}-\rho_{L}\right|_{\infty}$.

2.1. L_{p}-dual mixed volumes

We define vector addition $\tilde{+}$ on \mathbb{R}^{n}, which we shall call the radial addition, as follows. For any $x_{1}, \ldots, x_{r} \in \mathbb{R}^{n}, x_{1} \tilde{+} \cdots \tilde{+} x_{r}$ is defined to be the usual vector sum of x_{1}, \ldots, x_{r} if they all lie in a 1-dimensional subspace of \mathbb{R}^{n}, and as the zero vector otherwise.

If $K_{1}, \ldots, K_{r} \in \varphi^{n}$ and $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{R}$, then the radial Minkowski linear combination, $\lambda_{1} K_{1} \tilde{+} \cdots \tilde{+} \lambda_{r} K_{r}$, is defined by

$$
\lambda_{1} K_{1} \tilde{+} \cdots \tilde{+} \lambda_{r} K_{r}=\left\{\lambda_{1} x_{1} \tilde{+} \cdots \tilde{+} \lambda_{r} x_{r}: x_{i} \in K_{i}\right\}
$$

The following property will be used later. If $K, L \in \varphi^{n}$ and $\lambda, \mu \geq 0$

$$
\begin{equation*}
\rho(\lambda K \tilde{+} \mu L, \cdot)=\lambda \rho(K, \cdot)+\mu \rho(L, \cdot) \tag{2.1}
\end{equation*}
$$

For $K_{1}, \ldots, K_{r} \in \varphi^{n}$ and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$, the volume of the radial Minkowski liner combination $\lambda_{1} K_{1} \tilde{+} \cdots \tilde{+} \lambda_{r} K_{r}$ is a homogeneous n th-degree polynomial in the λ_{i} [11],

$$
\begin{equation*}
V\left(\lambda_{1} K_{1} \tilde{+} \cdots \tilde{+} \lambda_{r} K_{r}\right)=\sum \tilde{V}_{i_{1}, \ldots, i_{n}} \lambda_{i_{1}} \cdots \lambda_{i_{n}} \tag{2.2}
\end{equation*}
$$

where the sum is taken over all n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ whose entries are positive integers not exceeding r. If we require the coefficients of the polynomial in (2.1.2) to be symmetric in their arguments, then they are uniquely determined. The coefficient $\tilde{V}_{i_{1}, \ldots, i_{n}}$ is nonnegative and depends only on the bodies $K_{i_{1}}, \ldots, K_{i_{n}}$. It is written as
$\tilde{V}\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ and is called the dual mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$. If $K_{1}=\cdots=$ $K_{n-i}=K, K_{n-i+1}=\cdots=K_{n}=L$, the dual mixed volumes is written as $\tilde{V}_{i}(K, L)$. The dual mixed volumes $\tilde{V}_{i}(K, B)$ is written as $\tilde{W}_{i}(K)$.

If $K_{i} \in \varphi^{n}(i=1,2, \ldots, n-1)$, then the dual mixed volume of $K_{i} \cap E_{u}(i=$ $1,2, \ldots, n-1)$ will be denoted by $\tilde{v}\left(K_{1} \cap E_{u}, \ldots, K_{n-1} \cap E_{u}\right)$. If $K_{1}=\ldots=K_{n-1-i}$ $=K$ and $K_{n-i}=\ldots=K_{n-1}=L$, then $\tilde{v}\left(K_{1} \cap E_{u}, \ldots, K_{n-1} \cap E_{u}\right)$ is written $\tilde{v}_{i}\left(K \cap E_{u}, L \cap E_{u}\right)$. If $L=B$, then $\tilde{v}_{i}\left(K \cap E_{u}, B \cap E_{u}\right)$ is written $\tilde{w}_{i}\left(K \cap E_{u}\right)$.
L_{p}-dual mixed volumes was defined as follows [14].

$$
\begin{equation*}
\tilde{V}_{p}\left(K_{1}, \ldots, K_{n}\right)=\omega_{n}\left(\frac{1}{n \omega_{n}} \int_{S^{n-1}} \rho^{p}\left(K_{1}, u\right) \cdots \rho^{p}\left(K_{n}, u\right) d S(u)\right)^{1 / p}, p \neq 0 \tag{2.3}
\end{equation*}
$$

where $K_{1}, \ldots, K_{n} \in \varphi^{n}$.
If $K_{1}=\ldots=K_{n-1-i}=K$ and $K_{n-i}=\ldots=K_{n-1}=L$, will write $\tilde{V}_{p}(\underbrace{K, \ldots, K}_{n-1-i}, \underbrace{L, \ldots, L}_{i})$ as $\tilde{V}_{p, i}(K, L)$. If $K_{1}=\ldots=K_{n}=K$, will write $\tilde{V}_{p}(\underbrace{K, \ldots, K}_{n})$ as $\tilde{V}_{p}(K)$. If $L=B$, then write $\tilde{V}_{p}(\underbrace{K, \ldots, K}_{n-i}, \underbrace{B, \ldots, B}_{i})$ as $\tilde{V}_{p, i}(K)$ and is called $L_{p^{-}}$ dual Quermassintegral as follows.

$$
\begin{equation*}
\tilde{V}_{p, i}(K)=\omega_{n}\left(\frac{1}{n \omega_{n}} \int_{S^{n-1}} \rho^{p(n-i)}(K, u) d S(u)\right)^{1 / p}, p \neq 0 \tag{2.4}
\end{equation*}
$$

Remark 2. Apparently, let $p=1$, then L_{p}-dual mixed volumes \tilde{V}_{p} and L_{p}-dual Quermassintegral $\tilde{V}_{p, i}$ change to the classical dual mixed volumes \tilde{V} and dual Quermassintegral \tilde{W}_{i}, respectively.

2.2. L_{p}-mixed intersection bodies

Since [6]

$$
\begin{equation*}
v\left(K \cap u^{+}\right)=\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon}{2} \int_{K}|u \cdot x|^{-1+\varepsilon} d x \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho(\mathbf{I} K, u)=\lim _{p \rightarrow 1^{-}} \frac{1-p}{2} \rho^{p}\left(\mathbf{I}_{p} K, u\right), \tag{2.6}
\end{equation*}
$$

that is, the intersection body of K is obtained as a limit of L_{p} intersection bodies of K. Also note that a change to polar coordinates in (2.6) shows that up to a normalization factor $\rho^{p}\left(\mathbf{I}_{p} K, u\right)$ equals the Cosine transform of $\rho(K, u)^{n-p}$.

Here, we introduce the L_{p}-mixed intersection bodies of K_{1}, \ldots, K_{n-1}. It is written as $\mathbf{I}_{p}\left(K_{1}, \ldots, K_{n-1}\right)(p<1)$, whose radial function is defined by

$$
\begin{equation*}
\rho^{p}\left(\mathbf{I}_{p}\left(K_{1}, \ldots, K_{n-1}\right), u\right)=\frac{2}{1-p} \tilde{v}_{p}^{*}\left(K_{1} \cap E_{u}, \ldots, K_{n-1} \cap E_{u}\right), \tag{2.7}
\end{equation*}
$$

where, $\tilde{v}_{p}^{*}\left(K_{1} \cap E_{u}, \ldots, K_{n-1} \cap E_{u}\right)$ denotes the p-dual mixed volumes of $K_{1} \cap$ $E_{u}, \ldots, K_{n-1} \cap E_{u}$ in $(n-1)$-dimensional space. If $K_{1}=\cdots=K_{n-i-1}=K, K_{n-i}=$ $\cdots=K_{n-1}=L$, then $\tilde{v}_{p}^{*}\left(K_{1} \cap E_{u}, \ldots, K_{n-1} \cap E_{u}\right)$ is written as $\tilde{v}_{p, i}^{*}\left(K \cap E_{u}, L \cap\right.$ $\left.E_{u}\right)$. If $L=B$, then $\tilde{v}_{p, i}^{*}\left(K \cap E_{u}, L \cap E_{u}\right)$ is written as $\tilde{v}_{p, i}^{*}\left(K \cap E_{u}\right)$.

Remark 3. From the definition, which introduces a new star body, namely the L_{p}-mixed intersection body of $n-1$ given bodies.

From the definition, $V_{p}\left(K_{1}, \ldots, K_{n}\right)$ is continuous function for any $K_{i} \in \varphi^{n}, i=$ $1,2, \ldots, n$, then

$$
\begin{aligned}
& \lim _{p \rightarrow 1^{-}} \frac{1-p}{2} \rho^{p}\left(\mathbf{I}_{p}\left(K_{1}, \ldots, K_{n-1}\right), u\right) \\
& \quad=\lim _{p \rightarrow 1^{-}} \omega_{n}\left(\frac{1}{n \omega_{n}} \int_{S^{n-1}} \rho^{p}\left(K_{1}, u\right) \cdots \rho^{p}\left(K_{n-1}, u\right) d S(u)\right)^{1 / p} \\
&=\frac{1}{n} \int_{S^{n-1}} \rho\left(K_{1}, u\right) \cdots \rho\left(K_{n-1}, u\right) d S(u)
\end{aligned}
$$

On the other hand, by using definition of mixed intersection bodies(see [3] and [14]), we have

$$
\begin{aligned}
\rho\left(\mathbf{I}\left(K_{1}, \ldots, K_{n-1}\right), u\right)=\tilde{v}\left(K_{1} \cap E_{u},\right. & \left.\ldots, K_{n-1} \cap E_{u}\right) \\
& =\frac{1}{n} \int_{S^{n-1}} \rho\left(K_{1}, u\right) \cdots \rho\left(K_{n-1}, u\right) d S(u) .
\end{aligned}
$$

Hence

$$
\lim _{p \rightarrow 1^{-}} \frac{1-p}{2} \rho^{p}\left(\mathbf{I}_{p}\left(K_{1}, \ldots, K_{n-1}\right), u\right)=\rho\left(\mathbf{I}\left(K_{1}, \ldots, K_{n-1}\right), u\right)
$$

For the L_{p}-mixed intersection bodies, $\mathbf{I}_{p}\left(K_{1}, \ldots, K_{n-1}\right)$, if $K_{1}=\cdots=K_{n-i-1}=$ $K, K_{n-i}=\cdots=K_{n-1}=L$, then $\mathbf{I}_{p}\left(K_{1}, \ldots, K_{n-1}\right)$ is written as $\mathbf{I}_{p}(K, L)_{i}$. If $L=$ B, then $\mathbf{I}_{p}(K, L)_{i}$ is written as $\mathbf{I}_{p} K_{i}$ is called the i th L_{p}-intersection body of K. For $\mathbf{I}_{p} K_{0}$ simply write $\mathbf{I}_{p} K$, this is just the L_{p}-intersection bodies of star body K.

The following properties will be used later: If $K, L, M, K_{1}, \ldots, K_{n-1} \in \varphi^{n}$, and $\lambda, \mu, \lambda_{1}, \ldots, \lambda_{n-1}>0$, then

$$
\begin{equation*}
\mathbf{I}_{p}(\lambda K \tilde{+} \mu L, M)=\lambda \mathbf{I}_{p}(K, M) \tilde{+} \mu \mathbf{I}_{p}(L, M) \tag{2.8}
\end{equation*}
$$

where $M=\left(K_{1}, \ldots, K_{n-2}\right)$.

3. MAIN RESULTS

3.1. Some Lemmas

The following results will be required to prove our main Theorems.

Lemma 1. If $K, L \in \varphi^{n}, 0 \leq i<n, 0 \leq j<n-1, i, j \in \mathbb{N}$ and $p<1$, then

$$
\begin{equation*}
\tilde{W}_{i}\left(\mathbf{I}_{p}(K, L)_{j}\right)=\frac{1}{n}\left(\frac{2}{1-p}\right)^{\frac{n-i}{p}} \int_{S^{n-1}} \tilde{v}_{p, j}^{*}\left(K \cap E_{u}, L \cap E_{u}\right)^{\frac{(n-i)}{p}} d S(u) \tag{3.1}
\end{equation*}
$$

From (2.4) and (2.7), identity (3.1) in Lemma 1 easy follows.
Lemma 2. If $K_{1}, \ldots, K_{n} \in \varphi^{n}, 1<r \leq n, 0 \leq j<n-1, j \in \mathbb{N}$ and $p \neq 0$, then

$$
\begin{equation*}
\tilde{V}_{p}\left(K_{1}, \ldots, K_{n}\right)^{r} \leq \prod_{j=1}^{r} \tilde{V}_{p}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{n}), \tag{3.2}
\end{equation*}
$$

with equality if and only if K_{1}, \ldots, K_{n} are all dilations [14].
From (3.1), (3.2) and in view of Hölder inequality for integral, we obtain
Lemma 3. If $K, L \in \varphi^{n}, 0 \leq i<n, 0<j<n-1$, and $p<1$, then

$$
\begin{equation*}
\tilde{W}_{i}\left(\mathbf{I}_{p}(K, L)\right)^{n-1} \leq \tilde{W}_{i}\left(\mathbf{I}_{p} K\right)^{n-j-1} \cdot \tilde{W}_{i}\left(\mathbf{I}_{p} L\right)^{j} \tag{3.3}
\end{equation*}
$$

with equality if and only if K and K are dilations.

3.2. Brunn-Minkowski inequality for L_{p}-mixed intersection bodies

The Brunn-Minkowski inequality for L_{p}-intersection bodies, which will be established is: If $K, L \in \varphi^{n}, p<1$ then

$$
\begin{equation*}
V\left(\mathbf{I}_{p}(K \tilde{+} L)\right)^{1 / n(n-1)} \leq V\left(\mathbf{I}_{p} K\right)^{1 / n(n-1)}+V\left(\mathbf{I}_{p} L\right)^{1 / n(n-1)} \tag{3.4}
\end{equation*}
$$

with equality if and only if K and L are dilates.
This is just the special case $i=0$ of:
Theorem 4. If $K, L \in \varphi^{n}$, and $0 \leq i<n$, then

$$
\begin{equation*}
\tilde{W}_{i}\left(\mathbf{I}_{p}(K \tilde{+} L)\right)^{1 /(n-i)(n-1)} \leq \tilde{W}_{i}\left(\mathbf{I}_{p} K\right)^{1 /(n-i)(n-1)}+\tilde{W}_{i}\left(\mathbf{I}_{p} L\right)^{1 /(n-i)(n-1)} \tag{3.5}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Proof. Let $M=\left(L_{1}, \ldots, L_{n-2}\right)$, from (2.1), (2.4), (2.8) and in view of Minkowski inequality for integral, we obtain that

$$
\begin{gather*}
\tilde{W}_{i}\left(\mathbf{I}_{p}(K \tilde{+} L, M)\right)^{1 /(n-i)}=n^{-1 /(n-i)}\left\|\rho\left(\mathbf{I}_{p}(K \tilde{+} L, M), u\right)\right\|_{n-i} \\
=n^{-1 /(n-i)}\left\|\rho\left(\mathbf{I}_{p}(K, M) \tilde{+} \mathbf{I}_{p}(L, M), u\right)\right\|_{n-i} \\
=n^{-1 /(n-i)}\left\|\rho\left(\mathbf{I}_{p}(K, M), u\right)+\rho\left(\mathbf{I}_{p}(L, M), u\right)\right\|_{n-i} \\
\leq n^{-1 /(n-i)}\left(\left\|\rho\left(\mathbf{I}_{p}(K, M), u\right)\right\|_{n-i}+\left\|\rho\left(\mathbf{I}_{p}(L, M), u\right)\right\|_{n-i}\right) \\
=\tilde{W}_{i}\left(\mathbf{I}_{p}(K, M)\right)^{1 /(n-i)}+\tilde{W}_{i}\left(\mathbf{I}_{p}(L, M)\right)^{1 /(n-i)} \tag{3.6}
\end{gather*}
$$

On the other hand, taking $L_{1}=\cdots=L_{n-2}=K \tilde{+} L$ to (3.6) and apply Lemma 2 and Lemma 3, and get

$$
\begin{align*}
& \tilde{W}_{i}\left(\mathbf{I}_{p}(K \tilde{+} L)\right)^{1 /(n-i)} \leq \\
& \left.\quad \tilde{W}_{i} \mathbf{I}_{p}(K, K \tilde{+} L)_{n-2}\right)^{1 /(n-i)}+\tilde{W}_{i}\left(\mathbf{I}_{p}(L, K \tilde{+} L)_{n-2}\right)^{1 /(n-i)} \\
& \leq \tilde{W}_{i}\left(\mathbf{I}_{p} K\right)^{1 /(n-1)(n-i)} \tilde{W}_{i}\left(\mathbf{I}_{p}(K \tilde{+} L)\right)^{(n-2) /(n-1)(n-i)} \\
& \quad \quad+\tilde{W}_{i}\left(\mathbf{I}_{p} L\right)^{1 /(n-1)(n-i)} \tilde{W}_{i}\left(\mathbf{I}_{p}(K \tilde{+} L)\right)^{(n-2) /(n-1)(n-i)} \tag{3.7}
\end{align*}
$$

with equality if and only if K, L and $M=K \tilde{+} L$ are dilates, combine this with the equality condition of (3.6), it follows that the condition holds if and only if K and L are dilates.

Dividing both sides of (3.7) by $\tilde{W}_{i}\left(\mathbf{I}_{p}(K \tilde{+} L)\right)^{(n-2) /(n-1)(n-i)}$, we get the inequality (3.5).

The proof is complete.
Remark 4. Let $i=0$ and $p \rightarrow 1^{-}$in (2.6), we get the well-known Brunn-Minkowski inequality for mixed intersection bodies as follows:

$$
\tilde{V}(\mathbf{I}(K \tilde{+} L))^{1 / n(n-1)} \leq \tilde{V}(\mathbf{I} K)^{1 / n(n-1)}+\tilde{V}(\mathbf{I} L)^{1 / n(n-1)}
$$

with equality if and only if K and L are dilates.

REFERENCES

[1] H. Fallert, P. Goodey, and W. Weil, "Spherical projections and centrally symmetric sets," Advances in Mathematics, vol. 129, no. 2, pp. 301-322, 1997.
[2] R. J. Gardner, "A positive answer to the busemann-petty problem in three dimensions," Annals of Mathematics, pp. 435-447, 1994.
[3] R. J. Gardner, Geometric tomography. Cambridge University Press Cambridge, 1995, vol. 6.
[4] R. J. Gardner, A. Koldobsky, and T. Schlumprecht, "An analytic solution to the busemann-petty problem on sections of convex bodies," Annals of Mathematics, vol. 149, pp. 691-703, 1999.
[5] P. Goodey, E. Lutwak, and W. Weil, "Functional analytic characterizations of classes of convex bodies," Mathematische Zeitschrift, vol. 222, no. 3, pp. 363-381, 1996.
[6] C. Haberl and M. Ludwig, "A characterization of lp intersection bodies," International Mathematics Research Notices, vol. 2006, p. 10548, 2006.
[7] E. Lutwak, "Mixed projection inequalities," Transactions of the American Mathematical Society, vol. 287, no. 1, pp. 91-105, 1985.
[8] E. Lutwak, "Volume of mixed bodies," Transactions of the American Mathematical Society, vol. 294, no. 2, pp. 487-500, 1986.
[9] E. Lutwak, "Intersection bodies and dual mixed volumes," Advances in Mathematics, vol. 71, no. 2, pp. 232-261, 1988.
[10] E. Lutwak, "Inequalities for mixed projection bodies," Transactions of the American Mathematical Society, vol. 339, no. 2, pp. 901-916, 1993.
[11] R. Schneider, Convex bodies: the Brunn-Minkowski theory. Cambridge University Press, 2013, no. 151.
[12] G. Zhang, "A positive solution to the busemann-petty problem in $\mathrm{r}^{\wedge} 4$, " Annals of Mathematics, vol. 149, pp. 535-543, 1999.
[13] C. Zhao and G. Leng, "Brunn-minkowski inequality for mixed intersection bodies," Journal of mathematical analysis and applications, vol. 301, no. 1, pp. 115-123, 2005.
[14] C. Zhao, "L p-mixed intersection bodies," Science in China Series A: Mathematics, vol. 51, no. 12, pp. 2172-2188, 2008.

Authors' addresses

Chang-Jian Zhao

Department of Mathematics, China Jiliang University, Hangzhou 310018, P.R.China
E-mail address: chjzhao@163.com.com chjzhao@aliyun.com
Mihály Bencze
Str. Hărmanului 6, 505600 Sǎcele-Něgyfalu, Jud, Braşov, Romania, Romania
E-mail address: benczemihaly@yahoo.com benczemihaly@gmail.com

