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Lithofacies definition in the subsurface is an important factor in modeling, regardless of the scale being at
reservoir or basin level. In areas with low exploration level, modeling of lithofacies distribution presents a
complicated task as very few inputs are available. For this purpose, a case study in the Požega Valley was
selected with only one existing well and several seismic sections within an area covering roughly 850 km2.
For the task of expanding the input data set for lithofacies modeling, neural network analysis was performed
that incorporated interpreted lithofacies (sandstone, siltite, marl, and breccia-conglomerate) in a single well
and attribute data gathered from a seismic section. Three types of different neural networks were used for the
analysis: multilayer perceptron, radial-basis function, and probabilistic neural network. As a result, three
lithofacies models were built alongside a seismic section based upon predictions acquired from the neural
networks. Three lithofacies were successfully predicted on the section while the breccia-conglomerate was
either missing or underpredicted and mostly positioned in a geologically invalid interval. Results obtained by
single networks differed from one another, which indicated that a result from a single network should not be
treated as representative; thus, the facies distribution for modeling should be acquired from either an
ensemble of neural networks or several neural networks. Analysis showed the initial potential of the usability
of neural networks and seismic attribute analysis on vintage seismic sections with possible drawbacks of the
applications being pointed out.
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Introduction

Compared with the other parts of the Pannonian Basin system, the area of the
Požega Valley in continental Croatia is a weakly explored region. In this relatively
wide structural depression of approximately 850 km2, there are only few seismic
sections and one exploration well. In order for a complete geologic model of the
Neogene–Quaternary infill to be made, lithofacies modeling must be performed, for
which a much larger data set is usually needed. For this purpose, artificial neural
networks (ANNs) were used, as they had previously proved successful in similar tasks
of handling well log and seismic data (Bhatt 2002; Cvetković et al. 2009, Malvić et al.
2010, Bagheripour et al. 2013).

Geologic setting of the exploration area

The Požega Valley is located in the central part of northern Croatia (Fig. 1). It is
positioned between highlands that surround it from three sides: Papuk Mt. and Krndija
Mt. to the north, Psunj Mt. to the west, as well as Požeška Gora Mt., and Dilj Mt. to the
south. Further to the east lies theĐakovo-Vinkovci Plateau, as a slightly uplifted block
between the eastern part of the Drava Depression and western part of the Slavonia-
Srijem Depression.

Geotectonically, the Požega Valley represents a subdepression of a graben-type
subsidence, while a horst-type uplift is associated with surrounding highlands between
the Sava and Drava Depressions, according to Najdenovski (1988). Geomorpholo-
gically, the subdepression represents a spacious, asymmetrical longitudinal valley,
mainly bounded by a 300-m isohypse and covered by Quaternary deposits. The
mentioned specific setting allows the formation of an extensive drainage basin, where
sediments have been deposited by different mechanisms in alluvial and terrestrial
environments, resulting in a lithologically variable sedimentary cover of alluvial sand,
gravel, clay, and loess (Ivanišević et al. 2015).

Fig. 1
Location of the Požega Valley (left) and enlarged area showing exposed pre-Neogene basement, with well
Tek-1 and seismic section indicated (right)
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The geologic composition of the sediments in this subsided unit is composed of
tectonically and stratigraphically different sets of Miocene and Pliocene rocks. There
are roughly two rock complexes with different geologic, lithological, petrographic,
and genetic characteristics. The first complex contains Paleozoic and Mesozoic rocks
that are in the subsurface, usually grouped in one unit, known as pre-Neogene
basement (Fig. 2). It includes various metamorphic and magmatic rocks
(e.g., gneiss and phyllonite) of Paleozoic age and quartz–chlorite–sericite schists for
which Mesozoic age could be presumed (Fig. 2; Pandžić 1979; Pamić et al. 1998).
Sporadically, Mesozoic carbonates can be found in the outcrops (Belak et al. 1998),
but none were determined in the well Tek-1. The other complex incorporates Neogene
and Quaternary rocks, containing sediments and effusives in an age span from Lower
Miocene to Holocene. These have traditionally been subdivided into lithostratigraphic
units in the rank of formations according to Šimon (1980) and Hernitz (1980). These
units are bracketed by E-log marker horizons (Tg, H, G, B, and A; Fig. 2) – taken in a
broader sense meaning, some of them are actually unconformities, whereas many of
them in specific settings can be treated as a chronohorizons (Vrbanac 2002). This
conventional correlation is nowadays, obsolete, as there is much to be improved, since
very few of these E-log marker horizons follow regional trends (Cvetković 2017).
However, it serves well for this (local) example.

Early to Middle Miocene age is represented by rocks of the Vukovar Formation
(Fig. 2). This unit, in the surrounding area, is characterized by a diverse lithology – from
clastic rocks of various grain size, through carbonates, to effusive rocks (Hernitz 1980;
Najdenovski 1988; Pavelić 2001; Kovačić et al. 2011; Pavelić et al. 2016). It was
deposited during the extensional regime of the forming of the Pannonian Basin with
diverse sedimentary environments (Lučić et al. 2001) at the onset of marine transgression
during the Middle Badenian (Ćorić et al. 2009). In the well Tek-1, the Vukovar formation
is represented by a mixed section of coarse-grained sediments (dominantly breccia) in the
basal part and marly limestone in the shallower part of the interval (Fig. 2).

Valpovo Formation is the name given to Lower Pannonian sediments, which were
deposited in the calm basin or lacustrine environment (Pavelić 2001). These predomi-
nant pelitic sediments are represented by marl and clay-rich limestone. According to
Hernitz (1980), at a regional scale, this formation can be missing due to the result of a
basin inversion, which occurred during the Sarmatian (Csontos 1995; Horváth 1995;
Kováč et al. 1997).

Upper Pannonian and Early Pontian-age sediments correspond to the Vinkovci
Formation (Hernitz 1980). They were deposited during the post-rift phase of the
evolution of the Pannonian Basin during which the accommodation space was
controlled by thermal subsidence (Pavelić 2001; Lučić et al. 2001). The usual thick
units consist of numerous layers of marl and mostly fine-grained sandstone deposited
in an extensive lacustrine environment (Kovačić et al. 2011).

The Vera Formation relates to approximately Upper Pontian sediments (Hernitz
1980). The lithology is similar to that of the Vinkovci Formation with more coarse-
grained (sandstone) intervals, which can be observed in the Tek-1 well (Fig. 2).

Application of artificial neural networks for lithofacies determination 301

Central European Geology 60, 2017



Fig. 2
Geologic column of well Tek-1 modified after Najdenovski (1988)
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The uppermost part of the Neogene–Quaternary infill belongs to the Vuka
Formation of approximately Pliocene, Pleistocene, and Holocene age. Sediments are
clay, sand, silt, and gravel with sporadic occurrences of coal. The depositional
environment was diverse, ranging from lacustrine (Mandic et al. 2015) to aeolian.

According to Najdenovski (1988), the thickness of the Neogene–Quaternary infill
of the Požega subdepression is locally greater than 3,000 m, whereas in the well Tek-1,
the total sediment thickness is around 2,000 m. The subdepression represents a closed
area of 870 km2. Initial exploration did not result in the discovery of any petroleum
potential other than small gas occurrences (Najdenovski 1988). Hence, the area
remained underexplored with regard to seismic surveys and exploration wells – in
total counting, only five seismic sections and one exploration well (Tek-1) in the
central part of the subdepression. The interpreted seismic section used for later
analysis along with the Tek-1 well is shown in Fig. 3.

Data set analysis and modeling methods

Determination of lithofacies is crucial for the construction of usable subsurface
models in any geologic setting. In the case of scarce exploration data, the problem of
spatial distribution of lithofacies can possibly be resolved with the help of ANNs.

Fig. 3
Interpreted seismic section showing major faults, correlation horizons and well Tek-1 (section location in
Fig. 1)
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What differentiates ANN from other available methods is the ability to lessen the
uncertainty and errors in lithofacies determination through the incorporation of hard
data (well logs and seismic attributes) and soft data (predictions) through the training
process. The addition of lithology probabilities directly based on well observations
will help to reduce uncertainty in reservoir prospecting and qualification (Hami-
Eddine et al. 2015) with perspectives to do the same in (semi-) regional studies as
suggested in this paper. Input data that can be used for this purpose range from well
data and cores to seismic attributes. Seismic attributes are a practical and valuable
source of information that is still not always included in regional studies. With only
one deep well at our disposal, seismic attributes inevitably gained more significance.
They were highly represented in the training process of the ANN, in an attempt to
make use of their concealed properties and gain the best possible results.

Today, seismic attributes are a compendium of all the measured, computed, or
observed information obtained from seismic data that can greatly contribute to better
interpretation of the subsurface. Seismic attributes carry information related to
amplitudes, frequencies, and phase. These three are the fundamental attributes of a
seismic wave. Multiattribute analysis is already established as a technique to provide
researchers with information on seismic anomalies indicating specific geologic
structure, different sedimentary environments, fractured zones, and faults. In addition,
multiple seismic attributes can be used as direct hydrocarbon indicators (Koson et al.
2014). In this work, numeric values of seismic attributes were extracted and used for
further analysis. The advantages and disadvantages of each are described in Table 1.
The main constraint of seismic attributes in general is that the ability of good attribute
interpretation lies in the quality of the original seismic data. Depending on the direct
relation to interpretative significance, seismic attributes are divided into two general
classes – physical and geometric attributes. Physical attributes are related to wave-
propagation, lithology, and other physical properties. They are furthermore subdivided
into pre- and post-stack attributes. Geometric attributes are the way to extract more
detailed information regarding the dip, azimuth, and discontinuity (Subrahmanyam
and Rao 2008; Pigott et al. 2013). The usage of attributes is mainly focused on 3D
seismic cubes; however, they can be computed on 2D sections, as was the case in this
study (Fig. 4).

Neural network analysis background

In the past few decades, development in exploration methods and data they provide
has led to efforts in trying to find a way to process the large amount of newly available
information. A new field of computing and processing has developed for those
evergrowing sets of data to be properly analyzed within acceptable time constraints.
Thus, the models of artificial intelligence that imitates the principle of the biological
neural networks have been proposed as the solution for complex problems. ANNs
are a powerful tool that has proved useful in various disciplines, including the
geosciences. The basic principle of ANN is so-called template matching, where the

304 Brcković et al.
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Fig. 4
Representation of seismic attributes derived from the Požega Valley seismic section (location in Fig. 1) with
pointed out location of well Tek-1 where (a) represents original seismic, (b) reflection intensity, (c) RMS
amplitude, (d) sweetness, (e) variance edge, (f) chaos, (g) edge evidence, and (h) isofrequency component
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data of the test sample are being matched point-by-point with corresponding reference
data (Yegnanarayana 2006). The actual analysis is performed in two steps. First is the
iterative process of forming the network, which is called the training process, in which
the network is “learning” from the data with the known output. The second phase is the
utilization of the network for the purpose of determining the output based on input data
or prediction of one or more variables.

Every network is represented by its architecture, which differs regarding the
number of input and output variables. There is a minimum of three layers in an
ANN. The first layer represents the data that is used as input for the analysis. This is
called the input layer. The signal travels from input layer to the hidden layer/layers
where the processing of the data takes place. Different types of networks are
distinguished, based on the connection between the two mentioned layers. The
connections between layers can be feedforward and feedback, where every neuron
is connected to the previous layer’s output, and based on the given result or output, the
neuron can be reactivated. The activation is controlled by the activation function. In
the feedback model, the weight coefficients are assimilated, thus reducing error, which
is why the network is also known as backpropagation network.

In this paper, three different neural network architectures were used to acquire
usable lithofacies predictions. Multilayer perceptron (MLP) network is a popular
network architecture used in most of the research applications in engineering,
mathematical modeling, etc. The MLP network is based on a backpropagation
algorithm that has one or more hidden layers and is more successfully applied in
classification and prediction problems (Rumelhart et al. 1986).

The radial-basis function (RBF) network is also a commonly used neural network.
It is more successfully and frequently applied in solving classification problems than in
solving prediction problems (Cvetković et al. 2014). RBF has a hidden layer of radial
units (neurons), each modeling a Gaussian response surface. They are also good at
modeling non-linear data and can be trained in one stage rather than using an iterative
process required by MLP. RBF can learn the given application quickly (Venkatesan
and Anitha 2006; Csábrági et al. 2017).

Probabilistic neural networks (PNNs) are useful for automatic pattern recognition,
non-linear mapping, and estimation of probability of class membership and likelihood
ratios. Regarding data set size, the training speed of PNN can be orders of magnitude
faster than the well-known backpropagation algorithm in MLP networks, and still
be able to classify unknown patterns with approximately the same success
(Specht 1988, 1990).

Data preparation and ANN training

The first part of the ANN analysis covers the input data preparation process for the
training of the network. Lithofacies was interpreted for the entire interval of well
Tek-1. The interpretation was based on available well log curves along with cutting
and core description from the master log. The analysis itself was carried out in the time

308 Brcković et al.

Central European Geology 60, 2017



domain; thus, the well depths were transformed to two-way time values to be in
relation with the seismic data. A simple geologic model was also built in order for the
interpreted lithology values to be upscaled. Only four lithofacies categories were used
for upscaling as the number of input cases (total of 310) was too small to expect the
successful prediction of more lithofacies categories (sandstones, siltite, marl, and
breccia-conglomerate). The vertical cell dimension was in correspondence to the
sampling of the learning points on the well (e.g., every 4 ms). In total, 12 attributes
(Table 1) were extracted from the seismic processing, which represented the input
values for the ANN, while the target output was the upscaled lithofacies value.

The networks were trained in StatSoft’s analysis software Statistica. Using the
“intelligent problem solver” and “custom network designer” options, MLP, RBF, and
PNNs were tested alongside (Table 2). The analysis was made on a thousand networks
for each type with a learning rate of 0.01, which resulted in a relatively smooth training
graph. Ten of the best networks in the training process were retained alongside one
best PNN network. After the review of ANN performance statistics (training and
selection error), one MLP network (Table 2) was selected out of the set alongside
the PNN network as standalone networks for predictions. An ensemble (ENS) of
10 networks (excluding the PNN) was also built so the networks could compete among
themselves for determining the output. Upscaled lithology values predicted from
MLP, PNN, and network ENS can be observed in Fig. 5.

Table 2
Comparison of trained neural networks – values representing performance are in scale from 0 (0% success)
to 100 (prediction successful in 100% of cases)

Network architecture Train performance Selection performance

*PNN 12-250-4-1 81 74

MLP 12-19-4-1 83 65

MLP 12-19-4-1 83 67

MLP 12-24-4-1 73 67

*MLP 12-65-4-1 96 70

RBF 12-35-4-1 68 67

MLP 12-59-4-1 70 65

RBF 12-25-4-1 65 70

MLP 12-9-4-1 71 67

MLP 12-27-4-1 66 65

MLP 12-49-4-1 66 65

Structure of neural networks is represented with input layers (first number), output layers (last two numbers),
and hidden layer (number in between). Networks marked with * were used for standalone prediction
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Fig. 5
Tek-1 well section cutout in two-way time domain showing well log curves of normalized spontaneous
potential (SPN), shallow (R16), and deep (R64) resistivity, acoustic impedance value for the trace coinciding
with the well trajectory alongside the interpreted, upscaled, and the three ANN-predicted lithofacies
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Results and discussion

Trained ANNs were used to predict the lithofacies values across one of the seismic
sections within the Požega subdepression. Prediction was performed on every 10th
seismic trace in the section with a depth resolution of 4 ms. The ANN methods gave
different results. The first one was derived from the prediction of the standalone MLP
ANN (Fig. 6a), the second from PNN ANN (Fig. 6b), and the third from an ANN ENS
of 10 different networks (Fig. 6c). The MLP network, although it showed the best
results in the training process, predicted a large spread of sandstone facies, which is not
in correspondence with the general geologic setting that can be observed in the
outcrops. Even though the fitting of the interpreted upscaled versus predicted facies is
much more accurate for sandstone than in other ANN analyses (Fig. 5), such a high
sandstone content predicted by MLP network should not directly be treated as an
erroneous result but rather as one of the probable results. The predominant facies that
was predicted with the PNN was marl, which could be expected regarding the training
result observed in Fig. 5, with underestimated sandstone lithofacies. Coarser-grained
facies were determined in the Vukovar and in the Vuka Formations, which can be
related to the regional geologic settings described in Pavelić (2001) and Kovačić et al.
(2011). The ENS of ANNs presented similar results as the PNN, with slightly less

Fig. 6
Lithofacies models overlaying seismic section with well Tek-1. Results of prediction of a standalone MLP
neural network (a), standalone PNN (b), and ensemble of 10 ANNs (c). Frequency plot of the predicted
lithology values along the traces is shown for each case individually
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sandstone predicted. What was evident in all three cases is the inability of the ANNs to
predict the breccia-conglomerate lithofacies within the stratigraphic interval in which
they are expected (e.g., Vukovar Formation). Predictions of this lithofacies are either
sporadic and not geologically valid in terms of regional settings (Fig. 6a, c – breccia-
conglomerates determined in formations of approximate Late Miocene age) or almost
absent (Fig. 6b). From the mathematical point of view, the prediction of the breccia-
conglomerate lithofacies in stratigraphically erroneous positions is valid, as a combi-
nation of seismic attributes could occur in such intervals. Regarding this, the learning
process should possibly include more variables, not only seismic, which could be
spatially defined across the seismic section.

To improve the obtained results, a few steps could possibly be taken. Results such
as those regarding the breccia-conglomerate lithofacies are a result of a small number
of input cases through which the network was learning the properties of the lithofacies.
Increasing the number of input cases from wells outside the exploration area, but from
similar geologic environments (e.g., wells from the Sava, Eastern Drava, and
Slavonia-Srijem Depressions), would be valuable. Prediction could be further
enhanced by training the neural networks for each stratigraphic interval separately,
which would exclude the possibility of predicting breccia-conglomerates in the
stratigraphically inappropriate interval. This would only be possible if the learning
data set were to be increased, by the number of cases per stratigraphic interval in the
current data set (e.g., only 14 cases within the Valpovo Formation, which is visible on
Fig. 5). The breccia-conglomerate problem could also be resolved by adding an
additional categorical variable, which would determine the stratigraphic properties of a
sample point, i.e., defining the facies constricted to the zone of Middle Badenian based
on well picks and subsequently by horizon interpretation. In this way, a neural network
could possibly recognize that the breccia-conglomerates occur only in the Vukovar
Formation and not predict them in other formations, regardless of attribute values.

The large difference of predicted lithofacies values across the section in standalone
ANNs suggests that one single solution should not be regarded as a representative one.

Conclusions

The usage of ANNs has shown that it is possible to successfully train them and
acquire predictions based on attribute values across the seismic section. Although the
presented results differ from each other, they show a certain relation to the regional
geologic settings. A result from a single neural network (standalone) should not be
treated as representative, as the analysis showed that predictions from different
networks vary. The breccia-conglomerate facies proved to be the most underpredicted,
as it is either absent or predicted in a small number of cases that are not at all
geologically valid.

The number of lithofacies that can be predicted in this way varies in terms of the
number of available cases; the presumption is that more cases could certainly yield a
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Central European Geology 60, 2017



more successful prediction of lithofacies. Further testing of such an application should
be done in several directions. First is the expansion of the input data set with well and
seismic data from geologically similar environments, e.g., the Sava, Eastern Drava,
and Slavonia-Srijem Depressions. Second, additional variables should be added to
restrict the prediction of certain facies within a stratigraphic interval, so that the
resulted prediction is more geologically valid. As the prediction from one network
could not possibly be representative, results from several networks should be obtained
for the building of a geologic model.
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middle Miocene datum for initial marine flooding of North Croatian basins (Pannonian basin system,
central Paratethys). – Geologia Croatica, 62, pp. 31–43.

Csábrági, A., S. Molnár, P. Tanos, J. Kovács 2017: Application of artificial neural networks to the
forecasting of dissolved oxygen content in the Hungarian section of the river Danube. – Ecological
Engineering, 100, pp. 63–72.

Csontos, L. 1995: Tertiary evolution of the Intra-Carpathian area: A review. –Acta Vulcanologica, 7, pp. 1–13.
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Kováč, M., I. Baráth, A. Nagymarosy 1997: The Miocene collapse of the Alpine-Carpathian-Pannonian
junction – An overview. – Acta Geologica Hungarica, 40, pp. 241–264.
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