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MTA Rényi Institute
Budapest Pf 127, 1364 Hungary

ohkatona@renyi.hu

1 Introduction

The underlying set will be [n] = {1, 2, . . . , n}. The family of all k-element
subsets of [n] is denoted by

(

[n]
k

)

. Its subfamilies are called uniform. A family
F of some subsets of [n] is called intersecting if F ∩ G 6= ∅ holds for every
pair F,G ∈ F . It is easy to determine the largest (non-uniform) intersecting
family in 2[n] since at most one of the complementing pairs can be taken.

Observation 1 (Erdős, Ko, Rado [2]) If F ⊂ 2[n] is intersecting then |F| ≤
2n−1 = 2n/2.

The following trivial construction shows that the bound is sharp.

Construction 1 Take all subsets of [n] containing the element 1.

However there are many other construction giving equality in Observation
1. The following one will be interesting for our further investigations.

Construction 2 If n is odd take all sets of size at least n+1
2
. If n is even

then choose all the sets of size at least n
2
+ 1 and the sets of size n

2
not

containing the element n.
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The analogous problem when the intersecting subsets have size exactly
k(k ≤ n

2
), that is the case of uniform families, is not so trivial.

Theorem 1 (Erdős, Ko, Rado [2]) If F ⊂
(

[n]
k

)

is intersecting where k ≤ n
2

then

|F| ≤

(

n− 1

k − 1

)

.

For a shorter proof see [8]. In this case there is only one extremal con-
struction, mimicking Construction 1.

Construction 3 Take all subsets of [n] having size k and containing the
element 1.

Already Erdős, Ko and Rado, in their seminal paper considered a more
general problem. A family F ⊂ 2[n] is t-intersecting if |F ∩G| ≥ t holds for
every pair F,G ∈ F . They posed a conjecture for the maximal size of non-
uniform a t-intersecting family. This conjecture was justified in the following
theorem.

Theorem 2 (Katona [7]) If F ⊂ 2[n] is t-intersecting then

|F| ≤

{

∑n
i=n+t

2

(

n
i

)

if n + t is even
∑n

i=n+t+1

2

(

n
i

)

+
(

n−1
n+t−1

2

)

if n + t is odd .

Here the generalization of Construction 1 gives only 2n−t, less than the
upper bound in Theorem 2 (if t > 1). In order to obtain a sharp construction
we have to mimic Construction 2.

Construction 4 If n + t is even, take all sets of size at least n+t
2
. If n + t

is odd then choose all the sets of size at least n+t+1
2

and the sets of size n+t−1
2

not containing the element n.

2 The Complete Intersection Theorem

The problem of t-intersecting families for the uniform case proved to be much
more difficult than for the non-uniform case. Erdős, Ko and Rado were able
to settle the problem when n is large with respect to k. The dependence of
the threshold on t is not interesting here since 1 ≤ t < k can be supposed.
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Theorem 3 [2] If F ⊂
(

[n]
k

)

is t-intersecting and n > n(k) then

|F| ≤

(

n− t

k − t

)

. (1)

They also gave an example for small n when (1) does not hold. Let n be
divisible by 4, k = n

2
and t = 2. The family

F =
{

F : |F | =
n

2
,
∣

∣

∣
F ∩

[n

2

]
∣

∣

∣
≥

[n

4

]

+ 1
}

is 2-intersecting, since any two members meet in at leats two elements in
[

n
2

]

.

On the other hand the size of this family is more than
(

n−2
n/2−1

)

, if n > 4. (See

e.g. n = 8.) They believed that this construction was optimal.
The next step towards the better understanding the situation was when

Frankl [4] and Wilson [10] determined the exact value of the threshold n(k)
in Theorem 3.

Let us now consider the following generalization of the construction above.

Construction 5 Choose a non-negative integer parameter i and define the
family

A(n, k, t, i) = {A : |A| = k, |A ∩ [t+ 2i]| ≥ t+ i}. (2)

It is easy to see that A is t-intersecting for each i.

Introduce the following notation:

max
0≤i

|A(n, k, t, i)| = AK(n, k, t).

This is the size of the best of the constructions (2). Frankl [4] conjectured that
this is construction gives the largest k-uniform t-intersecting family. Frankl
and Füredi [5] proved the construction for a very large class of parameters
but the full conjecture remained open until 1996 when it became a theorem.

Theorem 4 ( The Complete Intersection Theorem, Ahlswede and

Khachatrian [1]) Let F ⊂
(

[n]
k

)

be a t-intersecting family. Then

|F| ≤ AK(n, k, t)

holds.
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This theorem was a very important step in the progress of the Extremal
Set Theory. Its proof was a far-reaching generalization of the transformation
method introduced in [2]. The author of the present paper must confess that
he had mixed feeling when he learned about the result. On the one hand he
was happy that a new important result of the theory came into life. On the
other hand, however, he was a little disappointed because he had the plan to
solve the conjecture later when he had time to devote all his energies to the
solution.

Of course Theorem 4 has many consequences. We will exhibit only one
new result of us, in Section 4, where this theorem is used and plays a role
even in the formulation of the statement.

3 An Open Problem

Even the best theorems do not stop the progress in science. In contrary, they
raise new questions. Let us show one.

If F ⊂ 2[n] is a family of subsets, let pi(F) denote the number of i-

element members of F , that is, pi(F) =
∣

∣

∣
F ∩

(

[n]
i

)

∣

∣

∣
. Then the vector p(F) =

(p0(F), p1(F), . . . , pn(F)) is called the profile vector of F .
Take all profile vectors of t-intersecting families. They will form a set

of points with integer coordinates in the n+ 1-dimensional Euclidean space.
The vertices of the convex hull of this set of points are called the extreme
points of the class of t-intersecting families. If some sets are deleted from
a t-intersecting family then the remaining family will also be t-intersecting.
Hence if (p0, p1, . . . , pn) is the profile vector of a t-intersecting family and
qi ≤ pi holds then (q0, q1, . . . , qn) is also a profile vector of a t-intersecting
family. An extreme point (p0, p1, . . . , pn) is called essential if there is no other
essential point (r0, r1, . . . , rn) satisfying pi ≤ ri for all i. Let En(t) denote the
set of essential extreme points of the set of profile vectors of all t-intersecting
families.

It is easy to see that if αj ≥ 0 are fixed constants then

max
F is t-intersecting

n
∑

i=0

αjpj(F) (3)

is attained for at least one essential extreme point. Therefore if we want to
determine the maximum in (3) it is sufficient to calculate the linear combi-
nation of each of the vectors in En(t) with the given αjs and find the largest
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one among these values. Observe that if the coefficients are all zero except
for a fixed k for which αk = 1 then (3) gives the size of the largest k-uniform
t-intersecting family. On the other hand if the coefficients αi = 1(0 ≤ i ≤ n)
are taken then (3) gives the total number of sets in the family.

The essential extreme points were determined for the case t = 1 in [3]
(Theorem 6). (For an easier treatment of the theory see the paper of Gerbner
[6].) We have no place to give the full form of the statement of this theorem.
But it is easy to check that if k ≤ n

2
then the largest kth coordinate in

the essential extreme points is
(

n−1
k−1

)

giving Theorem 1. On the other hand,
calculating the sums of the coordinates of the essential extreme points we
obtain the formula in Observation 1.

Open problem 1 Determine the essential extreme points of the t-intersecting
families (t > 1).

Of course we know some of the extreme points. The one that maximizes the
linear combination

∑n
i=0 pi(F). It is determined by Construction 4 for The-

orem 2. This point is the “farthest” one from the origin. The difficulty lies
in the determination of the extreme points near the axes. Yet, the extreme
points along the axes are given by Theorem 4 and Construction 5.

4 Union-intersecting families

The following problem was asked by János Körner.
Let F ⊂ 2[n] and suppose that if F1, F2, G1, G2 ∈ F , F1 6= F2, G1 6= G2

holds then
(F1 ∪ F2) ∩ (G1 ∪G2) 6= ∅.

What is the maximum size of such a family?
He conjectured that the following construction gives the largest one.

Construction 6 If n is odd then take all sets of size at least n−1
2
. If n is

even then choose all the sets of size at least n
2
and the sets of size n

2
− 1

containing the element 1.

We solved the problem in a more general setting. A family F ⊂ 2[n] is
called a union-t-intersecting if

|(F1 ∪ F2) ∩ (G1 ∪G2)| ≥ t

holds for any four members such that F1 6= F2, G1 6= G2.
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Theorem 5 (Katona-D.T. Nagy [9] ) If F ⊂ 2[n] is a union-t-intersecting
family then

|F| ≤

{

∑n
i=n+t

2
−1

(

n
i

)

if n + t is even
∑n

i=n+t−1

2

(

n
i

)

+ AK
(

n, n+t−3
2

, t
)

if n + t is odd .

The following construction shows that the estimate is sharp.

Construction 7 If n+ t is even, take all the sets with size at least n+t
2

− 1.
Otherwise choose all the sets of size at least n+t−1

2
and the sets of size n+t−3

2

following Construction 5 where k = n+t−1
2

and i chosen to maximize (3).

Since the result contains the AK-function, it is obvious that Theorem 4
must be used in the proof of this theorem.

As before, the uniform case is more difficult. Yet, we will treat it in an
even more general form. A family F ⊂ 2[n] is called a (u, v)-union-intersecting
if for different members F1, . . . , Fu, G1, . . . , Gv the following holds:

(∪u
i=1Fi) ∩

(

∪v
j=1Gj

)

6= ∅.

Theorem 6 (Katona-D.T. Nagy [9]) Let 1 ≤ u ≤ v and suppose that the
family F ⊂

(

[n]
k

)

is a (u, v)-union–intersecting family then

|F| ≤

(

n− 1

k − 1

)

+ u− 1

holds if n > n(k, v).

The following construction shows that the estimate is sharp.

Construction 8 Take all k-element subsets containing the element 1, and
choose u− 1 distinct sets non containing 1.

The theorem does not give a solution for small values.

Open problem 2 Is there an Ahlswede-Khachatrian type theorem here, too?
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