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Resumo

Nesta dissertação apresenta-se uma abordagem à tarefa de modelar relações semân-
ticas entre dois textos com base em modelos de semântica distribucional e em apren-
dizagem profunda. O presente trabalho tira partido de várias disciplinas da ciência
cognitiva, com especial relevo para a computação, a linguística e a inteligência arti-
ficial, e com fortes influência da neurociência e da psicologia cognitiva.
Os modelos de semântica distribucional (também conhecidos como ”word embed-

dings”) são usados para representar o significado das palavras. As representações
semânticas das palavras podem ainda ser combinadas para obter o significado de
um excerto de um texto recorrendo ao uso da aprendizagem profunda, isto é, com o
apoio das redes neurais de convolução.
Esta abordagen é utilizada para replicar a experiência realizada por Bogdanova

et al. (2015) na tarefa de deteção de perguntas que podem ser respondidas as mes-
mas respostas tal como estas foram respondidas em fóruns on-line. Os resultados do
desempenho obtidos pelas experiências apresentadas nesta dissertação são equiva-
lentes ou melhores que os resultados obtidos no trabalho de referência mencionado
acima.
Apresentao também um estudo sobre o impacto do pré-processamento apropriado

do texto, tendo em conta os resultados que podem ser obtidos pelas abordagens
adotadas no trabalho de referência supramencionado. Este estudo é levado a cabo
removendo-se certas pistas que podem levar o sistema, indevidamente, a detetar
perguntas equivalentes. Essa remoção das pistas leva a uma diminuição significativa
no desempenho do sistema desenvolvido no trabalho de referência.
Nesta dissertação é ainda apresentado um estudo sobre o impacto que os word

embeddings treinados previamente têm na tarefa de detetar perguntas semantica-
mente equivalentes. Substituindo-se, aleatoriamente, word embeddings previamente
treinados por outros melhora-se o desempenho do sistema.
Além disso, o modelo foi utilizado na tarefa de reconhecimento de implicações

para Português, onde mostrou uma taxa de acerto similar à da baseline.



Este trabalho também reporta os resultados da aplicação da abordagem adotada
numa competição para a deteção de paráfrases em Russo. A configuração final apre-
senta duas melhorias: usa character embeddings em vez de word embeddings e usa
vários filtros de convolução. Esta configuração foi testado na execução padrão da
Tarefa 2 da competição relevante, e mostrou resultados competitivos.
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Abstract

This dissertation presents an approach to the task of modelling semantic relations be-
tween two texts, which is based on distributional semantic models and deep learning.
The present work takes advantage of various disciplines of cognitive science, mainly
computation, linguistics and artificial intelligence, with strong influences from neu-
roscience and cognitive psychology.
Distributional semantic models (also known as word embeddings) are used to

represent the meaning of words. Word semantic representations can be further com-
bined towards obtaining the meaning of a larger chunk of a text using a deep learning
approach, namely with the support of convolutional neural networks.
These approaches are used to replicate the experiment carried out, by Bogdanova

et al. (2015), for the task of detecting questions that can be answered by exactly the
same answer in online user forums. Performance results obtained by my experiments
are comparable or better than the ones reported in that referenced work.
I present also a study on the impact of appropriate text preprocessing with respect

to the results that can be obtained by the approaches adopted in that referenced
work. Removing certain clues that can unduly help the system to detect equivalent
questions leads to a significant decrease in system’s performance supported by that
referenced work.
I also present a study of the impact that pre-trained word embeddings have in the

task of detecting the semantically equivalent questions. Replacing pre-trained word
embeddings by randomly initialised ones improves the performance of the system.
Additionally, the model was applied to the task of entailment recognition for Por-

tuguese and showed an accuracy on a level with the baseline.
This dissertation also reports on the results of an experimental study on the appli-

cation of the adopted approach to the shared task of sentence paraphrase detection
in Russian. The final set up contained two improvements: it uses several convolu-
tional filters and it uses character embeddings instead of word embeddings. It was



tested in Task 2 standard run of the relevant shared task and it showed competitive
results.
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Chapter 1

Introduction

Question Answering (QA) has been a long-standing goal in Artificial Intelligence. To
pose the question to a knowledge base we should do our best to provide a semantic
representation of a question. Therefore, QA is also a good task to assess natural
language semantic representation theories.
There are different approaches to natural language semantics that can either be

symbolic (e.g. truth-value semantics), or distributional (e.g. vector space semantics).
Many areas of language technology have recently explored deep learning and dis-

tributional semantic representation. In the present dissertation I am resorting to
distributional semantic models and deep learning approaches to a question answer-
ing task.

1.1 Motivation

Document and information retrieval systems, such as G, B and many
others, do a really good job by accepting a user query and retrieving a set of relevant
documents and webpages. They lack, however, the ability to answer a query in a more
natural and specific form, i.e. a form in which the question may be asked by a user
in a natural language, and not just as a sequence of keywords.
Over the years, a great variety of question answering systems have been created.

Some systems are intended to retrieve factoid answers in very specific domains, such
as one of the first QA systems L (Woods and Kaplan, 1977) that answered
questions about the geological analysis of rocks returned by the Apollo 11 moon
missions. Other systems are more open-domain oriented such as IBM W (Fer-
rucci, 2012) that could compete with champions at the game of Jeopardy!™.

1



Introduction

There are dozens of textual question answering systems described in the literature.
Following (Mitkov, 2005, Chapter 31) two basic types of question answering systems
can be distinguished: systems that try to answer a question by using a structured
information contained in a database, and systems that try to answer a question by
analysing plain-text information. Of course, plain-text based systems can be enriched
with structured data constituting a hybrid system aimed to provide more accurate
reply.
The topic of question answering, along with many other areas of Artificial In-

telligence (AI) and Natural Language Processing (NLP), recently received a huge
research boost due to two main reasons: availability of massive amounts of data
from the web and increasing growth of computational power, including by the use
of Graphics Processing Units (GPUs). The area of question answering was also sup-
ported by the emergence of Web 2.0-based online QA communities, that enhance
online information seeking by allowing users to exchange their knowledge in the
form of asking and answering questions.
This enhanced the success of AI and a broad category of machine learning systems,

that can learn to carry out different tasks just by being exposed to examples of the
relevant raw input data and the corresponding output. Machine learning approaches
play an important role in on the fly adaptation of systems and provides an option
for question answering capabilities to be learned from the data itself.
My work seeks to apply models that are based on machine learning approaches:

distributional semantic models (DSMs) and convolutional neural networks (CNNs)
to the question answering task. DSM is a very effective approach to word meaning
representation and CNN is a type of ‘deep’ neural networks, that achieved huge
success, especially in the computer-vision area.

1.2 Contributions

My masters research work is driven by the goal of replicating the experiments and
the excellent results obtained by Bogdanova et al. (2015) and by reusing them in
further experiments. The authors of this paper applied CNNs and DSMs to detect
semantically equivalent questions in online user forums, such as AU and
META SE. Bogdanova et al. (2015) defined questions as semantically
equivalent if they can be adequately answered by the exact same answer. In their
study they have a goal to predict if two questions are semantically equivalent. A
major part of my work is a replication of this study, that includes preparation of

2



1.3 Impact in cognitive science

dataset, building DSM for word meaning representation and CNN for representing
a similarity between pairs of questions.
My replication used similar dataset (but not exactly the same) and reaches very

similar accuracy score for this task (results of Bogdanova et al. (2015) are shown
in brackets): 94.1% (92.9%) for AU dataset and 94.2% (92.7%) for META
SE dataset.
Additionally, in the present work I discuss that in the study undertaken by Bog-

danova et al. (2015) there, presumably, exists a drawback regarding text preprocess-
ing, which did not ensure the removal of certain clues that can indicate that a given
question is a duplicate of other question. Removal of these clues significantly drops
the performance of the system (to less 20.8 p.p. for the AU dataset, for
instance).
Another contribution of the dissertation, in the application of similar models to

other tasks, is the textual entailment recognition for Portuguese and paraphrase
detection for Russian.
In the Portuguese task, I used the ASSIN evaluation set (Fonseca et al., 2016)

for the task of classifying the presence of textual entailment. The model that I had
developed for the QA task showed easy adaptation for this new domain and task
and it obtained a score of 69.1% in terms of classification accuracy.
In the Russian task, I used the ParaPhraser dataset (Pronoza et al., 2015) for the

task of classifying the pair of sentences as paraphrases (precise or near paraphrases)
or non-paraphrases. I participated in the Russian paraphrase detection shared task
which was co-located with AINL 2016 and my solution obtained the fifth place with
72.74% accuracy (difference to the best team is 3.12%).

1.3 Impact in cognitive science

The present work connects different disciplines of cognitive science, mainly artificial
intelligence, computation and linguistics, with a strong inspiration from neuroscience
and cognitive psychology.
Regarding neuroscience my work takes advantages of using artificial neural net-

works (ANNs), that are inspired by biological neural networks, and it derives im-
portant features from them. The distributional semantic models (DSMs), widely
applied in my work, are also supported by neuroscience. For further information
about the role of neuroscience please refer to Section 3.3.2, regarding ANNs, and to
Section 3.2.3 regarding DSMs.

3
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Regarding cognitive psychology distributional semantic models are widely used to
model and simulate various psychological phenomena. Please refer to Section 3.2.3
for specific examples.

1.4 Outline of the thesis

A brief overview of the thesis structure, chapter by chapter, is provided below.

Chapter 2: Task Overview This chapter provides an overview of the approaches to the
question answering task and the review of the paper, by Bogdanova et al. (2015), to
be replicated.

Chapter 3: Background This chapter introduces the fundamental concepts and meth-
ods used throughout this thesis. I start with describing different approaches to the
task of question answering. Then, I provide an overview of distributional semantic
models. Finally, I introduce the concept of deep learning and offer a brief description
of convolutional neural networks.

Chapter 4: Implementation and evaluation This chapter describes the tools that were
implemented to tackle the task defined in Chapter 2. I start by explaining how con-
volutional neural networks work in further detail. Then, I review the structure of
corpora and continue with a description of how to handle the data and the imple-
mentation of the proposed architecture. This chapter concludes with a presentation
of the results obtained.

Chapter 5: Portuguese Entailment Recognition Task This chapter describes the appli-
cation of the proposed architecture to the Portuguese entailment detection task.

Chapter 6: Russian Paraphrase Detection Task This chapter describes the application
of the proposed architecture to Russian paraphrase detection task.

Chapter 7: Conclusions The final chapter concludes this dissertation with a summary
of the research contributions, followed by an outline of possible future work.

Appendix A: User guide The appendix consists of the User Guide describing how to
download and run the code in order to replicate the present work.

4



Chapter 2

Task Overview

This chapter defines the major goal of the dissertation, namely the replication of the
experiment undertaken by Bogdanova et al. (2015).
In Section 2.1, the goal of the task of Question Answering (QA) will be detailed

together with making explicit the differences with respect to other tasks and with
narrowing the scope of the task to domain-specific community question answering
systems. Section 2.2 provides a definition of the task addressed by Bogdanova et al.
(2015), namely the detection of duplicate questions that will be replicated in the
dissertation.

2.1 Question Answering

2.1.1 Differences from Information Retrieval and Information Extraction

The main feature of a Question Answering (QA) system is the ability to identify
or return answers to questions; both, a question and an answer should be in plain
natural language. Firstly, it is important to make a distinction between Question
Answering, Information Retrieval (IR) and Information Extraction (IE).
The goal of an Information Retrieval (IR) system is to retrieve relevant documents

by matching a query against the collection of documents. For example, for a query
‘acts that Barack Obama signed’, an IR system should return documents containing
the description of the acts signed by Barack Obama.
Information Extraction (IE) systems extract information from a set of documents

according to a target template, that is predefined. For example, an IE system can
extract the year, the authors and other features for a certain act.

5



Task Overview

Question Answering systems return, in turn, an answer in natural language to an
input question also in natural language. For example, an answer such as ‘He signed
it on October 28, 2009’ can be returned to the input question ‘When did Barack
Obama signed Matthew Shepard Act’.
It might appear that for setting up a QA system, we just would need to combine IR

and IE techniques, but that would not be viable because it would require extraction
rules for all possible domains, and would restrict the types of questions that may be
asked to the forms of information modelled by extraction templates (Mitkov, 2005,
Chapter 31).

2.1.2 Open-domain vs Domain-specific QA

Question Answering technology can be very broad: it can help users ask simple
factual question, e.g. about nature, politics, etc. On the other hand questions can be
very specific: users may ask about the functioning of a specific device or a program,
they can enter a query about stock market, or ask about very specific health or
forensic information, etc.
Open-domain QA systems discover answers in large document collections, and use

natural language processing tools to provide the most relevant and accurate answer.
Examples of open-domain QA system are XisQuê, developed in our NLX–Natural
Language and Speech Group1, or IBM W system, that was “taught” to play
Jeopardy!™. Example 2.1.1 shows a correct question-answer pair from Jeopardy!™
quiz, however IBM W gave a wrong reply “Toronto” (Markoff, 2011).
Example 2.1.1 (Open-domain QA)

Question: U.S. city; its largest airport was named for a World War II hero; its second
largest, for a World War II battle.

Answer: Chicago.

In domain-specific (or canned) QA systems, a new input question is matched
against a set of predetermined pairs of questions and answers. The domain is re-
stricted and, if a question is congruent with the domain, this type of systems have
more chances to perform better than open-domain systems. Example 2.1.2 shows
a question-answer pair taken from W FAQ2; a domain-specific system can
receive a question, decide whether its meaning is close to a meaning of a question

1XisQuê is described in Branco et al. (2008), and it is available at http://xisque.di.fc.ul.pt/en/
2https://en.wikipedia.org/wiki/Wikipedia:FAQ/Editing

6



2.1 Question Answering

stored in frequently asked questions database (FAQ DB) and extract an answer from
the database.
Example 2.1.2 (Domain-specific QA)

Question: How do I insert a new line?

Answer: Normally, Wikipedia doesn’t start a new line when you press the Enter key.
If you press the Enter key twice, Wikipedia will start a new paragraph. To
force a single new line (for instance, when you want to insert a poem) insert
the HTML element <br /> after the line.

2.1.3 Communities for Question Answering

The rapid development of the Internet and Web 2.0, that empowered the Internet
with social interactivity, allowed the emergence of many online social communities
that bring people together and help them to exchange knowledge.
Online Q&A communities are a subset of asynchronous online communities that

facilitate knowledge sharing in the form of asking and answering questions. Typically,
answers from a Q&A community are available for all users and indexed by search
engines. Membership in Q&A communities is also available for all users, but not all
users may be able to post questions and answer them as this may be restricted by
some policies of a specific Q&A community. For example, SE commu-
nities resort to user reputation3 to control users’ privileges on asking and answering
questions, commenting them, voting for favourable answers, etc. Voting system and
reputation helps Q&A communities to self-regulate, which brings more power to
more relevant and expert answers.
These characteristics have resulted in the rapid growth of online Q&A communities

during the last decade. For example, Y! A, one of the largest English-
language online Q&A communities, had 200 million users by December 2009, and
over one billion questions-and-answers by October 20094. Jin et al. (2013) made an
online survey among Y! A C community and claim that users’
intention to continue answering questions (which is also an intention to share the
knowledge) was directly influenced by two factors: satisfaction and knowledge self-
efficacy.

3http://meta.stackexchange.com/questions/7237/how-does-reputation-work
4http://yanswersblog.com/index.php/archives/2009/12/14/yahoo-answers-hits-200-million-

visitors-worldwide
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Task Overview

Some Q&A communities are domain-specific, such as AU, which is spe-
cialised on questions about the Ubuntu operating system. AskUbuntu is a part of
Stack Exchange Network and in September 2016 it had about 376,000 registered
users5 and more than 240,000 questions6. In such domain-specific communities users’
intention to keep answering questions can grow even further, with an intention of a
user to become an active member of a certain community (i.e. Ubuntu users com-
munity), and not only a specific Q&A community (i.e. AU).

This section has provided a background information for defining a task we are
concerned with in this dissertation. Further information on background and state-
of-the-art of question answering is given in Section 3.1.

2.2 Task Definition

2.2.1 Semantically Equivalent Questions

The (Bogdanova et al., 2015) is the study I seek to replicate, and this paper tackles an
important characteristic of Q&A communities that wasn’t mentioned in Section 2.1.3
above, which is a duplication policy. Typically in online Q&A communities nearly
exact duplicates and copy-and-paste questions are quickly detected and removed
from the website. However, some duplicates are kept and the main reason for that,
as it is stated by AU, is the following:

There are many ways to ask the same question, and users might not be
able to find the answer if they’re asking it a different way.

Accordingly, Bogdanova et al. (2015) adopt the following definition for semanti-
cally equivalent questions:
Definition 2.2.1

Two questions are semantically equivalent if they can be adequately answered by
the exact same answer.

Examples 2.2.1 and 2.2.2 below are two questions taken from AU com-
munity that were marked as duplicates. They state a problem in two different ways,
however they can be answered by one answer (short version given):

5https://stackexchange.com/leagues/31/alltime/askubuntu/
6https://askubuntu.com/questions/

8



2.2 Task Definition

.exe files are not binary-compatible with Ubuntu. There are, however,
compatibility layers for Linux, such as Wine, that are capable of running
.exe

When one steps into the domain of detecting semantically equivalent questions,
one faces to basic problems, namely (1) the same question may be formulated in
different ways; and (2) two questions may be asked about two different things but
look for the same solution.
Example 2.2.1 (Question)

Title: How can I install Windows software or games?

Body: Can .exe and .msi files (Windows software) be installed in Ubuntu?

Example 2.2.2 (Question, marked as a duplicate)

Title: I can’t download anything and I can’t watch videos [duplicate]

Body: Two days ago I tried to download skype and it says an error occurred it says
end of central directory signature not found Either this file is
not a zipfile, or it constitutes one disk of a multi-part archive.
In the latter case the central directory and zipfile comment will
be found on the last disk(s) of this archive. zipinfo: cannot find
zipfile directory in one of /home/maria/Downloads/SkypeSetup-
aoc-jd.exe or /home/maria/Downloads/SkypeSetup-aoc-jd.exe.zip,
and cannot find /home/maria/Downloads/SkypeSetup-aoc-jd.exe.ZIP
<...>this happens whenever I try to download anything like games and also i
can’t watch videoss it’s looking for plug ins but it doesn’t find them i hate this

Bogdanova et al. (2015) mention several other tasks related to identifying se-
mantically equivalent questions, namely (1) near-duplicate detection; (2) paraphrase
identification; and (3) textual semantic similarity estimation. The main difference is
these tasks are not concerned with searching for a relevant solution to a question,
and are just looking for an alternative formulation of an utterance.

2.2.2 Architecture and Corpora

The architecture used by Bogdanova et al. (2015) combines two approaches in order
to detect semantically equivalent questions: (1) distributional semantic model (DSM)
for representing a meaning of each word in a question; and (2) convolutional neural
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network (CNN) for combining word meaning representations into a question repre-
sentation. DSM ensures a vectorial representation of words, and words are combined
by CNN into a vectorial representation of questions.
The architecture works with pairs of questions, and the resulting score, which is

computed by similarity measure between vectors, supports a decision whether two
questions are duplicates or not.
A main characteristic of the architecture is its machine learning capability that

makes the QA system able to learn a better representations of a question from each
new portion of labelled data.
Bogdanova et al. (2015) use two data dumps from two Q&A communities: (1)

AU forum that was briefly described in the previous section; and (2) META
SE community that is used to discuss about the StackExchange com-
munity itself. Bogdanova et al. (2015) prepare an input to their system in a form
that contains a pair of two questions and a label showing if they are duplicates.
More detailed description of the architecture is provided in the next chapters:

Chapter 3 will dwell on the notion of DSM and CNN, and in Chapter 4 I will give
a detailed description of a CNN architecture that was replicated.

2.2.3 Results to be replicated

Firstly, the resulting model obtained by Bogdanova et al. (2015) outperforms SVM
(support vector machine) baseline with a significant margin: accuracy 92.9% for
CNN vs 82.4% for SVM (for AU dump). And, this margin was even more
significant on the limited training set.
Secondly, these authors show that their architecture is easily adaptable to different

domains. They use data fromMETA SE community to show that with
their model they are getting similar accuracy (92.68%) as the one obtained for the
AskUbuntu community.
A major goal of my work is to replicate these results. Table 2.1 shows the results

along with the characteristics of the corpora used by Bogdanova et al. (2015). It is
expected that my work obtains comparable results within comparable settings.

Community Corpus date Millions of tokens Test Accuracy

AskUbuntu May 2014 121 92.90%

Meta May 2014 19 92.68%

Table 2.1 Main results and corpora
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Chapter 3

Background

This chapter introduces the most important concepts that will be used throughout
the dissertation.
Section 3.1 reviews existing approaches to the task of question answering. In Sec-

tion 3.2, I introduce the notion of distributional semantics, which is used to obtain a
representation of the meaning of a word from the contexts in which it is used. The
final Section 3.3 describes the deep learning computational techniques that are used
to combine vectorial distributional representations of words into larger entities, such
as phrases, sentences or paragraphs.

3.1 Approaches to Community Question Answering

We recall the definition of semantic equivalence of two questions:
Definition 2.2.1

Two questions are semantically equivalent if they can be adequately answered by
the exact same answer.

There are different tasks that are aimed at detecting semantically equivalent utter-
ances: duplicate and near-duplicate detection, paraphrase identification and textual
semantic similarity prediction. Hereby we present state-of-the-art results for each of
the tasks bearing in mind the difference with our task that was indicated in previ-
ous chapter: we are searching for a relevant solution to a question, and are not just
looking for an alternative formulation of an utterance.
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3.1.1 Duplicate and near-duplicate detection

The task of duplicate and near-duplicate detection is very important for search
engines that deal with a list of retrieved documents that needs to be narrowed down
to a list of unique documents in order to improve search results. Documents that have
small dissimilarities are identified as near-duplicates. Approaches to near-duplicate
detection can be broadly classified into syntactic, URL based and semantic techniques
(Alsulami et al., 2012).
A state-of-the-art technique that is used for QA task was introduced by Wu et al.

(2011). It is based on Jaccard coefficient, which is used to measure similarities be-
tween the two sets. They use various techniques to capture similarities between
different parts of Q&A threads and, then, they use predefined threshold to deter-
mine whether threads are near-duplicates or not. Wu et al. (2011) approach was also
used in the paper that we replicate (Bogdanova et al., 2015) as a baseline.
Semantically equivalent questions can have no word overlap, so duplicate detection

task can not entirely address this issue.

3.1.2 Paraphrase identification

Two sentences with the same meaning are defined as paraphrases. A data set that
is commonly used to support research on this task is Microsoft Research Paraphrase
Corpus (Dolan et al., 2004). There are different state-of-the-art techniques for para-
phrase identification, such as combination of machine translation solutions (Madnani
et al., 2012), deep learning techniques (Cheng and Kartsaklis, 2015; He et al., 2015)
and tensor factorization (Ji and Eisenstein, 2013).

3.1.3 Semantic Textual similarity

Semantic Textual Similarity (STS) measures the degree of semantic equivalence in
the underlying semantics of paired snippets of texts. This task is very important for
research in sentence-level semantics and there is a SemEval Shared Task dedicated to
this issue that is held annually since 2012. Participating systems are asked to return
a continuous valued similarity score on a scale from 0 to 5, with 0 indicating that
the semantics of the sentences are completely independent and 5 signifying semantic
equivalence. Performance is assessed by computing the Pearson correlation between
machine assigned semantic similarity scores and human judgments (Agirre et al.,
2016). Part of the test set uses data from Q&A online forums for making judgments
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about semantic similarity. The best system of SemEval-2015 uses word alignments
and distributional semantic vector composition (Sultan et al., 2015).

3.2 Distributional Semantics

3.2.1 Forms of Meaning Representation

In cognitive science there has been a long debate regarding how semantic knowledge
is organized and used in human language understanding and production. Known
accounts of semantic representation can be grouped into three broad families, namely
semantic networks, feature-based models and semantic spaces.
Semantic networks (Collins and Quillian, 1969) reproduce concepts as nodes in a

graph whose edges denote semantic relationships between the concepts. For exam-
ple, relation of hyponymy between the concept salmon and the concept fish can be
represented as an edge of a graph that will connect two nodes that denote aforemen-
tioned concepts with indicating the relation between them. In semantic networks
word meanings can be obtained by collecting relations from the graph. Semantic
networks are representations that abstract away from real-world usage as they are
constructed manually by human modelers.
As an alternative to the network approach, the meaning of a word can be described

in terms of feature lists (Smith et al., 1974), that can be obtained by polling native
speakers about what features they consider as relevant for the meaning of a word.
This approach is limited due to the size of vocabulary and also the number and
quality of attributes are highly dependent on time devoted to each word.
Semantic spaces, the third family of semantic representations is based on the

assumption that word meanings are determined by linguistic environment (Wittgen-
stein, 1953). Words with similar meanings occur in similar contexts and one can talk
about the common semantic value of expressions as word co-occurrence among them
(Harris, 1954).
Distributional semantic models (DSMs) belong to the latter family of meaning

representations and are typically implemented through vector space models, where
the semantic representation for a word is a vector in a high-dimensional space. The
dimensions stand for context items (for example, co-occurring words), and the coor-
dinates depend on the co-occurrence counts or probabilities. Distributional models
can be learned from a corpus in unsupervised fashion. Similarity between the seman-
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tic representations of words is usually computed using cosine similarity between the
respective vectors.

3.2.2 Distributional Semantic Models Explained

Distributional semantic models are motivated by so-called distributional hypothesis.
(Harris, 1954, page 156) stated the core assumption of it:

The fact that, for example, not every adjectives occurs with every noun
can be used as a measure of meaning difference. For it is not merely that
different members of the one class have different selections of members
of the other class with which they are are actually found. More than that:
if we consider words or morphemes A and B to be more different than A
and C, then we will often find that the distributions of A and B are more
different than the distributions of A and C. In other words, difference in
meaning correlates with difference in distribution.

A great illustration of capturing the meaning of the word from linguistic context
is given by Stefan Evert1:
Example 3.2.1 (Bardiwac)

⋄ He handed her a glass of bardiwac.

⋄ Beef dishes are made to complement the bardiwacs.

⋄ Nigel staggered to his feet, face flushed from too much bardiwac.

⋄ Malbec, one of the lesser-known bardiwac grapes, responds well to Aus-
tralia’s sunshine.

⋄ I dined off bread and cheese and this excellent bardiwac.

⋄ The drinks were delicious: blood-red bardiwac as well as light, sweet Rhen-
ish.

Even without any previous intuition about the meaning of a fictional word ‘bardi-
wac’ we can easily capture the meaning of it from the context. After reading the
sentences from the Example 3.2.1 we can easily understand that ‘bardiwac’ is a
heavy red alcoholic beverage made from grapes.
Distributional semantic model can be defined as following:
1http://www.stefan-evert.de
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Definition 3.2.1
A distributional semantic model (DSM) is a co-occurrence matrix M, such that
each row x represents the distribution of a target term across contexts where the
target term appears.

Table 3.1 presents a toy example of a co-occurrence matrix, where rows represent
target terms and columns represent contexts. Here, contexts directly characterised
by word counts, for example, in each sentence that contains target terms. A feature
vector of a word ‘boat’ would be ⃗𝑥𝑏𝑜𝑎𝑡 = (42, 30, 0).

run bark cuddle

dog 45 35 65

boat 42 30 0

cat 36 1 85

Table 3.1 Toy co-occurence matrix

Semantic similarity between words can be predicted from the DSM as proximity
between the corresponding feature vectors. One widely used measure is the cosine of
the angle 𝜃 between the two vectors ⃗𝑎 and ⃗𝑏:

cos(𝜃) = ⃗𝑎 ⋅ ⃗𝑏
‖ ⃗𝑎‖‖�⃗�‖

=

𝑛
∑
𝑖=1

𝑎𝑖𝑏𝑖

√
𝑛
∑
𝑖=1

𝑎2
𝑖 √

𝑛
∑
𝑖=1

𝑏2
𝑖

, (3.1)

where 𝑎𝑖 and 𝑏𝑖 are components (contexts) of vectors ⃗𝑎 and ⃗𝑏 respectively. The value
0 indicates absence of semantic similarity and 1 indicates full semantic similarity.
According to our toy example cosine similarity between the words ‘dog’, ‘boat’

and ‘cat’ can be computed:

dog boat cat

dog 1 0.66 0.90

boat 0.66 1 0.32

cat 0.90 0.32 1

Table 3.2 Cosine similarity for toy DSM
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According to toy example, the cosine similarity between ‘dog’ and ‘boat’ is 0.66
and the cosine similarity between ‘dog’ and ‘cat’ is 0.90, which means that ‘dog’ is
more similar to ‘cat’ than to ‘boat’.
It is important to mention that real examples of DSMs with word counts might be

very sparse, producing matrix of hundreds of thousands cells with zero value. This
would lead to manageability and high computational complexity of operations with
such matrix. In practice, various dimensionality reduction techniques are used, such
as Principal Component Analysis (PCA), Singular Value Decomposition (SVD), etc.

3.2.3 Psychological and Linguistic Viability of DSMs

DSMs show good results in modelling psychological and linguistic phenomena. In
this section we are going to present state-of-the-art results showing how DSMs ap-
proximate human performance in various tasks.

TOEFL synonym identification task The TOEFL is an obligatory test for foreign stu-
dents who would like to study at a university in an English speaking country. One of
the task contains 80 items with candidate synonyms, e.g. presenting a choice of four
candidates for the word ‘urgently’: ‘typically’, ‘conceivably’, ‘tentatively’ or ‘desper-
ately’. On average, for this task the performance of the native speakers was 97.75%,
whereas the performance of the non-native speakers was 86.75% (Rapp, 2004). Mod-
els based on distributional hypothesis are able to reach 100% accuracy on this test
set, namely Principal Component vectors with Caron P (PCCP) model that was
introduced by Bullinaria and Levy (2012).

RG-65 semantic similarity judgment task Rubenstein and Goodenough (1965) (RG-
65) data set contains 65 pairs of nouns that were rated by 51 subjects that gave
a score from 0 to 4 to each pair (see Example 3.2.2). With DSMs, for each pair
of words, feature vectors are taken and then cosine similarity can be measured.
Resulting similarities can be checked for correlations with RG-65 data set using
Pearson’s 𝑟 correlation coefficient, with a value between +1 and −1 inclusive, where
1 is total positive linear correlation, 0 is no linear correlation, and −1 is total negative
linear correlation. Padó and Lapata (2007) use dependency-based DSM, that takes
semantic relations into account. Their model shows strong correlations with human
judgements (𝑟 = 0.8).
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Example 3.2.2 (Judgments from RG-65 task)

noon string 0.04

bird cock 2.63

gem jewel 3.94

Semantic priming There is evidence from a range of experimental paradigms that
the effort that is required for processing a word is influenced by the context where
that word occurs. This phenomena is called contextual facilitation and is caused by
various forms of semantic priming. A task can include taking a decision whether a
target word is a word or not, primed with stimulus word that is in certain semantic
relation with the target word. For example, subjects can perform better with reading
or recognizing the word ‘avocado’ after they encountered the word ‘apple’. DSM-
based experiments are using cosine similarity to distinguish related and unrelated
primes for target word. McDonald and Brew (2004); Padó and Lapata (2007) show
significant effects for various semantic relations between a prime and target word.

Language learning and acquisition DSMs achieve good performance using only large
amount of linguistic data as learning input that is similar to the input received by
human learners. Though, language acquisition theorists as Bloom (2001) emphasize
the importance of interaction and attention in the language acquisition, they recog-
nize that the vocabulary size that teenagers command by end of high-school (in the
order of tens of thousands of words) can only be acquired by bootstrapping from
linguistic data. This bootstrapping is similar to distributional models, as we learned
the meaning of the word ‘bardiwac’ from sentences presented in Example 3.2.1. How-
ever, humans are often offered a single exposure to a word in context to acquire its
meaning, and there are no studies that systematically evaluate the quality of DSMs
to model single occurrences of the word (Baroni et al., 2014).

Neuroscience There is support from neuroscience for the view that concepts can
be represented as neural activation patterns over broad areas (Haxby et al., 2001),
and can be naturally encoded as vectors. Murphy et al. (2012) shows how corpus-
based methods can predict brain activation pattern while subject is thinking of a
concept, which can lead to quite speculative hypothesis of connection between DSM
and structure of concept encoding in human brain.
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Grounding counterargument There is an important argument against DSM, saying
that representing a meaning of the word just in terms of other symbols lacks ground-
ing in sensory-motor system and thus lacks connection with external word. Chinese
Room thought experiment (Searle, 1988) is a traditional argument that is given
against symbolic models. Also, there is a theory of embodied cognition that proposes
that concepts are organized in the brain, based on their sensory and motor prop-
erties, and that simulation of actions and perceptions in the brain plays a central
role in cognition (Barsalou, 2010). However, it seems that not all the concepts are
obviously presented in external world, such as ‘truth’ or ‘politics’, that suggests that
both embodied cognition and relation between symbols can play an important role.

3.2.4 Neural Word Embeddings

Notorious and widely applied models that learn vector representations by using
recurrent neural network (RNN) were proposed by Mikolov et al. (2013). In Sec-
tion 3.3.5 I will briefly introduce the notion of recurrent neural network.
RNN is trained with back-propagation that adjusts the word vectors by walking

through huge corpus of texts. They are often referred as word2vec (by the name of
a tool, provided by the authors) or word embeddings; and, use one of two model
architectures to produce a distributed representation of words: continuous bag-of-
words or continuous skip-gram. In the continuous bag-of-words architecture, the
model predicts the current word from a window of surrounding context words. In
the continuous skip-gram architecture, the model uses the current word to predict
the surrounding window of context words.
Thought the model itself doesn’t have any knowledge of morphology or semantics,

it provides interesting results on both semantic and syntactic tests. Test sets were
composed of analogy questions of the form “𝑎 is to 𝑏 as 𝑐 is to _?” testing different
syntactic and semantic relations.
Syntactic tests contain examples like “see is to saw as return is to _” (the system

should reply with the word returned). On the other hand semantic test contain also
analogy questions like “clothing is to shirt as dish is to _” (the system should reply
with the word bowl).
Mikolov et al. (2013) showed that these relations can be obtained using a vector

offset model denoting which pairs of words share a particular relation according to
the offset between their vector representations. Figure 3.1 depicts how vector offset
can be represented in 2-dimensional space.
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Mikolov et al. (2013) claim that RNN language model and vector offset model to-
gether provide good results on capturing semantic and syntactic regularities. Namely
they showed almost 40% correct matches on syntactic dataset and outperformed pre-
vious state-of-the-art on the semantic similarity task of SemEval-2012.

queens

queen

kings

king
woman

man

Fig. 3.1 Syntactic (shown in red) and semantic (shown in blue) regularities in vector
space. Adapted from Mikolov et al. (2013).

3.2.5 Compositionality of DSM

As we have distributional semantic concepts that are showing great results in differ-
ent tasks, it is important to point the ambitious aim of obtaining a general-propose
semantics for natural language. Current approaches use logic to represent sentence
semantics, which has little traction in capturing word similarity that can be obtained
using distributional semantics.
Approaches on composition of sentence meaning propose different vector compo-

sition techniques. For example, Grefenstette and Sadrzadeh (2011) represent sub-
ject and object verbs as vectors, combining them using tensor product and use
component-wise multiplication to matrix that represents transitive verbs. The mean-
ing of a phrase “subj verb obj” is computed as for example ( ⃗𝑗𝑜ℎ𝑛 ⊗ ⃗𝑑𝑢𝑐𝑘) ⊙ ⃗𝑠𝑒𝑒 for
the sentence “John sees ducks”.
There are many open problems for sentence semantics. One of these problems is the

scaling problem that raise a following question: how fixed-length vectors can provide
a representation for sentence of arbitrary length and structure in order to obtain fine-
grained sentence similarity. Another problem is about representing function words,
such as “not”: how should they be encoded in vector space to adjust the meaning of
a constituent (Erk, 2012).
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3.3 Deep Learning

In recent years deep learning computational techniques dramatically improved state-
of-the-art in such areas as computer vision, speech recognition, genomics, etc. Deep
learning models include multiple processing layers that support different abstractions
of the data.
The main difference between deep learning techniques and conventional machine

learning is that the latter requires handcrafted feature extraction from the raw data.
Typically, input is transformed into certain representation (i.e. feature vectors). For
example, computer vision system will receive input image as an array of pixel colour
values and extract other additional handcrafted features. These features will be
passed to a classifier, that will learn important features with respect to the task (e.g.
distinguishing cars from houses) and classify patterns in the input.
Deep learning methods automatically learn multiple levels of representation, each

one is slightly more abstract than the previous one. For example, for computer vision
deep learning system will receive as input a raw image given as a matrix with pixel
colour values. The first layer will detect which edges are present in a picture and how
are they inclined. The next layer will detect how these edges are connected together.
The next layer will represent a more abstract features and so on. Important feature
of deep learning systems is that these representational layers are not created by
humans, but they are learned from data.
The main ideas behind deep learning came from the 1970s and earlier but it took

time to spread. Key drivers that led to deep learning emergence are: (1) consistent
growth of computational power including GPUs (graphical processing units) and
(2) availability and ubiquity of huge amounts digital data (i.e. texts and images) in
digital form that emerged with the tremendous growth of the Internet.
In this section I will describe key ideas behind deep learning and briefly review

main architectures that are most important for solving natural processing tasks.

3.3.1 Machine learning

Learning from data performed by computer was defined by Mitchell (1997) in the
following way:

A computer program is said to learn from experience 𝐸 with respect to
some class of tasks 𝑇 and performance measure 𝑃 , if its performance at
tasks in 𝑇 , as measured by 𝑃 , improves with experience 𝐸.
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Machine learning tasks 𝑇 typically describe, how machine should process a given
example, which is usually represented as a collection of features. There is a wide va-
riety of tasks that could be solved using machine learning approaches: classification,
numerical value prediction, transcription (i.e. speech-to-text), machine translation,
anomaly detection, synthesis, etc. In the present work, the machine learning task
can be defined as the following: “Given two questions as examples, discover if they
are semantically equivalent”.
Performance measure 𝑃 is usually specific for the task that is conducted by the

system. The typical measures are accuracy and error rate, which are proportions
of correct or incorrect outputs respectively. Error rate, or loss can be measured as
a binary or a continuous-valued score. For some tasks, such as machine transla-
tion, measures should be more fine-grained and the selection of such measures is an
important research issue.
Important condition for measuring the performance of a model is its evaluation on

unseen data. This would show how well the model will perform when deployed in the
real world. For this reason performance is measured on a test set that is separated
from the one used for training the system.
In terms of the experience that the system is allowed to get during training, ma-

chine learning techniques can be split into two broad categories: supervised and
unsupervised.
A supervised learning algorithm operates with examples which are associated with

a certain label. For example, training dataset of questions is tagged with labels that
determine if the questions in the pair are semantically equivalent.
In contrast, unsupervised learning systems handle examples that are not labelled

and are learning to extract some sense without any guidance. For example, unsu-
pervised systems of network security domain can be used to detect patterns and
anomalies in network traffic.

3.3.2 Inspirations from neuroscience

One of historical names for deep learning is artificial neural networks (ANNs). This
name came from the loose inspiration that computer scientists and engineers received
from the biological brain structure. Neural networks were serving as models that were
used to understand how human or animal brain functions.
Another inspiration from neuroscience is a reason to hope that lots of different

tasks can be solved by a single algorithm that will operate through deep neuron
structure. The studies on ferret’s brain shown that if certain areas of their brain
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would be rewired to receive visual signals, they will learn to “see” with a brain area
that is different from the visual cortex (Von Melchner et al., 2000) .
Despite of these inspirations, we should take into account that neurons compute

functions that are different from those functions computed by units used in artificial
neural networks. Making this functions closer to biological reality does not lead to
any performance improvements of deep learning algorithms (Goodfellow et al., 2016).
Also, while several neural network architectures were inspired by neuroscience, we
do not have yet enough evidence about biological learning. So it is not yet practical
to use neuroscience to provide guidance for the learning algorithms that are used to
train deep learning architectures.
The main difference between deep learning algorithms research and computational

neuroscience is that the latter is aimed to build accurate models of how the brain
works, while deep learning research deals with building computer systems that would
solve tasks that require intelligence with the most favourable result.

3.3.3 Deep feedforward neural networks

Feedforward neural networks are the most basic and expressive deep learning mod-
els. Feedforward networks that are used for classification purposes maps an input x
to a category 𝑦 approximating some function 𝑓 . The resulting best function approx-
imation can be defined as mapping 𝑦 = 𝑓(x;𝜃), where 𝜃 is a set of parameters which
provide this approximation.
This kind of model is a network because it is constructed by chain composition

of layer of functions, e.g. 𝑓 (1), 𝑓 (2) and 𝑓 (3) that are used to approximate function
𝑓(𝑥) = 𝑓 (3)(𝑓 (2)(𝑓 (1))). Each of the functions represents a layer of a network. The
last layer is called output layer and the others are called hidden layers because
training data does not show the desired output for each of them.
The term feedforward means that there are no feedback connections in which

outputs of layers are connected back into the same or bottom layer.
For computing the values for each of the layers various activation functions (typi-

cally non-linear) are used. One of the most important functions for computing hidden
layer values is linear rectifier function 𝑔(𝑧) = 𝑚𝑎𝑥{0, 𝑧}
The values of hidden layer h are computed using the following transformation:

h = 𝑔(Wx + b) (3.2)
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where𝑊 provides the weights of a transformation of input x into h and c provides the
biases. Another popular activation functions are sigmoid 𝜎(𝑧) and hyperbolic tangent
𝑡𝑎𝑛ℎ(𝑧). Output layer values, denoted as ̂y, are computed in a similar fashion.
The forward flow of information from input x to the series of hidden units up to

the final value ̂y is called forward propagation. The scalar cost 𝐽(𝜃) produced by the
network represents its current performance measure. The backpropagation (Rumel-
hart et al., 1988), an abbreviation for backward propagation of errors calculates the
gradient of a cost function with respect to all the weights in the network. Gradient
is used to update the weights and minimize the cost improving the performance of
the network for the next training examples.

input layer

hidden layer

output layer

Fig. 3.2 Feedforward fully-connected neural network.

Figure 3.2 shows a simple example of a feedforward fully-connected neural network.
It contrasts with recurrent neural network because it does not have any feedback
connections. The feature of a network being fully-connected meaning that each of
the layer units is connected to each of the units of the adjacent layer(s) contrast with
convolutional neural network. Convolutional neural networks and recurrent neural
networks will be briefly explained in the next sections.

3.3.4 Convolutional neural networks

Convolutional neural networks (CNNs) (LeCun et al., 1989) are a subset of feed-
forward artificial neural network in which the neurons connectivity is inspired by
the organization of the animal visual cortex. Individual cortical neurons respond to
stimuli in a restricted region of space known as the receptive field. The receptive
fields of different neurons partially overlap such that they tile the visual field. The
response of an individual neuron to stimuli within its receptive field can be math-
ematically approximated by a convolution operation. Key ideas behind CNNs are:
sparse connectivity, shared weights, pooling and the use of many layers.
CNNs have sparse connectivity between layers, for example the input image might

have thousands of pixels and meaningful features are extracted not from individual
pixels but from the regions that occupy certain patch of an image (e.g. 10 × 10 pixel
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sparsefull

Fig. 3.3 Fully-connected layers vs sparsely connected layers.

area). Patches of an image are connected to the set of network units called feature
maps. Convolutional layers stack together such that each convolutional layer apply
certain set of feature maps. All units in a feature map share the same set of weights
called filter bank. For one layer different feature maps with correspondent filter bank
can exist.
A pooling layer is used to merge similar features into one and typically it computes

the maximum of a local patch into one or several feature maps (however, in the work
by Bogdanova et al. (2015), they sum up the local patch, see Section 4.1.3).
Convolution neural networks are deep: two or three stages of convolution and

pooling are stacked, followed by more convolutional and fully-connected layers.
CNNs brought huge revolutionary success in computer vision and are important

for various recognition and pattern detection tasks, such as traffic sign recognition,
the segmentation of biological images for the detection of faces, text, pedestrians and
human bodies in natural image (see LeCun et al. (2015) for the collection of papers
that reach or overcome the current state-of-the-art in various tasks).
Recent CNN architectures have 10 to 20 layers of non-linear rectifier units, hun-

dreds of millions of weights, and billions of connections between units. Training such
large networks could have taken weeks in 2013, but progress in hardware, software
and algorithm parallelisation have reduced training times to a few hours in 2015
(LeCun et al., 2015).
Section 4.1 of the next chapter will describe a particular architecture of CNN

that was used in the present work for the task of detecting semantically equivalent
questions.

3.3.5 Recurrent neural networks

Recurrent neural networks (RNNs) are notorious for their utilisation in tasks that
involve sequential input such as speech and language.
Hidden layers of RNNs represent discrete time steps (states) of the network where

each subsequent state receives an input from the preceding state. This can help
to predict the next word given previous words, for example, in statistical language
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modelling. Figure 3.4 shows two ways to represent RNN: folded (left) and unfolded
(right) computational graph. Hidden state 𝑠𝑡 keeps a summary of aspects of past
sequence that are relevant to the task.

that each contribute plausibility to a conclusion84,85. 
Instead of translating the meaning of a French sentence into an 

English sentence, one can learn to ‘translate’ the meaning of an image 
into an English sentence (Fig. 3). The encoder here is a deep Con-
vNet that converts the pixels into an activity vector in its last hidden 
layer. The decoder is an RNN similar to the ones used for machine 
translation and neural language modelling. There has been a surge of 
interest in such systems recently (see examples mentioned in ref. 86). 

RNNs, once unfolded in time (Fig. 5), can be seen as very deep 
feedforward networks in which all the layers share the same weights. 
Although their main purpose is to learn long-term dependencies, 
theoretical and empirical evidence shows that it is difficult to learn 
to store information for very long78.  

To correct for that, one idea is to augment the network with an 
explicit memory. The first proposal of this kind is the long short-term 
memory (LSTM) networks that use special hidden units, the natural 
behaviour of which is to remember inputs for a long time79. A special 
unit called the memory cell acts like an accumulator or a gated leaky 
neuron: it has a connection to itself at the next time step that has a 
weight of one, so it copies its own real-valued state and accumulates 
the external signal, but this self-connection is multiplicatively gated 
by another unit that learns to decide when to clear the content of the 
memory. 

LSTM networks have subsequently proved to be more effective 
than conventional RNNs, especially when they have several layers for 
each time step87, enabling an entire speech recognition system that 
goes all the way from acoustics to the sequence of characters in the 
transcription. LSTM networks or related forms of gated units are also 
currently used for the encoder and decoder networks that perform 
so well at machine translation17,72,76. 

Over the past year, several authors have made different proposals to 
augment RNNs with a memory module. Proposals include the Neural 
Turing Machine in which the network is augmented by a ‘tape-like’ 
memory that the RNN can choose to read from or write to88, and 
memory networks, in which a regular network is augmented by a 
kind of associative memory89. Memory networks have yielded excel-
lent performance on standard question-answering benchmarks. The 
memory is used to remember the story about which the network is 
later asked to answer questions. 

Beyond simple memorization, neural Turing machines and mem-
ory networks are being used for tasks that would normally require 
reasoning and symbol manipulation. Neural Turing machines can 
be taught ‘algorithms’. Among other things, they can learn to output 

a sorted list of symbols when their input consists of an unsorted 
sequence in which each symbol is accompanied by a real value that 
indicates its priority in the list88. Memory networks can be trained 
to keep track of the state of the world in a setting similar to a text 
adventure game and after reading a story, they can answer questions 
that require complex inference90. In one test example, the network is 
shown a 15-sentence version of the The Lord of the Rings and correctly 
answers questions such as “where is Frodo now?”89.  

The future of deep learning 
Unsupervised learning91–98 had a catalytic effect in reviving interest in 
deep learning, but has since been overshadowed by the successes of 
purely supervised learning. Although we have not focused on it in this 
Review, we expect unsupervised learning to become far more important 
in the longer term. Human and animal learning is largely unsupervised: 
we discover the structure of the world by observing it, not by being told 
the name of every object. 

Human vision is an active process that sequentially samples the optic 
array in an intelligent, task-specific way using a small, high-resolution 
fovea with a large, low-resolution surround. We expect much of the 
future progress in vision to come from systems that are trained end-to-
end and combine ConvNets with RNNs that use reinforcement learning 
to decide where to look. Systems combining deep learning and rein-
forcement learning are in their infancy, but they already outperform 
passive vision systems99 at classification tasks and produce impressive 
results in learning to play many different video games100. 

Natural language understanding is another area in which deep learn-
ing is poised to make a large impact over the next few years. We expect 
systems that use RNNs to understand sentences or whole documents 
will become much better when they learn strategies for selectively 
attending to one part at a time76,86. 

Ultimately, major progress in artificial intelligence will come about 
through systems that combine representation learning with complex 
reasoning. Although deep learning and simple reasoning have been 
used for speech and handwriting recognition for a long time, new 
paradigms are needed to replace rule-based manipulation of symbolic 
expressions by operations on large vectors101. ■
Received 25 February; accepted 1 May 2015.

1. Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep 
convolutional neural networks. In Proc. Advances in Neural Information 
Processing Systems 25 1090–1098 (2012).

 This report was a breakthrough that used convolutional nets to almost halve 
the error rate for object recognition, and precipitated the rapid adoption of 
deep learning by the computer vision community.

2. Farabet, C., Couprie, C., Najman, L. & LeCun, Y. Learning hierarchical features for 
scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013). 

3. Tompson, J., Jain, A., LeCun, Y. & Bregler, C. Joint training of a convolutional 
network and a graphical model for human pose estimation. In Proc. Advances in 
Neural Information Processing Systems 27 1799–1807 (2014). 

4. Szegedy, C. et al. Going deeper with convolutions. Preprint at http://arxiv.org/
abs/1409.4842 (2014). 

5. Mikolov, T., Deoras, A., Povey, D., Burget, L. & Cernocky, J. Strategies for training 
large scale neural network language models. In Proc. Automatic Speech 
Recognition and Understanding 196–201 (2011). 

6. Hinton, G. et al. Deep neural networks for acoustic modeling in speech 
recognition. IEEE Signal Processing Magazine 29, 82–97 (2012).

 This joint paper from the major speech recognition laboratories, summarizing 
the breakthrough achieved with deep learning on the task of phonetic 
classification for automatic speech recognition, was the first major industrial 
application of deep learning.

7. Sainath, T., Mohamed, A.-R., Kingsbury, B. & Ramabhadran, B. Deep 
convolutional neural networks for LVCSR. In Proc. Acoustics, Speech and Signal 
Processing 8614–8618 (2013). 

8. Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E. & Svetnik, V. Deep neural nets as a 
method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55, 
263–274 (2015). 

9. Ciodaro, T., Deva, D., de Seixas, J. & Damazio, D. Online particle detection with 
neural networks based on topological calorimetry information. J. Phys. Conf. 
Series 368, 012030 (2012). 

10. Kaggle. Higgs boson machine learning challenge. Kaggle https://www.kaggle.
com/c/higgs-boson (2014). 

11. Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer 
in the mouse retina. Nature 500, 168–174 (2013). 

xtxt−1 xt+1x

Unfold

V
W W

W W W

V V V

U U U U

s

o

st−1

ot−1 ot

st st+1

ot+1

Figure 5 | A recurrent neural network and the unfolding in time of the 
computation involved in its forward computation. The artificial neurons 
(for example, hidden units grouped under node s with values st at time t) get 
inputs from other neurons at previous time steps (this is represented with the 
black square, representing a delay of one time step, on the left). In this way, a 
recurrent neural network can map an input sequence with elements xt into an 
output sequence with elements ot, with each ot depending on all the previous 
xtʹ (for tʹ ≤ t). The same parameters (matrices U,V,W ) are used at each time 
step. Many other architectures are possible, including a variant in which the 
network can generate a sequence of outputs (for example, words), each of 
which is used as inputs for the next time step. The backpropagation algorithm 
(Fig. 1) can be directly applied to the computational graph of the unfolded 
network on the right, to compute the derivative of a total error (for example, 
the log-probability of generating the right sequence of outputs) with respect to 
all the states st and all the parameters.
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Fig. 3.4 Folded and unfolded recurrent neural network representation (from LeCun et al.
(2015). Input is denoted as 𝑥, output—as 𝑜, weight matrices𝑈, 𝑉 ,𝑊 are shared between
time steps.

In more sophisticated architectures, such as LSTM (long short-term memory)
(Hochreiter and Schmidhuber, 1997), this summary of aspects can selectively keep
only the most relevant aspects from previous time steps. This kind of networks have
a memory cell, a special unit that acts like an accumulator: it has a self-loop that
can produce path where the gradient can flow for long duration.
The LSTM got a remarkable success in many applications that involve sequence

modelling: handwritten recognition and generation, speech recognition, machine trans-
lation, image captioning, etc (see LeCun et al. (2015) for the collection of papers that
reach or overcome the current state-of-the-art).

3.4 Summary

This chapter has introduced the main background notions that will be used to tackle
the task that was defined in Chapter 2. Notions that has been considered include
distributional semantics and deep learning along with the presentation of the state-
of-the-art approaches to the task of question answering. Next chapter will continue
with the explanation how the system was implemented and what result has been
obtained.
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Chapter 4

Implementation and evaluation

In this chapter, I describe how the experiment aimed to replicate the work by Bog-
danova et al. (2015) was carried out.
In Section 4.1, I will start with describing the architecture of convolution neural

network (CNN) that was used for the experiment. Section 4.2 will describe how the
CNN was implemented. Section 4.3 will show the result of evaluating the imple-
mented model together with the results obtained by Bogdanova et al. (2015) which
will conclude the part of dissertation that is related to the replication exercise.
Sections 4.4 and 4.5 cover two contributions that were added to the dissertation,

by changing the way the text was preprocessed and by changing the values of initial
word embeddings, respectively.

4.1 Convolutional neural network for the detection of seman-

tically equivalent questions

In this section, I describe the architecture of a convolutional neural network (CNN)
to be replicated. The architecture was introduced by Bogdanova et al. (2015) and
it is based on the previous work by dos Santos and Gatti (2014) for representing
text segments and by dos Santos and Zadrozny (2014) for representing words on a
character-level. The CNN takes two questions as an input, forms representations of
each of them, and compares the representations using cosine similarity measure.
Figure 4.1 shows layers of the CNN: word representation layer (), convolution

layer (), pooling layer () and cosine similarity measurement layer.
Forming of question representation falls into 3 main steps:

1. forming word representations
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2. applying convolutional filter

3. pooling the product of convolution filters

WR CONV POOL cosine
similarity

Fig. 4.1 CNN architecture.

4.1.1 Word representation layer

Word representations are real-valued vectors of size 𝑑 denoted as r𝑤𝑖 ∈ ℝ𝑑. Initial
values for word representations are obtained using word2vec tool (Mikolov et al.,
2013); reasons for building word representations with the tool were described in
Section 3.2.4, and in Section 4.2.3 I will describe how the word representations were
created.
Word representations are loaded into an embedding matrix W𝑊𝑅 ∈ ℝ𝑑×|𝑉 |, where

𝑉 is a fixed-sized vocabulary and each column 𝑖 of the embedding matrix is a vector
r𝑤𝑖 that represents the 𝑖-th word in the vocabulary.
In order to get a word representation a matrix-vector product is used:

r𝑤𝑖 = W𝑊𝑅v𝑤𝑖 (4.1)

where v𝑤𝑖 is a one-hot encoded word, that is a vector that has value 1 at position 𝑖
and zeros at all other positions. An input to CNN for each question is a sequence of
𝑁 one-hot encoded words:

𝑞 = {v𝑤1, v𝑤2, … , v𝑤𝑁} (4.2)

And the word representation layer of a network produces a set of word represen-
tations:

𝑞𝑊𝑅 = {r𝑤1, r𝑤2, … , r𝑤𝑁} (4.3)

where r𝑤𝑖 ∈ ℝ𝑑 and 𝑁 is the number of words in a question.
The size of word embedding 𝑑 is a hyper-parameter to be set while training the

initial values for the word representation layer. The values of the embedding matrix
W𝑊𝑅 are updated using the backpropagation algorithm while new pairs of questions
are presented to the network during the training procedure.
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4.1 CNN for the detection of semantically equivalent questions

4.1.2 Convolution layer

The convolutional layer receives a set of vectors 𝑞𝑊𝑅 as an input and applies con-
volutional filter to each 𝑘-gram of the input tokens. Vectors in each 𝑘-gram are
concatenated in order to produce 𝑘-gram vector z𝑛 ∈ ℝ𝑑𝑘 that is centralized in 𝑛-th
word of input sequence. Out-of-range input values 𝑟𝑤𝑖 where 𝑖 < 1 or 𝑖 > 𝑁 are
taken to be zero.

Fig. 4.2 Convolutional layer (for 𝑘 = 3). Out-of-range tokens are shown as empty circles.

Figure 4.2 represents how convolutional layer manipulates the input. Convolu-
tional layer is applied in the following steps: (i) Taking a dot product of a weight
matrix W𝐶𝑂𝑁𝑉 with each concatenated 𝑘-gram; (ii) Adding bias vector b𝐶𝑂𝑁𝑉 ;
(iii) Applying hyperbolic tangent function.
Resulting convolutional layer output is a set of vectors 𝑞𝐶𝑂𝑁𝑉 :

𝑞𝐶𝑂𝑁𝑉 = {r𝑧1, r𝑧2, … , r𝑧𝑁} (4.4)

where each r𝑧𝑛 ∈ ℝ𝑐𝑙𝑢 is computed using the following equation:

r𝑧𝑛 = 𝑓(W𝐶𝑂𝑁𝑉 z𝑗 + b𝐶𝑂𝑁𝑉 ) (4.5)

where W𝐶𝑂𝑁𝑉 ∈ ℝ𝑐𝑙𝑢×𝑑𝑘 is a weight matrix, b𝐶𝑂𝑁𝑉 ∈ ℝ𝑐𝑙𝑢 is a bias vector, and
𝑓 is a hyperbolic tangent function. Values of the weight matrix W𝐶𝑂𝑁𝑉 and bias
vector b𝐶𝑂𝑁𝑉 are updated using backpropagation algorithm while new pairs of
questions are presented to the network during the training procedure (detailed in
Section 4.1.5 below). The length of 𝑘-gram and the size of convolutional filter 𝑐𝑙𝑢
are hyper-parameters to be set prior to training the CNN.
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4.1.3 Pooling layer

Pooling layer combines representations of each 𝑘-gram into representation of a whole
question r𝑞. Pooling layer operates by summing up the 𝑘-gram representations and
by applying hyperbolic tangent function to the sum:

r𝑞 = 𝑓( ∑
𝑛

r𝑧𝑛) (4.6)

where r𝑞 ∈ ℝ𝑐𝑙𝑢 is a representation of a question, r𝑧𝑛 ∈ ℝ𝑐𝑙𝑢 is a representation of
each 𝑘-gram, and 𝑓 is a hyperbolic tangent function.
Note that the dimensionality of a question representation 𝑐𝑙𝑢 is a hyper-parameter

that is independent of the size of a question. Also, it is important to mention that
pooling layer can use other functions than element-wise sum, i.e. element-wise max-
imum.

4.1.4 Measuring the question similarity

Preceding layers of CNN transform two questions 𝑞1 and 𝑞2 into representations r𝑞1

and r𝑞2. For any two questions, CNN uses the same hyper-parameters (𝑘 and 𝑐𝑙𝑢)
and the same weight and bias tensors (W𝑊𝑅, W𝐶𝑂𝑁𝑉 and b𝐶𝑂𝑁𝑉 ).
Two questions are compared using cosine similarity measure between respective

question representations:
𝑠(𝑞1, 𝑞2) = r𝑞1 ⋅ r𝑞2

‖r𝑞1‖‖r𝑞2‖ (4.7)

The resulting similarity should be from 1 for equivalent questions and 0 for non-
equivalent questions.

4.1.5 Training procedure

The CNN parameters W𝑊𝑅, W𝐶𝑂𝑁𝑉 and b𝐶𝑂𝑁𝑉 are denoted as 𝜃 for current
training step. The CNN is trained in order to minimize the mean-squared error with
respect to training set 𝐷:

∑
(𝑞1,𝑞2,𝑦)∈𝐷

1
2(𝑦 − 𝑠𝜃(𝑞1, 𝑞2)) (4.8)

30



4.2 Implementing the CNN

where 𝑠𝜃(𝑞1, 𝑞2) is a cosine similarity between questions 𝑞1 and 𝑞2 for current CNN
parameters 𝜃 and 𝑦 is a correct label for the question pair: 1 for semantically equiv-
alent questions and 0 for non-equivalent questions.
Mean-squared error is minimized using stochastic gradient descent (SGD). Gradi-

ents of 𝜃 are computed using backpropagation algorithm.

4.2 Implementing the CNN

4.2.1 Data preprocessing

In order to prepare all text data to be used as an input for training the CNN and the
initial word representations, the following text preparation procedures took place:

1. Image removal

2. URL removal

3. <code> block removal

4. Text tokenisation

5. Lowercasing all the tokens

The <code> tag a in question text is usually used to insert snippets of the code in
some programming language that could contain words with different meanings, e.g.
word for in a question text might denote a preposition that contrasts with its very
specific meaning inside a <code> block, which supposedly denotes for-loop. Bog-
danova et al. (2015) shows better results with <code> block removed. Accordingly,
<code> block was removed for all the experiments here.
For English text tokenisation, I used Stanford Tokenizer (Manning et al., 2014)

instead of Natural Language Toolkit (NLTK) used by Bogdanova et al. (2015) be-
cause my pipeline for creating the initial word representations was Java-based, and
NLTK was only available for Python.
Other procedures replicate the ones used by Bogdanova et al. (2015).

4.2.2 Corpora parameters

For the experiments reported here, I took slightly different data sets given that
the data sets used in (Bogdanova et al., 2015) were not available at this time. I
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used AskUbuntu and Meta StackExchange dumps from September 2014 instead
of the May 2014 version used by Bogdanova et al. (2015). Table 4.1 shows main
differences between the datasets I used and the datasets used in the reference work
to be replicated.

Community
Dump date Millions of tokens (for DSM)

This work Reference This work Reference

AskUbuntu Sept 2014 May 2014 38 121

META Sept 2014 May/Sept 2014a 19 19

Table 4.1 Corpora characteristics, where reference is the dataset used in Bogdanova et al.
(2015).
aFor training the CNN Bogdanova et al. (2015) used September 2014 data dump.

4.2.3 Building and training the DSM

The corpora that I used for creating the initial word representation contains 38 mil-
lions tokens from the AskUbuntu dump and 19 million of tokens from the META
StackExchange dump. Table 4.2 shows characteristics of the initial word represen-
tations and corpora that were used for training them.

Dump Vector size (𝑑) Total types Total tokens

AskUbuntu 200 68 K 38 M

META 200 30 K 19 M

Table 4.2 DSM parameters for each corpus.

I used DeepLearning4j1 toolkit for creating the initial word representations. Bog-
danova et al. (2015) specify only the skip-gram neural network architecture and the
embeddings dimensionality of 200 as training parameters for their best run. Hence,
in my work, besides these parameters, all the other hyper-parameters were taken
from vanilla version of word2vec algorithm implemented in DeepLearning4j toolkit2.
I have done basic tests in order to check the adequacy of the word embeddings

that were created. Given that the datasets include domain-specific questions, thus
instead of a general test (Mikolov et al., 2013) like x𝑘𝑖𝑛𝑔 − x𝑚𝑎𝑛 + x𝑤𝑜𝑚𝑎𝑛 ≈ x𝑞𝑢𝑒𝑒𝑛

1http://deeplearning4j.org
2http://deeplearning4j.org/word2vec
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another test was picked. This test requires the system to rate all the representations
of the words in the vocabulary by their respective proximity (designated by cosine
distance) to this vector x:

x = x𝑙𝑖𝑘𝑒𝑠 − x𝑙𝑖𝑘𝑒 + x𝑐𝑜𝑛𝑡𝑎𝑖𝑛 (4.9)

Successful pass of this test assumed that the representation of the word ‘contains’
should be rated as the most proximate representation to x.
This test was passed for the word embeddings that I generated for both domains:

AskUbuntu and META StackExchange.

4.2.4 Building and training the CNN

For building the CNN, I extracted from the corpora pairs of questions tagged with
duplicate and with non-duplicate label. Table 4.3 shows sizes of training, validation
and test sets that were used for each corpus. These sizes replicate the ones used by
Bogdanova et al. (2015).
In each set, the pairs of questions were split in subsets of duplicates and non-

duplicates in a balanced way (50% duplicates and 50% non-duplicates).

Community Total pairs Duplicates Training Validation Test

AskUbuntu 167765 17115 24000 1000 6000

META 67746 19456 20000 1000 4000

Table 4.3 Sizes of training, validation and test sets for each corpus.

I used Keras (Chollet, 2015) Python library with Theano (Al-Rfou et al., 2016)
back-end for building and training the CNN. Table 4.4 shows hyper-parameters that
were used. The last two parameters were not explicitly mentioned in the reference
paper. They were set to the values shown in the table. Other parameters are taken
from vanilla CNN architecture as it was implemented in Keras3 and Theano4 li-
braries. Mean-squared error computation and backpropagation algorithm are also
implemented by those libraries.

3https://github.com/fchollet/keras/releases/tag/1.1.0
4https://github.com/Theano/Theano/releases/tag/rel-0.8.2
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Parameter Value Description

𝑑 200 Size of word representation

𝑘 3 Size of k-gram

𝑐𝑙𝑢 300 Size of convolutional filter

𝜆 0.005 Learning rate

batch size 1 Number of examples per gradient update

epochs 20 Number of training epochs

Table 4.4 CNN hyper-parameters. Upper part of the table shows parameters explicitly
mentioned by Bogdanova et al. (2015).

4.3 Replication

For the validation and testing, I used the CNN that was trained on the full training
set (24K for AskUbuntu and 20K for META StackExchange). Table 4.5 shows evalu-
ation results: validation accuracy (for the best epoch) and testing accuracy. Results
that are obtained by the reference paper (Bogdanova et al., 2015) are shown in the
first two lines.

Community 4K val. Full val. Full test

Reference work
AskUbuntu 92.4 93.4 92.9

META – 92.8 92.7

Present work
AskUbuntu 91.8 92.3 94.1

META – 96.1 94.2

Table 4.5 CNN accuracy on the validation and test sets.

4.4 Impact of text preprocessing

From the work of Bogdanova et al. (2015) it is unclear how do the authors treat
mentions to possible duplicate questions. These mentions occur in the body of a
question which is considered a possible duplicate of another question. Below there is
an example of the HTML structure that is present in the body of such question.

<blockquote><p>
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<strong>Possible Duplicate:</strong><br>
<a href="http://askubuntu.com/questions

/86164/how-do-i-fix-flash-issues">
How do I fix Flash issues?

</a>
</p></blockquote>

As can be seen from the example above, there is a remark ‘Possible duplicate’
that this question is a possible duplicate of some other question. Also, there is a
link whose text exactly reproduces the title of a question, which corresponds to the
possible duplicate one. A remark and a link like these are present in the majority of
question pairs that are marked as duplicates cross-referencing the element in a given
pair.
I hypothesised that this could had a significant impact on the results obtained

by Bogdanova et al. (2015). In order to validate this hypothesis, I made two runs
with different text preprocessing on AskUbuntu corpus: in the first one the duplicate
quotes were kept; in another one, they were removed. The CNN was trained using
4K balanced training set and was validated over 1K balanced set.
Table 4.6 presents the difference between the results obtained with respect to

the validation accuracy reported by Bogdanova et al. (2015). Scores for validation
and testing accuracies obtained by keeping duplicate mentions are very close to
the reference ones. This may indicate that Bogdanova et al. (2015) did not remove
mentions of duplicate questions. The run with removed duplicate quotes shows the
much lower testing accuracy, e.g. 73.3% (against 94.1%) for AskUbuntu.
These scores are more in line with the state of the art. For example, the best

systems participated in SemEval 2016 community question answering shared task
(Nakov et al., 2016) reached the highest accuracy of 79.43% for the Subtask B that
was intended to evaluate how good do the models perform in measuring the similarity
between two questions.

Duplicate quotes 4K AU val. AU full val. AU test META val. META test

kept 91.8 92.3 94.1 96.1 94.2

removed 71.8 73.8 73.3 57.3 55.7

Bogdanova et al. (2015) 92.4 93.4 92.9 92.8 92.7

Table 4.6 Comparison of runs over the validation and test sets. AU—AskUbuntu. The
best validation scores are shown.
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4.5 Impact of word embeddings

Bogdanova et al. (2015) show that in-domain word embeddings, i.e. trained on
AskUbuntu community data are more beneficial than word embeddings with larger
volume of out-of-domain training data, i.e. trained on English Wikipedia.
Additionally, I wanted to study how the model would perform without a pre-

training of word embeddings, in particular with just random initialisation of them
using uniform distribution.
Table 4.7 shows that the evaluation results for randomly initialised word embed-

dings outperform the ones with pre-trained in-domain word embeddings.

Word embeddings 4K AskUbuntu val. AskUbuntu full val. AskUbuntu test

pre-trained 71.8 73.8 73.3

randomly initialised 73.3 76.9 74.5

Table 4.7 Comparison of runs over the validation and test sets. The best validation
scores are shown.

4.6 Summary

This chapter has presented the part of work related to the task of question answering
and to the replication of the results that were obtained by Bogdanova et al. (2015). I
have started with a detailed description of the convolutional neural network (CNN)
used in the experiment. Then, I have described how the CNN was implemented,
including how the corpora were prepared, and how the distributional semantic model
and the CNN were trained. Results that have been presented are comparable or
better than the ones obtained by Bogdanova et al. (2015).
Another part of this chapter has been related to two key contributions of the

dissertation. The first contribution consisted in tackling a possible drawback in the
work done by Bogdanova et al. (2015) regarding the preparation of the text, which
may have left untouched certain clues that could guide the system in detecting the
duplicate question. Taking away these clues in our experiments has lead to a drop
in performance of the system.
The second contribution was related to the evaluation of the impact of pre-trained

word embeddings on system performance. The pre-trained word embeddings has
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4.6 Summary

been replaced by randomly initialised ones, and as a result performance of the system
has improved.
This chapter closes the part of the work related the replicability of the results of

the work done by Bogdanova et al. (2015) and also concludes the work related to
the task of question answering.
In the next chapters I will discuss the impact that can be brought by convolutional

neural network models into other tasks and languages other than English, namely
entailment recognition for Portuguese and paraphrase detection for Russian.
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Chapter 5

Portuguese Entailment Recognition Task

In this chapter, I show how the convolutional neural network model that has been
described in the previous chapter can be evaluated on a task from another domain,
namely entailment recognition for Portuguese.
The task itself will be defined in Section 5.1, Section 5.2 will discuss the results of

evaluation of the system and in Section 5.3, I will describe the directions of further
improvements that might be taken into account.

5.1 Task definition

The Evaluation of Semantic Similarity and Textual Inference for Portuguese shared
task (ASSIN, “Avaliação de Similaridade Semântica e Inferência Textual”) (Fonseca
et al., 2016) was co-located with the PROPOR-2016 conference and consisted of two
tasks: semantic similarity detection and entailment recognition task. In the present
chapter, I will describe the experiment of applying the model that was described in
Chapter 4 to the task of entailment recognition of ASSIN.
In pragmatics (subfield of linguistics), entailment is a relationship between two

sentences (A and B), where the truth of one (A) requires the truth of the other (B).
Here is an example of entailment from the ASSIN corpus:

(1) A. Como não houve acordo, a reunião será retomada nesta terça, a partir das
10h.

As there was no agreement, the meeting will resume this Tuesday, starting
at 10h.

B. As partes voltam a se reunir nesta terça, às 10h.
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The parties will meet again this Tuesday at 10h.

When entailment is mutual, the relation between sentences A and B is called
paraphrase. In this case, two sentences are semantically equivalent. An example of
paraphrases from the ASSIN corpus is provided below.

(2) A. Vou convocar um congresso extraordinário para me substituir enquanto
presidente.
I am going to call for a special congress to replace me as a chairman.

B. Vou organizar um congresso extraordinário para se realizar a minha substi-
tuição como presidente.
I am going to organize a special congress to accomplish my replacement as
a chairman.

The ASSIN corpus also includes pairs of sentences not related by entailment or
paraphrase such as:

(3) A. As apostas podem ser feitas até as 19h (de Brasília).
The bets can be made up to 19h (BRT).

B. As apostas podem ser feitas em qualquer lotérica do país.
The bets can be made in any lottery of the country.

The ASSIN task requires that input pairs of sentences should be classified into the
aforementioned three classes (viz. entailment, paraphrase, unrelated). The model
can only provide binary classification, so I will handle only the task of entailment
recognition without further recognition of a paraphrase. This means that pairs of
sentences like (1) and (2) are treated as one class, and sentences like (3) — as
another class.
In this case, a cosine similarity score of 1 between two sentences means that these

sentences are under entailment or paraphrase relation and a score of 0 means that
these two sentences are unrelated.

5.2 Evaluation and results

The ASSIN dataset contains 10000 sentence pairs collected from Google News and
split into training and test sets with an equal number of European Portuguese and

40



5.2 Evaluation and results

Brazilian Portuguese examples in each set. In my experiments, I will tackle only
European Portuguese.
Training and test sets are imbalanced, thus a proportion of the majority class was

taken as a baseline. Table 5.1 provides information about the training and test sets
used.

Number of examples Proportion of majority class (‘unrelated’)

Training set 3000 68.2%

Test set 2000 69.3%

Table 5.1 Training and test set features.

The initial idea was to evaluate the model in which, instead of two questions,
two sentences would be given as an input. I evaluated the model using different
hyper-parameters, with and without word embeddings.
For preprocessing, I used NLTK Tokenizer (Bird et al., 2009) to split the sentences

into tokens. All punctuation marks were dropped and all the tokens were lowercased.
Table 5.2 shows the results for different runs over the ASSIN test set.

Test accuracy

BASELINE 69.3

Run 1 68.5

Run 2 69.1

Table 5.2 Evaluation results over the ASSIN test set.

Run 1 In this run I took exactly the same hyper-parameters as the ones used by
Bogdanova et al. (2015). In Table 5.4, they are provided as reference. After 5 epochs
of training, the model reaches more than 90% accuracy over the training data and
begins to overfit, thus I stop training after the 5th epoch and evaluate the model
using its final state. I used word embeddings for Portuguese from Rodrigues et al.
(2016)1 as initial values of a word representation layer of the CNN.

Run 2 For this run I changed the size of the convolutional layer from 300 to 1000;
and, instead of using pre-trained word embeddings for word representation layer
initial values, the values were randomly initialized using uniform distribution.

1https://github.com/nlx-group/lx-dsemvectors
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Parameter Value Description

𝑘 3 Size of k-gram

𝑐𝑙𝑢 300 Size of convolutional filter

batch size 1 Number of examples per gradient update

𝑑 400 Size of word representation

epochs 5 Number of training epochs

word embeddings Pre-trained

Table 5.3 Run 1 hyper-parameters. First three lines indicate parameters whose values
were identical to the model adopted in question similarity task. Last two lines indicate
parameters that were set differently.

Parameter Value Description

𝑐𝑙𝑢 1000 Size of convolutional filter

word embeddings Random (uniform)

Table 5.4 Run 2 hyper-parameters. Only differences to Run 1 are shown.

The evaluation results for both runs are on a level with the baseline which shows
that the model is applicable for the task of entailment detection for Portuguese.
These results concerning Portuguese entailment recognition are lower than the

results concerning English question similarity because the training data set for the
former is 8 times smaller than the one for latter. Enriching the training set might
help to achieve higher accuracy for the task with Portuguese.
The evaluation results were not compared against another participants of the

shared task for the reason that participants’ results considered only the case of
three-class classification.

5.3 Future work

The hyper-parameters were taken ad hoc and the accuracy can be further improved
by tuning hyper-parameters automatically. A part of training data can be taken
apart for validation and in order to pick better hyper-parameters the model can be
tested over this validation set. Also, this method can be used for picking the best
epoch for testing instead of taking the result after the 5th epoch.
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5.4 Summary

Furthermore, the experiments should contain the extension of the model to the task
of multi-class classification, namely three-class classification (entailment, paraphrase,
unrelated) to make it comparable with other participants’ result in the shared task.

5.4 Summary

This chapter has discussed the application of the convolutional neural network model
I developed to the task of entailment recognition for Portuguese. Evaluation of this
model has been shown that it is able to achieve an accuracy on a level with the
baseline.
I have concluded the chapter with an overview of the future work that can be done

in order to achieve better performance and obtain more comparable results.
The next chapter will present another application of the model, viz. concerned

with paraphrase detection for Russian.
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Chapter 6

Russian Paraphrase Detection Task

This chapter reports on the results of an experimental study on the application
of convolution neural network to the shared task of sentence paraphrase detection
for Russian. The Russian language contains richer morphology than English and
Portuguese language, that were tackled in Chapters 4 and 5 respectively. Accordingly,
tackling the Russian language required several improvements that are described in
the chapter.
In Section 6.1, I will start with the task definition, which contains two runs. Then

in Section 6.2, I will present the evaluation metrics and the results for both runs.
Also, I will present two improvements that I brought into the convolutional neural
network model, namely (1) the usage of several convolutional filters and (2) the usage
of character embeddings instead of word embeddings. These improvements helped
the model to obtain a competitive performance in the shared task. Section 6.3 will
discuss how the performance of the system may be further enhanced.

6.1 Task definition

As indicated in the previous chapter, paraphrases are sentences in a mutual entail-
ment relation, thus being semantically equivalent. Shared tasks which tackle the
paraphrase identification, mostly for English, were organized under SemEval work-
shops (see Section 3.1.3 for further details).
The Russian language is a morphologically rich language with free word order and

can be an interesting workbench for testing different models of paraphrase detection.
A core dataset for the task is ParaPhraser (Pronoza et al., 2015), a freely avail-

able corpus of Russian sentence pairs manually annotated as precise paraphrases,
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near-paraphrases and non-paraphrases. Each candidate pair was collected from news
headlines and then manually annotated by three native speakers. Examples (1-3)
show respective pairs of precise paraphrases, near-paraphrases and non-paraphrases
taken from the corpus.

(1) A. КНДР аннулировала договор о ненападении с Южной Кореей.
DPRK annulled the non-aggression treaty with South Korea.

B. КНДР вышла из соглашений о ненападении с Южной Кореей.
DPRK withdrew from the non-aggression agreement with South Korea.

(2) A. ВТБ может продать долю в Tele2 в ближайшие недели.
VTB might sell its shares in TELE2 in the upcoming weeks.

B. ВТБ анонсировал продажу Tele2.
VTB announced the sale of TELE2.

(2) A. В главном здании МГУ загорелась столовая.
The student canteen was put on fire in the main building of MSU.

B. Из главного здания МГУ эвакуированы около 300 человек.
About 300 people are evacuated from the main building of MSU.

The size of the training set is 7000 pairs and the test set contains 1924 pairs.
The shared task consists of two tasks: one for three-class classification, and another

for binary classification. I will tackle only the second task (Task 2) which is defined
as following:

Given a pair of sentences, to predict whether they are paraphrases (whether
precise or near paraphrases) or non-paraphrases.

There were two types of submissions: standard run which allowed only using the
ParaPhraser corpus for training, and non-standard run which allowed using any other
corpora. I participated in both types of runs.

6.2 Evaluation and results

6.2.1 Evaluation metrics

The results were accessed using two metrics: accuracy and F1 score. F1 is a harmonic
mean between precision and recall:
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𝐹1 = 2⋅ precision ⋅ recall
precision + recall (6.1)

precision = 𝑡𝑝
𝑡𝑝 + 𝑓𝑝 (6.2)

recall = 𝑡𝑝
𝑡𝑝 + 𝑓𝑛 (6.3)

where:

𝑡𝑝 , true positives, is the number of correctly classified paraphrases,

𝑡𝑛 , true negatives, is the number of correctly classified non-paraphrases,

𝑓𝑝 , false positives, is the number of pairs incorrectly classified as paraphrases,

𝑓𝑛 , false negatives, is the number of pairs incorrectly classified as non-paraphrases.

6.2.2 Non-standard run

For the non-standard run I will describe the best result that I obtained. In the non-
standard run it was permitted to use resources other than ParaPhraser corpus itself,
as for example, word embeddings.
The word embeddings were taken from RusVectōrēs model (Kutuzov and An-

dreev, 2015) (CC Attribution 4.0 International license) trained on Russian national
corpus.1 All the words in the corpus were part-of-speech (PoS) tagged, lemmatised
and lowercased.
In order to preprocess the input sentences, they were also lowercased, lemmatised

and PoS-tagged using MyStem (Segalovich, 2003), the same tool that was reported
by Kutuzov and Andreev (2015).
In order to speed-up the training of the network, I used Keras’s RMSProp opti-

mizer instead of using stochastic gradient descent (SGD). RMSProp is reported2 to
achieve high accuracy in few epochs. Below I provide other hyper-parameters that
were used to obtain the best result for the non-standard run.
Furthermore, instead of combining representations of 𝑘-grams after the convolution

by summing them up element-wise, I used a maximum function that picks element-
wise maximum between all 𝑘-gram representations z𝑛 (see Section 4.1.3 to recall how
pooling layer operates).

1http://www.ruscorpora.ru
2https://blog.keras.io/category/tutorials.html
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Parameter Value Description

𝑘 3 Size of k-gram

𝑐𝑙𝑢 300 Size of convolutional filter

𝑑 300 Size of word representation

epochs 5 Number of training epochs

pooling MAX pooling layer function

optimizer RMSProp Keras’s optimizer

word embeddings Pre-trained: RusVectōrēs

Table 6.1 Non-standard run hyper-parameters.

Accuracy F1

BEST (True Positive) 77.39 81.10

NLX 69.94 76.80

BASELINE 49.66 54.03

Table 6.2 Results for non-standard run for task 2. My model is indicated as NLX.

Table 6.2 shows evaluation results together with the most frequent class baseline
and the result of the best team that participated in the shared task.

6.2.3 Standard run

For the standard run, hereby I present two versions. The first one uses randomized
word embeddings as the first layer of the CNN and the second run uses character
embeddings. In both cases, as no external resources were allowed, tokens were only
lowercased and punctuation was removed.
Furthermore, I used a more advanced method of convolution, that uses several

convolutional filters with different sizes of 𝑘-gram. Figure 6.1 shows how this type
of layer operates for 𝑘 ∈ {2, 3}.

Word embeddings For this run, the input sentences were split into word tokens and
each token was given an initial random uniform representation. Also, the idea of
convolution was extended further.
Table 6.3 shows hyper-parameters that were used for this run.
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6.2 Evaluation and results

Fig. 6.1 Concatenation of various convolution filters (for 𝑘 = 2 and 𝑘 = 3). Token
(word/character) representation are denoted as r𝑡𝑛 . Concatenations of 𝑘 ∈ {2, 3} tokens
are denoted as z(2)

𝑛 and z(2)
𝑛 respectively. Then activation function was applied to each

of the concatenation and results were joined together into representations r𝑧𝑖 .

Parameter Value Description

𝑘 {3, 5, 8, 12} Sizes of k-grams

𝑐𝑙𝑢 100 Size of each convolutional filter

𝑑 300 Size of word representation

epochs 5 Number of training epochs

pooling MAX pooling layer function

optimizer RMSProp Keras’s optimizer

Table 6.3 Standard run hyper-parameters for NLX run, with word embeddings.
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Parameter Value Description

𝑘 {2, 3, 5, 7, 9, 11} Sizes of k-grams

𝑐𝑙𝑢 100 Size of each convolutional filter

𝑑 100 Size of character representation

epochs 20 Number of training epochs

pooling MAX pooling layer function

optimizer RMSProp Keras’s optimizer

Table 6.4 Standard run hyper-parameters for NLX run, with character embeddings.

Accuracy F1

BEST (dups) 74.59 80.44

NLX (character embeddings) 72.74 78.80

NLX (word embeddings) 66.19 76.44

BASELINE 49.66 54.03

Table 6.5 Results for the standard run for task 2.

Character embeddings For this run, instead of tokenising sentences to words, I split
sentences into characters. The main reason is that character-level embeddings are
reported to be good in capturing morphological information (dos Santos and Gatti,
2014; Kim et al., 2016), that is important for such morphologically rich languages
as Russian. Table 6.4 shows hyper-parameters that were used for the run.

Table 6.5 shows evaluation results, as reported by the Paraphraser.ru platform3 for
both runs together with the baseline and the result of the best team that participated
in the shared task.

6.2.4 Evaluation upon the released test set

After the shared task was finished, organizers have published the test set together
with correct labels. I tested my models locally upon it and obtained the results that
vary due to the random initialization of the weights of the neural network.
Table 6.6 shows the results that were obtained locally compared to the results

that were reported by the organizers of the shared task.
3http://www.paraphraser.ru/contests/result/?contest_id=1
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6.3 Discussion and future work

Local test Paraphraser.ru

Non-standard run 68.71 69.94

Standard run (words) 65.18 66.19

Standard run (characters) 71.99 72.74

Table 6.6 Accuracy scores for Russian paraphrase detection obtained by submitting the
output to the shared task organization (third column) and by running the output locally
with the annotated test set (second column), with the same number of training epochs
in both cases.

Best epoch Paraphraser.ru

Non-standard run 70.63 69.94

Standard run (words) 66.63 66.19

Standard run (characters) 73.90 72.74

Table 6.7 Accuracy scores as in the previous Table 6.6 with the difference that for the
scores obtained locally, the model was trained with the best number of training epochs.

In the shared task, I submitted the result obtained by the neural network that
was trained through all the epochs, whose number was indicated in Sections 6.2.2
and 6.2.3.
Nevertheless having access to the annotated test set, it is possible to calculate the

best number of training epochs, which will lead to better results. Table 6.7 shows
the resulting accuracy of the model if the best epoch is chosen and the next section
below will suggest the possible way of choosing the right epoch.

6.3 Discussion and future work

The evaluation results for both runs are above the baseline and this shows that the
model is applicable for the task of paraphrase detection for Russian.
The result for standard run is competing with the best system and can be further

improved by tuning hyper-parameters automatically and also picking the epoch for
testing automatically, based on the cross-validation results.
Surprisingly, the results for the standard run outperformed the ones for the non-

standard run, though the non-standard run used external resources for lemmatisation
and initial word embeddings. I assume that this is mainly due to higher focus of this
work on standard run in conditions of time constraints of the competitive shared
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task. Results for the non-standard run could be further improved through choosing
different word embedding models and by tuning the hyper-parameters.

6.4 Summary

This chapter has presented the results of the application of the convolutional neural
network model to the task of paraphrase detection for Russian. Starting with the
definition of the task, I discussed two improvements that changed the neural network
architecture and helped to achieve competitive results in the task. The Russian
language contains richer morphology than English and Portuguese. The improved
model achieves competitive performance for the task of detecting if two sentences
are paraphrases without using of any external resources.
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Chapter 7

Conclusions

7.1 Summary of contributions

This dissertation was concerned with the task related to modelling semantic relations
between the elements of pairs of texts.

Replicability In one of the experiments undertaken, the task was to compare two
texts in order to draw a decision if they are semantically equivalent questions in
English. I have implemented a convolutional neural network (CNN) introduced by
Bogdanova et al. (2015) to assess the replicability of their strong results. I would like
to indicate two main contributions related to this task:

• The first contribution shows that I could obtain comparable or better results
with the same architecture and parameters of that CNN.

• As a second contribution, I have indicated that the work done by Bogdanova
et al. (2015) presumably includes a drawback regarding text preprocessing
which excludes removal of certain clues. These clues can strongly guide the sys-
tem in detecting semantically equivalent questions in illegitimate way. Taking
away the clues leads to significant drop in system performance, thus bringing
performance scores to the range of state of the art.

• A third contribution was to improve Bogdanova et al. (2015) result, by taking
initial random word embeddings, rather than pre-trained ones.

Task adaptation Another goal of my work was to see how the convolutional neural
network models can help with another tasks concerned with the modelling of two
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sentences. I chosen two different tasks and two different languages: entailment recog-
nition for Portuguese and paraphrase detection for Russian. The main contributions
are the following:

• For the Portuguese task, I have shown that the given model can achieve the
accuracy on a level with the baseline.

• For the Russian task, I have built a system that integrates character embed-
dings instead of word embeddings. This system does not use any external
resources and achieves competitive performance for the task of detecting if two
sentences are paraphrases.

A contribution that was common for all the tasks questioned the impact pre-
trained of word embeddings for the specific task. I have shown that using of randomly
initialised word embeddings instead of ones pre-trained with recurrent neural network
improves the performance of the system regarding each of the tasks.

7.2 Further work

Regarding the question answering task, there is a variety of possible avenues of future
research. The most obvious one would be to use slightly different and more widely
used datasets such as the SemEval community question answering tasks’ dataset
(Agirre et al., 2016). This dataset, instead of labelling pairs as being duplicate or
non-duplicate ranks the answers to the questions by the level of relatedness.
More deep and sophisticated architectures such as attention-based convolutional

neural network (ABCNN), together with the use of additional textual features (Yin
et al., 2016), can be resorted to possibly achieve a competitive performance for this
task.
A very important aspect that may be further developed in orthogonal to the

deep learning architecture that is used. This aspect is concerned with the tuning
the hyper-parameters of neural network. The software that was developed might be
further improved to make use of the validation set in order to automatically optimize
the hyper-parameters. Different techniques such as grid search, random search and
model-based optimizations can be experimented with (Goodfellow et al., 2016).
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Appendix A

User guide

HTML version of this user guide is available on a server of NLX-Group:
http://nlx-server.di.fc.ul.pt/dissertations/Maraev/README.html
(username and password are provided upon request).

A.1 Prerequisites

1. Download the source code:
http://nlx-server.di.fc.ul.pt/dissertations/Maraev/msrdsdl.tar.gz
(username and password are provided upon request).

2. Extract the code:

tar -xvf msrdsl.tar.gz
cd msrdsdl

3. You will need Python version 3.4.3 or higher.

4. Install required packages:

pip install -r requirements.txt

5. Set up Theano backend for Keras by editing the configuration file
~/.keras/keras.json and changing the field backend to "theano".

6. If you want to run experiments that require word embeddings you need to
download and extract distributional models:

wget http://nlx-server.di.fc.ul.pt/dissertations/Maraev/models.tar.gz
tar -xvf models.tar.gz
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A.2 About the program

After satisfying all the prerequisites you will have the following directory structure:

|-- cnn.py
|-- data
| |-- askubuntu
| | |-- clue
| | | |-- test.tsv
| | | |-- train.tsv
| | | '-- val.tsv
| | '-- noclue
| | |-- test.tsv
| | |-- train.tsv
| | '-- val.tsv
| |-- meta
| | |-- clue
| | | |-- test.tsv
| | | |-- train.tsv
| | | '-- val.tsv
| | '-- noclue
| | |-- test.tsv
| | |-- train.tsv
| | '-- val.tsv
| |-- pt
| | |-- test.tsv
| | |-- train.tsv
| '-- ru
| |-- test.tsv
| '-- train.tsv
|-- __init.py__
|-- models
| |-- askubuntu.w2v
| |-- meta.w2v
| |-- pt.w2v
| '-- ruscorpora.model.w2v
|-- preprocess.py
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A.3 Replication of my work

|-- README.org
'-- requirements.txt

You can run the application ./cnn.py with the --help argument to see available
parameters.
To change hyperparameters you can modify the method SentenceSimilarity.

set_hyperparameters by adding new modes.

A.3 Replication of my work

A.3.1 Question Answering

Replication of the work by Bogdanova et al. (2015)

For AskUbuntu dataset:
./cnn.py replication --train data/askubuntu/clue/train.tsv \

--val data/askubuntu/clue/val.tsv \
--test data/askubuntu/clue/test.tsv \
--w2v models/askubuntu.w2v

For META Stackexchange dataset:
./cnn.py replication --train data/meta/clue/train.tsv \

--val data/meta/clue/val.tsv \
--test data/meta/clue/test.tsv \
--w2v models/meta.w2v

Impact of text preprocessing (clue phrases removed)

For AskUbuntu dataset:
./cnn.py pp_impact --train data/askubuntu/noclue/train.tsv \

--val data/askubuntu/noclue/val.tsv \
--test data/askubuntu/noclue/test.tsv \
--w2v models/askubuntu.w2v

For META Stackexchange dataset:
./cnn.py pp_impact --train data/meta/noclue/train.tsv \

--val data/meta/noclue/val.tsv \
--test data/meta/noclue/test.tsv \
--w2v models/meta.w2v
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Impact of word embeddings (no pre-trained word embeddings)

./cnn.py we_impact --train data/askubuntu/noclue/train.tsv \
--val data/askubuntu/noclue/val.tsv \
--test data/askubuntu/noclue/test.tsv

A.3.2 Portuguese Entailment Recognition

Run 1

./cnn.py pt_1 --train data/pt/train.tsv \
--val data/pt/test.tsv \
--w2v models/pt.w2v

Run 2

./cnn.py pt_2 --train data/pt/train.tsv --val data/pt/test.tsv

A.3.3 Russian Paraphrase Detection

Non-standard run

./cnn.py ru_ns --train data/ru/train.tsv \
--val data/ru/test.tsv \
--w2v models/ruscorpora.model.w2v

Standard run

1. Word embeddings

./cnn.py ru_word --train data/ru/train.tsv --val data/ru/test.tsv

2. Character embeddings

./cnn.py ru_char --train data/ru/train.tsv --val data/ru/test.tsv
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