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Summary 

 
Main primary producers of estuarine systems include benthic microalgae, predominantly 

diatoms, and cyanobacteria that colonize subtidal and intertidal zones, commonly referred to 

as microphytobenthos (MPB). MPB communities account for about 50% of the primary 

productivity of estuarine systems (e.g. MacIntyre et al., 1996; Barranguet et al., 1998; 

Underwood and Kromkamp, 1999; Serôdio and Catarino, 2000). This is highly relevant 

considering that estuarine systems are among the most productive ecosystems in the 

biosphere (Constanza et al., 1997). Despite the extreme variability of environmental 

parameters (irradiance, temperature and salinity) that characterizes the estuarine habitat, 

these communities are able to display high photosynthetic rates. It is common to distinguish 

two types of MPB communities: epipelic communities (typical of muddy sediments) composed 

of motile species and epipsammic communities (typical of sandy sediments) composed largely 

by non-motile species attached to sand grains. Contrary to epipsammic, epipelic diatoms 

exhibit circadian and circatidal migratory rhythms (Palmer and Round, 1967; Palmer, 1973; 

Admiraal et al., 1982; Serôdio and Catarino, 2000).  

Being MPB critical for the function of estuarine and coastal ecosystems, understanding the 

impact of climate change on its structure and productivity is mandatory. In particular, the 

increase of temperature and inorganic carbon availability can markedly affect photosynthesis, 

diversity and productivity of estuarine MPB communities. However, studies of the impact of 

climate changes on MPB are still scarce, and in particular the effects of the interaction 

between increased temperature and inorganic carbon availability are, to a large extent, still 

unknown. 

Thus, in this project we studied the effects of temperature and dissolved inorganic carbon 

(DIC) availability in two MPB communities of the Tagus estuary, in central Portugal, applying 

new methods of remote sensing, namely laser induced fluorescence (LIF) and modulated 

imaging fluorescence (Imaging-PAM). The LIF methodology (chapter 2) was used to trace 

migratory rhythms of benthic epipelic microalgae typical of mud sediments. Indeed, it was 

confirmed that, during the diurnal low tide these microalgae migrate to the surface of 

sediment to drive photosynthesis and then migrate in depth before the arrival of the tide. 



SUMMARY 

 

15 
 

Furthermore, epipelic diatoms show photophobic migration when exposed to high light levels, 

a process known as behavioral photoprotection. This technique proved to be adequate to the 

study of MPB communities, both for the determination of surface biomass and the study of 

migratory rhythms. The possibility of using LIF for middle-range remote sensing under natural 

light conditions opens good perspectives for its use in environmental monitoring of estuarine 

systems. 

In the last decades, conventional pulse amplitude modulated fluorescence (PAM) has been 

increasingly applied to estuarine MPB communities (Serôdio et al., 1997; Kromkamp et al., 

1998; Paterson et al., 1998; Serôdio et al., 2001; Honeywill et al., 2002; Perkins et al., 2002; 

Serôdio, 2003; Stephens et al., 2003; Forster and Kromkamp, 2004; Murphy et al., 2004; 

Serôdio, 2004; Forster and Jesus, 2005; Murphy et al., 2005). Lower resolution imaging 

systems allow the mapping of fluorescence parameters over large areas, making it a unique 

technique to study the spatial heterogeneity of the photosynthetic activity across an 

autotrophic surface (Scholes and Rolfe, 1996; Hill et al., 2004. This can be particularly relevant 

in the study of MPB biofilms, characterized by a “patchy,” heterogeneous distribution and can 

provide useful information about the spatial distribution of biomass and productivity in 

sediments. Yet, important hardware differences exist between conventional and imaging 

systems and therefore a comparative study of the results obtained with these technologies in 

MPB was required (chapter 3). In fact, we observed significant differences between the results 

obtained with conventional and imaging systems, especially in what refers to the analysis of 

rapid fluorescence curves as a function of irradiance (RLCs, Rapid Light Curves). Lower values 

of α (initial slope of the rETR vs. E curve), ETRmax (maximum relative ETR), Ek (light saturation 

parameter) and Fv/Fm (maximum quantum efficiency of photosystem II of dark-adapted 

samples) were obtained using the Imaging- PAM system. The discrepancy between 

instruments was dependent on sample type, being more pronounced in mud than in sandy 

MPB sediments. The differences may be largely explained by the interplay between the 

different depth-integration of the fluorescence signal, dependent on the thickness of the 

photosynthetic layer, and the different attenuation coefficients of the light sources used by 

the two types of instrument. It is therefore important to take into account the specificity of 

each fluorescence system when interpreting and comparing chlorophyll fluorescence data of 
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MPB communities, taking full advantage of the application of imaging fluorescence to the MPB 

communities, in particular in what refers to its unique ability to study the spatial heterogeneity 

of their photosynthetic activity. 

The in-depth understanding of the primary production processes of MPB is a prerequisite to 

assess the impacts of climate change on estuarine systems. Among the global change 

variables, increased temperature and atmospheric CO2 (and concomitantly dissolved 

inorganic carbon, DIC) are expected to have the most significant impact over the primary 

productivity in estuaries. Therefore, we studied their effect, as well as their interaction, on the 

photosynthesis of MPB biofilms. The short-term effect of increasing temperature in the 

photosynthetic activity of two communities of MPB (Alcochete and Trancão) was studied 

(chapter 4). The Trancão MPB community had higher photosynthetic electron transport 

capacity (higher ETRmax)  being photoacclimated at higher irradiance (higher EK) and had lower 

energy conversion efficiency at limiting irradiance (lower α) .The differences in the species 

composition and size class may explain the results obtained for the two sites, since smaller 

cells are generally more metabolically active. However, for the both MPB communities 

photosynthetic capacity increased with temperature up to 35 °C and decreased with extreme 

temperature of 42 °C. Photosynthetic efficiencies at low irradiance (α) were not affected by 

the temperature in the 15-35 °C range, and decreased at 42 °C. These MPB estuarine 

communities were able to increase the photosynthetic capacity under exposure to short-term 

high temperatures sediments, similar to happens during the summer midday in the diurnal 

low tides. 

We also studied the effect of dissolved inorganic carbon availability (DIC) in photosynthesis, 

on the two intertidal MPB communities, taking as reference the model diatom species 

Phaeodactylum tricornutum, using fluorescence imaging (on intact MPB communities) and 

polarographic oxygen measurement (in cell suspensions) (chapter 5). The parameters of DIC 

acquisition kinetics (Vmax and Km (DIC)) estimated for MPB communities were higher ((Km (DIC) 

= 0.31 mM; Vmax = 7.78 nmol min-1 μg (Chl a)-1), than those obtained for Phaeodactylum 

tricornutum (Km (DIC) = 0.23 mM; Vmax = 4.64 nmol min-1 μg (Chl a)-1), showing that these 

communities have species with low affinity for DIC and high photosynthetic capacity. The net 

photosynthesis of MPB suspensions reached saturation at DIC concentrations of 1-1.5 mM, 
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lower than those found in the sediment top 5 mm interstitial water, suggesting that the 

photosynthesis of these communities is not limited by DIC availability. However, when 

NaHCO3 was added to intact MPB samples, an increase in the maximum photosynthetic 

electron transport rate (ETRmax) was observed. These results suggest that the local depletion 

of DIC in the photic layer of the sediment, where the microalgae accumulate during diurnal 

low tide, limits the photosynthetic activity of MPB, providing the first experimental evidence 

of DIC limitation of the productivity of intertidal MPB communities.  

The interactive effects of temperature and DIC in biomass, species composition and 

photosynthetic performance of MPB was studied using a microcosm ELSS ('experimental life 

support system') with tide regime (chapter 6). The longer term effect of increased 

temperature (24 ° C) had a negative effect on MPB biomass and photosynthetic performance 

under both simulated DIC conditions (pH = 7.4 and pH = 8.0). Furthermore, at elevated 

temperatures there was a change in the relative abundance of the major species of diatoms 

and an increase of cyanobacteria. The long term effect of increasing DIC ( pH = 7.4) under low 

temperature (18 °C) had a positive effect on biomass MPB, possibly due to decreased local 

depletion of dissolved inorganic carbon. No significant effects were found on the relative 

abundance of the major groups of microalgae. Our results suggest that the interactive effects 

of increased temperature and DIC availability of estuarine MPB communities can have a 

negative impact on the structure, diversity and productivity of these communities, eventually 

affecting the entire estuarine ecosystems. Therefore, a deepen understanding of the potential 

impacts of climate change in these complex ecosystems is required. 

 

Keywords: Microphytobenthos, climate change, pulse amplitude modulated fluorometry, 

photosynthesis, temperature, carbon, diatoms. 
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Resumo  

 
Entre os principais produtores primários dos sistemas estuarinos encontram-se as microalgas 

bênticas, predominantemente diatomácias, e cianobactérias que colonizam as zonas subtidais 

e intertidais, geralmente designadas por microfitobentos (MPB). Estas comunidades de MPB 

são responsáveis por cerca de 50% da produtividade primária dos sistemas estuarinos (e.g. 

MacIntyre et al., 1996; Barranguet et al., 1998; Underwood and Kromkamp, 1999; Serôdio and 

Catarino, 2000). Este facto é particularmente relevante considerando que os estuários se 

encontram entre os ecossistemas mais produtivos da biosfera (Constanza et al., 1997). Apesar 

da extrema variabilidade em parâmetros ambientais (tais como luz, temperatura e salinidade) 

que caracteriza o habitat estuarino, estas comunidades apresentam elevadas taxas 

fotossintéticas. Na literatura é comum encontrar as comunidades de MPB divididas em 

comunidades epipélicas (típicas de sedimentos vasoso), com células capazes de se deslocarem 

entres as particulas de sedimento, e comunidades epipsâmicas (típicas de sedimentos 

arenosos), maioritariamente constituídas por células fixas aos grãos de areia. Ao contrário 

destas últimas, as diatomáceas epipélicas apresentam ritmos migratórios circadianos e 

circatidais (Palmer and Round, 1967; Palmer, 1973; Admiraal et al., 1982; Serôdio and 

Catarino, 2000). 

Os ecossistemas costeiros e estuarinos são habitats particularmente sensíveis às alterações 

climáticas, prevendo-se que sofram profundas alterações nas próximas décadas. O aumento 

da temperatura e do CO2 atmosférico são duas variáveis importantes nos cenários de 

alterações globais, tendo, presumivelmente, efeitos significativos na fotossíntese, diversidade 

e produtividade das comunidades de MPB estuarino. Uma vez que os estudos de alterações 

climáticas ao nível do MPB são escassos, é particularmente importante estudar os efeitos 

interativos destes dois parâmetros ambientais nestas comunidades. 

Numa primeira fase desta tese, fomos estudar os parâmetros fotossintéticos, ritmos 

migratórios e mecanismos de fotoproteção comportamental das comunidades de MPB, 

aplicando novas metodologias de deteção remota como a fluorescência induzida por laser 

(LIF) e imagiologia de fluorescência (Imaging-PAM). Por um lado, a metodologia LIF foi usada, 

para seguir os ritmos migratórios das microalgas bênticas epipélicas (capítulo 2). Por outro 
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lado, permitiu determinar mecanismos de fotoproteção comportamental característicos 

destas comunidades epipélicas. Durante a baixa-mar diurna estas microalgas migram para a 

superfície do sedimento (acumulação de biomassa na superfície) e seguidamente migram em 

profundidade antes da chegada da maré. A migração em direcão à superficíe do sedimento 

permite às células chegar à zona fótica e captar luz indispensável à fotossíntese. Por outro 

lado, a migração vertical descendente sob níveis de luz elevados, pode ser interpretada como 

um mecanismo de fotoproteção comportamental evitando deste modo níveis de luz 

fotoinibitórios. Esta técnica mostrou-se adequada ao estudo das comunidades de MPB quer 

na determinação da biomassa superficial quer no estudo dos seus ritmos migratórios. 

Nas últimas decadas, a fluorescência de pulso modulado (PAM), tem sido aplicada ao estudo 

das comunidades de MPB estuarino de forma exaustiva (Serôdio et al., 1997; Kromkamp et 

al., 1998; Paterson et al., 1998; Serôdio et al., 2001; Honeywill et al., 2002; Perkins et al., 2002; 

Serôdio, 2003; Stephens et al., 2003; Forster and Kromkamp, 2004; Murphy et al., 2004; 

Serôdio, 2004; Forster and Jesus, 2005; Murphy et al., 2005). A imagiologia de fluorescência 

permite o mapeamento de parâmetros de fluorescência numa área alargada, tornando-se 

uma técnica única em estudos de heterogeneidade espacial da atividade fotossintética 

(Scholes and Rolfe, 1996; Hill et al., 2004). Isto pode ser particularmente relevante no estudo 

de biofilmes de MPB, podendo fornecer informações úteis sobre a distribuição espacial de 

biomassa e produtividade em sedimentos. Deste modo, e tendo em conta que estas técnicas 

foram optimizadas para plantas superiores, era importante um estudo comparativo entre a 

fluorometria convencional e de imagem ao nível destas comunidades (capítulo 3). Verificámos 

que o nível de discrepância entre os sistemas convencionais e de imagem foi dependente do 

tipo de amostra sendo mais pronunciado em sedimentos vasosos de MPB. Estas diferenças 

podem ser explicadas pelas diferenças da integração de profundidade do sinal de 

fluorescência relacionado com a espessura da camada fotossintética e pelos coeficientes de 

atenuação de luz. Deste modo, é necessário ter algum cuidado ao interpretar e comparar 

dados de fluorescência da clorofila das comunidades de MPB. Contudo a aplicação do Imaging-

PAM ao MPB estuarino permite a obtenção de mapas de fluorescência tornando-se uma 

técnica única para o estudo da heterogeneidade espacial da atividade fotossintética destas 

comunidades. 
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O efeito a curto prazo do aumento da temperatura na atividade fotossintética de duas 

comunidades de MPB (Alcochete e Trancão) foi o primeiro parâmetro a ser estudado 

utilizando imagiologia de fluorescência (Imaging-PAM) (capítulo 4). As comunidades de MPB 

do Trancão apresentaram maior capacidade fotossintética (maior ETRmax), estando 

fotoaclimatadas a irradiâncias mais elevadas (maior EK) e apresentaram menor eficiência para 

irradiâncias limitantes (menor α). As diferenças na composição taxonómica e na classe de 

tamanhos podem justificar os resultados obtidos para os dois locais, uma vez que, as células 

de menor tamanho são geralmente mais ativas, devido à maior superfície relativamente ao 

volume. Em ambas as comunidades de MPB estuarino a capacidade fotossintética aumentou 

com a temperatura até 35 °C e decresceu com a temperatura extrema de 42 °C. As eficiências 

fotossintéticas não foram afetadas pela temperatura no intervalo 15-35 °C e decreceram a 42 

°C. Estas comunidades de MPB estuarina foram capazes de aumentar a capacidade 

fotossintética sob exposição a curto prazo de temperaturas elevadas do sedimento, 

semelhante ao observado durante o verão na baixa-mar diurna.  

Foi também investigado o efeito da disponibilidade do carbono inorgânico dissolvido (DIC) na 

fotossíntese, nas duas comunidades intertidais de MPB (Alcochete e Trancão) e na diatomácia 

modelo Phaeodactylum tricornutum, utilizando a imagiologia de fluorescência (Imaging-PAM) 

(capítulo 5). Os parâmetros da cinética de aquisição de DIC para as comunidades de MPB 

foram mais elevados do que os obtidos para Phaeodactylum tricornutum, mostrando que 

estas comunidades têm espécies com baixa afinidade para o DIC e elevada capacidade 

fotossintética. Quando comparamos a taxa fotossintética líquida de suspensões de MPB, 

verificamos que esta atingiu a saturação a concentrações de DIC de 1-1,5 mM, e que estes 

valores são inferiores aos encontrados na água intersticial do sedimento (0-5 mm) sugerindo 

que não há limitação de DIC na fotossíntese para estas comunidades. Contudo, quando 

adicionamos NaHCO3 a amostras intactas de MPB verificou-se um aumento da capacidade 

fotossintética (ETRmax). Estes resultados sugerem depleção local de DIC, na camada fótica dos 

sedimentos, onde as microalgas se acumulam durante a baixa-mar diurna. Assim, este estudo 

fornece a primeira evidência experimental da limitação de DIC nas comunidades intertidais de 

MPB. 
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Por último, o efeito interativo destes dois parâmetros ambientais (temperatura e CO2) na 

biomassa de MPB, composição taxonómica e performance fotossintética foi estudo usando 

um sistema de suporte de vida com regime de maré (capítulo 6). As temperaturas mais 

elevadas (24°C) tiveram um efeito negativo na biomassa de MPB e no desempenho 

fotossintético sob ambas as condições de CO2 simuladas (correspondentes a pH=7,4 e pH= 

8,0). Por outro lado, sob temperaturas elevadas houve uma mudança na abundância relativa 

das principais espécies de diatomáceas bem como um aumento de cianobactérias. O efeito 

do aumento de CO2 (pH=7,4) sob temperatura baixa (18°C) teve um efeito positivo sobre a 

biomassa de MPB, possivelmente devido à diminuição da depleção local do carbono 

inorgânico dissolvido. Contudo, nenhum efeito significativo deste parâmetro foi verificado 

relativamente aos principais grupos de microalgas e espécies de diatomáceas. Os efeitos 

interativos do aumento de temperatura e CO2 ao nível das comunidades de MPB estuarino 

podem ter um impacto negativo na estrutura, diversidade e produtividade destas 

comunidades e eventualmente nos servicos naturais que estes ecossistemas nos prestam. São 

cruciais novos estudos sobre o efeito das alterações climáticas nestes complexos 

ecossistemas. 

 

Palavras-chave: Microfitobentos, alterações climáticas, fluorometria de pulso modulado, 

ritmos migratórios, fotossíntese, diatomáceas. 
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Estuarine intertidal flats and microphytobenthos 

Estuaries are at the interface of terrestrial and marine environments and are amongst the 

most productive ecosystems in the biosphere (Constanza et al., 1997). The functioning of an 

estuary is dependent on a wide range of factors that include geomorphology, tidal and 

freshwater flushing time, tidal range, nature and extent of intertidal areas and climatic 

conditions. The intertidal flats of estuarine systems (mud and sand flats) are highly dynamic, 

characterized by rapid changes in environmental variables. Daily fluctuations in light, salinity, 

temperature, water content, oxygen, and other environmental parameters are induced by 

day/night and tidal cycles (Huggets et al., 1986; Serôdio and Catarino, 1999). 

The most important estuarine primary producers are the benthic microalgae and 

cyanobacteria that colonise intertidal and shallow subtidal areas, generally designated 

microphytobenthos (MPB). The taxonomic composition of MPB is the result of a complex 

interaction of factors, the most important being light, salinity, nutrients, grazing and sediment 

type (Oppenheim, 1988; Pinckney and Sandulli, 1990; Delgado et al., 1991; Underwood, 1994; 

Defew et al., 2004; Van der Grinten et al., 2004; Jesus et al., 2005; Van der Grinten et al., 2005). 

These communities form transient biofilms during the period of low tide on the surface of the 

sediments and are mostly dominated by diatoms (phylum Bacillariophyta) and cyanobacteria 

(the prokaryotic phylum Cyanophyta). Diatoms are important marine photoautotrophic 

organisms that account for up to 25% of the primary production on Earth, fixing more than 10 

billion tons of inorganic carbon each year (Falkowski and Raven, 1997). MPB provide critical 

functions to the estuarine ecosystem, contributing up to 50% of estuarine primary production 

(Pomeroy, 1959; Sullivan and Moncreiff, 1988; Pinckney and Zingmark, 1993; MacIntyre et al., 

1996; Barranguet et al., 1998; Meyercordt and Meyer-Reil, 1999; Underwood and Kromkamp, 

1999; Serôdio and Catarino, 2000) while stabilizing sediments (Paterson, 1989; Yallop et al., 

1994; Sutherland et al., 1998; Paterson and Black, 1999) and providing an important resource 

for grazers (Fréchette and Bourget, 1985; Middelburg et al., 2000). Benthic microalgae and 

cyanobacteria of estuarine habitats have developed different behavioural and physiological 

adaptations that optimize their primary production. One adaptation to these harsh conditions 

is vertical migration within the sediment (Consalvey et al., 2004). Frequently, benthic diatoms 

exhibit a periodic vertical migration whereby cells migrate up onto the sediment surface 
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during diurnal low tide and migrate down into the sediment in anticipation of flood (Serôdio 

et al., 2008). Upward migration during diurnal low tide periods allows cells to reach the photic 

zone and absorb light to drive photosynthesis. Downward migration has been associated with 

the avoidance of resuspension into the water column (e.g., Kingston, 1999), grazing (e.g., 

Buffan-Dubau and Carman, 2000) and high light exposure (Kromkamp et al., 1998; Perkins et 

al., 2001, 2002; Serôdio et al., 2005; Cartaxana et al., 2011).  

Benthic diatoms are subjected to a highly variable and extreme light regime caused by rapid 

changes in water cover and by the direct exposure to sunlight for prolonged periods during 

diurnal low tides. Exposure to solar light after long periods of darkness may take place when 

diatoms buried in aphotic layers of the sediment are resuspended and brought to the surface. 

In order to cope with these harsh conditions, MPB developed efficient mechanisms of 

photoacclimation and photoprotection. An increasing amount of recent literature has shown 

that motile benthic microalgae may use their migratory ability to actively search for optimal 

light levels for photosynthesis, thus maximizing light absorption while avoiding exposure to 

photoinhibiting light levels – behavioural photoprotection (Kromkamp et al., 1998; Perkins et 

al., 2001; Serôdio et al., 2006; Cartaxana et al., 2011). Another adaptation to high light stress 

is the activation of physiological photoprotective mechanisms that include photorespiration, 

cyclic electron transport and photo-reduction of molecular oxygen by PSI (see review by 

Niyogi, 1999). However, the most important physiological photoprotective mechanism in 

diatoms is the xanthophyll cycle which allows the thermal dissipation of excess energy in the 

antennae of photosystem II (PSII), involving the de-epoxidation of diadinoxanthin (Dtx) to 

diatoxanthin (Ddx) (Young et al., 1997). Non-photochemical quenching (NPQ) induced by the 

xanthophyll cycle has been shown to be 3 to 5 times larger in diatoms than in higher plants 

(Ruban et al., 2004). 

 

MPB photosynthesis: temperature and carbon availability 

Photosynthesis is the biological conversion of light energy to chemical bond energy stored in 

the form of organic carbon compounds. Approximately 40% of the annual photosynthesis on 

Earth occurs in aquatic environments (Falkowski, 1994). All photosynthetic organisms, 

whether they are prokaryotes, eukaryotic algae, or higher plants, use membranes to organize 
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photosynthetic electron processes and separate these processes from carbon fixation (Bryant, 

1994; Drews, 1985; Redlinger and Grant, 1983). Photosynthetic electron transport takes place 

in the thylakoid membrane located within specialized organelles called chloroplasts. In 

diatoms the plastid ultrastructure and the organization of the photosynthetic apparatus differ 

from that in higher plants. The thylakoid membranes are grouped by bands of three all along 

the plastid and they are not very tightly associated since they are spaced by 2 nm (Pyszniac 

and Gibbs, 1992). The process of photosynthesis can be separated into two parts, the 

photochemical reactions and the carbon reduction reactions. The photochemical reactions 

begin with the absorption of light by the antenna complex. The light-harvesting pigments-

proteins complexes are a diverse group of proteins that bind pigments absorbed excitation 

energy to the photosynthetic reaction center. The light-harvesting pigments include 

chlorophylls a (Chl a) and c, xanthophylls, and -carotene. These pigments transfer the 

absorption of light energy to the reaction centers, where the energy is used in the 

photosynthetic electron transport chain. The main components of the photosynthetic 

electron transport chain are: the PSII, the cytochrome b6f complex, the photosystem I (PSI) 

and the ATP- synthase complex. The photosynthetic electron transport chain based on the 

apparent redox potentials of the two reaction centers (called Z-scheme) can be divided into 

three segments: (a) the donor side of PSII, which includes the reactions responsible for the 

injection of electrons into PSII from water, (b) the intersystem electron transport chain, which 

includes all the carriers between PSII and PSI, and (c) the acceptor side of PSI, in which the 

primary reducing agent, NADPH, is formed and exported for the carbon fixation. The transport 

of four electrons via the thylakoid membrane causes the transport of protons across the 

membrane, leading to formation of a pH gradient. The gradient provides the driving force for 

the ATPase to synthesize ATP (adenosine triphosphate) from ADP (adenosine diphosphate) 

and phosphate. In the case of the linear electron transport, ferredoxin gives its charge to the 

enzyme ferredoxin-NADP-oxidoreductase. This facilitates the synthesis of NADPH from NADP. 

The fundamental products of photosynthesis (ATP, NADPH) are then available for a number 

of secondary pathways, including carbon reduction, nitrate reduction, sulphate reduction, and 

ATP production (Falkowski and Raven, 1997; Behrenfeld et al., 2004). These photosynthetic 

products couple the light reactions to carbon fixation and to cell growth. Approximately 95% 
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of NADPH and more than 60% of ATP are used to assimilate and reduce inorganic carbon 

(Falkowski and Raven, 1997). 

The uptake of inorganic carbon into a cell is the first step in the photosynthetic assimilation of 

carbon. All oxygenic photoautotrophs incorporate CO2 into organic matter by adding four 

electrons and four protons to the carbon atom to forming carbohydrate. The primary 

metabolic pathway responsible from carbon reduction is the Calvin-Benson cycle, 

alternatively called the C3 pathway. This pathway for inorganic carbon fixation invariably 

involves the enzyme Ribulose-1,5-Bisphosphate Carboxylase/Oxigenase (Rubisco). Rubisco 

can only use CO2 as substrate. Hence, inorganic carbon uptake must ultimately lead to the 

formation of CO2 in the chloroplast stroma (Falkowski and Raven, 1997). 

CO2 is found in the atmosphere as a gas but in aquatic systems (aqueous solution) the 

dissolved CO2 reacts with water (equation 1). The equilibrium reactions are shifted toward the 

right at high pH and toward the left at low pH. 

 

CO2 (aq) +H2O ⇔ H2CO3 ⇔ H+ + HCO3
−⇔ 2H++ CO3

2− (equation 1) 

The inorganic carbon system is one of the most important chemical equilibrium in aquatic 

systems and is largely responsible for controlling the pH of seawater. Dissolved inorganic 

carbon (DIC) exists in seawater in three major forms: bicarbonate ion (HCO3
-), carbonate ion 

(CO3
2-), and aqueous carbon dioxide (CO2 (aq)), which here also includes carbonic acid (H2CO3). 

At a pH of 8.2, 88% of the carbon is in the form of HCO3
-, 11% in the form of CO3

2-, and only 

0.5% of the carbon is in the form of dissolved CO2. When CO2 dissolves in seawater, H2CO3 is 

formed. Most of the H2CO3 quickly dissociates into a hydrogen ion (H+) and HCO3
-. A hydrogen 

ion can then react with a CO3
2-, to form bicarbonate. Therefore, the net effect of adding CO2 

to seawater is to increase the concentrations of H2CO3, HCO3
-, and H+, and decrease the 

concentration of CO3
2- and lower pH. These reactions are fully reversible and their basic 

thermodynamics in seawater are well known (Millero et al., 2002). CO2 usually accounting for 

less than 1% of the total inorganic carbon and thereby, the expected CO2 concentration of 

seawater is approximately 10 µmol L-1 (at atmospheric equilibrium at 25°C) (Badger et al. 

1998). The photosynthesis of marine diatoms could be limited by inorganic carbon availability 

(Badger et al., 1998), but is generally not limited due to the operation of carbon concentrating 
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mechanisms (CCMs) (e.g. Giordano et al., 2005; Roberts et al., 2007) that maintain efficient 

photosynthetic rates. Recent results indicate a central role of the C4 pathway in the 

photosynthesis of diatoms acclimated to low CO2 concentrations (Reinfelder and Morel, 

2004), operating as CCMs. The key enzyme in C4 metabolism is phosphoenolpyruvate 

carboxylase (PEPC) and has higher temperature optima and C affinity then Rubisco (Kelly and 

Latzko, 2006). The former enzyme is one of the most catalytically active enzymes and is 

especially important in the ocean, where free CO2 concentrations are so low but the 

concentration of HCO3
- is large. The PEPC function supplying the CO2 to a CO2-specific enzyme 

such as a carboxylase, facilitate the diffusive transport of inorganic carbon into the cells. The 

activity of PEPC is often found in the plasmalemma, and can facilitate the CO2 diffusion by 

accelerating the formation of CO2
 near the cell surface. 

A few studies on diatoms as part of highly productive MPB biofilms suggest limitation of 

photosynthesis by inorganic carbon availability (Admiraal, 1982; Cook and Roy, 2006). 

Admiraal et al. (1982) found that the diffusion of inorganic carbon limited the productivity of 

dense unialgal mats of the diatom Navicula salinarum. Cook and Roy (2006) found an increase 

on photosynthetic rates of MPB natural communities in subtidal sandy sediments after the 

addition of HCO3
−.  

Temperature can have a major influence on rates of MPB photosynthesis (Blanchard et al., 

1996; Guarini et al., 1997). Temperature influences algae photosynthesis by changing the 

photosynthetic rate or by inducing phenotypic or genotypic changes among algae species 

(Davison, 1991). Intertidal sediment temperature fluctuations occur on long (seasonal) and 

short (daily and hourly) time scales, depending on factors such as meteorological conditions, 

time of day and tidal inundation. In summer, intertidal sediment temperature can easily 

change 10-15°C during an emersion period, reaching values higher than 35°C at midday 

(Blanchard et al., 1997; Serôdio and Catarino, 1999). Increased temperature generally results 

in higher metabolic activity and thus increased growth rates. Short-term (hours) temperature 

changes, similar to those experienced by intertidal MPB communities during a tidal cycle, have 

been shown to have a significant effect on the photosynthesis of cultured benthic diatoms 

(Admiraal, 1984; Morris and Kromkamp, 2003; Salleh and McMinn, 2011) and suspensions of 

intertidal MPB (Blanchard et al., 1996, 1997). Extreme temperatures limit electron transport 
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and carbon fixation. Much less is known on the effect of temperature changes on MPB at 

longer time-scales or on undisturbed natural MPB communities. 

 

MPB and climate change 

Rising global temperatures and increasing atmospheric CO2 concentrations, expected to occur 

due to global warming, are causing changes to a wide range of ecosystems, including estuarine 

systems (De Jonge and De Jong, 2002). Little is known about the combined impacts of 

temperature and future CO2 increases on the productivity and physiology of MPB 

communities. To our knowledge, Hicks et al. (2011) is the only study addressing the combined 

effect of these two parameters. Using a nontidal experimental mesocosm in a 7-day 

experiment, these authors report a negative effect of combined elevated atmospheric CO2
 

concentrations and temperature on MPB biomass. 

 

Chlorophyll a fluorescence 

Photosynthetic activity of intertidal benthic microalgae is increasingly assessed using Chl a 

fluorescence techniques, particularly pulse amplitude modulated (PAM) fluorescence 

techniques. PAM fluorescence was originally introduced by Schreiber et al. (1986) for the 

study of terrestrial phototrophs, but since its introduction it has been applied to numerous 

aquatic organisms (Beer & Björk, 2000; Schlensog and Schroeter, 2001; Villareal and Morton, 

2002; Carr and Bjork, 2003; Gevaert et al., 2003; Kromkamp and Forster, 2003). PAM 

fluorometry is a powerful and non-intrusive technique for probing photosynthesis based on 

Chl a fluorescence quenching analysis. The measurements assume that the Chl fluorescence 

is proportional to the inherent photosynthetic properties of the phototroph. This non-invasive 

technique is generally used to estimate the effective quantum yield of PS II (ΔF/Fm′) (Genty et 

al., 1989). This parameter reflects the short-term variability of photosynthetic activity and can 

be used to assess the linear electron transport rate (ETR) through PS II. This technique has 

been used successfully to assess photosynthetic activity of the MPB communities on intact 

sediment cores or isolated microalgae (Kromkamp et al., 1998; Barranguet and Kromkamp, 

2000; Perkins et al., 2001, 2002; Serôdio et al., 2005). Additionally,  the fluorescence signal 
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has be used to estimate biomass (Honeywill et al. 2002; Serôdio et al. 2001) and follow cell 

vertical migration (Kromkamp et al., 1998; Serôdio et al., 1997). 

 

Objectives 

The main objectives of this thesis were: 

- To improve the application of chlorophyll fluorescence tools to study photosynthesis 

of intertidal MPB communities. 

- To evaluate the effects of short-term changes in temperature and available inorganic 

carbon on the photosynthetic metabolism of intertidal MPB communities of the Tagus 

estuary. 

- To assess the interactive effects of elevated temperature and CO2, expected to occur 

due to climate change, on the structure and productivity of intertidal MPB. 
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Abstract  

Laser-induced fluorescence (LIF) spectra of intertidal microphytobenthos (MPB) communities were 

obtained in the laboratory with a 532 nm pulsed Nd: YAG laser. The laser-induced chlorophyll (chl) 

fluorescence emission spectra of MPB in mud and sand sediments were characterized by a band in 

the red region with a maximum at ca. 685 nm. Biomass accumulation on the surface of the mud due 

to cell migration caused a shift to longer  wavelengths (up to 5 nm) of the red emission maximum 

and the development and increase of an emission shoulder at the far-red region (maximum at ca. 

732 nm), probably owing to increased re-absorption of chl fluorescence within the denser 

microalgae biofilm. Direct relations were observed between MPB biomass proxies (normalized 

difference vegetation index [NDVI] and phytobenthos index [PI]) and fluorescence intensity. LIF was 

used to track migratory rhythms of epipelic benthic microalgae in muddy sediments, which are 

absent in epipsammic communities in sand: progressive accumulation of biomass occurred at the 

sediment surface during diurnal low tide periods and was followed by a rapid downward migration 

before tides began to cover the sampling site. When exposed to high light, surface biomass 

decreased in migratory biofilms, indicating that diatom cells avoid photoinhibitory light levels. This 

phenomenon is known as behavioral photoprotection. For the first time, LIF was applied to study 

intertidal MPB communities to adequately describe surface biomass, which included changes due 

to migration.  

 
Introduction 

Microphytobenthos (MPB) are a generic grouping of microalgae that colonize intertidal and shallow 

subtidal flats in estuarine and coastal ecosystems. MPB can form dense, micro-algal, diatom-

dominated biofilms on the upper layers of intertidal sediments that range from fine silt and mud to 

sand and have a productivity that can exceed 300 g C m–2 yr–1 (MacIntyre et al., 1996; Underwood 

and Kromkamp, 1999). MPB represent an important food source for benthic invertebrates (e.g. 

Montagna et al., 1995) and have been implicated in protecting sediments from erosion through the 

production of extracellular polymeric substances (e.g. Underwood and Paterson, 2003). The large 

spatio-temporal variability of MPB and the difficulty of accessing tidal flats that cover many square 

kilometers of estuarine and coastal ecosystems make the use of remote sensing techniques 

particularly useful in assessing MPB distribution.  
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A unique feature of some of these benthic epipelic (motile, fine sediment-inhabiting) diatom 

communities is the exhibition of vertical migratory movements within the uppermost layers of the 

sediment (see review by Consalvey et al., 2004). Typically, motile diatoms move towards the surface 

of the sediment during diurnal low tide and then back to deeper layers before high tide or night, 

causing reversible several fold changes in surface biomass (Round and Palmer, 1966; Serôdio et al., 

1997). Upward migration benefits microalgae by placing them on the surface during low tide when 

light is readily available for photosynthesis. However, rapid downward diatom movement has been 

observed upon exposure to high light levels (Kromkamp et al., 1998;  Perkins et al., 2001; Cartaxana 

and  Serôdio, 2008), indicating that benthic diatoms may also use migration to avoid photoinhibitory 

light levels, a phenomenon known as behavioural photoprotection (Admiraal, 1984; Serôdio et al., 

2006). Recently, Perkins et al. (2010) have shown that vertical cell movement is a primary response 

of epipelic benthic biofilms to increasing light exposure. Epipsammic diatoms, i.e. those attached to 

particles of sandy sediments, depend exclusively on physiological mechanisms to photoregulate 

(Jesus et al., 2009).  

Laser-induced fluorescence (LIF) has been successfully used in remote sensing of terrestrial plants 

(e.g. Subhash and Mohanan, 1997; Richards et al., 2003; Anderson et al., 2004), phytoplankton 

(Barbini et al., 1998) and macroalgae (Kieleck et al., 2001). The chlorophyll (chl) fluorescence 

spectrum of plant leaves typically includes 2 maxima, one in the red (684 to 695 nm) and one in the 

far-red (730 to 740 nm) region, which are primarily dependent on the concentration of chl a (see 

review by Buschmann, 2007). Changes in red to far-red fluorescence ratios (F685/F735), as well as 

shifts in the peak center of chl fluorescence bands, are correlated to changes in chl concentration in 

plants under stress (Lichtenthaler and Rinderle 1988; McMurtrey et al., 1994; Subhash and 

Mohanan, 1997; Schuerger et al., 2003).  

In the present study, LIF was used as a remote sensing technique to study MPB biomass of muddy 

and sandy sediments of the Tagus Estuary, Portugal. LIF was used successfully to estimate MPB 

biomass and, in the case of epipelic diatom communities, to track micro algal migration caused by 

diurnal and tidal cycles and changes in irradiance levels. To our knowledge this is the first application 

of LIF in the study of MPB communities. 
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Materials and methods 

Sampling 

Sediment samples were collect at Alcochete, Tagus Estuary, Portugal (38° 44’ N, 09° 08’ W), on 

several occasions between February and July 2010. This estuary has a large inner bay with extensive 

intertidal flats covering an area of approximately 100 km2 (Brotas and Catarino, 1995). The Tagus 

Estuary is mesotidal with a mean tidal range of 2.4 m, which ranges from about 1 m at neap tides to 

about 4 m at spring tides. Sampling was carried out during low tide periods at 2 stations with 

different sediment types: a mud site with 97% of particles <63 μm, and a sand site composed of a 

mixture of very fine to coarse sand ranging in diameter between 125 and 1000 μm, hereafter called 

mud and sand, respectively. Sediment samples were collected by means of plexiglass cores (8 cm 

internal diameter) and taken to the laboratory. All experimental measurements were carried out on 

the day after sampling. The sediment was left overnight in the laboratory in shallow water (±2 cm) 

collected from the site and carefully added to avoid re-suspending the sediment. 

 

Effects of diurnal and tidal cycles on MPB surface biomass 

Just before the start of the diurnal low tide emersion that was predicted to occur at the original 

sampled sites, the water was removed from the mud and sand cores in the laboratory. To promote 

cell migration to the sediment surface, the cores were exposed to low light (70 μmol photons m–2 

s–1) provided by a halogen lamp (Philips focusline, 250 W) through fiberoptics (model 460-F, Heinz 

Walz). Light intensity was measured with a quantum sensor (model QMSW-SS, Apogee). The in vivo 

LIF spectra of these 2 types of sediment were obtained every 30 min with an Nd: YAG laser (model 

NL303, EKSPLA) along a diurnal tidal cycle. Reflectance spectra were recorded in the same sediment 

area immediately before LIF measurements were taken. The experiment was repeated during a 

second diurnal tidal cycle for each sediment type. Additional measurements of reflectance spectra 

and LIF were recorded in areas covering a wide range of surface microalgal biomass. 
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Effects of irradiance levels on MPB surface biomass 

Just before the start of the diurnal low tide emersion predicted for the original sampled site, the 

water was removed from the mud cores and the cores were exposed to low light as described in the 

above sub-section. Sediment in the cores was sampled with plexiglass minicores (2 cm diameter) 

for the following treatments: addition of filtered water from the sampling site only (control) and 

addition of latrunculin A dissolved in filtered site water to inhibit diatom motility (Lat A). Three 

replicates were used for each treatment. Treatments were applied once the biofilm had become 

established at the sediment surface as assessed by the stabilization of the normalized difference 

vegetation index (NDVI) (see ‘Spectral reflectance’).  

A concentrated Lat A solution (1 mM) was prepared as a fresh stock on the morning of the 

experiment by dissolving purified Lat A (Sigma-Aldrich) in DMSO. A solution of 20 μM Lat A was 

prepared by diluting the stock solution in filtered water collected at the sampling site. Small volumes 

of this solution (total of 200 μL) were carefully pipetted directly onto the sediment surface of the 

minicores until a continuous thin layer completely covered the sample. The amount of Lat A needed 

to sufficiently inhibit diatom migration in benthic biofilms was previously determined (Cartaxana 

and Serôdio, 2008; Perkins et al., 2010). Filtered site water (200 μl) without the addition of Lat A 

was added to all control cores to mimic chemical treatments. After 30 to 45 min, LIF spectra were 

obtained in control and Lat A-treated sediments for sequential light treatments in the following 

order: low light (LL1): 70 μmol photons m–2 s–1; high light (HL): 1200 μmol photons m–2 s–1; low light 

(LL2): 70 μmol photons m–2 s–1; and dark (D). LIF spectra were recorded after a period of 30 min in 

each light level. 

 

Laser-induced fluorescence 

In vivo LIF spectra of sediment MPB communities were recorded with an Nd: YAG laser. The laser 

provided 30 mJ pulses of 4 ns at the wavelength of 532 nm (second harmonic), with a pulse 

repetition rate of 10 Hz. The distance of the laser to the sediment was ca. 1 m and the diameter of 

the laser spot hitting the sediment surface was ca. 1.5 cm. To obtain a good fluorescence signal, 

relatively high laser excitation energy was necessary, which was sufficient to cause reaction center 

closure (Rosema et al., 1998).  
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Photosystem II (PSII) operating efficiencies, also known as the Genty factor (Genty et al., 1989), were 

measured with a pulse-amplitude modulated (PAM) fluorometer (model Diving-PAM, Walz) before 

and immediately after laser pulses. Mean (±SD) PSII operating efficiencies were 0.746 ± 0.056 and 

0.705 ± 0.057 (n = 8), before and after the laser pulse, respectively (5.5 ± 3.9% lower after laser 

measurements). This showed that the laser pulse had an actinic effect on the samples. This effect 

was fully reverted before the next laser pulse, 30 min later, indicating that the decrease on the yield 

was not due to damages to the photosynthetic apparatus.  

The fluorescence emission signal was collected by a telescope (model F810SMA, Thorlabs) situated 

ca. 40 cm from the sample. To protect the light-detecting electronics from very strong elastically 

scattered radiation of the second laser harmonic, the telescope was equipped with a long-wave pass 

filter of λ ≥ 550 nm. The collected radiation was transmitted into a spectrometer (model USB4000, 

Ocean Optics) via an optical fiber. The spectrometer was synchronized with the laser pulse, which 

enabled the signal to be measured for about 10 μs (minimum exposure permissible by the 

spectrometer control software) after each laser pulse. To achieve a reliable signal-to-noise ratio, the 

fluorescence spectra were obtained by collecting and averaging signals from 100 to 1000 laser 

pulses. 

 

Spectral reflectance 

Reflectance spectra were measured over a 350 to 1000 nm bandwidth by means of a USB4000 

spectrometer with a VIS-NIR optical configuration connected to a 400 μm diameter fiber optic 

(model QP400-2-VIS/NIR, Ocean Optics). The light spectrum reflected from the sample was 

normalized to the spectrum reflected from a clean polystyrene plate. The polystyrene plates 

differed by <3% from a calibrated 99% reflectance standard plate (SpectralonTM, Forster and Jesus, 

2006). A reflectance spectrum measured in the dark was subtracted from both spectra to account 

for the dark current noise of the spectrometer. The fiber optic was positioned perpendicular to the 

sediment surface by means of a micromanipulator (model MM33, Diamond General) maintained at 

a fixed distance from the sample surface and set to match the area measured by LIF. Sample and 

reference spectra were measured under a constant irradiance of 70 μmol photons m–2 s–1. 

Microalgae biomass present in the surface layers of the sediment was estimated by calculating NDVI 

(Rouse et al., 1973) and a modified version of the phytobenthos index (PI) (Méléder et al., 2003; 
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Jesus et al., 2006; Murphy et al., 2008) from reflectance spectra. Biomass indices NDVI and PI were 

calculated as follows: 

NDVI = (R750 – R675)/ (R750 + R675) 

and 

PI = (R750 – R636)/ (R750 + R636), 

where R750, R675 and R636 represent the diffusive reflectance (R) at 750, 675 and 636 nm, 

respectively.  

 

Statistical analysis 

Significant differences were determined with 2-way ANOVA for effects of irradiance levels (light 

treatment) and chemical treatment on MPB surface biomass (fluorescence peak area). Data 

complied with the assumptions of ANOVA. Multiple comparisons among pairs of means were 

performed with Tukey’s Honestly Significant Difference (HSD) test. 

 

Results 

 

LIF spectra of the 2 different intertidal sediments of the Tagus Estuary showed a chl fluorescence 

band in the red region, with a peak maximum between 684.7 and 689.9 nm. Typical fluorescence 

emission spectra for both sediments, with fluorescence maxima at 685.3 and 686.5 nm for mud and 

sand, respectively, are shown in Figure 1. Emission spectra corresponding to mud sediments had 

consistently higher fluorescence intensities than those of sand sediments (Figure 1). There was a 

positive correlation between peak area and the wavelength shift of peak maxima (p < 0.001, r = 

0.763). In other words, for areas of sediment with higher surface microalgal biomass the red 

emission maxima occurred at longer wavelengths. This is de - picted in Figure 2, in which the 

sediment sample with less biomass (NDVI = 0.695) exhibits a maximum fluorescenc at 686.3 nm, 

while samples with higher surface chl concentrations show maxima at 689.6 nm (NDVI = 0.827) and 

689.9 nm (NDVI = 0.849). Furthermore, in the latter samples, there was a clear development and 

increase of an emission shoulder at the far-red region (maximum at ca. 732 nm, Figure 2).  
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Figure 1. Typical laser-induced fluorescence spectra of microphytobenthos in mud and sand intertidal 

sediments. Units on the y-axis are arbitrary. 

  

 

 

 

 

 

 

 

 

Figure 2. Laser-induced relative fluorescence spectra of 3 samples of microphytobenthos with increasing 

biomass in mud intertidal sediments (two samples with high biomass and one with low biomass). Normalized 

difference vegetation index (NDVI) is shown for the 3 samples. 
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Fluorescence intensities, measured by calculating the ln-transformed data of peak area, were found 

to vary linearly with both biomass indices NDVI and PI (Figure 3). Highly significant correlations were 

obtained between ln (peak area) and NDVI (r = 0.968, p < 0.001, Figure 3A) and PI (r = 0.943, p < 

0.001, Figure 3B). Similar results were obtained using intensity calculated by ln-transforming data 

of peak height instead of peak area in these correlations. 



CHAPTER 2.  EFFECTS OF INTERTIDAL MICROPHYTOBENTHOS MIGRATION ON BIOMASS DETERMINATION VIA 
LASER-INDUCED FLUORESCENCE 

 

42 
 

Figure 3. Linear regressions between biomass indices, (A) normalized difference vegetation index (NDVI) and 

(B) phytobenthos index (PI) and laser-induced fluorescence measured as ln (peak area) of microphytobenthos 

of intertidal sediments 
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Fluorescence intensities measured in mud sediments were clearly related to migratory rhythms of 

epipelic benthic diatoms. A typical increase in relative fluorescence following exposure to low light 

that coincided with the emersion period is shown in Figure 4. A rapid decrease of fluorescence was 

observed closer to though clearly before the start of the immersion (high tide) period in the natural 

environment (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Variation of laser-induced relative fluorescence of microphytobenthos in a mud intertidal sediment 

along a diurnal tidal cycle. The sample was kept emersed and under constant low light. Gray and white bars 

represent immersion and emersion periods, respectively, at the field site where the sample was collected. 

 

These fluctuations of fluorescence intensity were not observed in epipsammic communities of 

sandy sediments. Effects of different irradiance levels on MPB surface biomass of mud sediments 

were investigated by applying the diatom motility inhibitor Lat A applied to the sediment surface 

after the biofilm was established during low tide. Fluorescence peak areas (intensity) were 

compared for a sequence of light treatments for control and Lat A-treated sediment samples (Figure 
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5). There was a significant effect of light (F3,16 = 4.604, p < 0.05) and chemical (F1,16 = 10.446, p < 

0.01) treatment on fluorescence intensity. Exposure to high light levels (1200 μmol photons m–2 s–

1) caused a significant (Tukey’s test, p < 0.05) decrease of fluorescence peak area in control sediment 

(Figure 5). Re-exposure of the control sediment to low light led to an increase in fluorescence peak 

area, which was followed by a decrease when samples were transferred to the dark near the time 

of arrival of high tide in the natural environment (Figure 5). No significant differences were observed 

in fluorescence peak area for Lat A-treated sediment samples, as diatom migration was inhibited. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Variation of laser-induced fluorescence measured as peak area (arbitrary units, mean ± SD) for 

control and Lat Atreated intertidal mud sediments during a sequence of 30 min light treatments: low light 

(LL1), 70 μmol photons m–2 s–1; high light (HL), 1200 μmol photons m–2 s–1; low light (LL2), 70 μmol photons 

m–2 s–1; and dark (D) 
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Discussion 

Chl fluorescence emission spectra of MPB measured by means of LIF were characterized by a band 

in the red region (maximum at ca. 685 nm) and a shoulder at the far-red region (maximum at ca. 

732 nm). Similar results were observed for leaves of higher plants, with 2 fluorescence emission 

bands, one in the red (684 to 695 nm) and one in the far-red (730 to 740 nm) region (see review by 

Buschmann, 2007). It is generally assumed that most of this fluorescence arises from photosystem 

II (PSII) (Govindjee, 1995), in which the 684 to 695 nm band arises from the main electronic 

transitions and the 730 to 740 nm band arises from vibrational sublevels whose relative intensities 

are increased in vivo through self-absorption (Franck et al., 2002).  

Surface microalgal biomass accumulation on mud sediments caused a shift to longer wavelengths 

of the red emission maximum and the increase of the emission shoulder at the far-red region. Chl 

fluorescence can be partially reabsorbed within a cell or by other micro phytobenthic cells. 

Naturally, at higher chl a concentrations in sediment, reabsorption of emitted chl fluorescence 

increases. The increase of reabsorption with increasing chl concentration leads to a shift in the 

position of the red chl fluorescence maximum of plant leaves towards longer wavelengths as shown 

by Gitelson et al. (1998). Furthermore, since the red chl fluorescence maximum at around 685 nm 

is more strongly affected by the reabsorption than the long-wavelength maximum in the far-red 

region around 735 nm, the chl fluorescence ratio of F685/F735 decreases with increasing leaf chl 

content (Buschmann, 2007).  

The MPB communities studied were composed exclusively of benthic diatoms as confirmed by 

microscopic examination of resuspended sediment samples and high performance liquid 

chromatography pigment analysis. Differences in both the excitation and emission spectra related 

to differences in pigment composition have been used to characterize the taxonomic structure of 

microalgae in vivo (see review by MacIntyre et al., 2010). If cyanobacteria were present in the MPB, 

phycobilins would be able to absorb the excitation energy of the laser at 532 nm. In this case, 

emission peaks around 570 nm and/or 655 nm would be expected depending on the abundance of 

phycoerythrins and phycocyanins, respectively (MacIntyre et al., 2010).  

In the present study, MPB biomass was estimated non-destructively with LIF by establishing a direct 

relationship between ln-transformed data on fluorescence intensity of MPB communities and the 

biomass proxies NDVI and PI. NDVI is based on the in vivo chl a absorption maximum around 675 
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nm. It constitutes a long-established index developed in the context of remote sensing of terrestrial 

vegetation and is currently the most commonly used index to quantify MPB biomass (Jesus et al., 

2006; Kromkamp et al., 2006; Serôdio et al., 2006; Cartaxana and Serôdio, 2008). Indices based on 

the absorption at 675 nm have the advantage of being specific for chl a, thus allowing detection and 

quantification of photosynthetic biomass without the interference of secondary pigments. 

However, saturation of NDVI for high MPB biomass has been pointed out and attributed to the 

saturation of light absorption (Méléder et al., 2003). The fact that a linear relationship of NDVI with 

fluorescence intensity was established with ln-transformed data suggests that the relationship 

between NDVI and chl a would approximate an exponential relationship. The PI is also commonly 

used to estimate MPB biomass (Méléder et al., 2003; Cartaxana and Serôdio, 2008) and is based on 

the absorption of the diatom pigment chl c and the close relationship of the concentration of this 

pigment with reflectance at 636 nm (Murphy et al., 2008). Ln-transformed fluorescence intensity 

data was not fully linear with PI, which is less sensitive than NDVI to saturation at high chl a 

concentrations (Méléder et al., 2003; Barillé et al., 2007).  

Complex diatom migratory patterns in epipelic motile biofilms can also be followed in a non-

destructive way through chl fluorescence measurements with LIF. Motile diatoms moved towards 

the surface of the sediment during diurnal low tide and back to deeper layers before high tide 

causing several-fold changes in surface biomass as previously shown by other authors (e.g. Round 

and Palmer, 1966; Serôdio et al., 1997). Upward migration during diurnal low tide periods allows 

cells to reach the photic zone and to absorb light to drive photosynthesis. The reasons for downward 

migration before high tide or darkness are less clear, but might include the prevention of cells being 

washed away during immersion or grazing by predators, and facilitating nutrient and carbon uptake 

or cell division (Admiraal, 1984; Decho, 1990; Saburova and Polikarpov, 2003). Serôdio et al. (1997) 

have shown that these rhythms are partially endogenous as they were maintained in the absence 

of external stimuli.  

Benthic epipelic diatoms were also found to migrate as a response to irradiance levels. Rapid 

downward diatom movement was observed upon exposure to 30 min of 1200 μmol photons m–2 s–

1, followed by upward migration when light levels were reduced to 70 μmol photons m–2 s–1. Thus, 

diatoms exhibit behavioural photoprotection by avoiding photoinhibitory light levels (Admiraal, 

1984; Kromkamp et al., 1998; Perkins et al., 2001, 2010; Serôdio et al., 2006). This is in agreement 
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with the ‘microcycling’ proposed by Kromkamp et al. (1998) in which a turnover of taxa at  the 

sediment surface results in a reduction in photodose over time and  emphasizes the role of vertical 

movement demonstrated in other experiments that used Lat A as a motility inhibitor (Cartaxana and 

Serôdio, 2008). Cell migration may well be more energetically avorable than physiological 

photoprotection processes such as non-photochemical quenching induction (Perkins et al., 2010). 

In the last 2 decades, research has increasingly focused on spectral reflectance and PAM 

fluorescence techniques that employ the optical properties of chl to remotely sense MPB biomass 

in intertidal flats of estuarine and coastal ecosystems (Serôdio et al., 2001, 2009; Méléder et al., 

2003; Jesus et al. 2006; Kromkamp et al., 2006). LIF presents some advantages over these remote 

sensing techniques for the study of intertidal MPB. Spectral reflectance is a passive method of 

remote sensing that depends on stable and uniform illumination, making it difficult to take 

measurements under overcast and partly cloudy conditions. In contrast, LIF instruments use their 

own illumination source to actively excite fluorescence. Results obtained with hand-held LIF 

instruments studying beans and wheat have shown that this technique can be used for remote 

sensing under a diversity of light conditions, including full darkness, at dawn and dusk and under 

rapidly changing light environments similar to those encountered on partly cloudy days (Richards et 

al., 2003). The lighting conditions described are generally unsuitable for spectral reflectance remote 

sensing systems.  

PAM fluorometry (Schreiber et al., 1986) was first applied to MPB by Serôdio et al. (1997) and 

Kromkamp et al. (1998) and led to major advances in the comprehension of the ecophysiology and 

productivity of MPB communities. However, PAM techniques rely on short saturating pulses 

delivered at close range, making them impractical for most remote sensing applications. LIF 

techniques overcome this limitation and have been successfully used in the remote sensing of 

terrestrial plants (e.g. Subhash and Mohanan, 1997; Richards et al., 2003; Anderson et al., 2004), 

phytoplankton (Barbini et al. 1998) and macroalgae (Kieleck et al. 2001). More recently, a laser-

induced fluorescence transient (LIFT) fluorometer, which uses a fast repetition rate technique 

(Kolber and Falkowski, 1993), has been developed to operate with relatively low excitation power 

with subsaturating flashes for measurement of fluorescence parameters from a distance of up to 50 

m (Kolber et al., 2005; Pieruschka et al., 2010). The results shown in our study, together with the 
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discussed advantages over spectral reflectance and PAM fluorometry, make LIF a promising 

technique for the remote sensing of intertidal MPB communities.  
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Abstract 

Imaging pulse amplitude modulated (Imaging-PAM) fluorometry is a breakthrough in the study of 

spatial heterogeneity of photosynthetic assemblages. However, Imaging and conventional PAM 

uses a different technology, making comparisons between these techniques doubtful. Thereby, 

photosynthetic processes were comparatively assessed using conventional (Junior PAM and PAM 

101) and Imaging-PAM on intertidal microphytobenthos (MPB; mud and sand) and on cork oak 

leaves. Lower values of α (initial slope of the rETR, relative photosynthetic electron transport rate) 

vs. E (incident photosynthetic active radiation) curve), ETRmax (maximum relative ETR), Ek (light 

saturation parameter) and Fv/Fm (maximum quantum efficiency of photosystem II of dark-adapted 

samples) were obtained using the Imaging-PAM. The level of discrepancy between conventional and 

Imaging-PAM systems was dependent on the type of sample, being more pronounced for MPB 

muddy sediments. This may be explained by differences in the depth integration of the fluorescence 

signal related to the thickness of the photosynthetic layer and in the light attenuation coefficients 

of downwelling irradiance. An additional relevant parameter is the taxonomic composition of the 

MPB, as cyanobacteria present in sandy sediments rendered different results with red and blue 

excitation light fluorometers. These findings emphasize the caution needed when interpreting 

chlorophyll fluorescence data of MPB communities. 

 

Introduction 

Pulse amplitude modulated (PAM) fluorometry was introduced by Schreiber (Schreiber, 1986) as a 

methodology for the study of in vivo photosynthesis in plants. In the last few decades, the 

measuremen of chlorophyll (Chl) fluorescence has become an universal technique in the study of 

virtually all types of photosynthetic organisms,including corals (Ralph et al., 2005), seagrasses (Ralph 

et al., 1998), macroalgae (Beer et al., 2000) and microphytobenthos (MPB; e.g. Serôdio et al., 1997; 

Kromkamp et al., 1998; Jesus et al., 2005). In contrast with other techniques where inadequate 

replication, long incubation times and substantial alteration of the environmental conditions are 

common drawbacks, PAM fluorometry allows minimal intrusive, rapid and reproducible 

measurements of photosynthetic parameters with intact MPB biofilms (Underwood and Kromkamp, 

1999).  
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On the basis of the calculation of the fluorescence index ΔF/ Fm′ (where ΔF is the difference between 

the maximal fluorescence (Fm′) and the steady-state fluorescence (F) of light-adapted samples), 

which measures the effective quantum yield of photosystem II (PSII; Genty et al., 1989), PAM 

fluorometry allows the construction of rapid light curves (RLC) relating the rate of photosynthetic 

electron transport rate (ETR) and incident photon irradiance (E; e.g. Serôdio et al., 2005; Perkins et 

al., 2006). However, in intact MPB biofilms the determination of ΔF/Fm′ can be strongly affected by 

the vertical attenuation of downwelling measuring, actinic and saturating light, and of upwelling 

fluorescence (Forster and Kromkamp, 2004; Serôdio, 2004). In fact, the signal detected by the 

fluorometer is generated by cells at different depths in the photic zone and therefore subjected to 

different actinic irradiances, which in turn result in different quantum yields. Hence, the quantum 

yield calculated from depth-integrated measurements may vary with factors not related to 

microalgal physiology, such as the optical characteristics of the sediment or the vertical distribution 

of the microalgal biomass (reviewed in Perkins et al., 2010). 

The development of Chl fluorescence imaging systems by a number of research groups (e.g. Omasa 

et al., 1987; Oxborough and Baker, 1997; Nedbal et al., 2000), together with the emergence of 

commercially available models by PSI (Brno, Czech Repuplic), Walz Systems (Effeltrich, Germany), 

and Technologica Ltd. (Colchester, UK), has greatly increased the versatility of Chla fluorometry as 

a noninvasive technique (reviewed in Oxborough, 2004). Systems that image at the microscopic 

level allow to measure PSII photochemical efficiencies from chloroplasts within intact leaves and 

from individual algal cells within mixed populations (Oxborough and Baker, 1997; Meng et al, 2001; 

Nebdal et al., 2000). On the other hand, lower resolution imaging systems allow the mapping of 

fluorescence parameters over large areas, making it a unique technique to study the spatial 

heterogeneity of the photosynthetic activity across an autotrophic surface (Scholes and Rolfe, 1996; 

Hill et al., 2004). This can be particularly relevant in the study of MPB biofilms, characterized by a 

“patchy,” heterogeneous distribution.  

Currently, only three studies have dealt with the application of imaging fluorescence to MPB, all 

using the microscope fluorescence technique developed by Oxborough and Baker (1997) for 

measurements at cellular and subcellular levels. Oxborough et al. (Oxborough et al., 2000) used this 

technique to determine PSII photochemical efficiency of different taxa within MPB biofilms. Perkins 

et al. (2002) studied the effects of PSI Chl fluorescence and cell vertical migration on the estimation 
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of ETR and Underwood et al. (2005) reported diel patterns of ΔF/Fm′ in several benthic species over 

an emersion period. To our knowledge, lower resolution Chl fluorescence imaging systems were 

never applied to MPB, albeit they might provide useful insights into the spatial distribution of 

biomass and productivity in sediments.  

Recently, Nielsen and Nielsen (2008) found that ETR measured using conventional and Imaging-PAM 

fluorometry in thin- and thick-blade marine macroalgae and its relation to gross O2 evolution was 

dependent of the type of PAM used. Reportedly, conventional PAM fluorometers detect 

fluorescence emission from the entire tissue, although Imaging-PAM may only acquire fluorescence 

data from the outermost cell layers of thick algae. These two techniques use different technologies, 

namely in the detection processes of the fluorescence signal: a photodiode or phototube in 

conventional PAM fluorometry and a CCD (charged coupled device) camera in Imaging-PAM 

fluorometry. Our study addresses for the first time the quantitative analysis of the effects associated 

with the use of conventional (Junior PAM and a PAM 101) and Imaging-PAM fluorometry (Imaging-

PAM) on the determination of fluorescence parameters in intact MPB samples. Two sediment types 

with substantially different light attenuation characteristics and species composition were 

compared, together with cork oak leaves, to evaluate the effects of depth-integrated measurements 

in both techniques. Finally, spatial and temporal variability in MPB biomass was followed during a 

diurnal low tide period for the two intertidal sediments (mud and sand) using the Imaging-PAM 

system. 

 

Material and methods  

Sampling 

Sediment samples were collected at Alcochete intertidal flats, Tagus estuary, Portugal (38°44′N, 

09°08′W). Sampling was carried out during low tide at two stations with different sediment types: a 

muddy site with 97% particles <63 µm, and a sandy site composed of a mixture of very fine to coarse 

sand, between 125 and 1000 µm (here after called mud and sand, respectively). Sediment samples 

were collected using Plexiglas corers (8 cm internal diameter) and taken to the laboratory. All 

experimental measurements with MPB were carried out on the day following sampling. The 

sediment was left overnight in the laboratory at room temperature (ca. 25°C) with a shallow depth 

of site water (ca. 2 cm), carefully added so as not to resuspend the sediment. Experiments were also 
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carried out with detached cork oak (Quercus suber L.) leaves. The leaves were collected at the 

gardens of the Faculty of Science of the University of Lisbon, immediately before the fluorescence 

measurements. 

 

Fluorescence analysis 

Just before the start of the diurnal low tide emersion that was predicted to occur at the original 

sampled sites, the water was removed from the sediment samples and 15 minicores (2 cm diameter) 

were sub-sampled for each sediment type. Epipelic MPB show circadian and tidal migratory rhythms 

that are partially endogenous and maintained ex-situ (Serôdio et al., 1997; Vieira et al., 2011). 

Therefore, experiments were done in the laboratory in synchronization with diurnal low tides in the 

field to maximize migration of these communities to the sediment surface. Five minicores were used 

with each PAM fluorometer (Junior PAM, PAM 101 and Imaging-PAM). Sediment samples were 

exposed to low light (60 µmol photons m-2 s-1) provided by a halogen lamp (Philips focusline, 250 W, 

Philips, Eindhoven, the Netherlands) through fiberoptics 460-F (Heinz Walz GmbH, Effeltrich, 

Germany), to promote cell migration to the sediment surface. After 1 h, rapid light curves (RLC) were 

carried out using the three different fluorometers in the five subsamples of each sediment type and 

immediately after curve completion samples were dark-adapted for 2 min to determine the 

maximum efficiency of dark-adapted PSII (Fv/Fm). RLC were constructed by calculating, for each level 

of actinic light, the relative ETR from the delivered actinic irradiance and the effective quantum yield 

of PSII by rETR = E x ΔF/Fm′. The light response was characterized by fitting the model of Platt et al. 

(1980) to rETR vs. E curves and by estimating the parameters α (initial slope of the light curve), 

ETRmax (maximum rETR) and Ek (light saturation parameter). The model was fitted iteratively using 

MS Excel Solver. Curve fit was very good (r > 0.95) in all cases. The efficiency of dark-adapted PSII 

was calculated by Fv/Fm= (Fm-Fo)/Fm, where Fm and Fo are, respectively, the maximum and the 

minimum fluorescence of dark-adapted samples. The dark adaptation period was restricted to 2 min 

to reduce the possibility of inducing downward vertical migration in the epipelic MPB biofilm 

(Serôdio et al., 2007, 2008). Simultaneously, the same procedure was repeated with five cork oak 

leaves using both the conventional (Junior PAM and PAM 101) and imaging (Imaging-PAM) systems.  

 

 



CHAPTER 3. PHOTOSYNTHETIC ASSESSMENT IN MICROPHYTOBENTHOS USING CONVENTIONAL 
AND IMAGING PULSE AMPLITUDE 

 

56 
 

Conventional PAM fluorometry 

Fluorescence measurements were carried out using a Junior PAM (Portable Junior PAM; Gademann 

Instruments GmbH, Germany) and PAM 101 fluorometer (Walz). The PAM 101 uses a light-emitting 

diode of 650 nm (LED type: USBR; Stanley) providing the measuring pulse at a frequency of 1.6 kHz 

automatically increased to 100 kHz for Fm and Fm′ determination. The fluorometer was connected 

to a PAM Data Acquisition System PDA 100 (Walz) controlled by the software WINCONTROL v2.08 

(Heinz Walz GmbH, Effeltrich, Germany). The actinic light was provided by an external halogen 

source (Philips focusline, 250 W) through fiberoptics Lighting Unit FL-460 (Walz). The Junior PAM 

applied a modulated blue light (LED-lamp peaking at 470 nm, half-bandwidth of 31 nm) as source 

for measuring, actinic and saturating light, emitted at a frequency of 25 Hz when measuring the 

minimum fluorescence level (Fo) or 1.2 kHz when measuring other fluorescence parameters. The 

saturation pulse intensity was 6000 µmol photons m-2 s-1 for 0.8 s for both conventional PAM. For 

the construction of RLC the samples were exposed to nine incremental intensities of actinic light 

with an irradiance step duration of 30 s. The PAR (photosynthetically active radiation) steps used in 

Junior PAM RLC were: 0, 70, 115, 170, 270, 425, 650, 1000 and 1500 μmol photons m–2 s–1. For the 

PAM 101 the light step intensities were: 0, 80, 110, 190,292, 383, 550, 1055 and 1600 μmol photons 

m–2 s–1. For both conventional PAM the distance between the fluorometer fiber optic and the 

surface of sample was kept constant at 2 mm during all measurements. 

 

Imaging-PAM fluorometry 

Fluorescence measurements were carried out using the Mini Version of Imaging-PAM M-Series 

(Walz). The Mini version uses an IMAGE-K5 1/2″ CCD camera (640 x 480 pixel resolution) with a 16 

mm objective (Allied Vision Technologies GmbH, Stadtroda, Germany). The instrument is designed 

for measurements at a fixed working distance. The 24 x 32 mm area imaged by the Mini version is 

illuminated by a powerful Luxeon LED array (460 nm) of 12 high-power LED organized in four groups 

equipped with short-pass filters. This LED array provided the measuring beam, the actinic light and 

the saturation light pulses. The saturation pulse intensity was 6000 µmol photons m-2 s-1 for 0.8 s 

and the measuring pulse frequency was 8 Hz. For the construction of RLC the samples were exposed 

to 10 incremental intensities of actinic light: 0, 81, 111, 145, 223, 320, 491, 624, 996 and 1580 μmol 

photons m–2 s–1, and each irradiance step was 30 s. Numerical values and images of the Chl 
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fluorescence parameters were extracted from the digital images using analytical software (Imaging 

Win; Walz). For each individual, replicate values were obtained with one “area of interest” (AOI) 

selected with the Imaging-PAM software (Heinz Walz GmbH). This was performed for each of the 

five replicates of the three samples (sand, mud and cork oak leaf). The AOI in the Imaging-PAM were 

selected taking into account the areas measured by the fiberoptics of the conventional PAM. To 

determine the spatial heterogeneity of MPB biomass, fluorescence measurements were made using 

the Imaging-PAM in both sediment types (2 cm diameter minicores) during a diurnal low tide period 

(5 h). Sediment samples were exposed to low light (60 μmol photons m–2 s–1) for the entire low tide 

period and dark adapted for 2 min every 60 min along 5 h to determine Fo.  

 

MPB taxonomic composition 

After the fluorescence measurements, samples from each sediment type were collected by scraping 

the sediment surface with a scalpel (upper ca. 2 mm). Approximately 3 mL of sediment were 

collected and placed in disposable 5 mL polypropylene tubes, to which was added 1 mL of a 2.5% 

glutaraldehyde solution and stored at 4 °C for later processing. 

Cells were extracted from the sediment following an isopycnic separation technique using silica sol 

Ludox® HS-40 (Ribeiro et al., 2010) that separates the organic material from mineral particles and 

is, thus, able to remove both migratory and non-migratory fractions of the diatom assemblages, as 

well as cyanobacteria, euglenids and other microphytobenthic algal groups. Total MPB cell counts 

were made directly from these extracts in anOlympus BX50 optical microscope (Olympus 

Corporation, Tokyo, Japan) at a 400× magnification. A total of 50 random fields (700–2000 individual 

cells) were counted in muddy and sandy extracts and separated into major microalgal taxonomical 

groups. 

Diatom analysis was conducted after cleaning the cells of organic material, by incinerating the 

extracts in a muffle oven during 2 h at 450 °C, leaving the diatom frustules intact. Permanent slides, 

mounted in NaphraxTM (Northern Biological Supplies Ltd., Ipswich, UK), were made for each sample. 

Phase and differential interference contrast optical microscopy were used to identify and count 

diatoms at a magnification of 1000×. For each sample, a minimum of 370 frustules were counted 

and identified to the species level, following Ribeiro (2010) and references therein.  
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Statistical analysis 

The existence of significant differences was tested using two-way analysis of variance (ANOVA) for 

the effects of PAM flurometer (Junior PAM, PAM 101 and Imaging-PAM) and sample type (mud, 

sand and plant leaves) on RLC parameters (α, ETRmax and Ek), and on maximum efficiency of PS II of 

dark-adapted samples (Fv/Fm). Assumptions for normality and equal variance were satisfied. 

Multiple comparisons among pairs of means were performed using Tukey HSD. All statistical 

analyses were carried out using STATISTICA 10 (StatSoft Inc., Tulsa, OK). 

 

Results 

Figure 1 shows fluorescence RLC measured in the three study sample types (cork oak leaves, mud 

and sand) using the different PAM fluorometers (Junior PAM, PAM 101 and Imaging-PAM). It was 

clear that the Imaging-PAM always yielded lower rETR values, especially at higher irradiances. The 

RLCs obtained with the two conventional PAM and with the Imaging-PAM using the cork oak leaves 

were more similar when compared with the RLC measured in MPB biofilms. In the latter samples, 

Imaging-PAM yielded lower rETR values for both sub-saturating and saturating irradiances. The 

differences were more pronounced in the mud. Fluorescence measurements in the sandy samples 

with the Junior PAM and the Imaging-PAM yielded lower rETR for higher irradiances compared with 

the PAM 101 (Figure 1). 
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Figure 1. Relative photosynthetic electron transport rate (rETR) vs. incident photon irradiance (E; mean ± SD, 

n = 5) rapid light curves (RLC) for cork oak leaves and MPB from sandy and muddy sediments, obtained with 

conventional (Junior PAM and PAM 101) and imaging (Imaging-PAM) fluorometers 
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There were significant (two-way ANOVA) effects of both sample type and PAM fluorometer on all 

three RLC parameters: α, ETRmax and Ek. The RLC parameters measured using the Imaging-PAM were 

consistently lower when compared with the values obtained using the two conventional PAM (Table 

1). For cork oak leaves, ETRmax and α values were significantly (P < 0.05) lower using Imaging-PAM 

and no significant differences were found for Ek. In mud, significantly (P < 0.05) lower α, ETRmax and 

Ek were obtained using the Imaging-PAM (Table 1), but no significant differences were found 

between the two conventional PAM. In the sand, significant (P < 0.05) differences were found using 

the three PAM fluorometers in all RLC parameters. For Fv/Fm, consistently higher values were 

obtained using the two conventional PAM, for leaves, sand and mud. Fv/Fm values were higher for 

cork oak leaves than those in MPB communities. In the latter communities, Fv/Fm values were higher 

in the mud than those in the sand. Obtained using the two conventional PAM, for leaves, sand and 

mud. Fv/Fm values were higher for cork oak leaves than those in MPB communities. In the latter 

communities, Fv/Fm values were higher in the mud than those in the sand.  

 

 

Table 1. RLC parameters α, ETRmax, Ek and Fv/Fm (mean ± SD, n = 5) measured with the conventional (Junior 

PAM and PAM 101) and imaging (Imaging-PAM) PAM for cork oak leaves and MPB of sand and mud. Different 

letters (a–c) indicate significant differences between fluorometers for P < 0.05. 
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Figure 2A depicts images of Fo values along a period corresponding to the diurnal low tide at the 

field site for the muddy sediment that can be related to biomass changes at the surface due to 

migratory rhythms of epipelic (motile, fine sediment-inhabiting) MPB. A typical increase in Fo is 

observed upon exposure to low light coinciding with the expected emersion period at the field site. 

Heterogeneity of the surface MPB biomass is higher at 10:45, close to the peak of low tide in the 

field (11:00). A general decrease in Fo and biomass heterogeneity is then observed before the arrival 

of the water to the sampling site (13:00) (Figure 2A) 

 

Figure 2.Images of minimum fluorescence of a dark-adapted sample (Fo) during a diurnal low tide for mud 

(A) and sand (B). False color scale in 20 mm diameter sediment circles. 

 

The described fluctuations of Fo were not observed in epipsammic communities of sandy sediments 

(Figure 2B). MPB taxonomic composition in the muddy sediment, the MPB was composed 

exclusively of diatoms, whereas the MPB community in the sandy sediment was comprised by a 

mixed assemblage of diatoms (54.4%), cyanobacteria (45%), dinoflagellates (0.5%) and euglenids 

(0.1%). Most of the cyanobacteria cells were part of colonies of Merismopedia, Oscillatoria and 

Gloeocapsopsis species. Diatom assemblages found in the muddy sediment were dominated by 

motile epipelic species (80.1%), such as Navicula gregaria Donkin, N. cf. phyllepta Kützing or 

Gyrosigma fasciola (Ehrenberg) Griffith & Henfrey. Non-motile tychoplankton (16.2%), e.g. 

Thalassiosira cf. pseudonana Hasle and Heimdal & T. minima Gaarder, was the second most 

abundant life-form. In the sandy sediment, the diatom assemblages were mainly composed by 

epipsammic species (96.6%), in particular adnate forms (64.2%), like Planothidium delicatulums s.1. 
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l. (Kützing) Round & Bukhtiyarova, Catenula adhaerens (Mereschkowsky) Mereschkowsky and 

Cocconeis hauniensis Witkowski emend. Witkowski. Small motile epipsammic species (e.g. 

Cocconeiopsis breviata (Hustedt) Witkowski, Lange-Bertalot & Metzeltin), and the stalked diatom 

Opephora guenter-grassii (Witkowski & Lange-Bertalot) Sabbe & Vyverman were also found. Large 

motile epipelic diatoms were absent.  

 

Discussion 

As demonstrated here, Imaging-PAM fluorometry is a particularly useful tool in determining spatial 

heterogeneity of MPB biomass and photophysiology across a sediment surface. However, 

differences observed between conventional and Imaging-PAM fluorescence and different sediment 

types makes quantitative comparison between studies difficult. A priori, the main hardware 

components that may explain the differences obtained with conventional and Imaging-PAM are 

those related with the detection of the fluorescence signal and the type of measuring light: 

(1) Higher intensity of measuring light pulses is required in imaging systems because the CCD 

cameras used require integration times that may reach several seconds, much longer than the time 

required by photodiodes or phototubes used in conventional PAM (Oxborough, 2004). Therefore, 

in the Imaging-PAM a significant actinic effect may have been induced by individual measuring light 

pulses, as these are relatively intense, causing a significant overestimation of Fo (Oxborough, 2004), 

leading to a decrease of Fv ( = Fm -Fo) and affecting other measured parameters such as Fv/Fm. 

However, although intense, measuring pulses were applied at very low frequencies, to avoid an 

actinic effect (Walz, 2006). Furthermore, we tested the measuring light pulses in Q. suber leaves and 

for the selected intensity no actinic effect was found. Thereby, a significant contribution of the 

measuring light pulses to the lower Fv/Fm measured with the Imaging-PAM might be excluded. 

(2) The correct measurement of the effective quantum yield is critically dependent on the accurate 

measurement of the fluorescence increase caused by the saturation pulse over actinic light (Fm′). 

Close to light saturation an underestimation of Fm′ by a few percent will induce a large 

underestimation of ΔF/Fm′ and, hence, also of rETR (= ΔF/Fm′ × E). Under high actinic irradiation, ΔF 

(=Fm′ - F) is minimal (because the plastoquinone pool is already strongly reduced) posing technical 

difficulties to its correct determination with any type of PAM, but mostly when the imaging 

technology is used. In fact, as the Imaging-PAM uses the same LED for providing the measuring light, 
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the actinic illumination and the saturating pulses, when a pulse is triggered there is a heating effect 

on the LED that decreases the measuring light intensity (Walz, 2006). This leads to an 

underestimation of the fluorescence peak and therefore to a strong underestimation of ΔF/Fm′ and 

hence of rETR.  

(3) Different measuring light wavelengths are used in the devices tested: red in the case of the PAM 

101 and blue for the Junior PAM and the Imaging-PAM. The depth range of the red and the blue 

measuring light may have been considerably different. Kühl and Jorgensen (1994) showed that in 

abiotic sand sediments light attenuation increased gradually from the infrared to the blue part of 

the spectrum. In coastal sediments with diatoms, blue light (450–550 nm) was also strongly 

attenuated in the surface layer, whereas red light (675 nm) showed an absorption peak deeper in 

the sediment (Kühl and Jorgensen, 1994). Vogelmann and Han (2000) showed that a leaf irradiated 

with actinic blue light showed a peak of fluorescence 50 µm below the surface, whereas when the 

actinic light was red, fluorescence peaked 100 µm below the surface. Thus, it is extremely probable 

that the blue measuring light used in the Junior PAM and Imaging-PAM had a lower penetration in 

the substrates, measuring fluorescence of a thinner surface layer subjected to higher light 

intensities.  

The differences observed between the conventional and Imaging-PAM systems were clearly 

dependent on the type of sample studied and were particularly relevant for the mud MPB biofilms. 

Although the differences between PAM 101 and Imaging-PAM still hold in sandy MPB, in this 

substrate Junior PAM, albeit showing higher ETRmax than the Imaging-PAM, presented no electron 

transport for E higher than 600 μmol photons m–2 s–1. Differences between the three instruments 

were less evident for cork oak leaves most probably due to the thinner photosynthetic layer (ca. 230 

µm), whereas Chl a is present in the sediments at a depth of several centimeters. Previous results 

in thick-leaved macroalgae have shown discrepancies between ETR measured with imaging and 

conventional PAM (Nielsen and Nielsen, 2008).  

Sediments are optically dense, so all types of light involved in the fluorescence measurement are 

subject to very strong attenuation, leading to complete light extinction within the photosynthetic 

viable community (Serôdio, 2004). Therefore, values of F and Fm′ measured at the sediment surface 

represent the integration of F and Fm′ at different sediment depths. Hence, light curves derived from 

depth-integrated measurements appear to saturate at higher irradiances, or to be less 
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photoinhibited when compared to the physiological response of the microalgae (Forster and 

Kromkamp, 2004; Serôdio, 2004; Perkins et al., 2010; Jesus et al., 2006), due to the recruitment of 

fluorescence from the deeper cell layers, which are reached by lower PAR and thereby present 

higher ΔF/Fm′. Serôdio (2004) has shown that the effects of depth integration on RLC parameters 

are small for α, but extremely relevant for ETRmax and Ek. The effects of depth integration in these 

parameters are more pronounced in sediments where the attenuation coefficients (Kp) are higher 

(Serôdio, 2004). Accordingly, the Kp values of the studied sediments, and consequently the degree 

of the effect of depth integration on RLC parameters, were significantly higher for mud (8.6 ± 0.9 

mm-1) than that for sand (1.6 ± 0.5 mm-1; Campbell et al., 1998).  

In addition to this influence on the depth integration of the fluorescence signal, the wavelength of 

the measuring light is also relevant in what concerns the type of photosynthetic organisms sampled. 

In fact, whereas in plants, green algae and diatoms fluorescence emission can be induced by either 

red or blue light excitation, in cyanobacteria blue light is mostly ineffective in variable fluorescence 

induction, although some basal (Fo) fluorescence is still observed (Schubert et al., 1989), leading to 

a significant decrease of the measured quantum yield. Furthermore, cyanobacterial fluorescence 

signals differ in fundamental ways from the ones of green algae and diatoms, as the principal light-

harvesting complexes are phycobilisomes peripheral to the thylakoid membranes, instead of the 

integral membrane Chla/b-binding proteins, which capture light in green algae and diatoms (for a 

review of Chl fluorescence analysis in cyanobacteria see Campbell et al., 1998). Therefore, the 

significant presence of cyanobacteria in the sandy sediments (accounting for 45% of the MPB 

assemblage), in contrast with their total absence in muddy sediments, may explain the differences 

observed between these two substrates, namely the very low ETR measured with the blue light 

excitation fluorometers (JuniorPAM and Imaging-PAM) in the epipsammic communities. 

 

Conclusions 

Previous studies have shown that estimates of ΔF/Fm′ and rETR in MBP biofilms are influenced by 

the optical properties of the sediments (e.g. Forster and kromkamp, 2004; Serôdio, 2004), hence 

not directly comparable. In our study, we have shown that rETR computed from fluorescence 

measurements of conventional and Imaging-PAM are not directly comparable, even for sediments 
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with similar optical characteristics. This is related to differences in conventional and Imaging-PAM, 

such as the type and intensity of measuring light pulses. 

In addition, the heating effect caused by saturating pulses on the LED may have lead to a strong 

underestimation of ΔF/Fm′ in the imaging system used. The manufacturer not only provides a 

method to correct the underestimated measurements (Fm factor) but also recommends that actinic 

light higher than 700 μmol photons m–2 s–1 should not be used in rETR vs. E curves, as the accuracy 

of the results cannot be granted. In fact, the instrument manual does not show any light curves with 

actinic light intensities higher than 500 μmol photons m–2 s–1 (Walz, 2006). This, of course, is a strong 

drawback of this Imaging-PAM that users must keep in mind.  

Furthermore, the species composition of MPB biofilms may interact differently with different 

fluorometers. In particular, the presence of cyanobacteria requires different approaches to the 

interpretation of the fluorescence signal (Campbell et al., 1998) and may render different results 

with red and blue excitation light fluorometers. 

Accurate determination of fluorescence parameters requires the application of super-saturating 

pulses of light that are typically several hundred milliseconds in length at a photon irradiance of 

several thousand μmol photons m–2 s–1. When imaging large areas, this requirement for high photon 

irradiances presents a significant technical challenge (Oxborough, 2004). Users of this type of 

Imaging-PAM should keep this in mind and previously determine and reject areas where light is 

heterogeneous.  

The level of discrepancy between conventional and Imaging-PAM systems was particularly relevant 

for MPB communities. These findings highlight the caution needed when interpreting Chl 

fluorescence data of MPB. 
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Abstract  

Intertidal microphytobenthos (MPB) has been found to maintain high productivity rates despite the 

variability in various key environmental parameters, namely rapid temperature changes during 

emersion. The effects of short-term (30 min and 2 h) changes in temperature (15, 25, 35 and 42°C) 

on the photosynthetic activity of two intertidal MPB communities (Trancão and Alcochete) of the 

Tagus estuary were studied using imaging pulse amplitude modulated (Imaging-PAM) fluorometry. 

MPB communities differed in species composition and size-class distribution: Trancão was 

dominated by diatoms of the size-class 100-250 µm3, particularly Navicula cf. phyllepta, whereas 

Alcochete had higher relative abundances for size-class 250-1000 µm3, dominated by a mixture of 

diatom species of the genera Navicula, Thalassiosira and Gyrosigma. The Trancão MPB community 

had higher photosynthetic capacity (higher ETRmax), was photoacclimated to higher irradiances 

(higher Ek) and had lower efficiency at limiting irradiances (lower α). The different taxonomic 

composition and size-class distribution could explain the observed results, as small cells are usually 

more active due to larger surface to volume ratios. Photosynthetic capacities of the two studied 

MPB communities increased with temperature until 35°C. Photosynthetic efficiencies were not 

affected by temperature in the 15-35°C range and both ETRmax and α decreased at the extreme 

temperature of 42°C. MPB communities were able to increase photosynthetic capacity and 

productivity under transient exposure to high sediment temperatures, similar to that observed 

during summer midday low tides. 

 

Introduction 

The intertidal flats of estuaries are characterized by the presence of microphytobenthos (MPB) 

communities dominated by diatoms, forming highly dense biofilms on the sediment surface. 

Intertidal MPB communities are responsible for a significant fraction of the total primary 

productivity of estuaries (Underwood and Kromkamp, 1999), despite the extreme variability in 

various key environmental parameters (e.g. irradiance, salinity or temperature).  

Intertidal sediment temperature fluctuations occur on long (seasonal) and short (daily and hourly) 

time scales, depending on factors such as meteorological conditions, time of day and tidal 

inundation. In summer, intertidal sediment temperature can easily change 10-15 °C during an 
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emersion period, reaching values as high as 35 °C at midday (Blanchard et al., 1997; Serôdio and 

Catarino, 1999). Short-term (hours) temperature changes, similar to those experienced by intertidal 

MPB communities during a tidal cycle, have been shown to have a significant effect on the 

photosynthesis of cultured benthic diatoms (Admiraal, 1984; Morris and Kromkamp, 2003; Salleh 

and McMinn, 2011) and suspensions of intertidal MPB (Blanchard et al., 1996, 1997). In these 

studies, the described relationship between maximum photosynthetic capacity (Pmax) and 

temperature is a progressive increase of Pmax with increasing temperature up to an optimum value, 

beyond which Pmax declines rapidly (Blanchard et al., 1996). Although both approaches (cultures and 

suspensions) may provide valuable information regarding the potential photosynthetic responses 

of benthic diatoms to short-term changes in temperature, the results thus obtained may not 

accurately represent the photosynthesis of these organisms while part of an MPB biofilm. 

The aim of this study was to characterize the effects of short-term temperature changes on the 

photosynthetic activity of two intertidal MPB communities of the Tagus estuary. Most studies on 

MPB ignore species composition and treat the assemblages as a black box (Underwood, 2005). In 

this study, we present a detailed description of the diatom taxonomic composition of the two 

studied MPB communities. A chlorophyll (Chl) a fluorescence imaging system was used to determine 

photosynthetic parameters, allowing the simultaneous analysis of several sediment samples. We 

hypothesize that community-level photosynthetic rates and productivity of intertidal MPB biofilms 

increase with transient high temperatures, similar to those observed during summer midday 

exposure.  

 

Material and methods  

Sampling and sample preparation 

Sediment samples were collected in two different intertidal flats of the Tagus estuary (Portugal) at 

Alcochete (38° 44´45´´N, 08° 59´04´´W) and Trancão (38° 47´46´´N, 09° 05´33´´W). Both sediments 

are fine mud with more than 97% particles <63 µm. Alcochete site is exposed for up to 3 h during 

low spring tides, being subtidal during neap tides. Trancão is a steep intertidal flat, exposed for 

periods of up to 6 h during low tide in both spring and neap tides. Sampling was carried out in June 

2011 at spring tides when the intertidal flats were exposed. The surface layer of sediment 

(approximately the 0-1 cm) was collected using a spatula.  
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In the laboratory, the sediment was mixed and then evenly spread in trays to a depth of about 2 cm. 

The sediment was left overnight in the dark with a shallow depth of site water to mimic the tidal 

rhythm and avoid dessication. The following morning, at the start of the low tide emersion period 

predicted for the original sample site, the shallow layer of site water was removed. Portions of the 

surface layer of the sediment were transferred to 6-well plates using a small spatula, making sure 

the sediment reached the surface of the wells as the Imaging PAM is designed for measurements at 

a fixed working distance. The well plates were exposed to a homogeneous light field provided by a 

halogen lamp (Philips focusline, 250W) through fiberoptics 460-F (Walz GmbH, Effeltrich, Germany), 

delivering a constant irradiance of 60 μmol photons m–2 s–1 at the sample surface. Low light levels 

induced cell migration to the sediment surface and the formation of a biofilm. After 60 min of biofilm 

establishment, a total of eight 6-well plates were used: two sampling sites (Trancão and Alcochete) 

four temperatures (15, 25, 35 and 42 °C). Temperature treatments were set using temperature-

controlled water baths and sediment temperatures followed using a ScanTemp 410 infrared 

thermometer (Tematec GmbH, Hennef, Germany). Photosynthetic activity was assessed using non-

invasive fluorescence analysis after 30 min and 2 h at each temperature. 

 

Fluorescence analysis 

Chlorophyll fluorescence was measured using an imaging-PAM fluorometer (Mini PAM M-Series, 

Walz GmbH) with an IMAGE-K5 1/2’’ CCD camera (640  480 pixel resolution) equipped with a 16 

mm objective. The 24 x 32 mm area imaged by the Mini version is illuminated by a powerful Luxeon 

LED array (460 nm) covering a 6-well plate, so that 6 sediment samples could be monitored 

simultaneously. The LED array provided the measuring beam, the actinic light and the saturation 

light pulses. The saturation pulse intensity was 8000 μmol photons m–2 s–1 for 0.8 s and the 

measuring pulse frequency was 103 kHz. Photosynthetic activity was assessed using rapid light 

curves (RLC). For the construction of RLC, the samples were exposed to 12 intensities of actinic light: 

0, 3, 23, 43, 61, 111, 223, 320, 491, 624, 782 and 996 μmol photons m–2 s–1. The duration of each 

irradiance step was 30 s. Numerical values and images of the chlorophyll fluorescence parameters 

were extracted from the digital images using analytical software (Imaging Win, Walz), selecting a 

priori areas of interest (AOI) that corresponded to the total sediment surface of each well. RLC were 

constructed by calculating, for each level of actinic light, the relative electron transport rate (rETR) 
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from the delivered actinic irradiance (E) and the effective quantum yield of PSII (ΔF /Fm’) by rETR= E 

x ΔF /Fm’. The light response was characterized by fitting the model of Platt et al. (1980) to rETR vs 

E curves and by estimating the initial slope of the light curve α (light utilization coefficient), ETRmax 

(maximum rETR) and Ek (light saturation parameter), where Ek= ETRmax/α.  

 

MPB taxonomic composition 

Sediment trays of both sampling sites were also subjected to low light levels (60 μmol photons m–2 

s–1) to induce cell migration to the sediment surface and the formation of a biofilm. Sediment 

samples were collected directly from the trays after 60 min of biofilm establishment by scraping the 

sediment surface with a scalpel (upper 2 mm). Approximately 3 mL of sediment per sample were 

collected and placed in disposable 5 mL polypropylene tubes, to which was added 1mL of a 2.5% 

glutaraldehyde solution and stored at 4 °C for later processing. Cells were extracted from the 

sediment following an isopycnic separation technique using silica sol Ludox HS-40 (Ribeiro, 2010) 

that separates the organic material from mineral particles and is, thus, able to remove both 

migratory and non-migratory fractions of the diatom assemblages, as well as cyanobacteria, 

euglenids and other microphytobenthic algal groups. However, optical microscope analysis of these 

extracts with an Olympus BX50 at a 400× magnification revealed that exclusively diatoms composed 

the MPB communities. Diatom analysis was conducted after cleaning the cells of organic material, 

by incinerating the extracts in a muffle oven during 2 h at 450 °C, leaving the diatom frustules intact. 

Permanent slides, mounted in Naphrax, were made for each sample. Phase and differential 

interference contrast optical microscopy were used to identify and count diatoms at a magnification 

of 1,000×. For each sample, a minimum of 400 frustules were counted and identified to the species 

level, following Ribeiro (2010) and references therein. Diatom taxa relative abundances were also 

allocated to four size-classes which comprised the average cell biovolumes of <100 µm3, 100-250 

µm3, 250-1000 µm3 and >1000 µm3. Cell biovolume calculation was based on equations proposed 

by Hillebrand et al. (1999) and derived from biometric measurements. 

 

Statistical analysis 

The data set was separated in two groups corresponding to the 30 min and 2 h measurements. The 

existence of significant differences was tested using two-way analysis of variance (ANOVA) for the 
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effects of the independent variables temperature (15, 25, 35 and 42 °C) and sampling site (Alcochete 

and Trancão) on fluorescence RLC parameters (α, ETRmax and Ek). Data normality and homogeneity 

of variances were tested with Shapiro-Wilk and Bartlett tests, respectively. Data were transformed 

whenever necessary to comply with ANOVA assumptions. Multiple comparisons among pairs of 

means were performed using Tukey HSD. Statistical analyses were carried out using Statistica 10 

(StatSoft Inc., USA). 

 

Results 

MPB taxonomic composition 

A total of 42 diatom species were identified in the intertidal MPB communities of the two study sites 

of the Tagus estuary, in Alcochete and in Trancão, occurring in both sites (Table 1). Differences were 

found in the major species present in each community. Diatom assemblages found in the muddy 

sediment from Alcochete were dominated by Navicula gregaria Donkin (24.3%), Navicula cf. 

phyllepta Kützing (17. 3%), Thalassiosira cf. pseudonana Hasle & Heimdal (12.1%) and Gyrosigma 

fasciola (Ehrenberg) Griffith & Henfrey (10.2%). The muddy sediment samples from Trancão were 

dominated mainly by Navicula cf. phyllepta Kützing (60.5%). Nevertheless, other species were also 

relatively abundant, namely Thalassiosira cf. pseudonana Hasle & Heimdal (13.9%), Navicula 

spartinetensis Sullivan & Reimer (5.4%) and Staurophora salina (W. Smith) Mereschkowsky (3.0%) 

(Table 1). 

Both assemblages were composed of ca. 80% of motile epipelic diatoms and 16-18% of 

tychoplanktonic species (e.g. T. cf. pseudonana) in Alcochete and Trancão, respectively. Truly 

epipsammic and planktonic species had only residual contributions. The differences in relative 

abundances of the motile epipelic species were responsible for distinct size-class distributions 

(Figure 1). Trancão was clearly dominated by diatoms of the size-class 100-250 µm3, while Alcochete 

showed a more even distribution of small, medium and large-size diatoms, but with higher relative 

abundances of the size class 250-1000 µm3. 
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Table 1. Species composition, size class (µm3) and relative abundance (%) of two microphytobenthos 
communities of the Tagus estuary (Alcochete and Trancão). 
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Figure 1. Size-class distribution of relative abundance of microphytobenthos from two sites of Tagus estuary 

(Alcochete and Trancão). 

 

Influence of temperature on photosynthetic parameters 

Relative photosynthetic electron transport rate (rETR) versus incident photon irradiance (E) rapid 

light curves (RLC) of MPB from Alcochete and Trancão are shown in Figure 2 and 3, respectively. 

There is a clear effect of short-term temperature treatments (15, 25, 35 and 42°C) on RLC curves in 

both Alcochete and Trancão with higher rETR found at 35°C. rETR found in Trancão at 15, 25 and 

35°C were higher than those obtained in Alcochete for the 30 min treatment (Figure 2A and 3A). 
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Figure 2. Relative photosynthetic electron transport rate (rETR) versus incident photon irradiance (E) (mean 

± standard deviation, n=6) rapid light curves (RLC) of microphytobenthos from Alcochete (Tagus estuary) 

after 30 min (A) and 2 h (B) at the four temperature treatments (15, 25, 35 and 42 °C). 
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Figure 3. Relative photosynthetic electron transport rate (rETR) versus incident photon irradiance (E) (mean 

± standard deviation, n =6) rapid light curves (RLC) of microphytobenthos from Trancão (Tagus estuary) after 

30 min (A) and 2 h (B) at the four temperature treatments (15, 25, 35 and 42 °C). 

Differences between sites were less visible for the 2 h treatments as rETR values decreased 

significantly in Trancão (Figure 3). RLC measured at 42 °C were similar in the two study sites and 

usually the temperature at which lowest rETR were obtained (Figure 2 and 3). RLC in sediment 

samples from Alcochete showed photoinhibition (β decline in rETR for higher E levels) at all 
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temperatures tested, whereas in Trancão photoinhibition was only observed in RLC measured at 

42°C.  

There were significant (ANOVA, P < 0.001) effects of both independent variables (temperature and 

sampling site) in ETRmax (maximum rETR) (Figure 4A). For the 30 min treatment, this parameter 

increased significantly (Tukey, P < 0.001) with temperature from 15 to 35°C, declining abruptly at 42 

°C. For the 2 h treatment, values of ETRmax increased significantly (P < 0.001) from 15 to 25°C, but 

were not significantly different between 25 and 35°C (Figure 4A). ETRmax values were significantly 

(Tukey, P < 0.001) higher at Trancão than at Alcochete for both treatment durations (30 min and 2 

h).  

There were significant (ANOVA, P < 0.01) effects of both independent variables (temperature and 

sampling site) in α (light utilization coefficient) (Fig. 4B). The light utilization coefficient remained 

independent of temperature from 15 to 35°C, declining significantly (Tukey, P < 0.001) at 42°C. α 

values were significantly (Tukey, P < 0.01) higher at Alcochete for both treatment durations (30 min 

and 2 h). 

As  was relatively insensitive to temperature (except for the decline at 42°C), Ek (light saturation 

parameter) trends reflected those of ETRmax (Figure 4C). There were significant (ANOVA, P < 0.001) 

effects of both independent variables (temperature and sampling site) in Ek. For the 30 min 

treatment, this parameter increased significantly (Tukey, P < 0.001) from 15 to 25°C and from 25 to 

35°C, while for the 2 h treatment differences were not significantly between 25 and 35°C (Figure 

4C). Values decreased significantly (Tukey, P < 0.001) at 42°C. Ek values were significantly (Tukey, P 

< 0.001) higher at Trancão for both treatment durations (30 min and 2 h).  
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Figure 4. Variation (mean ± standard deviation, n =6) of maximum electron transport rate (ETRmax, A), light 

utilization coefficient (a, B) and light saturation parameter (Ek, C) with temperature in microphytobenthos 

from two sites of the Tagus estuary (Alcochete and Trancão). Fluorescence measurements were obtained 

after 30 min and 2 h at each temperature  
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Discussion 

Mean daily air temperatures in the Tagus estuary can reach values over 30°C in the summer months 

(Gameiro et al., 2007). During midday, the exposed dark-coloured mudflat can reach significantly 

higher temperatures. Serôdio and Catarino (1999), studying the variability of light and temperature 

in intertidal sediments of the Tagus estuary, recorded sediment temperatures of ca. 35°C during 

summer low tides occurring at the middle of the day. In the latter study, temperature was measured 

at the top first cm of the sediment. It is possible that temperature of the photic zone, the very thin 

uppermost layer of the sediment (ca. 0-400 µm in very fine, muddy sediments; Cartaxana et al., 

2011), where most of the MPB is concentrated, was actually higher. Under strong solar heating, 

during the summer months, temperature vertical gradients in excess of 100 C ml were recorded in 

the tidal mudflats of the Forth estuary (Harrison and Phizacklea, 1987).  

Photosynthetic capacities (ETRmax) of the two studied MPB communities increased with 

temperature in the 15-35°C range and decreased at 42°C. Fitting of the Blanchard et al. (1996) model 

to our ETR data showed good agreement between the experimental data points and the fitted 

model with estimated optimum temperature (TOPT) between 34 and 35°C. Rates of light-saturated 

photosynthesis are generally limited by carbon metabolism, namely fixation by ribulose-1, 5-

diphosphate carboxylase/oxygenase (Davison, 1991). Changes in the photosynthetic capacity with 

short-term (hours) changes in temperature have been reported for benthic diatom cultures (Morris 

and Kromkamp, 2003; Salleh and McMinn, 2011) and MPB suspensions (Blanchard et al., 1997). 

However, the estimated TOPT of 34-35°C observed in our study was higher than those previously 

reported. TOPT of 30°C and 25°C were found for cultures of the benthic diatom Cylindrotheca 

closterium (Morris and Kromkamp, 2003) and suspensions of intertidal epipelic MPB (Blanchard et 

al., 1997), respectively.  Salleh and McMinn (2011), testing both thermal and irradiance stress in 

cultures of benthic diatoms, found TOPT of ca. 20°C and strong photoinhibition under elevated 

temperature and irradiance levels. Differences in the thermal environment to which the diatoms 

were previously acclimated to and in the species composition can explain the differences in TOPT 

found in these studies. Furthermore, in experiments using benthic cultures or diatom MPB 

suspensions, the cells are completely removed from the sediment environment. This may have 

significant effects on the photosynthetic activity of the benthic cells, namely in the vulnerability to 

high irradiance levels. Hancke and Glud (2004) found lower TOPT of 12-15°C in intact MPB 
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communities subjected to short-term changes in temperature. However, in the latter study, the 

MPB was subtidal (water depth <4 m) and collected during winter months in temperate and high 

artic locations.  

Photosynthetic efficiencies at limiting irradiances (α) of the two studied MPB communities were not 

affected by temperature in the 15-35 °C range, while decreasing markedly at 42°C. This suggests 

impairment of energy capture and photosynthetic electron transport at extreme temperatures. 

Acute upper thermal tolerance of photosynthesis appears to be set by the thermal stability of 

photosystem II (PSII), especially of its donor side (Li et al., 2009). However, the upper thermal limit 

for long-term survival is dependent on different physiological processes and net photosynthesis can 

transiently occur at temperatures well above it (Davison, 1991). In the diatom Phaeodactylum 

tricornutum, significant increase in minimum fluorescence (Fo) resulting from inactivation of 

functional reaction centers associated with changes in the stability and organization of 

photosynthetic membranes was only observed above 43°C (Serôdio et al., 1997). Maximum 

temperatures (Tmax) from 30 to 40°C have been reported for benthic diatoms and intertidal MPB 

suspensions (Blanchard et al., 1997; Morris and Kromkamp, 2003; Salleh and McMinn, 2011). 

The two studied MPB communities differed in the diatom species composition and in the measured 

photosynthetic parameters. The Trancão MPB community was clearly dominated by smaller 

diatoms, particularly Navicula cf. phyllepta, whereas the Alcochete community showed a more even 

distribution of small, medium and large-size diatoms and was mainly composed by a combination 

of species of the genera Navicula, Thalassiosira and Gyrosigma. Navicula cf. phyllepta was previously 

observed in the intertidal flats of the Tagus estuary (Jesus et al., 2009) and corresponds 

morphologically to a strain of N. phyllepta found mainly in the lower salinity reaches of the 

Westerschelde estuary (Vanelslander et al., 2009). The dominance of this species was probably a 

consequence of the lower salinity found at this site due to the influence of fresh water discharges 

from the Trancão river.  

The Trancão MPB community had higher photosynthetic capacity (higher ETRmax), was 

photoacclimated to higher irradiances (higher Ek) and had lower photosynthetic efficiency at limiting 

irradiances (lower α) than Alcochete community. Photosynthetic characteristics of each diatom 

taxon can cumulatively be responsible for the observed differences in the overall photosynthetic 

parameters observed in both MPB assemblages. The different size class distribution could also 
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explain the observed results as small cells are usually more active due to larger surface to volume 

ratios, allowing higher maximum photosynthetic rates (Taguchi, 1976). It is also possible that 

differences in ETRmax were related to different carbon availabilities at the sampling sites. There is 

strong evidence to suggest that DIC limitation may occur in natural MPB communities at times of 

high productivity (Cook and Roy, 2006).  

After 2 h, particularly at the higher temperatures (35 and 42°C), the photosynthetic capacities of 

Trancão MPB community decreased compared to the 30 min treatment. It is possible that this is 

related to a joint effect of temperature and water stress, as this sediment had lower water content 

(63.0 ± 1.6 %) than that of Alcochete (68.5 ± 1.1%) and signs of drying were visible at Trancão 

sediment surface after 2 h at higher temperatures. Souffreau et al. (2010) observed the high 

sensitivity of benthic diatom cells when exposed simultaneously to temperature and desiccation 

stress. 

It is possible that benthic diatoms may use migration for protection from long exposures to high 

temperatures found at the uppermost layer of the sediment, very much as the behavioral 

photoprotection mechanism described upon exposure to high irradiances (Serôdio et al., 2006; 

Cartaxana and Serôdio, 2008; Perkins et al., 2010; Vieira et al., 2011). Admiraal (1977) reported that 

lower temperatures are required for benthic diatoms to maintain high rates of cell division and 

Saburova and Polikarpov (2003) proposed a spatial disconnection between photosynthesis and cell 

division in MPB. The latter authors observed that epipelic diatom cells in different phases of mitosis 

were found almost exclusively in the aphotic anoxic zone of the sediment, arguing that deeper 

sediment layers provide more favorable nutrient conditions for cell growth and division. In a 

seasonal study, Hubas et al. (2006) observed that temperature influenced the benthic metabolism 

more than irradiance and suggested that migration prevented MPB from photoinhibition and high 

temperatures. Migratory behavior has often been referred as a major reason for the success of 

epipelic MPB in a highly unstable intertidal environment (Serôdio et al., 2001; Underwood et al., 

2005). 
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Conclusions 

Global climate change is expected to increase not only average temperature but also the frequency 

and the intensity of climate extremes such as heatwaves. Therefore, understanding the effect of 

changes in temperature on the primary productivity of estuarine MPB gains particular relevance. 

The present study shows that two intertidal MPB natural communities of the Tagus estuary 

increased maximum photosynthetic capacity when exposed to temperatures of up to 35°C for as 

long as 2 h. Although different diatom taxa within the same biofilm may respond differently to 

temperature, we conclude that community-level photosynthetic capacity of these intertidal MPB 

biofilms increases with transient high temperatures. Hence, MPB communities can exploit the rise 

in temperature associated with summer low tide emersion periods, increasing productivity. 
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Abstract 

The effects of dissolved inorganic carbon (DIC) availability on photosynthesis were studied in two 

estuarine intertidal microphytobenthos (MPB) communities and in the model diatom species 

Phaeodactylum tricornutum. Kinetics of DIC acquisition, measured with a liquid-phase oxygen 

electrode, showed higher Km (DIC) (0.31 mM) and Vmax (7.78 nmol min-1 µg (Chl a)-1) for MPB 

suspensions than for P. tricornutum (Km (DIC) = 0.23 mM; Vmax = 4.64 nmol min-1 µg (Chl a)-1), 

suggesting the predominance of species with lower affinity for DIC and higher photosynthetic 

capacity in the MPB. The net photosynthetic rate of the MPB suspensions reached saturation at a 

DIC concentration of 1 to 1.5 mM.  This range was lower than the concentrations found in the 

interstitial water of the top 5 mm sediment layer, suggesting no limitation of photosynthesis by DIC 

in the MPB communities. Accordingly, carbon isotope discrimination revealed a moderate activity 

of CO2-concentrating mechanisms (CCMs) in the MPB. However, addition of NaHCO3 to intact MPB 

biofilms caused a significant increase in the relative maximum photosynthetic electron transport 

rate (rETRmax) measured by imaging pulse-amplitude modulated (PAM) chlorophyll a fluorescence. 

These results suggest local depletion of DIC at the photic layer of the sediment (the first few hundred 

µm), where MPB cells accumulate during diurnal low tides. This work provides the first direct 

experimental evidence of DIC limitation of photosynthesis in highly productive intertidal MPB 

communities. 

 

Introduction 

The fixation of inorganic carbon is a central process of photosynthesis. The dissolved inorganic 

carbon (DIC) concentration in seawater is high and relatively constant (~2 mmol L-1). However, the 

predominant form of DIC is HCO3
-, CO2 usually accounting for less than 1% of the total inorganic 

carbon. Thereby, the expected CO2 concentration of seawater is approximately 10 µmol L-1 (at 

atmospheric equilibrium at 25°C) (Badger et al., 1998). As the Km (CO2) of ribulose-1,5-bisphosphate 

carboxylase-oxygenase (RUBISCO) is 30-60 µmol L-1, photosynthesis of marine diatoms could be, in 

principle, limited by CO2 supply (Badger et al., 1998). To maintain the photosynthetic activity under 

low carbon availability many diatom species have developed CO2 concentrating mechanisms (CCMs) 

(Raven and Falkowski 1999; Giordano et al., 2005).  
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It is generally accepted that the biophysics and biochemistry of CCMs vary within and among the 

three dominant groups of eukaryotic marine phytoplankton (diatoms, coccolithophores, 

dinoflagellates), with diatoms possessing high-efficiency CCMs in what concerns energy and 

nutrient costs per unit of transported carbon (Reinfelder, 2011). CCMs increase the CO2 

concentration, and the CO2/O2 ratio, at the site of RUBISCO activity, increasing the rate of net C 

assimilation per unit RUBISCO. Therefore, as these mechanisms grant full saturation of RUBISCO 

catalytic centers it is believed that the photosynthesis of pelagic diatoms is not limited by dissolved 

CO2 concentration (Tortell et al., 1997). CCMs are also expected to occur in microphytobenthos 

(MPB) biofilms, composed mainly by diatoms and cyanophytes. Accordingly to several authors (e.g. 

Raven et al., 2012) CCMs are ubiquitous in long-lasting low CO2 microhabitats, including MPB where 

the high concentration of photosynthetic cells as well as the low carbon diffusion from the bulk 

medium into cells due to thick diffusion boundary layers (Raven et al., 2008) may decrease local DIC. 

However, albeit MPB communities are of critical importance to estuarine and coastal food webs, 

the methodological and technical difficulties inherent to the study these communities (e.g., 

sediment interferences and patchy distribution) have hindered the unravelling of DIC use and CCMs 

activity.  

The application of stable isotope techniques, in particular 13C, has provided the scientific 

community with new insights into understanding physiological and ecological processes related with 

carbon fixation and diffusion. Specifically, during photosynthetic uptake of aqueous carbon dioxide 

marine phytoplankton preferentially assimilate the lighter isotope (12C), thus increasing the stable 

carbon isotopic signature (13C) of the residual pool of dissolved inorganic carbon. Hence, marine 

algae always display more depleted 13C particulate organic carbon than the DIC source they 

assimilate (Hayes, 1993). Field and laboratory studies have found numerous factors that affect the 

relationship between the concentration of dissolved CO2 [CO2 aq] and fractionation associated with 

photosynthesis including growth rate, nutrient and light limitation, cell size and geometry, diffusive 

limitations and the existence of carbon concentrating mechanisms (Raven et al., 2005, 2012). All of 

these factors can affect the relationship between (CO2 aq) and 13C of organic matter; however, the 

existence of a CCM, particularly one which utilizes isotopically heavy HCO3
- similarly to C4 

photosynthetic pathways (Mook et al., 1974) is especially significant.  

Admiraal et al. (1982) provided indirect experimental evidence of inorganic carbon limitation in 
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benthic diatom mats cultured in the laboratory. In 14C tracer column experiments, Cook and Roy 

(2006) found that increased rates of pore-water advection or addition of HCO3
- increased 

photosynthesis in MPB of subtidal sandy sediments. Recently, Cartaxana et al. (2015) observed a 

beneficial effect of elevated CO2 on intertidal MPB biomass in a microcosm experiment. However, 

to our knowledge, direct experimental evidence of inorganic carbon limitation in highly productive 

estuarine intertidal MPB has not been provided. To address this issue, we studied the effects of DIC 

availability on photosynthesis in two estuarine intertidal MPB communities of the Tagus estuary. 

 

Materials and Methods 

Sampling and culture growth conditions 

The surface layer of sediment (approximately the top first 5 mm) was collect using a spatula at 

Trancão (38° 47' 46''N, 09° 05' 33''W) and Alcochete (38° 44' 45''N, 08 °59' 04''W) in the Tagus estuary 

(Portugal). Sampling was carried out in summer of 2012 at spring tides when the intertidal flats were 

exposed. Both sediments were fine mud with more than 97% particles <63 µm. In the laboratory, 

the sediment was mixed and then evenly spread in trays to a depth of about 2 cm. The sediment 

was left overnight with a shallow depth of site water, added so as not to re-suspend the sediment. 

The following morning, at the start of the low tide emersion period predicted for the original 

sampled site in the field, the shallow layer of water was removed.  

Suspensions of MPB were obtained from trays with sediments collected at Trancão using the lens 

tissue method (Eaton and Moss 1966). Microalgae were collected by placing two pieces of lens 

tissue on the surface of the sediment shortly after the beginning of diurnal low tide at the Trancão 

sampling site. After ca. 1 h, the upper lens tissue was removed and microalgae were resuspended 

in approximately 20 ml of previously boiled seawater purged with N2 for at least 1h. 

The diatom model species Phaeodactylum tricornutum Bohlin (IO 108-01, ALISU Algal Collection, 

Centre of Oceanography, University of Lisbon) isolated from samples from Ria de Aveiro (Aveiro, 

Portugal) was grown in f/2 medium in a growth chamber (Fitoclima 250E, Aralab) at 15°C and 40 

μmol photons m-2 s-1 irradiance (12 h photoperiod). Cultures were used in the exponential growth 

phase. Twenty ml of the culture were centrifuged and the pellets were resuspended in previously 

boiled seawater purged with N2 for at least 1h.  
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Photosynthesis vs DIC response curves  

The response of net photosynthesis to DIC concentration was measured in MPB suspensions and in 

cultures of P. tricornutum. Inorganic carbon-dependent photosynthetic oxygen evolution was 

measured polarographically at 25°C using a Clark-type oxygen electrode (S1, Hansatech Instruments 

Ltd) mounted in a liquid-phase oxygen electrode chamber (DW1, Hansatech Instruments Ltd) and 

controlled by a PC operated electrode control unit (Oxygraph, Hansatech Instruments Ltd). Two ml 

of MPB suspension ( 11  µg Chl a mL-1) for or P. tricornutum culture ( 4  µg Chl a mL-1) were placed 

in the O2 electrode chamber, illuminated at a photon flux density of 140 μmol photons m–2 s–1 and 

cells allowed to reach the DIC compensation point (as shown by the cessation of apparent oxygen 

evolution). Then, 8 aliquots of a 200 mM NaHCO3 solution (1, 2.5, 5, 10, 15, 20, 25 and 30 µl) were 

added sequentially to the cell suspension to create increasing DIC concentrations and to make a 

final concentration range of 0 to 3 mM NaHCO3. After the addition of each aliquot the oxygen 

evolution rate was allowed to stabilize and steady-state net photosynthetic rates were computed. 

Net photosynthesis was selected in order to account for bacterial contamination. Even though the 

lens tissue method is selective for motile diatoms, bacterial contamination of the MPB samples is 

not to be excluded and in fact the respiratory rate of MPB (-7.1 ± 1.2 nmol O2 min-1 µg-1 Chl) was 

higher than the respiratory rates of P. tricornutum culture (-2.2 ± 1.2 nmol O2 min-1 µg-1 Chl). Before 

the addition of the next NaHCO3 aliquot cells were again allowed to reach the DIC compensation 

point.  

Kinetic parameters were obtained by fitting the net photosynthetic rate vs. DIC concentration plot 

with the Michaelis-Menten model: V=Vmax*[DIC]/(Km(DIC)+[DIC]), where Km(DIC) is the DIC 

concentration required to give a half maximal photosynthetic rate and Vm is the DIC-saturated 

photosynthetic rate calculated from Michaelis-Menten fit. 

The chlorophyll concentration of each cell suspension was measured using a spectrophotometer 

(Heλios β, Thermo Electron Corporation). The cells were harvested by centrifugation (Beckman-

Coulter Avanti J-25I centrifuge) and chlorophyll was extracted overnight with 1.8 ml acetone at 4°C 

in the dark. After the addition of 0.2 ml of distilled water, samples were mixed and absorbance was 

measured at 630 nm (A630) and 664 nm (A664). The following equation was used to determine the 

chlorophyll a content (Jeffrey and Humphrey, 1975): [Chl a] = (A664*11.47-A630*0.40) µg ml−1. 
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Effects of NaHCO3 enrichment in MPB biofilm 

Portions of the surface layer of the collected sediment (Trancão and Alcochete) were transferred to 

6-well plates using a small spatula for Imaging PAM measurements as described by Vieira et al. 

(2013a). The well plates were exposed to a homogeneous light field provided by a halogen lamp 

(Philips focusline, 250W) through fiberoptics Lighting Unit FL-460 (Walz), delivering a constant 

irradiance of 60 μmol photons m-2 s-1 at the sample surface. Low light levels induced cell migration 

to the sediment surface and the formation of a biofilm. After biofilm establishment, 20 µl of 

seawater (control) or 20 µl of solution of 50 mM NaHCO3 were added at the sediment surface. Six 

replicates were used for each treatment.  

To assess the photosynthetic activity, a rapid light curve (RLC) was performed after 30 min of 

NaHCO3 addition using an imaging-PAM fluorometer (Mini PAM M-Series, Walz GmbH) with an 

IMAGE-K5 1/2" CCD camera (640 x 480 pixel resolution) equipped with a 16 mm objective. The 24 x 

32 mm area imaged by the Mini version is illuminated by a powerful Luxeon LED array (460 nm) 

covering the 6-well plate, so that 6 sediment samples could be monitored simultaneously. The LED 

array provided the measuring beam, the actinic light and the saturation light pulses. For the 

construction of RLC the samples were exposed to 12 intensities of actinic light: 0, 3, 23, 43, 61, 111, 

223, 320, 491, 624, 782 and 996 μmol photons m–2 s–1. The duration of each irradiance step was 30 

s. Numerical values and images of the chlorophyll fluorescence parameters were extracted from the 

digital images using analytical software (Imaging Win, Walz). RLC were constructed by calculating, 

for each level of actinic light, the relative electron transport rate (rETR) from the delivered actinic 

irradiance (E) and the effective quantum yield of PSII (∆F/Fm') by rETR = E x ∆F/Fm'. The light response 

was characterized by fitting the model of Platt et al. (1980) to rETR versus E curves and by estimating 

the initial slope of the light curve α (light utilization coefficient), rETRmax (maximum rETR) and Ek 

(light saturation parameter), where Ek = rETRmax / α. 

 

DIC concentration in sediment interstitial water 

Five independent sediment samples (approximately the top 5 mm) were also collected at each study 

site (Trancão and Alcochete) for the determination of DIC concentrations. In the laboratory, the 

sediment samples were centrifuged at 10,000 g (Beckman-Coulter Avanti J-25I) and interstitial water 

was collected. Concentration of DIC in the interstitial water was determined using a carbon dioxide 
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(CO2) analyzer (Corning 965). A sodium bicarbonate calibration curve was constructed with the 

following concentrations: 12.50, 6.25, 3.12, 1.56 and 0.78 mM.  

 

Carbon and Nitrogen Isotope Composition (13 C and 15 N)  

Five independent sediment samples (approximately the top 5 mm) were also collected at each study 

site (Trancão and Alcochete) for carbon isotope composition analysis. Suspensions of MPB were 

prepared using the lens tissue method (Eaton and Moss 1966) as described above. MPB was 

resuspended in filtered seawater of each site and lyophilized for 72 h (Alpha I-5 Christ, pressure 10-

1 mbar at - 42oC). The pellet was treated with 1 ml 1N HCl for 10 min, washed twice in milliQ water 

and lyophilized again. Subsequently, 8 mg of the pellet were used for each sample encapsulation.  

Both carbon (13C/12C) and nitrogen (15N/14N) isotope ratios were determined by continuous flow 

isotope mass spectrometry (CF-IRMS). The standards used were IAEA-CH6 and IAEA-CH7 and the 

results were referred to Pee Dee Belemnite (PDB). Precision of the isotope ratio analysis, calculated 

using values from 6 to 9 replicates of laboratory standard material interspersed among samples in 

every batch analysis, was ≤ 0.2‰.  

The samples were combusted under O2 excess in an elemental analyzer (EuroVector EA, Italy), and 

converted to CO2, N2 and H2O (Dumas-combustion). After removing H2O with a water trap, the 

combustion products were flushed in a helium stream through the dilutor box into an Isotope Ratio 

Mass Spectrometer Sercon Hydra 20-22 (Sercon, UK), following standardized methods in CF-IRMS. 

Carbon and nitrogen isotope ratios were calibrated against international standards, namely, IAEA 

CH6 (sucrose) and IAEA CH7 (polyethylene) for carbon isotope ratio, and IAEA N1 (ammonium 

sulfate) for nitrogen isotope ratio. Analytical performance, stability and drift, was checked by 

inserting laboratory standards between samples. Precision (standard deviation of the set of 

standards analyzed in each batch, n = 6) was 0.06 % for carbon, 0.08 % for nitrogen. All results are 

given in -notation: 


13 

Csample = (Rsample – Rstandard) / Rstandard 

where Rstandard is the 
13

C⁄ 
12

C ratios of PDB (Pee Dee Belemnite) and 


15

Nsample = (Rsample – Rstandard) / Rstandard 
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where Rstandard is the 
15

N ⁄ 
14

N ratios of atmospheric N2 and Rsample is the 
15

N ⁄ 
14

N ratio of the 

sample. 

Statistical analysis 

Significant differences were tested with one-way analysis of variance (ANOVA) for the effects of 

carbon enrichment on fluorescence RLC parameters (α, rETRmax and Ek) of MPB biofilms for each of 

the two study sites (Trancão and Alcochete). Data normality and homogeneity of variances were 

tested with Shapiro-Wilk and Bartlett tests, respectively. Data were transformed whenever 

necessary to comply with ANOVA assumptions. Mean values of DIC, Km(DIC), Vmax, δ13C and δ15N 

were compared by T-tests for independent samples. All statistical analyses were carried out using 

Statistica 10 (StatSoft Inc., USA). 

 

Results 

The photosynthesis vs. DIC response curves of Trancão MPB suspensions and of the diatom P. 

tricornutum are shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Photosynthetic oxygen evolution versus DIC curves (mean ± standard error, n=3) for 

microphytobenthos suspensions and for the model diatom species Phaeodactylum tricornutum. Lines were 

obtained by applying the Michaelis-Menten model to the experimental data. 
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Similar patterns were found for both MPB and P. tricornutum, with higher values of net 

photosynthetic oxygen evolution for MPB natural communities (Figure 1). For both MPB and P. 

tricornutum, photosynthetic rates saturated at about 1 to1.5 mM of DIC, clearly below the 3.53 mM 

concentration measured for interstitial sediment (0-5 mm layer) water in Trancão. For the MPB 

suspensions, Km(DIC) was 0.31 ± 0.16 mM and the DIC-saturated photosynthetic rate (Vmax) was 7.78 

± 1.08 nmol min-1 µg Chl a-1. For P. tricornutum both Km(DIC) and Vmax were lower than for the MPB 

suspensions (0.23 ± 0.05 mM and 4.64 ± 0.50 nmol min-1 µg Chl a-1 respectively, Table1).  

 

Table 1. Half-saturation constant (Km) and inorganic carbon-saturated photosynthesis rate (Vmax) (mean ± 

standard error, n=3) for microphytobenthos suspensions and for the model diatom species Phaeodactylum 

tricornutum. Values were obtained by applying the Michaelis-Menten model to the experimental data. 

     

Sample 
Km (DIC) 

(mM) 
Vmax 

(nmol min-1 µg Chl a-1) 

Phaeodactylum tricornutum 0.23 ± 0.05 4.64 ± 0.50 

Microphytobenthos 0.31 ± 0.16 7.78 ± 1.08 

 
 

Relative photosynthetic electron transport rate (rETR) versus incident photon irradiance (E) rapid 

light curves (RLC) of control and inorganic carbon enriched MPB biofilms are shown in Figure 2 for 

the MPB communities of Trancão and Alcochete. For both communities, rETR values at high 

irradiances were higher in DIC supplemented samples. This effect was more pronounced in MPB 

from Alcochete, were a large decrease of rETR was observed in control samples at the higher 

irradiances tested (photoinhibition), but not in DIC enriched samples. There was a significant 

(P<0.01) effect of carbon enrichment on photosynthetic capacity (rETR max) of MPB biofilms for the 

two sites (Figure 3). No significant effect of carbon enrichment on photosynthetic efficiency at 

limiting irradiances (α) was observed. The effect of carbon enrichment was more marked in MPB 

biofilms from Alcochete (P<0.001) than Trancão (P<0.01). For the light saturation parameter, Ek, a 

significant effect was found in MPB biofilms from Alcochete (P<0.01) but no significant differences 

were found in Trancão. Significant differences were also found between Alcochete and Trancão DIC 

concentrations in the sediment’s interstitial water. Concentrations were significantly (P<0.01) 

higher in Trancão (3.53 ± 0.18 mM) than in Alcochete (1.87 ± 0.01 mM). 
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Figure 2. Relative photosynthetic electron transport rate (rETR) versus incident photon irradiance (E) (mean 

± standard deviation, n=6) rapid light curves (RLC) obtained using Imaging PAM fluorescence in control and 

carbon enriched intertidal microphytobenthos of the two studied communities (Trancão and Alcochete). 
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Figure 3. Maximum electron transport rate (rETRmax), α (initial slope of the light curve) and Ek (light saturation 

parameter) (mean ± standard deviation, n=6) for control and carbon enriched microphytobenthos of the two 

studied communities (Trancão and Alcochete) 

 

Carbon and nitrogen isotope composition, as well as the ratio C/N are shown in Table 2. Carbon and 

nitrogen isotope composition differed significantly (P<0.0001) between Alcochete (-19.98 ± 0.86‰ 

for 13 C and 12.77± 0.26‰ for (15N) and Trancão (-26.79 ± 0.37‰ for 13C and 4.72 ± 0.35‰ for 
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(15N). The ratio C/N also vary between the two locations (6.24 ± 0.80 in Alcochete and 10.07 ± 3.28 

in Trancão, P<0.05). The lower C/N ratio in Alcochete was mainly due to an increase in N.  

 

Table 2. Carbon (δ 13C) and nitrogen (δ 15N) isotopic composition and Carbon / Nitrogen (C/N) ratio for 

microphytobenthos organic material collected from sediments located in Alcochete and Trancão.  

     

Sample      δ 13C                           δ 15N        C/N 

Alcochete -19.98 ± 0.86          12.77 ± 0.26 6.24 ± 0.80 

Trancão -26.79 ± 0.37           4.72 ± 0.35 10.07 ± 3.28 

 
 

Discussion 

Albeit a number of studies have previously determined the kinetic parameters of DIC acquisition in 

marine photoautotrophs such as phytoplankton, cyanobacteria and macrophytes (Caperon and 

Smith 1978; Turpin et al., 1985; Gimmler and Slovik 1995) data was not available for MPB 

communities. MPB showed higher Km for DIC and higher Vmax than the diatom model species P. 

tricornutum, suggesting that the MPB community includes species with lower affinity for DIC 

(explaining the higher Km(DIC)) and higher photosynthetic capacity (explaining the higher Vmax). The 

model marine diatom P. tricornutum has been intensively studied in regard to the inorganic carbon 

utilization mechanisms (e.g. Rotatore et al., 1995; Nimer et al., 1997; Burkhardt et al., 2001; 

Matsuda et al., 2001, 2002), being able to actively accumulate CO2 and HCO3
-. This microalgae has 

plastic photosynthetic and growth responses to changes in the external inorganic carbon 

concentration and may modify the mechanism of carbon acquisition (Johnston and Raven, 1996). 

This might explain its low Km (DIC), when compared with the MPB community, where Km (DIC) is the 

average of all photosynthetic species present.  

The net photosynthetic rate of MPB suspensions reached saturation at a DIC concentration (1-1.5 

mM) lower than the concentrations found in the interstitial water of the top 5 mm sediment layer 

(3.53 mM in Trancão and 1.87 mM in Alcochete), within the range (1.46 - 8.07 mM) found by Dvorak 

(2007) in four estuaries of southern Florida. It was therefore expected that the photosynthetic rates 

of natural communities of MPB were not limited by the availability of DIC. However, under 

experimental conditions, the addition of DIC to intact MPB biofilms caused an increase in the 

photosynthetic capacity when compared to control, non-enriched MPB. The MBP community 
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showed lower photosynthetic capacity (rETRmax) and higher photoinhibition in Alcochete than in 

Trancão in control sediment samples. However, when a surplus of DIC was experimentally supplied, 

the Alcochete MPB community showed a more pronounced increase of the photosynthetic capacity. 

Taken together, these results suggest a larger limitation by DIC of the Alcochete MPB community, 

which is in accordance with the lower interstitial DIC concentration in this location.  

Several are the evidences that support the existence of CCMs in microalgae, which facilitate the 

photosynthetic activity under low CO2 concentrations (Reinfelder et al., 2000; Raven and Johnston, 

1991; Roberts et al., 2007; Meyer and Griffiths, 2013). Albeit indirectly, the measurement of the 

carbon isotope composition of MPB indicate the existence and activity of CCMs. The inorganic 

carbon available for photoautotrophic organisms consists ultimately of a pool of carbon atoms with 

different atomic weights, mainly 12C (98.9%) and 13C (1.1%) (Farquhar et al., 1989). However, in 

these organisms carbon is generally depleted in 13C relative to the carbon source, indicating a carbon 

fractionation in the photosynthetic incorporation of inorganic carbon to biomass. An important 

contribution comes from RUBISCO, the ultimate carboxylation enzyme in all photosynthetic 

organisms, which rely in dissolved CO2 as the inorganic carbon source and discriminates against 13C 

ranging from δ13C = -29‰  in  plants and eukaryotic algae to δ13C = -21‰ in cyanobacteria. In aquatic 

organisms, departures from RUBISCO discrimination values can be due to both biochemical CCM 

mechanisms based on the activities of β-carboxylases or biophysical CCM based on specific 

membrane carbon transporters and the activity of carbonic anhydrase. 

In our study, Alcochete samples present more enriched δ13C values (-19.98 ± 0.86), suggesting the 

presence of active CCMs, by contrast to Trancão, where δ13C values (-26.77 ± 0.38) can be explained 

by the higher local DIC concentration and concomitant absence of CCMs. Additionally, CCMs are 

polyphyletic and may be affected by several environmental factors such as temperature, 

photosynthetically active radiation, phosphorus, iron and nitrogen supply (Raven et al. 2008; 2011). 

Thus, we hypothesize that the increase in nitrogen supply at Alcochete conveyed by the lower C/N 

ratio and by the enriched δ15N (more complex organic N molecular forms) also modulate/influence 

the CCM activity. However, differences in carbon isotope composition and photosynthetic capacity 

could also be related to differences in the species composition of the two studied MPB communities. 

Although both Trancão and Alcochete MPB communities are composed exclusively of diatoms, they 

differ in species composition and size-class distribution (Vieira et al., 2013b). In fact, the carbon 
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isotope composition of microalgae is the result of the complex interaction of several factors (water 

temperature, DIC, type of organism, growth rate and cell size and geometry, in addition to 

biochemical and biophysical CCMs), making difficult to assign the origin of the differences measured 

in natural communities such as Trancão and Alcochete.  

When samples from both locations were supplemented with DIC, similar rETRmax were observed, 

supporting the evidence of in situ DIC limitation of photosynthesis in natural MPB communities. In 

intertidal muddy sediments, MPB cells accumulate at the sediment surface during low tides during 

the photoperiod. During these periods of high photosynthetic activity, most of the MPB biomass is 

concentrated in the first hundreds of micrometers (De Brouwer and Stal, 2001; Kelly et al., 2001; 

Cartaxana et al., 2011) causing a local depletion of DIC in the photic layer. To our knowledge, these 

results provide the first direct experimental evidence for DIC limitation of photosynthesis in highly 

productive intertidal MPB communities. 
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Abstract 

Microphytobenthos (MPB) are the main primary producers of many intertidal and shallow 

subtidal environments. Although these coastal ecosystems are particularly vulnerable to 

anthropogenic activities, little is known on the effects of climate change variables on the 

structure and productivity of MPB communities. In this study, the effects of elevated 

temperature and CO2 on intertidal MPB biomass, species composition and photosynthetic 

performance were studied using a flow-through experimental life support system. Elevated 

temperature had a detrimental effect on MPB biomass and photosynthetic performance 

under both control and elevated CO2. Furthermore, elevated temperature led to an increase 

of cyanobacteria and a change in the relative abundance of major benthic diatom species 

present in the MPB community. The most abundant motile epipelic species Navicula 

spartinetensis and Gyrosigma acuminatum were in part replaced by tychoplanktonic species 

(Minidiscus chilensis and Thalassiosira cf. pseudonana) and the motile epipelic Nitzschia cf. 

aequorea and N. cf. aurariae. Elevated CO2 had a beneficial effect on MPB biomass, but only 

at the lower temperature. It is possible that elevated CO2 alleviated local depletion of 

dissolved inorganic carbon resulting from high cell abundance at the sediment photic layer. 

No significant effect of elevated CO2 was detected on the relative abundance of major groups 

of microalgae and benthic diatom species. The interactive effects of elevated temperature and 

CO2 may have an overall detrimental impact on the structure and productivity of intertidal 

MPB, and eventually in related ecosystem services. 

 

Introduction 

Microphytobenthos (MPB) are phototrophic communities that constitute the main primary 

producers of intertidal and shallow subtidal ecosystems (MacIntyre et al., 1996; Underwood 

and Kromkamp, 1999). Usually diatom dominated, MPB mediate nutrient cycling, enhance 

benthic-pelagic coupling and act as efficient sediment stabilizers (Bellinger et al., 2009; Morris 

and Kromkamp, 2003). Although coastal ecosystems are particularly vulnerable to climate 

change, little is known on the effects of variables such as elevated temperature or CO2 

availability on MPB productivity and related ecosystem services.  
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Within specific ranges, increased temperature generally results in higher metabolic activity 

and thus increased growth rates. Accordingly, photosynthesis and productivity of cultured 

benthic diatoms (Morris and Kromkamp, 2003; Salleh and McMinn, 2011) and natural MPB 

communities (Blanchard et al., 1996; Vieira et al., 2013) have been shown to increase with 

transient high temperature. However, much less is known on the effect of temperature 

changes on MPB at longer time-scales. A gradual transition from a phototrophic to a 

heterotrophic-dominated benthic community with increasing temperature has been 

previously reported for intertidal and subtidal systems (Davis and McIntire, 1983; Hancke and 

Glud, 2004). Hicks et al. (2011) found a detrimental effect of higher temperatures on MPB 

biomass in a 7-day experiment.  

Photosynthesis in marine diatoms is generally not limited by inorganic carbon availability due 

to the operation of carbon concentrating mechanisms (CCMs) (e.g. Giordano et al., 2005; 

Roberts et al., 2007). However, a few studies on diatoms as part of highly productive MPB 

biofilms suggest limitation of photosynthesis by inorganic carbon availability. Admiraal et al. 

(1982) found that the diffusion of inorganic carbon limited the productivity of dense unialgal 

mats of the diatom Navicula salinarum. Addition of HCO3
− was also found to increase 

photosynthetic rates of MPB natural communities in subtidal sand (Cook and Roy, 2006) and 

in intertidal muddy sediments (Vieira et al., 2015). On the other hand, at a longer time-scale, 

Hicks et al. (2011) found no significant increase on MPB biomass in subtidal mesocosms under 

increased atmospheric CO2 levels.  

Several authors have stressed the importance of studying the combined effects of different 

environmental drivers on ecosystem functioning (e.g. Bulling et al., 2007). Recent studies have 

shown interactive negative effects of increased temperature and CO2 in marine phytoplankton 

(e.g. Feng et al., 2009; Coelho-Camba et al., 2014). Elevated temperatures resulting from 

global climate change as low as 2–3°C can be expected to affect microalgal species differently, 

causing increased metabolic activity and growth of some species while pushing others beyond 

their temperature optima, thus changing species composition (Beardall and Raven, 2004). To 

our knowledge, only Hicks et al. (2011) addressed the interactive effects of elevated 

atmospheric CO2 concentrations and temperature on MPB biomass, using a nontidal 

experimental mesocosms. In this work, the combined effects of elevated temperature and 
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CO2 on MPB biomass, photosynthetic performance and species composition were studied on 

an intertidal system using a flow-through experimental life support system with a simulated 

tidal regime. 

 

Methods 

Sediment sampling and set-up 

The sediment surface layer (approximately the first 2 cm) was collected during a summer low 

tide at Alcochete intertidal flats, Tagus estuary, Portugal (38°44'45''N, 08° 59'04''W). Sediment 

was transported in refrigerated containers to the laboratory, homegeneized and placed inside 

microcosms in a flow-through experimental life support system (ELSS), forming a layer of 6 

cm.  

Induction of MPB cell distribution within the sediment profile was achieved by exposing the 

sediment to an irradiance of 70 μmol photons m−2 s−1 for ca. 24 h. Establishment of the MPB 

surface biofilm was assessed by measuring the normalized difference vegetation index (NDVI, 

see below). Once the MPB surface biofilm was established, all microcosms were subjected to 

the initial conditions of temperature and pH (18°C, pH 8.0). After 24 h at these conditions, four 

different treatments were started and the experiment run for 11 days: 1) 18°C and pH 8.0; 2) 

24°C and pH 8.0; 3) 18°C and pH 7.4; and 4) 24°C and pH 7.4. Four microcosms were used for 

each treatment (with a total of 16 microcosms being used in the whole experiment).  

The temperatures were chosen within the summer variation range of the study site and 

corresponded to mean high tide (18°C) and mean diurnal low tide (24°C) sediment 

temperatures (Serôdio and Catarino, 1999). The pH of the sediment interstitial water was 8.0, 

while a pH drop of 0.6 units (pH 7.4) was chosen on the basis of the Intergovernmental Panel 

on Climate Changes (IPCC, 2014) maximum projections for the change in global ocean surface 

pH (~0.4 units) in 2100, together with possible increased acidification caused by upwelling of 

anthropogenic CO2-enriched water in coastal systems (Feely et al., 2008).  

 

Experimental life support system (ELSS) 

 A flow-through ELSS was used, as described in detail by Coelho et al. (2013). The ELSS 

consisted of 16 independent microcosms (glass tanks - 28 cm length x 25 cm height x 12.4 cm 
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width) with a maximum functional water volume of approximately 7 L (Appendix 1.). The ELSS 

was equipped with 4 full spectrum fluorescent tubes (AquaLight, T5/54 W/10000K, Bramsche, 

Germany) and set to 6 h light–18 h dark cycle with an irradiance at sediment surface of 70 

μmol photons m−2 s−1.   

The ELSS was operated with one daily tide. Saltwater was prepared in two reservoirs (230 L 

each) by mixing freshwater purified by a reverse osmosis unit (Aqua-win RO-6080) with a 

commercially available marine salt mixture (Tropic Marin Pro Reef salt – Tropic Marine, 

Germany) to a final salinity of 30. The water for tidal cycles was prepared 24 h before use. To 

simulate high tide, saltwater was pumped from the respective reservoir using a submersible 

pump (Aquabee UP 3000) through an independent pipeline system of polyvinyl chloride (PVC) 

tubes into each microcosm. The saltwater flow rate was manually controlled by a PVC valve 

located above each microcosm. The saltwater input was stopped when the water layer 

reached ca. 15 cm. High tide started after 15 min of the onset of the dark period. To simulate 

low tide, outflow submersible pumps (Rena flow 400 C) were used in each microcosm, 

operated using digital timers. These pumps were positioned inside a PVC cylinder and 

protected with a mesh screen to avoid clogging. The water was discharged using a common 

outflow pipe. Low tide started 15 min before the period of light exposure.  

The microcosms in the ELSS were partially submerged into two main water-bath tanks. One 

tank was set to 18°C, the water was continuously pumped by a canister filter pump (SunSun 

HW-302) through a cooler equipped with a thermostat (Teco TR10) with a flow rate of 1000 L 

h−1. The other tank was equipped with two submersible 200 W heaters with thermostats (Rena 

Cal 200) set to increase water temperature to 24°C.  

Water pH was manipulated by acidifying the water stocked in the saltwater reservoirs by 

bubbling CO2 through a diffuser. The diffuser operated with a water pump (Aquabee UP 3000) 

to maximize CO2 gas mixing in saltwater. CO2 addition was controlled with a feedback system 

that included a combination of a pH electrode connected to a controller (V2 control pH 

controller, Tropical Marine Centre, Bristol, UK) and a pressure regulator with an integrated 

solenoid valve (V2 pressure regulator pro, Tropical Marine Centre, UK). The digital display of 

the controller allowed visualization of actual pH in the saltwater reservoir and pH monitoring 
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with the pH electrode. The controller opened the solenoid valve whenever pH rose above the 

set value; CO2 was then injected until water pH returned to the pre-set value.  

 

MPB biomass 

MPB biomass was estimated daily and non-intrusively in each microcosm by calculating NDVI. 

Daily measurements of spectral reflectance as well as Pulse Amplitude Modulated (PAM) 

fluorescence (see below) were done in all microscosms during low tide, starting after 90 min 

of light exposure to ensure that the sediment was in the same conditions regarding diatom 

migration and biofilm establishment. Reflectance spectra were measured over a 350–1000 

nm bandwidth with a USB4000 (Ocean Optics, USA) with a VIS-NIR optical configuration 

connected to a 400 μm diameter fiber optic (QP400-2-VIS/NIR, Ocean Optics, USA). The light 

spectrum reflected from the sample was normalized to the spectrum reflected from a clean 

polystyrene plate. A reflectance spectrum measured in the dark was subtracted to both 

spectra to account for the dark current noise of the spectrometer. The fiber optic was 

positioned perpendicularly to the sediment surface and both sample and reference spectra 

were measured under a constant irradiance of 70 μmol photons m−2 s−1. NDVI was calculated 

as (R750 − R675) / (R750 + R675), where R750, R675 and R636 represented the average 

diffusive reflectance in the intervals of 749.73–750.39 nm, 674.87–675.55 nm and 635.71–

636.40 nm, respectively (Serôdio et al., 2009). 

Additionally, MPB biomass was calculated using HPLC chlorophyll a (Chl a) analysis at the 

beginning (T0) and at the end of the experimental period (T11). Invasive sampling for Chl a 

determination was done because previous studies have indicated NDVI saturation for high 

MPB biomass (Serôdio et al., 2009; Méléder et al., 2003). Sampling for Chl a was performed 

after spectral reflectance and PAM fluorescence measurements. For Chl a analysis, one 

sediment minicore (diameter 1.1 cm) was collected per microcosm at the beginning of the 

experiment (T0) using a plastic corer. The sediment surface (0 – 2 mm) was pooled in groups 

of 4 to obtain 4 mixed sediment samples. At the end of the experiment (T11), three minicores 

were collected per microcosm and the sediment pooled to obtain a total of 16 samples, one 

per microcosm. Sediment samples were immediately frozen in liquid nitrogen and stored at 

−80°C. Before analysis, samples were freezedried and extracted with 95% cold buffered 
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methanol (2% ammonium acetate) for 15 min at −20°C, in the dark. Samples were sonicated 

(1210, Bransonic, USA) for 30 s at the beginning of the extraction period. Extracts were filtered 

(Fluoropore PTFE filter membranes, 0.2 μm pore size) and immediately injected in a high 

performance liquid chromatographer (HPLC; LC10AVP, Shimadzu, Japan) equipped with a 

photodiode array (SPD-M10AVP) detector (Cartaxana et al., 2006). Chromatographic 

separation was carried out using a C18 column for reverse phase chromatography (Supelcosil; 

25 cm long; 4.6 mm in diameter; 5 µm particles) and a 35 min elution programme. The solvent 

gradient followed Kraay et al. (1992) with a flow rate of 0.6 mL min−1 and an injection volume 

of 100 μL. Chl a was identified from absorbance spectrum and retention time and 

concentrations calculated from the signals in the photodiode array detector. Calibration of the 

Chl a peak was performed using a commercial pigment standard from DHI (Institute for Water 

and Environment, Denmark). 

 

MPB photosynthetic parameters 

Measurement of MPB photosynthetic parameters were carried out in each microcosm using 

a Diving-PAM Fluorometer (Walz, Effeltrich, Germany). The distance between the fluorometer 

fiber optic and the surface of sample was kept constant at 2 mm during all measurements. 

Maximum quantum yield of photosystem (PS) II (Fv/Fm) was determined daily in each 

microcosm by calculating (Fm – Fo)/Fm, where Fm and Fo are, respectively, the maximum and 

the minimum fluorescence of dark adapted samples (Murchie and Lawson, 2013). Fv/Fm gives 

a robust indication of the maximum efficiency of photosynthesis. Dark adaptation period was 

restricted to 2 min to reduce the possibility of inducing downward vertical migration of the 

epipelic MPB (Jesus et al., 2006). 

On specific days (T0, T6 and T11), rapid light response curves (RLC) were carried out in all 

microcosms to assess MPB photosynthetic activity over a wide range of ambient light 

intensities (Ralph and Gademann, 2005). For the construction of RLC, the samples were 

exposed to 8 intensities of actinic light increasing from 38 to 616 μmol photons m−2 s−1 (38, 

55, 81, 122, 183, 262, 367 and 616 μmol photons m−2 s−1). Each irradiance step was 10 s; the 

saturation pulse intensity had duration of 0.6 s and an intensity of 8,000 μmol photons m−2 

s−1. RLC were constructed by calculating, for each level of actinic light, the effective quantum 
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yield of PSII (ΔF/Fm′) and the relative electron transport rate (rETR) from the delivered actinic 

irradiance (E) by rETR = E x ΔF/Fm′ (Ralph and Gademann, 2005). The light response was 

characterized by fitting the model of Platt et al. (1980) to rETR vs. E curves and by estimating 

the initial slope of the light curve α (light utilization coefficient), ETRmax (maximum rETR) and 

Ek (light saturation parameter), where Ek = ETRmax /α. The model was fitted iteratively using 

MS Excel Solver.  

 

MPB community analysis 

Surface sediment samples to determine the composition of the MPB community were 

collected as described for Chl a analysis and stored in a 2.5% glutaraldehyde solution at 4 °C. 

Cells were extracted from the sediment following an isopycnic separation technique using 

silica sol Ludox HS-40 that separates the organic material from mineral particles and is, thus, 

able to remove microorganisms (e.g. MPB) from the sediment. Cell counts of MPB were made 

in a Sedgwick-Rafter cell counting chamber (50 μL of each extract) on an Olympus BX50 optical 

microscope (Olympus Corporation, Tokyo, Japan) at a 400x magnification. Between 3 and 9 

horizontal transects (1300-8500 individual cells) were made, the cells counted separated into 

major MPB taxonomical groups (i.e. diatoms, euglenids, dinoflagellates and cyanobacteria) 

and the relative percentage determined.  

Diatom analysis was conducted after cleaning the diatom valves of organic material. A 

subsample of 750 μL of extract was oxidized with 5-7 mL of hydrogen peroxide (30%) at 90°C 

for at least 4 h. Permanent slides, mounted in Naphrax TM (Northern Biological Supplies Ltd., 

Ipswich, UK), were made for each sample. Phase and differential interference contrast optical 

microscopy were used to identify and count diatoms at a magnification of 1,000x. For each 

slide, a minimum of 400 valves were counted and identified to the species level, following 

Ribeiro (2010) and references therein.  

 

Statistical analysis 

The existence of significant differences was tested using two-way repeated measurements 

ANOVA (NDVI, Fv/ Fm, and RLC parameters) or two-way ANOVA (Chl a and MPB major group 

relative abundance) for the effects of temperature (18 and 24°C) and pH (7.4 and 8.0). 

Multiple comparisons were performed using Tukey HSD.  Bonferroni correction was applied 
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to p values of multiple tests on correlated variables (NDVI and Chl a; ETRmax, α and Ek; relative 

abundance of diatoms and cyanophytes). Statistical analyses were carried out using Statistica 

10 (StatSoft Inc., USA).  

Diatom community structure was analysed with nonparametric multivariate tools using 

PRIMER® 6 software package (PRIMER-E, Plymouth, UK). The species abundance matrix was 

previously standardized and root-transformed and used in all multivariate routines. Bray-

Curtis coefficients (Bray and Curtis, 1957) were used to compute the similarity or dissimilarity 

distances between samples. A similarity-based ANOSIM permutation test, with a 2- way 

crossed layout (Clarke et al., 2008), was performed to test if there  were any statistically 

differences between groups of samples, namely, between temperature or pH treatments. 

Classification analysis (CLUSTER), which uses hierarchical agglomerative clustering of the 

samples and group-average linking (Field et al., 1982), was also performed. 

During the dendrogram construction statistical significance of every cluster node was tested 

by the SIMPROF routine (Clarke et al., 2008). The SIMPROF is an a posteriori permutation test 

of the null hypothesis that the set of samples below a given node does not show any 

multivariate structure, which are then represented by dashed lines. Species mainly 

responsible for possible differences between treatments were determined using SIMPER 

analysis (Clarke, 1993). 

 

Results 

MPB biomass 

There was a significant effect of temperature on NDVI measured along the experimental time 

period (F11, 132 = 28.172, p < 0.001), but no significant effect of pH (F11, 132 = 1.131, p = 0.686; 

Figure 1). There was no significant interaction between the categorical factors (temperature 

and pH; F11, 132 = 0.937, p = 1.000; Figure 1). Between day 0 and 3, NDVI increased slightly in 

all treatments, followed by a decrease in the microcosms at 24°C, reaching values of ca. 0.2 

after 11 days (Figure 1). At 18°C, NDVI was relatively constant throughout the experiment 

(ranging between 0.5 and 0.6).  
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Figure 1. Microphytobenthos NDVI under control and elevated CO2 and temperature. Changes in 

normalized difference vegetation index (NDVI, mean ± standard error, n = 4) of an intertidal sediment 

during an 11-day period under different temperatures and pH. T 18°C, pH 8.0: Temperature = 18°C, pH 

= 8.0; T 24°C, pH 8.0. Temperature = 24°C, pH = 8.0; T 18°C, pH 7.4.Temperature = 18°C, pH = 7.4; T 

24°C, pH 7.4: Temperature = 24°C, pH = 7.4. 

There was a significant interaction between temperature and pH on Chl a concentrations (F1, 

12 = 10.329, p = 0.015; Figure 2). Chl a concentrations were higher at 18°C than at 24°C, similar 

to what was observed with NDVI. On the other hand, at 18°C, Chl a concentrations were 

significantly higher at pH 7.4 than pH 8.0, reaching concentrations of 268 ± 53 μg g−1 (p = 0.014; 

Figure 2). No significant differences were observed between pH 7.4 and 8.0 at 24°C (p = 1.000; 

Figure 2). 
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Figure 2. Microphytobenthos Chl a under control and elevated CO2 and temperature. Chlorophyll a 

concentration (Chl a, mean ± standard error, n = 4) of an intertidal sediment (0–2 mm) at the beginning 

of the experiment (T0) and after 11 days under different temperatures and pH. T 18°C, pH 8.0: 

Temperature = 18°C, pH = 8.0; T 24°C, pH 8.0. Temperature = 24°C, pH = 8.0; T 18°C, pH 7.4. 

Temperature = 18°C, pH = 7.4; T 24°C, pH 7.4: Temperature = 24°C, pH = 7.4. 

 

MPB photosynthetic parameters 

There was a significant effect of temperature on maximum efficiency of PSII (Fv/Fm) measured 

along the experimental time period (F11, 132 = 11.560, p < 0.001), but no significant effect of pH 

(F11, 132 = 0.170, p = 0.998; Figure 3). At 18°C, Fv/Fm was relatively constant throughout the 

experiment (ca. 0.73), although a slight increase was observed between day 0 and 1 for all 

treatments. At 24°C, Fv/Fm decreased from day 7, reaching significantly lower values (<0.58) 

at the end of the experiment. There was a significant effect of both temperature (F2, 24 = 

21.824, p < 0.001) and pH (F2, 24 = 7.763, p = 0.008) on ETRmax measured along the experimental 

time period (Figure 4A). After 6 days, photosynthetic electron transport capacity was 

significantly higher at 24°C and pH 7.4, when compared to other treatments (in all cases p < 

0.001).  
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Figure 3. Microphytobenthos Fv/Fm under control and elevated CO2 and temperature. Changes in 

maximum efficiency of photosystem (PS) II (Fv/Fm, mean ± standard error, n = 4) of an intertidal 

sediment during an 11-day period under different temperatures and pH. T 18°C, pH 8.0: Temperature 

= 18°C, pH = 8.0; T 24°C, pH 8.0. Temperature = 24°C, pH = 8.0; T 18°C, pH 7.4. Temperature = 18°C, pH 

= 7.4; T 24°C, pH 7.4. 

 

At beginning (T0) or at the end of the experimental period (T11), differences in ETRmax were 

not significant. For α, there was a significant effect of temperature (F2, 24 = 19.461, p < 0.001), 

but no significant effect of pH (F2, 24 = 1.136, p = 1.000; Figure 4B). After 11 days, light utilization 

coefficient was significantly lower at 24°C than at 18°C (p < 0.001). Regarding Ek, there was a 

significant effect of temperature (F2, 24 = 11.827, p < 0.001), but no significant effect of pH (F2, 

24 = 3.339, p = 0.158; Figure 4C), reflecting the trends observed for ETRmax and α. No significant 

interactions between the categorical factors (temperature and pH) were observed for any of 

the photosynthetic parameters analysed (lowest p = 0.669). 



CHAPTER 6. EFFECTS OF ELEVATED TEMPERATURE AND CO2 ON INTERTIDAL MICROPHYTOBENTHOS 

 

113 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Microphytobenthos RLC parameters under control and elevated CO2 and temperature. 

Changes in relative maximum electron transport rate (rETRmax, A), light utilization coefficient (α, B) and 

light saturation parameter (Ek, C) (mean ± standard error, n = 4) of an intertidal sediment after 0, 6 and 
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11 days under different temperatures and pH. T 18°C, pH 8.0: Temperature = 18°C, pH = 8.0; T 24°C, 

pH 8.0. Temperature = 24°C, pH = 8.0; T 18°C, pH 7.4.Temperature = 18°C, pH = 7.4; T 24°C, pH 7.4: 

Temperature = 24°C, pH = 7.4. 

 

MPB taxonomic composition 

There was a significant effect of temperature on the relative abundance of MPB major groups 

(F1, 12 = 16.035, p = 0.003 for diatoms and F1, 12 = 16.296, p = 0.003 for cyanophytes; Figure 5), 

while pH had no significant effect (F1, 12 = 0.348, p = 1.000 and F1, 12 = 0.392, p = 1.000, 

respectively; Figure 5).  

 

Figure 5. Relative abundance of major groups of microphytobenthos under control and elevated CO2 

and temperature. Relative abundance (%, mean ± standard error, n = 4) of major groups of 

microphytobenthos (diatoms, cyanobacteria, euglenophytes and dinoflagelates) of an intertidal 

sediment (0–2 mm) at the beginning of the experiment (T0) and after 11 days under different 

temperatures and pH. T 18°C, pH 8.0: Temperature = 18°C, pH = 8.0; T 24°C, pH 8.0.Temperature = 24 

°C, pH = 8.0; T 18°C, pH 7.4.Temperature = 18°C, pH = 7.4; T 24°C, pH 7.4: Temperature = 24°C, pH = 

7.4. 
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No significant interactions between the categorical factors (temperature and pH) were 

observed (lower p = 0.739). Although diatoms were the dominant group of the MPB 

community at the beginning and at end of all experimental treatments, diatom relative 

abundance was lower after 11 days under the higher temperature (99.2 ± 0.2% at 18°C 

compared to 91.0 ± 2.0% at 24°C). The decrease in diatoms at 24°C was associated with an 

increase in the relative abundance of cyanobacteria (0.70 ± 0.2% at 18°C and 8.40 ± 1.9% at 

24°C). The contribution of euglenophytes and dinoflagelates to the MPB community was 

minor, representing in all cases less than 1% of relative abundance.  

Concerning diatom assemblages, a total of 120 diatom taxa were identified (97 to the species 

level, see appendix 2), varying between 24 and 57 per sample. Significant differences in diatom 

assemblage structure were found between 24°C and 18°C (two-way crossed ANOSIM test: R 

= 0.667, p < 0.001), whereas differences between pH treatments were not significant (R = 

−0.063, p = 0.713). The CLUSTER analysis of the assemblage structure also showed that there 

were significant differences between the two incubation temperatures but not between pH 

(Figure 6), in spite of relatively high levels of similarity (i.e. between 60 and 80%). Samples 

from the microcosms at 24°C separated significantly from the microcosms at 18°C at 61.3% 

level of similarity (SIMPROF test: π = 2.24, p < 0.001). Samples collected at the beginning of 

the experiment (T0) separated significantly at 68.7% of level of similarity (SIMPROF test: π = 

0.84, p = 0.019) from the samples collected at the end of the experimental period in the 

microcosms at 18°C. One of the samples of the 18°C group also separated significantly 

(SIMPROF test: π = 1.15, p = 0.002) from the rest early in the dendrogram, possible because it 

registered lower diversity and the highest relative abundance (68%) of Navicula 

spartinetensis. There was no subsequent significant multivariate pattern in the CLUSTER 

analysis (noted by the grey dotted lines in Figure 6).  

Diatom assemblages were taxonomically similar (Apendix 2), with an average of 98% of 

cumulative relative abundance of shared species. Nevertheless, SIMPER analysis was able to 

detect slight differences in species relative abundance, responsible for the significant 

dissimilarities in assemblage structure between microcosm temperatures, as shown by 

ANOSIM and CLUSTER analysis. In this way, assemblages incubated at 18°C had higher 

abundances of N. spartinetensis and Gyrosigma acuminatum, whilst in assemblages at 24°C 
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these two motile epipelic species were in part replaced by tychoplanktonic species (i.e. 

Minidiscus chilensis, Thalassiosira cf. pseudonana) and the motile epipelic Nitzschia cf. 

aequorea and N. cf. aurariae (Appendix 2). 

 

 

Figure 6. CLUSTER analysis of diatom assemblage structure under control and elevated CO2 and 

temperature. Dendrogram for hierarchical clustering using group-average linking of Bray–Curtis 

similarities of diatom abundance of an intertidal sediment (0–2 mm) at the beginning of the 

experiment (T0) and after 11 days under different temperatures and pH. T 18°C, pH 8.0: Temperature 

= 18°C, pH = 8.0; T 24°C, pH 8.0. Temperature = 24°C, pH = 8.0; T 18°C, pH 7.4. Temperature = 18°C, pH 

= 7.4; T 24°C, pH 7.4: Temperature = 24°C, pH = 7.4. Dashed lines indicate groups of samples not 

separated (at p < 0.05) by SIMPROF. 
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Discussion 

In the present 11-day study, elevated temperature promoted a detrimental effect on MPB 

biomass (using both NDVI and Chl a concentrations as proxies) and photosynthetic 

performance (through the quantification of maximum photosynthetic electron transport 

efficiency and light utilization coefficient by PAM fluorometry). This effect was recorded under 

both control and elevated CO2. Using a non-tidal mesocosm system solely for 7 days, Hicks et 

al. (2011) also found lower MPB biomass at higher temperatures for a mudflat of the Ythan 

estuary in Scotland at three levels of atmospheric CO2 concentrations. On the other hand, 

Torstensson et al. (2012) found that biomass and photosynthetic activity of the benthic/sea 

ice diatom Navicula directa were promoted by elevated temperature. However, the relevant 

temperatures tested in the latter 7-day laboratory study were 0.5 and 4.5°C. Intertidal MPB 

communities are exposed to extremely high temperature fluctuations in their natural 

environment. In the Tagus estuary, if emersion coincides with summer midday, the exposed 

dark-coloured mudflat sediment surface can reach temperatures above 30°C (Serôdio and 

Catarino, 1999), clearly exceeding the higher temperature tested in this study. On the other 

hand, sediment temperature drops to a mean temperature of 18°C during summer immersion 

periods (Serôdio and Catarino, 1999). Hence, MPB seem to be able to cope with extremely 

high temperature fluctuations and short periods of very high temperature exposure. On the 

other hand, this study indicates that there is a significant effect on the MPB community when 

a less pronounced but prolonged increase in sediment temperature is applied. It is legitimate 

to assume that the productive potential of MPB present in the temperate Tagus estuary 

intertidal system may be negatively impacted by higher temperatures in the future.  

Elevated temperature had also significant effects on the composition of the MPB community, 

causing a change on the relative abundance of major groups of microalgae. While diatoms 

were dominant in all treatments, higher temperature led to an increase in the relative 

abundance of cyanobacteria. It has been previously observed that cyanobacteria can be 

favored over diatoms at higher temperatures in mixed benthic biofilms (Van der Grinten et 

al., 2005). Furthermore, higher temperature also affected the relative abundance of major 

benthic diatom species present in the MPB community. Temperature-driven changes in the 

dynamics of phototrophic and heterotrophic organisms of a typically mixed benthic 
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community are also expected to occur. Previous studies on diatom-dominated MPB of 

intertidal and subtidal systems showed that an increase in temperature stimulates more 

heterotrophy than photosynthetic activity, thus leading to a heterotrophic-dominated benthic 

community under elevated temperatures (Davis and McIntire, 1983; Hancke and Glud, 2004). 

Hence, a noticeable change in the structure of the MPB community of the Tagus estuary 

intertidal system can be expected to occur under higher temperatures promoted by climate 

change.  

Elevated CO2 and higher temperature led to a transient (day 6) increase in ETRmax, as rates of 

light-saturated photosynthesis are generally limited by carbon metabolism (namely fixation 

by ribulose-1,5-bisphosphate carboxylase/oxygenase, RUBISCO) (Davison, 1991). However, by 

the end of the experimental period, elevated CO2 had a beneficial effect on MPB biomass only 

at the lower temperature tested and when considering Chl a as biomass proxy. No significant 

effects of CO2 were detected on the relative abundance of major groups of microalgae and 

benthic diatom species. To maintain efficient photosynthetic rates under limited CO2 supply, 

diatoms have developed high efficiency carbon concentrating mechanisms (CCMs) (e.g. 

Giordano et al., 2005; Roberts et al., 2007). As these mechanisms grant full saturation of 

RUBISCO catalytic centres it is generally assumed that diatom photosynthesis is not limited by 

dissolved inorganic carbon availability. Accordingly, Hicks et al. (2011) found no significant 

increase on MPB biomass of muddy intertidal sediments under increased CO2 levels. 

Surprisingly, Torstensson et al. (2012) reported that N. directa was negatively affected by CO2 

enrichment, although the mechanism causing this effect was not identified. On the other 

hand, examining the colonisation of artificial substrata across a natural CO2 gradient, Johnson 

et al. (2013) found that elevated CO2 increased microphytobenthos biomass and induced 

diatom community shifts by promoting the growth of large pennate species. The latter authors 

argued that some diatoms could optimise resource allocation, benefiting from increasing CO2 

through a reduction in the energy costs of their CCMs.  

Further challenging the notion of CO2-insentitive photosynthesis in diatoms, Admiraal et al. 

(1982) provided indirect experimental evidence of inorganic carbon limitation in benthic 

diatom mats cultured in the laboratory. In 14C tracer column experiments, Cook and Roy 

(2006) also found that increased rates of pore-water advection or addition of HCO3
− increased 
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photosynthesis to similar rates in MPB of subtidal sandy sediments. Again, the supply of HCO3
- 

was found to increase photosynthetic rates of highly productive MPB natural communities of 

intertidal muddy sediments (Vieira et al., 2016). 

The beneficial effect of elevated CO2 on MPB biomass at the lower temperature tested in our 

study suggests that carbon may have become a limiting resource for the MPB community. 

Upward migration of diatom cells to the sediment surface occurs in this benthic community 

during diurnal low tides, leading to the formation of an extremely dense biofilm in a relatively 

thin photic layer (the first hundreds of micrometers) (Cartaxana et al., 2011). In this crowded 

community, carbon may be a limiting resource even for organisms with high efficiency CCMs. 

 

Conclusions 

As MPB are the main primary producers of many intertidal and shallow subtidal environments, 

changes in MPB biomass will certainly impact the trophodynamics of these systems. 

Nonetheless, very few studies have considered the interactive effects of climate change 

variables on MPB communities (Hicks et al., 2011). There are obvious limitations in providing 

realistic interpretations of natural ecosystem response by using artificial systems such as the 

one used in this study. For example, longer-term increased temperature could favor selection 

and growth of high-temperature adapted MPB species that could partially modulate the 

observed negative impact on biomass and productivity. Nevertheless, small-scale experiments 

in microcosms or mesocosms can provide valuable insights on how complex ecosystems will 

cope with climate change (Benton et al., 2007). In this work, elevated temperatures under 

both present day and increased CO2 led to a reduction of MPB biomass and photosynthetic 

performance, an increase of cyanophytes and a change in the relative abundance of major 

benthic diatom species present. Overall, it suggests that the interactive effects of studied 

parameters could have a detrimental impact on the structure and productivity of intertidal 

MPB, and eventually in related ecosystem services. 
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Technical advances in the study of MPB: Laser induced fluorescence and pulse amplitude 

modulated fluorescence imaging 

Remote sensing techniques use optical properties of sediments and biofilms to make inferences 

about the distribution and productivity of benthic photoautotrophs, without interfering with the 

sediment surface (Paterson et al., 1998). Hence, the application of these techniques to the study of 

MPB has increased significantly in recent years (Serôdio et al., 1997; Kromkamp et al., 1998; 

Paterson et al., 1998; Serôdio et al., 2001; Honeywill et al., 2002; Perkins et al., 2002; Serôdio, 2003; 

Stephens et al., 2003; Forster and Kromkamp, 2004; Murphy et al., 2004; Serôdio, 2004; Forster and 

Jesus, 2005; Murphy et al., 2005). Pulse amplitude modulated (PAM) fluorometry and spectral 

reflectance are the optical techniques most commonly used in intertidal MPB communities. In this 

work, we have successfully applied laser induced fluorescence (LIF) (chapter 2) to the study of 

vertical migrations of MPB epipelic communities.  

The MPB biomass was estimated non-destructively with LIF by establishing a direct relationship 

between ln-transformed data of peak area (Chl fluorescence emission spectra of MPB communities) 

and the biomass proxies: normalized difference vegetation index (NDVI) and phytobenthos index 

(PI). Surface microalgal biomass accumulation on mud sediments caused changes in the 

characteristics of the fluorescence peak, namely a shift to longer wavelengths of the red emission 

maximum and the increase of the emission shoulder at the far-red region. Using LIF we were able 

to relate the vertical movements of benthic epipelic diatoms to changing irradiance levels. Rapid 

downward diatom movement was observed upon exposure to 1200 μmol photons m–2 s–1, followed 

by upward migration when light levels were reduced to 70 μmol photons m–2 s–1. These results 

confirmed that diatoms exhibit behavioural photoprotection by avoiding photoinhibitory light levels 

(Admiraal, 1984, Kromkamp et al., 1998, Perkins et al., 2001, 2010; Serôdio et al., 2006). The use of 

LIF has advantages over other remote sensing techniques for the study of intertidal MPB because it 

uses its own illumination source to actively excite fluorescence. On the contrary, spectral reflectance 

is a passive method of remote sensing that requires stable and uniform illumination, which is usually 

not the case under overcast and partly cloudy conditions. Results obtained with hand-held LIF 

instruments in higher plants have shown that this technique can be used for remote sensing under 

a diversity of light conditions, including full darkness, at dawn and dusk and under rapidly changing 

light environments (Richards et al., 2003). Recently, LIF was applied to assess the species diversity 
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of macroalgae in communities inhabiting estuarine intertidal areas. The characteristics of LIF 

emission spectra were determined by differences in the main fluorescing pigments - phycoerythrin, 

phycocyanin and chlorophyll a (Chl a) of different macroalgae (Gameiro et al., 2015), allowing 

species sorting.  Likewise, LIF is a promising technique for the medium or long-range remote sensing 

of intertidal MPB communities. 

Imaging-PAM fluorometry (chapter 3) revealed to be a particularly useful tool in determining spatial 

heterogeneity of MPB biomass and photophysiology across the sediment surface. Nevertheless, the 

differences we observed between the results of conventional and Imaging-PAM fluorometry advises 

caution when making quantitative assessments of MPB photosynthetic activities. First, imaging 

systems require higher intensity of measuring light, due the use of CCD cameras that use integration 

times much longer than the time required by photodiodes and phototubes used in conventional 

PAM. Second, the heating effect caused by saturating pulses on the LED array may cause an 

underestimation of ΔF/Fm′ in the imaging systems. Finally, in imaging systems providing 

homogenous high photon irradiances in relatively large areas turned to be a significant technical 

challenge. The level of discrepancy between conventional and imaging systems was particularly 

relevant for MPB of muddy sediments. This can be partially explained by differences in the thickness 

of the photosynthetic layer and in the depth-integration of the fluorescence signal. Additionally, the 

presence of cyanobacteria in MPB assemblages requires caution in the interpretation of the 

fluorescence signals and may render different results with red and blue light excitation 

fluorometers. In fact, whereas in plants, green algae and diatoms fluorescence emission can be 

induced by either red or blue light excitation, in cyanobacteria blue light is mostly ineffective in 

variable fluorescence induction, although some basal (Fo) fluorescence is still observed (Schubert et 

al., 1989), leading to a significant decrease of the measured quantum yield. On one hand, these 

findings highlight the caution needed when interpreting Chl fluorescence data of MPB. On the other 

hand, they contribute to establish the safe limits within which the potential of Imaging-PAM 

techniques to study spatial heterogeneity of photosynthesizing surfaces may be fully explored. 

 

 

 



CHAPTER 7. GENERAL DISCUSSION  

 

124 
 

Impact of the climate change variables “temperature” and “carbon” on the photosynthesis of 

MPB 

Due to climate change, conditions in coastal and estuarine ecosystems are predictable to change 

dramatically. Studies on the effects of climate change on diatom diversity and productivity are 

scarce, especially for benthic habitats, and therefore little is known about the interactive effects of 

climate change variables (increase in temperature and inorganic carbon availability) on the structure 

and productivity of MPB communities. Nevertheless, variations in MPB biomass will impact the 

dynamics of estuarine and coastal habitats and, consequently, understanding the effect of changes 

in temperature and carbon on photosynthesis and on the primary productivity of estuarine 

intertidal MPB communities gains particular relevance.  

There are a few studies on the photosynthetic response of benthic diatoms to short-term changes 

in temperature (e.g. Morris and Kromkamp, 2003; Hancke et al., 2008). Intertidal sediment 

temperature fluctuations occur on long (seasonal) and short (daily and hourly) time scales, 

depending on factors such as meteorological conditions, time of day and tidal inundation. In 

summer, intertidal sediment temperature can easily change 10-15oC during an emersion period, 

reaching values higher than 35oC at midday (Blanchard et al., 1997; Serôdio and Catarino, 1999). In 

our study, (chapter 4) the two MPB communities of the Tagus estuary show increased 

photosynthetic capacities (ETRmax) with temperature in the 15-35oC range and a decrease at 42oC. 

The estimated optimum temperature was between 34 and 35oC and was higher than those 

previously reported for benthic diatom cultures (Morris and Kromkamp, 2003; Salleh and McMinn, 

2011) and MPB suspensions (Blanchard et al., 1997). Photosynthetic efficiencies at limiting 

irradiance (α) of the two studied MPB communities were not affected by temperature in the 15-

35oC range, while decreasing markedly at 42oC. The two studied MPB communities have differences 

in the diatom species composition and in the measured photosynthetic parameters. The Trancão 

MPB community was dominated by smaller diatoms, particularly Navicula cf. phyllepta, whereas the 

Alcochete community showed a more even distribution of small, medium and large-size diatoms 

and was mainly composed by a combination of species of the genera Navicula, Thalassiosira and 

Gyrosigma. The different diatom taxa within the same biofilm may respond differently to 

temperature. The Trancão MPB community had higher photosynthetic capacity (higher ETRmax), was 

photoacclimated to higher irradiances (higher Ek) and had lower photosynthetic efficiency at limiting 
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irradiances (lower α) than Alcochete community. So, the different size class distribution could 

explain the higher maximum photosynthetic rates, where small cells are usually more active due to 

larger surface to volume ratios (Taguchi, 1976). The diatom taxa present in MPB communities can 

exploit the increased temperature in summer low tide emersion periods, increasing MPB 

productivity.  Yet, when a longer-term (11-day) effect of elevated temperature (24°C) was studied 

on a MPB community, a detrimental influence on MPB biomass and photosynthetic performance 

under both control (pH=8.0) and elevated CO2 (pH=7.4) was found (chapter 6). This is in agreement 

with the results obtained by Hicks et al. (2011) using a non-tidal mesocosm system for 7 days, where 

higher temperatures decreased the MPB biomass of a mudflat from the Ythan estuary, in Scotland, 

at three levels of inorganic carbon availability. On the other hand, long-term higher temperature led 

to an increase in the relative abundance of cyanobacteria and caused changes on the relative 

abundance of major benthic diatoms (chapter 6).  

Differences in ETRmax between Trancão and Alcochete MPB may also be related to different carbon 

availabilities at the sampling sites. It has been suggested that DIC limitation may occur in natural 

MPB communities at times of high productivity (Cook and Roy, 2006) but, for the first time, we 

provided a direct experimental evidence of such inorganic carbon limitation (chapter 5). In fact, we 

found a marking contrast on the effect of DIC on MPB suspensions and MPB biofilms. The net 

photosynthetic rate of MPB suspensions reached saturation at a DIC concentration 1-1.5 mM, lower 

than the concentrations found in the interstitial water of the top 5 mm sediment layer (3.53 mM in 

Trancão and 1.87 mM in Alcochete), suggesting the absence of DIC limitation on photosynthesis. 

However, when we added DIC to intact MPB biofilms a different response was achieved. The 

addition of DIC to the two MPB communities of the Tagus estuary caused, in both communities, an 

increase in the photosynthetic capacity, when compared to control, non DIC-enriched MPB, 

demonstrating DIC limitation of MPB photosynthesis. This limitation may be accounted by the 

accumulation of MPB cells at the surface of intertidal muddy sediments during diurnal low tides. In 

fact, during these periods of high photosynthetic activity, most of the MPB biomass is concentrated 

in the top hundreds micrometers (De Brouwer and Stal, 2001; Kelly et al., 2001; Cartaxana et al., 

2011) causing a local depletion of DIC in the photic layer. We also found that the MPB community 

from Alcochete showed lower photosynthetic capacity (rETRmax) and higher photoinhibition than 

Trancão, in control sediment samples, and a more pronounced increase of the photosynthetic 
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electron transport capacity with the addition of DIC. These results suggest a larger limitation by DIC 

in the Alcochete MPB community, which is in accordance with the lower interstitial DIC 

concentration in this location. On the other hand, carbon isotopic discrimination at the Alcochete 

MPB community indicated the presence of active carbon concentrating mechanisms (CCMs). The 

Alcochete samples present more enriched δ13C values (-19.98 ± 0.86), by opposition to the Trancão, 

where δ13C values (-26.77 ± 0.38) can be explained by the higher local DIC concentration and 

reduced CCMs activity. In Alcochete MPB communities dissolved inorganic carbon is more abundant 

and therefore it is unnecessary to activate costly energy consuming mechanisms. The longer-term 

effect of elevated DIC (pH=7.4, T=18°C) had a beneficial effect on MPB biomass (chapter 6). This 

suggests that carbon may have become a limiting resource for the MPB community, as was in fact 

shown in the short-term carbon enrichment experiments.  

There are complex interactions between the effects of elevated temperature and carbon in MPB 

biomass and photosynthetic performance. The studies about climate change variables on MPB 

communities are few (Hicks et al., 2011), so, small-scale experiments in microcosms or mesocosms 

can provide valuable insights on how complex ecosystems will cope with climate change (Benton et 

al., 2007). Nevertheless, there are some limitations in providing realistic interpretation of natural 

ecosystem response using artificial systems. For example, longer-term increased temperature could 

favor selection and growth of high-temperature adapted MPB species that could partially modulate 

the observed negative impact on biomass and productivity.  

In this work (chapter 6), elevated temperatures under both present day and increased CO2 led to a 

reduction of MPB biomass, an increase of cyanophytes and a change in the relative abundance of 

major benthic diatom species. This suggests that the interactive effects of climate change variables 

may have a detrimental impact on the structure and productivity of intertidal MPB, and eventually 

in related ecosystem services. 
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Appendix 1. Experimental life support system (ELSS). Photographs of the flow-through experimental life 
support system (ELSS) used in this study. General view of the ELSS (A); Approximation showing two 
microcosms with the sediment surface cover by MPB and the pipe system for tidal water in and outflow (B). 
For more details see Coelho et al. (2013). 
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Appendix 2. Species composition and relative abundance of microphytobenthic diatoms under control 

and elevated CO2 and temperature. Diatom composition and relative abundance (%, mean ± standard error, 

n=4) of a Tagus estuary intertidal microphytobenthic community at the beginning of the experiment (T0) and 

after 11 days under different temperatures and pH. T 18 °C pH 8.0: Temperature = 18°C, pH = 8.0; T 24°C 

pH 8.0.Temperature = 24°C, pH = 8.0; T 18 °C pH 7.4.Temperature = 18°C, pH = 7.4; T 24°C pH 7.4: 

Temperature = 24°C, pH=7.4. 

Species T0 
T 18ºC  

pH 8.0  

T 18ºC  

pH 7.4 

T 24ºC  

pH 8.0 

T 24ºC  

pH 7.4 

Achnanthes lemmermannii var. obtusa Hustedt   
0.04 (0.04) 

 
  

Achnanthes s.l. sp.1     0.11 (0.11) 

Achnanthes s.l. sp.2  0.04 (0.04)   0.20 (0.13) 

Achnanthidium minutissimum (Kützing) Czarnecki   0.16 (0.16) 0.10 (0.10) 0.05 (0.05) 

Actinocyclus normanii (Gregory) Hustedt 0.08 (0.08) 0.04 (0.04) 0.10 (0.10) 0.16 (0.10) 0.09 (0.09) 

Amphora arenicola Grunow in Cleve   0.04 (0.04)   

Amphora cf. helenensis Giffen     0.05 (0.05) 

Amphora cf. micrometra Giffen  0.13 (0.13) 0.18 (0.18)   

Amphora cf. pediculus (Kützing) Grunow in Schmidt et al. 0.08 (0.08) 0.13 (0.08) 0.10 (0.10) 0.20 (0.11) 0.37 (0.32) 

Amphora cf. subacutiuscula Schoeman 0.31 (0.20) 0.27 (0.14) 0.32 (0.13) 0.72 (0.41) 0.33 (0.22) 

Amphora cf. tenuissima Hustedt    0.43 (0.16) 0.29 (0.16) 

Aulacoseira granulata (Ehrenberg) Simonsen 0.24 (0.24)   0.11 (0.11)  

Aulacoseira islandica (O. Müller) Simonsen   0.12 (0.12)   

Aulacoseira subartica (O. Müller) Haworth    0.10 (0.06)  

Berkeleya rutilans (Trentepohl ex Roth) Grunow    0.05 (0.05)  

Biremis lucens (Hustedt) Sabbe Witkowski & Vyverman  0.09 (0.06)  0.30 (0.17) 0.15 (0.09) 

Catenula adhaerens (Mereschkowsky) Mereschkowsky  0.04 (0.04)  0.24 (0.24) 0.14 (0.14) 

Catenula sp.1    0.05 (0.05) 0.09 (0.09) 

Catenula sp.2     0.09 (0.09) 

Climaconeis fasciculata (Grunow ex Cleve) Cox  0.03 (0.03)   0.09 (0.05) 

Cocconeiopsis breviata (Hustedt) Witkowski. Lange-Bertalot & Metzeltin 0.08 (0.08) 0.06 (0.06)  0.21 (0.09) 0.14 (0.14) 

Cocconeis cf. placentula Ehrenberg   0.04 (0.04) 0.05 (0.05) 0.05 (0.05) 

Cocconeis hauniensis Witkowski emend. Witkowski  0.13 (0.05)  0.14 (0.09) 0.19 (0.19) 

Cocconeis pelta Schmidt   0.04 (0.04) 0.10 (0.10) 0.09 (0.05) 

Cocconeis peltoides Hustedt    0.19 (0.19) 0.14 (0.14) 

Cocconeis scutellum Ehrenberg var. parva (Grunow) Cleve in Van Heurck     0.05 (0.05) 

Coscinodiscus radiatus Ehrenberg   0.05 (0.05)   

Cyclotella atomus Hustedt     0.09 (0.09) 

Cyclotella meneghiniana Kützing 0.08 (0.08) 0.10 (0.06) 0.09 (0.05)  0.14 (0.09) 

Cymatosira belgica Grunow in Van Heurck  0.18 (0.10)   0.56 (0.56) 

Neodelphineis pelagica Takano  0.04 (0.04)    

Dickieia sp.1 0.15 (0.27)     

Diploneis didyma (Ehrenberg) Cleve 0.08 (0.14)  0.06 (0.06)   

Eolimna minima (Grunow in Van Heurck) Lange-Bertalot    0.05 (0.05)  

Fallacia cf. teneroides (Hustedt) Mann     0.09 (0.09) 

Fallacia florinae (Moeller) Witkowski 0.08 (0.13) 0.03 (0.03) 0.04 (0.04) 0.19 (0.13) 0.19 (0.19) 

Fallacia oculiformis (Hustedt) Mann    0.19 (0.13)  

Frustulia interposita (Lewis) De Toni 0.78 (0.58) 1.39 (0.25) 1.51 (0.35) 0.93 (0.29) 1.63 (0.61) 
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Gyrosigma acuminatum (Kützing) Rabenhorst 8.88 (3.72) 5.69 (0.84) 5.63 (0.35) 2.09 (0.47) 3.29 (0.52) 

Gyrosigma fasciola (Ehrenberg) Griffith & Henfrey 0.31 (0.35) 0.04 (0.04) 0.44 (0.24) 0.20 (0.11) 0.18 (0.11) 

Gyrosigma cf. limosum Sterrenburg & Underwood 6.04 (1.12) 1.36 (0.54) 1.42 (0.20) 1.27 (0.30) 2.89 (0.85) 

Gyrosigma scalproides (Rabenhorst) Cleve  0.04 (0.04)    

Gyrosigma sp.1 1.17 (0.81) 1.60 (0.26) 0.73 (0.19) 0.97 (0.35) 0.61 (0.15) 

Halamphora cf. abuensis (Foged) Levkov    0.19 (0.13)  

Halamphora sp.1   0.05 (0.05) 0.05 (0.05) 0.05 (0.05) 

Hippodonta caotica Witkowski. Lange-Bertalot & Metzeltin 0.08 (0.13) 0.07 (0.04)  0.05 (0.05) 0.04 (0.04) 

Luticola mutica (Kützing) Mann.  0.04 (0.04)    

Minidiscus chilensis Rivera in Rivera & Koch 6.53 (3.38) 6.22 (1.25) 5.31 (1.66) 12.64 (2.89) 15.69 (1.34) 

Navicula abscondita Hustedt     0.05 (0.05) 

Navicula cf. aleksandrae Lange-Bertalot. Bogaczewicz-Adamczak & Witkowski 0.08 (0.13)    0.41 (0.15) 

Navicula arenaria Donkin    0.09 (0.09)  

Navicula bozenae Lange-Bertalot. Witkowski & Zgrundo  0.21 (0.21) 0.16 (0.10) 0.23 (0.17) 0.14 (0.09) 

Navicula diserta Hustedt  0.12 (0.08) 0.17 (0.11) 0.05 (0.05) 0.19 (0.13) 

Navicula flagellifera Hustedt    0.05 (0.05)  

Navicula gregaria Donkin m.1 10.98 (0.54) 5.26 (0.51) 5.96 (0.63) 7.21 (1.77) 6.25 (1.30) 

Navicula cf. microdigitoradiata Lange-Bertalot   0.14 (0.14) 0.09 (0.05)  

Navicula cf. mollis (W. Smith) Cleve     0.10 (0.06) 

Navicula paeninsulae Cholnoky  0.04 (0.04)   0.05 (0.05) 

Navicula pargemina Underwood & Yallop 0.15 (0.27) 0.46 (0.16) 0.20 (0.15) 2.14 (0.85) 0.67 (0.53) 

Navicula cf. phyllepta Kützing 8.22 (3.44) 6.20 (0.87) 5.65 (0.87) 12.28 (1.74) 10.67 (2.02) 

Navicula platyventris Meister    0.05 (0.05)  

Navicula ponticula Giffen  0.04 (0.04)    

Navicula salinarum Grunow     0.23 (0.23) 

Navicula cf. salinicola Hustedt 0.16 (0.28)     

Navicula recens (Lange-Bertalot) Lange-Bertalot 0.15 (0.27) 0.06 (0.06) 0.04 (0.04) 0.10 (0.06) 0.05 (0.05) 

Navicula spartinetensis Sullivan & Reimer 37.33 (7.18) 51.66 (2.04) 55.02 (2.04) 23.09 (5.89) 20.85 (3.85) 

Navicula viminoides Giffen     0.23 (0.23) 

Navicula sp.3 0.31 (0.35) 0.50 (0.15) 0.44 (0.20)   

Nitzschia cf. aequorea Hustedt 3.90 (1.45) 6.55 (0.81) 6.85 (2.17) 9.55 (3.79) 10.90 (2.85) 

Nitzschia cf. aurariae Cholnoky 2.35 (1.72) 0.76 (0.31) 0.57 (0.24) 7.58 (3.65) 4.21 (0.85) 

Nitzschia cf. dissipata (Kützing) Grunow 0.93 (0.26)  0.22 (0.17) 0.55 (0.21) 0.44 (0.10) 

Nitzschia cf. distans Gregory 0.08 (0.13) 0.68 (0.26) 0.56 (0.23) 0.05 (0.05) 0.13 (0.13) 

Nitzschia cf. parvula W. Smith non Lewis 0.70 (0.41) 0.14 (0.09) 0.47 (0.27) 0.57 (0.23) 0.66 (0.39) 

Nitzschia frustulum (Kützing) Grunow in Cleve & Grunow 0.23 (0.23) 0.38 (0.19) 0.17 (0.11) 0.58 (0.25) 0.48 (0.18) 

Nitzschia navicularis (Brébisson) Grunow  0.06 (0.06)    

Nitzschia sigma (Kützing) W. Smith 0.23 (0.01) 0.20 (0.08) 0.52 (0.14) 0.34 (0.16) 1.26 (0.50) 

Nitzschia cf. tubicola Grunow in Cleve & Grunow   0.05 (0.05)   

Nitzschia valdestriata Aleem & Hustedt  0.15 (0.11) 0.05 (0.05) 0.29 (0.12) 0.11 (0.11) 

Nitzschia sp.1    0.05 (0.05)  

Nitzschia sp.4 0.31 (0.35)   0.05 (0.05) 0.16 (0.10) 

Nitzschia sp.5  0.23 (0.11) 0.04 (0.04)   

Nitzschia sp.6  0.16 (0.12) 0.32 (0.13) 0.59 (0.29) 0.28 (0.16) 

Nitzschia sp.7    0.05 (0.05)  

Nitzschia sp.8   0.10 (0.06) 0.19 (0.11)  

Nitzschia sp.9     0.05 (0.05) 

Nitzschia sp.10     0.16 (0.16) 

Nitzschia sp.11 0.47 (0.48) 0.13 (0.13)  1.07 (0.36)  
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Nitzschia sp.12  0.21 (0.21) 0.06 (0.06)  0.26 (0.26) 

Opephora guenter-grassii (Witkowski & Lange-Bertalot) Sabbe & Vyverman    0.10 (0.10)  

Opephora sp.1    0.05 (0.05)  

Parlibellus berkeleyi (Kützing) Cox   0.10 (0.06)   

Petrodictyon gemma (Ehrenberg) Mann in Round. Crawford & Mann 0.30 (0.26) 0.36 (0.15) 0.10 (0.10) 0.35 (0.10) 0.05 (0.05) 

Pierrecomperia catenuloides Sabbe. Vyverman & Ribeiro  0.08 (0.08) 0.05 (0.05) 0.09 (0.09)  

Plagiogrammopsis minima (Salah) Sabbe & Witkowski 0.16 (0.28) 0.89 (0.36) 0.57 (0.32) 1.37 (0.33) 2.02 (0.23) 

Plagiotropis vanheurckii Grunow in Van Heurck 3.96 (0.58) 2.12 (0.27) 1.13 (0.18) 0.64 (0.23) 1.23 (0.59) 

Planothidium cf. lemmermannii Hustedt (Morales) 0.08 (0.13)    0.05 (0.05) 

Planothidium delicatulum s.l. (Kützing) Round & Bukhtiyarova m.1  0.08 (0.08) 0.05 (0.05) 0.24 (0.09) 0.29 (0.05) 

Planothidium delicatulum s.l. (Kützing) Round & Bukhtiyarova m.2 0.08 (0.13) 0.13 (0.05) 0.10 (0.06) 0.05 (0.05) 0.14 (0.09) 

Planothidium delicatulum s.l. (Kützing) Round & Bukhtiyarova m.3 0.08 (0.14) 0.04 (0.04)  0.05 (0.05)  

Planothidium deperditum (Giffen) Witkowski. Lange-Bertalot & Metzeltin    0.10 (0.10) 0.05 (0.05) 

Pleurosigma sp.1 0.31 (0.14) 0.32 (0.08) 0.29 (0.05)  0.28 (0.12) 

Psammodictyon panduriforme var. continuum (Grunow) Snoeijs  0.03 (0.03)  0.16 (0.10)  

Reimeria sinuata (Gregory) Kociolek & Stoermer     0.05 (0.05) 

Seminavis sp. 1     0.05 (0.05) 

Staurophora salina (W. Smith) Mereschkowsky 0.38 (0.47) 0.50 (0.20)  0.26 (0.13) 0.46 (0.20) 

Stephanodiscus rotula (Kützing) Hendey 0.08 (0.13)     

Surirella atomus Hustedt 0.24 (0.24) 0.24 (0.10) 0.17 (0.10) 0.74 (0.21) 0.34 (0.10) 

Surirella curvifacies Brun  0.20 (0.11) 0.08 (0.08) 0.14 (0.14)  

Surirella sp.1 0.16 (0.28) 0.06 (0.06)  0.05 (0.05) 0.05 (0.05) 

Thalassiocyclus lucens (Hustedt) Håkansson & Mahood 0.16 (0.28) 0.16 (0.09) 0.05 (0.05) 0.33 (0.20) 0.59 (0.25) 

Thalassiosira angulata (Gregory) Hasle 0.15 (0.26)  0.08 (0.05) 0.10 (0.06) 0.04 (0.04) 

Thalassiosira binata Fryxell 0.08 (0.14)     

Thalassiosira cf. profunda (Hendey) Hasle 0.08 (0.13)    0.04 (0.04) 

Thalassiosira minima Gaarder 0.24 (0.42) 0.14 (0.09) 0.22 (0.08) 0.56 (0.33) 0.35 (0.26) 

Thalassiosira proschkinae Makarova in Makarova. Genkal & Kuzmln 0.62 (0.70) 0.72 (0.47) 0.86 (0.67) 0.83 (0.37) 0.72 (0.27) 

Thalassiosira cf. pseudonana Hasle & Heimdal 1.24 (0.17) 1.75 (0.20) 1.92 (0.65) 4.93 (1.44) 5.89 (2.47) 

Thalassiosira sp.1 0.08 (0.13)     

Thalassiosira sp.2    0.05 (0.05)  

Tryblionella apiculata Gregory  0.17 (0.06)   0.14 (0.09) 

 

 

 


