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ABSTRACT

Understanding the genetic basis of adaptive traits and how natural populations adapt to

their environment, are fundamental problems in evolutionary biology. Colour polymorphisms are

good  systems  in  which  these  issues  can  be  addressed.  This  work  exploits  the  adaptive

significance of the dorsal colour polymorphism in Philaenus spumarius and describes the efforts

to identify genomic region(s) linked to the dorsal colour variation in this species. It also involves

the  investigation  of  the  evolutionary  pattern  of  P. spumarius.  The  phylogeographic  results

showed that main demographic and evolutionary events for the European populations seem to

have occurred during Pleistocene, probably as a consequence of the main climatic oscillations

that characterised this period. Evidence of recent gene-flow among Mediterranean peninsulas, as

well as a close relationship between Iberia and North Africa, a probable British origin for the

populations of the Azores and New Zealand, and indication that both western and north-eastern

Europe colonised North America, were also found. Captivity experiments, testing  the adaptive

function of  P. spumarius' dorsal colour polymorphism, indicated  a  higher longevity, a higher

number  of  oviposition  events,  and  a  higher  number  of  eggs  laid  for  trilineatus than  for

marginellus and typicus.  A total of 1,837 genomic markers (SNPs) and 928 loci were obtained

through RAD sequencing for 33 individuals of three colour phenotypes (trilineatus, marginellus

and  typicus), and a  genome wide association study performed to identify  regions  related  to

dorsal  colour  variation.  Single  and  multi-association  analyses  identified  a  total  of  60  SNPs

associated with dorsal colour phenotypes but none of these SNPs showed homology with colour

genes  described  in  other  insect  species.  A stronger  differentiation  of  the  trilineatus colour

phenotype was also found with these markers. New genomic and transcriptomic resources were

developed,  constituting  important  tools  and  a  basis  for  future  research  in  this  species.  The

resources correspond to a genome draft (25% of the total estimated genome (5.3 Gb)) and to an

81.4 Mb transcriptome assembly. The analysis of the candidate gene yellow found no association

with  dorsal  colour  phenotypes.  Although  suggesting  that  yellow is  not  involved  in  colour

variation in  P. spumarius,  a possible effect of this  gene  can not be totally excluded without

further  analyses.  Phylogenetic  analyses  found  contrasting  patterns  between  yellow and  the

neutral  ITS2, indicating that, contrary to  ITS2, yellow is conserved within the genus. A higher

haplotype and nucleotide diversity was observed for  P. spumarius. This could be related to a

higher sample size or to the different ecology of the species. The present thesis showed that P.

spumarius constitutes a potential good model system to study adaptation and the evolutionary

mechanisms involved in the maintenance of polymorphisms.
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RESUMO

Compreender a base genética de características adaptativas e o modo como as populações

naturais evoluem e se adaptam ao seu ambiente é fundamental e constitui um dos temas mais

interessantes para a Biologia Evolutiva. Os polimorfismos de coloração são bastante comuns em

animais  e  plantas  e,  quando  combinados  com  dados  genéticos  e  ecológicos,  podem  ser

excelentes sistemas para estudar  não só o processo de adaptação mas também as alterações

moleculares  subjacentes  à  variação  fenotípica. O  presente  trabalho  teve  como  principais

objetivos  a  exploração  da  importância  adaptativa  de  um  polimorfismo  de  coloração  e  a

identificação de genes ou regiões genómicas potencialmente envolvidos na variação de cor. O

organismo  escolhido  para  este  estudo  foi  a  espécie  Philaenus  spumarius (L.)  (Hemiptera,

Aphrophoridae),  vulgarmente  conhecida  como cigarrinha-da-espuma. Este  inseto,  que  se

encontra amplamente distribuído pela região Holártica, apresenta vários padrões de coloração da

zona  dorsal  do  corpo,  com 16  fenótipos  melânicos  e  não  melânicos  descritos,  e  cuja  base

genética e significado adaptativo permanecem por investigar.

Para melhor compreender o processo de adaptação e, neste caso, para melhor estudar a

base  molecular  que  está  por  trás  do  polimorfismo  dorsal  de  coloração  de  P. spumarius, é

importante perceber a história evolutiva da espécie. Ao comparar-se o padrão de genes neutrais

com  o  padrão  de  genes  adaptativos,  os  efeitos  da  história  evolutiva  e/ou  demografia  são

passíveis  de  ser  distinguidos  dos  efeitos  da  seleção natural.  Embora  existam vários  estudos

genéticos  sobre a  biogeografia  da  espécie,  estes  focam-se,  maioritariamente,  em populações

Europeias  e  carecem  de  estimativas  de  tempo  para  os  principais  eventos  evolutivos  e

demográficos.  Assim,  uma  primeira  fase  deste  trabalho  envolveu  a  investigação  do  padrão

biogeográfico da cigarrinha-da-espuma, usando marcadores mitocondriais (Citocromo Oxidase I,

Citocromo Oxidase II e Citocromo b) e nucleares (“Elongation Factor 1α”). Pela primeira vez

obtiveram-se  estimativas  de  tempo  para  os  principais  eventos  demográficos  e  evolutivos

ocorridos para esta espécie nas penínsulas Mediterrânicas e, analisaram-se os seus padrões de

colonização fora da Eurasia,  nomeadamente,  no norte  de África e na América do norte.  Os

resultados  indicam que  a  divergência  entre  as  populações  de  P. spumarius é  recente,  tendo

ocorrido  no  Pleistoceno  Médio/Superior,  e  está  muito  provavelmente  ligada  às  alterações

climáticas do período Quaternário. Os marcadores mitocondriais mostram que terá ocorrido uma

primeira separação da cigarrinha-da-espuma em duas grandes linhagens: a linhagem “ocidental”,

na região Mediterrânica, e a linhagem “oriental”, na zona da Anatolia/Cáucaso. Posteriormente,

ter-se-á  dado  a  diferenciação  da  linhagem  “ocidental”  em  duas  sub-linhagens:  a  linhagem
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“Mediterrâneo-ocidental” na Península Ibérica e a linhagem “Mediterrâneo-oriental” localizada

na região dos Balcãs. Este padrão, no entanto, difere do padrão nuclear, o que sugere a existência

de cruzamentos e/ou separação incompleta de linhagens. Os eventos de divergência que tiveram

lugar  nas  várias  penínsulas  Mediterrânicas  (refúgios  a  sul)  terão,  provavelmente,  ocorrido

durante  os  períodos  glaciares  do  Pleistoceno.  Após  esses  períodos,  as  populações  de  P.

spumarius ter-se-ão expandido em direcção ao norte, a partir da Península Ibérica para o centro e

oeste da Europa, e da Anatolia/Cáucaso (ou zonas mais a este) para o leste e centro da Europa.

Este estudo também detetou a existência de fluxo genético entre as penínsulas Mediterrânicas e

uma relação próxima entre  as  populações  Ibéricas e  do norte  de África.  As populações  dos

Açores  e  Nova Zelândia  tiveram muito  provavelmente  uma origem a  partir  das  populações

Britânicas e a colonisação da América do norte parece ter sido feita por indivíduos pertencentes

não só à linhagem ocidental mas também pertencentes à linhagem presente no norte da Europa.

 Para tentar perceber porque é que o polimorfismo de cor se mantém nas populações

naturais de P. spumarius e qual a sua importância adaptativa, foram realizadas experiências em

cativeiro nas quais se testaram diferenças na sobrevivência,  sucesso reprodutor e duração de

maturação dos ovos em três fenótipos de cor (typicus, trilineatus e marginellus). Curiosamente,

foi observada uma maior longevidade para a forma trilineatus, assim como um maior número de

eventos de oviposição e maior número total de ovos. O estudo sugere que, na manutenção deste

polimorfismo poderão estar envolvidos vários factores e que as diferenças observadas entre o

trilineatus e  os  restantes  fenótipos  são,  possivelmente,  uma  maneira  destes  indíviduos

compensarem uma maior taxa de ataque por parasitóides e/ou uma maior refletância da radiação

solar, ambos reportados em estudos anteriores. 

No presente  trabalho foi  investigada  a  base  genética  deste  polimorfismo.  O objetivo

consistiu em tentar identificar uma ou várias regiões genómicas associadas à variação do padrão

de coloração dorsal em  P. spumarius. Duas abordagens foram usadas. A primeira abordagem

implicou  um  estudo  de  associação  no  qual  se  usaram  marcadores  (“Single  Nucleotide

Polymorphisms  (SNPs))  distribuídos  ao  longo  do  genoma,  obtidos  através  da  técnica

“Restriction  Associated  DNA (RAD)  sequencing”.  Com  este  método  de  sequenciação,  um

conjunto de 1837 marcadores foi obtido para 33 indivíduos e, associações com três padrões de

cor (typicus, trilineatus e marginellus), foram testadas. As análises identificaram um total de 60

SNPs associados com o padrão de coloração dorsal e revelaram uma maior diferenciação dos

indivíduos  trilineatus.  Os  indivíduos  deste  morfotipo também  se  revelaram  os  mais

diferenciados em várias características fisiológicas e de história de vida testadas nas experiências
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de  cativeiro.  Não  foi  encontrada  homologia  entre  as  regiões  associadas  e  genes  da  cor  já

descritos para outras espécies. Os dados sugerem que  loci de grande efeito, correspondendo a

várias regiões do genoma, podem estar envolvidos na variação encontrada entre os três fenótipos

investigados.  Para além disso,  indicam que uma arquitetura genética  complexa pode estar  a

controlar quer a variação dos padrões de cor quer características da história de vida e que, a

selecção natural pode não estar a atuar diretamente na cor. Para ajudar na caracterização das

regiões  genómicas  associadas  à  variação  dos  padrões  de  coloração,  o  genoma  parcial,

correspondendo a 25% dos 5.3 Gb estimados,  e o transcriptoma de  P. spumarius (81.4 Mb)

foram sequenciados e “assemblados”. Dos SNPs associados com a cor, 35% alinharam com o

genoma  e  10%  com  o  transcriptoma  indicando  que,  caso  o  transcriptoma  esteja  bem

representado, a maioria dos SNPs associados está em regiões não codificantes.

Uma abordagem de genes candidatos foi igualmente usada para investigar genes  que

estão envolvidos na coloração em outros insectos, e que podem potencialmente contribuir para o

padrão  de  coloração  em  P. spumarius.  Os  padrões  de  cor  em  P. spumarius variam  desde

totalmente melânicos a totalmente pálidos. Em Drosophila, o gene yellow é um gene envolvido

na síntese de melanina  e, como tal, constitui um potencial candidato para a variação dos padrões

de cor em  P. spumarius e nas restantes espécies do género, também elas polimórficas para o

padrão de coloração. Uma possível associação entre o yellow e os morfotipos typicus, trilineatus

e marginellus foi testada mas nenhuma relação foi encontrada, sugerindo que este gene pode não

estar diretamente envolvido na variação de cor nesta espécie. No entanto, como só uma parte do

gene  foi  investigada,  o  seu  envolvimento  não  pode  ser  totalmente  excluído.  A  análise

filogenética envolvendo o  P. spumarius e algumas espécies próximas detetou a existência de

padrões contrastantes entre este gene e o gene nuclear Internal Transcribed Spacer 2 (ITS2). Isto

indica que,  contrariamente ao  ITS2, que separa as espécies  em dois grandes grupos,  o gene

yellow é conservado dentro do género.  Para o  yellow foi encontrado o mesmo haplotipo em

quase todas as espécies de Philaenus excepto para o P. maghresignus e  P. arslani. Uma maior

diversidade  genética  foi  observada  para  o  P. spumarius,  podendo  ser  resultado da  diferente

ecologia da espécie. Este estudo demonstrou que, apesar de a aplicação de uma abordagem de

genes candidatos, numa espécie como o P. spumarius, ser difícil, é importante investigar outros

genes que possam estar envolvidos na determinação deste polimorfismo.

A presente tese mostrou que a cigarrinha-da-espuma, P. spumarius, é potencialmente um

bom modelo para estudar o processo de adaptação e os mecanismos evolutivos envolvidos na

manutenção dos polimorfismos nas populações naturais.
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CHAPTER 1

General Introduction
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1. GENERAL INTRODUCTION

1.1 A view of the adaptation process

The idea that natural selection plays an important role in the process of adaptation was

first proposed by Charles Darwin and Alfred Wallace (1858) and later on Darwin's book On the

Origins  of  Species  by Means  of  Natural  Selection  (1859).  Understanding how populations

adapt to their environment, and the genetic basis underlying this process are challenging and

central problems in evolutionary biology. In the past few years, the scientific knowledge on this

area  has  improved,  mainly  due  to  the  developing  of  new  sequencing  technologies  and

molecular  tools.  Long-standing questions  about  the genetic  mechanisms behind phenotypic

evolution are now beginning to be addressed.

Does adaptive evolution implicate small or major effect genes/loci? Are there many or

few genes/loci involved?  The earlier view of genetic basis of adaptation defended by Fisher

(Fisher, 1930) was based on the idea that phenotypic evolution and adaptation of organisms to

their environment occurred through accumulation of small effect mutations arising in a large

number of  genes  with additive effects  (reviewed in Orr  & Coyne, 1992).  Empirical  work,

however, applying either Quantitative Trait  Locus (QTL) analysis  or experimentally testing

evolution in microbes put this idea into question (Orr, 2005). Several studies suggested the

involvement of large effect loci other than small effect loci, for example, on the evolution of

body armour or pelvic structure in  threespine stickleback  Gasterosteus aculeatus  (Shapiro  et

al., 2006; Chan et al., 2010), on the loss of larval trichomes in Drosophila species (Sucena &

Stern,  2000;  McGregor  et  al.,  2007),  and  on  the  colour  in  mice  (Hoekstra  et  al.,  2005).

Therefore, these studies indicate that adaptive change may also implicate mutations of large

effect and not only small ones as previous accepted. However, how frequent large effect loci

are in relation to polygenic traits is still an open question.

Another interesting question  is related with the source of adaptive genetic variation.

There is evidence that adaptation of populations to a novel or changing environments can occur

either by selection of beneficial alleles from standing genetic variation or by selection of new

mutations (Barrett & Schluter, 2008). Depending on the source of adaptive variation, different

evolutionary pathways and distinct genetic outcomes are expected. The importance of de novo

mutations  was  demonstrated,  for  example,  on insect  adaptation  to  chemical  pesticides  and

herbicides (Walsh et al., 2001; Weill  et al., 2004) and on the evolution of microorganisms in

response to a change in the environmental conditions (Elena & Lenski, 2003; Burke, 2012). On

the other hand, recent studies on ecologically important genes of the oldfield mice Peromyscus
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polionotus (Steiner et al., 2007) and of threespine stickleback G. aculeatus (Jones et al., 2012)

indicated that standing genetic variation plays an important role in facilitating rapid adaptation

to novel environments. Besides, the fixation of beneficial alleles with small phenotypic effects

and the spread of recessive alleles is more likely when adaptation relies on standing variation

other than on de novo mutations (Barrett & Schluter, 2008). It was also suggested that adaptive

alleles  transmitted  from one species  to  another  by  interbreeding or  introgression  (adaptive

introgression), can be an alternative source for adaptation (Hedrick, 2013).

The relative importance of coding and regulatory changes in phenotypic evolution has

also been a target of interest in evolutionary biology. Changes in protein-coding sequences

were commonly thought to be the primary source for adaptive divergence.  Examples include

temperate climate adaptation in Drosophila melanogaster that was found to be associated with

de novo mutations in sequences of several metabolic genes  (Sezgin  et al., 2004), and beach

mice's colour variation which is linked to a mutation in the coding region of the melanocortin-

1-receptor gene (Mc1r) (Steiner  et al., 2007).  However, over the last few years, it has been

suggested  that  mutations  in  regulatory  elements  are  more  likely  to  contribute  to  adaptive

divergence.  This  is  because  changes  in  regulatory  regions  can  produce  tissue-specific

expression patterns while avoiding deleterious pleiotropic effects (Wittkopp & Kalay, 2011;

Olson-Manning et al., 2012).

Adaptive evolution can also result from mutations involving either a loss of function

(e.g., reduced armor in threespine stickleback fish (Chan et al., 2010), and lack of pigment in

cavefish (Protas et al., 2006)) or a gain of a new function (e.g. adaptive variation in beach mice

(Steiner  et  al.,  2007),  and  wing patterns  variation  in  butterflies  (Martin  et  al.,  2014)).  In

Drosophila, regulatory changes have been shown to be involved in the loss of trichomes on the

larval cuticle (Sucena & Stern, 2000; McGregor et al., 2007), in the gain of melanic wing spots

(Wittkopp  et  al.,  2002a;  Gompel  et  al.,  2005)  and  in  changes  in  abdominal  pigmentation

(Rogers et al., 2013).

Alternatively, populations can respond to environmental change through plasticity, that

is, through phenotypic changes that do not depend on genetic change. Phenotypic plasticity

may facilitate rapid and effective response to a changing environment such as the introduction

of a novel predator (e.g. Daphnia melanica, Scoville & Pfrender, 2010) or climate change (e.g.

the great tit  Parus major, Charmantier et al.,  2008). Besides it could be a good option for

species where adaptive change is slow, as result of their long generation times (Chevin et al.,

2010; Vander Wal  et al., 2012). Plasticity may be important in the short term but, owing to

fitness  costs,  adaptive  genetic  changes  will  still  be  essential,  especially  when species  face
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persistent environmental changes that overcome their capability to respond through phenotypic

plasticity (Anderson et al., 2012).

To disentangle evolutionary mechanisms underlying adaptation it is also important to

understand how alleles at various loci interact (epistatic effects), the degree to which variation

in a particular gene affects multiple traits (pleiotropy), and the possible interactions between

genotype and environment (Radwan & Babik, 2012).

In most cases, addressing these questions has been challenging, mainly because many

adaptive traits are quantitative and do not have a simple genetic basis. Colour patterns, in turn,

are  a source of enduring fascination for evolutionary biologists. They are  very conspicuous

(normally a discrete trait), in many cases they have a simple genetic basis, which make them

easily discernible to the human eye (e.g flower colour polymorphism in  Ipomoea purpurea,

Zufall & Rausher, 2003).

1.2 Colour polymorphisms and the study of adaptation

Colour  polymorphisms  are  usually  defined as  the  presence  of  two or  more distinct

colour  phenotypes,  genetically  determined,  in  a  temporary  or  permanent  balance  within  a

single interbreeding population, the rarest of which being too frequent to be solely the result of

recurrent mutation (Huxley, 1955).  In balanced polymorphisms, the frequencies of the colour

phenotypes tend to be stable over long time periods while in transient polymorphisms, the

phenotypes  frequencies  do  not  remain  in  equilibrium  over  extended  periods  (Oxford  &

Gillespie, 2001). By acting as a visual/warning signal, used for example in mate choice or in

predator avoidance, or by being involved in the thermoregulation, colour patterns may affect

the fitness of individuals (Forsman et al., 2008). Colour patterns, namely the melanic, also play

a role in immune response (Wilson et al., 2001), and in wound healing and cuticular hardening

(Sugumaran, 2009). Besides, when interacting with other physiological and/or ecological traits,

colour polymorphisms can act as camouflage (having a protective role) or influence the habitat

choice, the dispersal capability, the distribution ranges or the adaptation to a changing or novel

environment, thus influencing the ecological success and evolutionary dynamics of populations

and species (Lozier et al., 2016). 

Therefore, colour polymorphisms are an extraordinary system for studying the process

of adaptation and the micro-evolutionary forces maintaining the genetic variation underlying

phenotypic traits (Gray & McKinnon, 2007). Several mechanisms are suggested to be involved

in  the  maintenance  of  colour  variation  in  natural  populations  (Gray  & McKinnon,  2007).
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Colour  patterns  can  be  maintained  through  negative  frequency-dependent  selection,  where

there is an advantage of the rare phenotypes over the common ones, resulting from processes

such  as  predation  or  sexual  selection  (Ayala  &  Campbell,  1974;  Punzalan et  al., 2005;

Svensson et al., 2005; Kusche & Meyer 2014). The maintenance of colour polymorphisms in

natural  populations  can  also  result  from  heterozygote  advantage,  where  heterozygous

individuals have higher fitness than homozygous individuals (Vercken et al., 2010). If different

populations are  subjected to different  environmental conditions  that favour different colour

morphs, the polymorphism may be maintained due to an exchange of migrants, a mechanism

called divergent selection with gene-flow (Jones et al., 1977; Oxford 1985, 2005; Hoesktra et

al., 2004; Comeault  et al., 2015).  There are also cases in which different colour phenotypes

result in almost the same fitness values, explaining the maintenance of the polymorphism in

some species (Roulin  et al., 2003).  Colour variation is found in many animals and in plants,

and  investigation in  this  area  have  contributed  to  our  understanding  of  key  evolutionary

processes at both population and species levels (see Bond 2007 for references). In vertebrates,

there are several studies on the adaptive significance of colour polymorphisms in fishes (e.g.

Munday  et al., 2003), amphibians (e.g.  Hoffman & Blouin, 2000), reptiles (e.g. Perez i de

Lanuza  et al., 2013), birds (e.g. Roulin, 2004), and mammals (e.g. Hoekstra  et al., 2005). In

invertebrates, the evolution of colour variation was exploited, for example, in land snails (Jones

et  al.,  1977;  Ożgo,  2012),  spiders  (Oxford  & Shaw, 1986;  Oxford  & Gillespie,  1996a,b),

grasshoppers (Tsurui  et al., 2010), butterflies (Brown & Benson, 1974; Bishop  et al., 1978;

Nijhout, 2003) and ladybirds (Michie et al., 2010). 

1.3 Genetic basis of colour variation

The  investigation  of  colour  patterns,  because  they  are  conspicuous  and  easy  to

characterise, have greatly contributed to our understanding of the genetic mechanisms behind

the maintenance  of  phenotypic  variation and their  role  in  the  adaptation  process.  In  many

species,  colour variation has a simple Mendelian inheritance,  usually involving alleles at  a

single  locus.  That  is  the  case  of  the  garden  pea  plant  Pisum  sativum,  used  in  Mendel's

experiments, whose flower colour variation was found to be controlled by a single loci (A)

(Hellens et al., 2010). Another example is the pea aphid Acyrthosiphon pisum, which has two

described morphs found to be controlled by a single autosomal locus with two alleles (P and p)

(Caillaud & Losey, 2010). The presence or absence of yellow carotenoid pigments in the petals

of pink-flowered  Mimulus lewisii  and its red-flowered sister species  Mimulus cardinalis  also
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involves a single major locus (YUP) (Bradshaw & Schemske, 2003).

More complex genetic architectures, often involving two or more interacting loci of

large effect, have been reported for numerous species as well. Steiner et al. (2007) found that

differences in colour pattern of two sub-species of P. polionotus mice are associated with three

loci, two of large and one of small effect. Similarly, loci with large phenotypic effects affecting

adaptive colour variation were found in Timema cristinae stick insects (Comeault et al., 2014).

A small number of major loci controlling colour pattern have been identified also in

Heliconius species (Jiggins & McMillan, 1997; Joron et al., 2006a). In Heliconius melpomene,

a  cluster  of  three  tightly  linked  (HmN,  HmYb  and  HmSb)  and  other  unlinked  loci  are

associated with distinct wing colour pattern elements in this species (Joron et al., 2006b). On

the other hand, in its related species  Heliconius numata, colour variation is controlled by a

single locus  P, acting as a  supergene (Joron  et al. 1999, 2011).  In  Papilio species, the wing

pattern phenotype was also found to be controlled by a supergene (Clarke & Sheppard, 1972;

Nijhout, 2003), and Kunte et al. (2014) found that a single gene, doublesex, with closely linked

mutations, controls the supergene mimicry in Papilio polytes.

In the early 1970s, supergenes were defined as “coadapted combinations of several or

many genes locked in inverted sections of chromosomes and therefore inherited as single units”

(Dobzhansky, 1970). A more recent and integrated view defines a  supergene as a group of

“multiple linked functional genetic elements that allows switching between discrete, complex

phenotypes  maintained  in  a  stable  local  polymorphism”  (Thompson  &  Jiggins,  2014).

Supergenes are  normally  maintained  due  to reduced  recombination  resulting  from  either

chromosomal rearrangements (e.g. inversions) or selection of co-adapted loci with epistatic or

pleiotropic effects (Thompson & Jiggins, 2014). In the Hawaiian happy-face spider Theridion

grallantor,  the  genetic  control  of  colour  pattern  polymorphism  involving  abdomen  and

carapace was found to differ considerably between Maui (Oxford & Gillespie,  1996a) and

Hawaiian populations (Oxford & Gillespie, 1996b). If a supergene may be controlling colour

variation  on  Maui  population,  disruptive  events  like  recombination  and  chromosomal

rearrangements  could  have  unlinked  the  two  loci  controlling  colour  pattern  on  Hawaiian

populations  (Oxford & Gillespie,  2001).  Evidence that  balanced polymorphisms can  result

from tight genetic linkage between multiple functional loci has been shown for birds (Tuttle et

al., 2016) and plants (see examples in Schwander et al., 2014) as well. Also in the land snails

Cepaea hortensis  and  Cepaea nemoralis,  loci  controlling variation in  shell  colour  (C)  and

banding patterns (B) are known to be inherited together as a supergene (Jones et al., 1977). A

recent  study  on  the C.  nemoralis' polymorphism  identified  a  set  of  RAD (restricted  site-
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associated DNA) markers linked to this species' supergene, and obtained a genetic map for the

region, thus contributing for further research on the identity of the  supergene's loci and the

evolution and maintenance of Cepaea's polymorphism (Richards et al., 2013).

The  genetic  basis  of  adaptive  colour  variation  has  also  been  widely  studied  in

Drosophila species (Pool & Aquadro, 2007). 

Recent  advances  has  been  made  in  the  identification  of  functional  or  regulatory

region(s)  responsible  for  colour  pattern  variation.  The  following  section  present  a  brief

description of the several colour genes already characterised in some species.

1.4 Colour genes for pigmentation variation

Pigmentation studies in mammals and other vertebrates have identified over 100 genes

involved in colour variation (Hoekstra, 2006; Mills & Paterson, 2009) and have shown that the

melanin pathway is highly conserved across vertebrates (Hubbard et al., 2010). Most of those

genes was identified through candidate gene and QTL mapping approaches which proved very

successful in identifying the molecular basis underlying adaptive variation (Hoekstra, 2006;

Takeda & Matsuoka, 2008). The  Mc1r is one of the colour genes most studied but  there are

other genes responsible for colouration patterns in vertebrates (Protas & Patel, 2008; Bourgeois

et al., 2016). This gene is involved in melanin synthesis, and several different mutations in

Mc1r were found to be responsible for adaptive colour variation in the beach mice (Hoesktra et

al., 2006), in lizards (Rosenblum et al., 2004; Nunes et al., 2011) and also in birds (Baião et

al., 2007). These studies have contributed to our understanding of the genetic basis of adaptive

traits, specifically the adaptive significance of colour pattern variation in wild populations.

Unlike vertebrates, the molecular mechanisms underlying insect melanisation patterns

are still poorly understood, but several genes and pathways have already been identified to be

involved in colouration and pigmentation, mainly in Drosophila and some Lepidoptera species.

Genetic crosses, the construction of genomic and transcriptomic libraries (BAC, UAS, EST),

linkage maps,  analysis  of  expression,  association  tests  and candidate  gene  approaches,  are

some of the techniques that have been used to identify and locate genes/loci controlling colour

variation in these species (e.g. Drosophila, see True et al., 1999, 2005; Wittkopp et al., 2002a

and  Heliconius butterflies,  see Baxter  et  al.,  2009).  Genome and transcriptome sequencing

technologies have also contributed to the identification of colour gene/loci (e.g.  Heliconius

butterflies, Nadeau et al., 2016).

The  melanin  synthesis  process  in  Drosophila (Wittkopp  et  al.,  2003)  involves  the
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conversion of tyrosine to DOPA. This reaction is catalysed by the tyrosine hydroxylase (TH),

encoded by the  pale gene (True  et al., 1999). DOPA is subsequently transformed into either

DOPA-melanin  (black  melanin)  or  dopamine-melanin  (brown  melanin).  The  formation  of

DOPA-melanin is catalysed by phenoloxidase (PO) and by members of the yellow gene family

(Wittkopp  et  al.,  2002b).  On the other  hand, conversion from DOPA to dopamine-melanin

involves the transformation of DOPA into dopamine by DOPA decarboxilase, which is encoded

by  the  Ddc gene,  and  subsequently  into  dopamine-melanin  by  PO.  Dopamine  is  also  the

precursor  of  light  pigments,  yellow  sclerotin  and  colourless  or  transparent  sclerotin.  The

enzyme NBAD (N-b-alanyl dopamine) synthase, a product of the ebony gene (Wittkopp et al.,

2002a),  can  convert  dopamine to  NBAD, which  is  then  used in  the  production  of  yellow

sclerotin.  However, this  reaction  can  be reverted,  and some NBAD can be  converted  into

dopamine again by an NBAD hydrolase that is thought to be encoded by the tan gene (True et

al.,  2005).  Besides,  a  family  of  arylalkylamine-N-acetyl  transferases  (aaNATs)  can  also

converts  dopamine  to  N-acetyl  dopamine,  which  serves  as  a  precursor  for  colourless  or

transparent sclerotin.

Colour genes already characterised in Drosophila can be divided into two groups. There

are the  regulatory genes (e.g  doublesex,  Abdominal-B,  wingless, decapentaplegic,  engrailed,

optomotor-blind and bric-a-brac) that control the distribution of pigments in space and time,

and the structural genes that are directly involved in the synthesis of melanin based pigments

(see  Wittkopp  et  al.,  2003;  Wittkopp  & Beldade,  2009  for  a  review).  Three  of  the  most

interesting structural genes are yellow, ebony and tan. The yellow gene promotes the formation

of black melanin (Wittkopp et al., 2002a), ebony is responsible for yellow sclerotin production

(Wittkopp et al., 2002a) while tan induces the brown pigmentation by catalysing ebony reverse

reaction (True et al., 2005; Wittkopp et al., 2009). Evolutionary changes in regulatory elements

have been demonstrated to alter the expression of  yellow and  ebony pigmentation genes and

consequentially  to  cause  differences  in  pigmentation  pattern  in  Drosophila  melanogaster

(Wittkopp et al., 2002a). Cis-regulatory change at the yellow gene is involved in the evolution

of male-specific wing pigmentation spot in  Drosophila biarmipes (Gompel  et al., 2005). In

another study, regulation of yellow was found to contribute to divergent pigmentation patterns

in  three  distantly  related  drosophilids  (D.  melanogaster,  Drosophila  subobscura,  and

Drosophila  virilis)  (Wittkopp  et  al.,  2002b).  Moreover,  Wittkopp  et  al. (2009)  found  that

pigmentation differences within and between Drosophila species are caused in part by alleles

of the  tan gene, that share non-coding changes, and by changes in alleles of the  ebony gene.

These changes appear to rely on standing genetic variation in a common ancestor.
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yellow and  ebony are also involved in larval colour pattern in the silk worm Bombyx

mori (Futahashi  et  al., 2008).  In  Papilio spp. wing  colour  variation  is  controlled  by  the

regulatory genes doublesex and invected/engrailed (Clark et al., 2008; Kunte et al., 2014). The

Distal-less gene is linked to variation in eyespots size in  Bicyclus anynana (Beldade  et al.,

2002). Antennepedia,  invected/engrailed,  spalt and notch are also involved in eyespot pattern

in B. anynana and in other nymphalid butterflies (Brunetti et al., 2001; Oliver et al., 2012).

Novel and unexpected genes were found to control wing colour variation in Heliconius

species.  Cortex  gene, a member of a conserved cell cycle regulator family, appears to have

adopted  a  novel  function  controlling  colour  pattern  in  Heliconius and  probably  across  the

Lepidoptera (Nadeau  et al., 2016). In the peppered moth  Biston betularia, an insertion of a

tranposable element into the gene  cortex is  responsible for the melanisation pattern in this

species (Hof et al., 2016). Two distinct cis-regulatory loci (Wallbank et al., 2016) regulate the

expression of the transcription factor  optix, which in turn is associated with red wing pattern

variation across Heliconius (Reed et al., 2011).

Candidate gene approach has been a very common method to study the genetic basis of

adaptive colour variation but other methodologies, including genomic approaches,  have been

applied to a growing number of species.

1.5 From genetics to genomics

Not long ago, due to technological and cost constraints, investigating the evolutionary

history  of  populations  and  species,  establishing  genotype-phenotype  associations,  mapping

adaptive loci or identifying gene function, was limited not only to a few organisms but also to

narrow  regions  of  the  genome.  However,  the  emergence  and  advances  in  sequencing

technologies  (next-generation  sequencing,  NGS)  over  the  last  decade,  and  the  consequent

development of population genomics has opened a new and exciting era in the area of Biology

(Ellegren,  2014).  Scientists  have  now  the  capability  to  sample  the  entire  genome  and  to

generate huge amounts of genomic data at relatively low cost and less time consuming. Studies

are now possible  on a  wide  range of species for  which,  in  some cases,  there is  extensive

knowledge of ecological and evolutionary history, but few genomic resources (Amores et al.,

2011; Baxter  et al., 2011; Rowe  et al., 2011;  Wagner  et al., 2013). This unlimited access to

genome sequences from a multitude of species has brought the field of evolutionary research to

a level where relevant evolutionary processes, including the genetic basis of adaptation, can

now be investigated from a whole-genome perspective, and the effects of forces acting on the
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entire genome distinguished from those influencing only particular loci (Black  et al., 2001;

Stinchcombe & Hoekstra, 2008). In the past few years, the amount of genome sequences that

became available in public databases has increased. In the National Center for Biotechnology

Information  (NCBI;  http://www.ncbi.nlm.nih.gov)  (April  2016),  for  example,  information

about genome sequence assemblies is listed for 3,002 eukaryotes and most of them represent

non-model species. The idea of getting whole-genome sequences from any organism is thus

very promising. However, for some species, particularly those with large genome sizes, whole-

genome  sequencing  is  still  difficult  and  extremely  expensive.  In  these  cases,  reduced-

complexity methodologies are, sometimes, the best approach. By allowing to sequence only a

targeted  fraction  of  the  genome,  they  have  been  used  to  generate  markers  genome-wide

(Narum et al., 2013). Restricted site-associated DNA sequencing (RADseq) method (Baird et

al. 2008) is a reduced complexity method of sampling that allows to increase the number and

type of molecular  markers,  reduce the costs  and increase the speed analyses.  This  method

proved to be suitable for genetic analysis, including genotype-phenotype association mapping,

phylogeography and population genomics. It is also useful in organisms lacking a reference

genome or with complex histories, and in studies where a complete sequence genome is not

always possible or suitable (Davey & Blaxter 2010;  Hohenlohe  et al., 2010;  Amores  et al.,

2011; Baxter et al., 2011;  Davey et al., 2011; Rowe et al., 2011; Hohenlohe et al., 2011, 2013).

Transcriptome sequencing is an efficient way to obtain functional data for non-model

organisms  or  for  those  with  genome  characteristics  incompatible  with  whole  genome

sequencing.  This  technique  allows  to  focus  the  analysis  on  the  transcribed  portion  of  the

genome (Parchman et al., 2010). There are several studies that successfully used transcriptomic

based  data  to  gene  discover  and  annotation  (Fergunson  et  al.,  2010;  Wei  et  al.,  2011),

comparative genomics (Yim  et al., 2014), and for investigating genetic variation associated

with adaptive traits in population genomics (Berden et al., 2015; Gugger et al., 2016).

The analysis of candidate genes, that are directly sequenced, is also effective in finding

the genetic basis of phenotypic traits in non-model species, specially those that can not be

manipulated in laboratory or for which few genetic resources are available. This technique uses

an  a priori knowledge about the effects that a particular gene has on a trait in other species.

However, there are some disadvantages including bias in the choice of the candidate and long

lists  of  numerous  candidate  genes  that  could  be,  ultimately,  unsuccessful  (Zhu,  2007).

Population structure can also interfere with candidate studies that, normally, require sample

size to be very large. Because there are traits that can be influenced by many different genes,

identifying the independent contribution of a single gene in the biological pathway may be
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difficult  as  well.  Even so,  this  method has  proved to be very  useful,  for  example,  on the

discovery of the molecular basis behind colour variation, e.g. in  European ocellated lizards

(Nunes  et al.,  2011),  in the Réunion grey white-eye (Bourgeois  et al., 2016), and also in the

Mocker swallowtail (Clark et al., 2008).

A  more  broad  and  unbiased  approach  is  to  use  markers  encompassing  the  entire

genome.  Genome-wide  association  studies  (GWAS)  have  become  very  common  for

investigating  the  genetic  basis  of  natural  variation  and  ecological  important  traits  in  wild

populations (Atwell  et al., 2010, Parchman et al., 2012, Hetch  et al., 2013, Shirasawa et al.,

2013, Comeault  et al., 2014). By screening the entire genome looking for common genetic

variation, GWAS have contributed to the discovery of many candidate loci involved in adaptive

traits (Hecht et al., 2013; Takahashi et al., 2013). Contrary to candidate gene approach that are

inevitably biased towards a gene already characterised, GWAS can highlight unknown targets

of selection in the genome. These studies, normally require the developing of a large number of

polymorphic markers. 

 Combining  the  different  techniques  and  sequencing  technologies  has,  thus,  great

potential  to  the  study  of  the  evolutionary  mechanisms  and  the  genetic  basis  underlying

adaptation.

1.6 Meadow spittlebugs as models to study colour polymorphisms

1.6.1 The meadow spittlebug Philaenus spumarius

During the last decades several insect species have been used as models in genetic and

ecological  studies  and  to  investigate  the  mechanisms  underling  evolution,  adaptation  and

speciation. The meadow spittlebug P. spumarius (Linnaeus, 1758) (Hemiptera, Aphrophoridae)

is a small  insect whose body length ranges from  5.3 and 6.9 mm (Fig.  1).  This species is

hemimetabolous emerging from eggs into nymphs and from those into adults.  It  is  widely

distributed across the Holartic region, being found throughout Europe, in several parts of Asia

and in North Africa as well (Halkka & Halkka, 1990). In North America, the species occupies

two broad areas along the eastern and western sea boards of the United States of America and

Canada, where it became a crop pest (Weaver & King, 1954). The meadow spittlebug also

colonised the Azorean islands of São Miguel and Terceira (Quartau et al., 1992; Borges et al.,

2005) and was accidentally introduced in Hawaii (Davis & Mitchell, 1946) and New Zealand

(Thompson, 1984). Its distribution limits are determined by humidity and temperature, factors

which are particularly relevant in the earlier stages of this species' life cycle (Weaver & King,
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1954). A northward range shift was detected in some North American populations by Karban &

Strauss (2004), probably as response to the rising temperature caused by climate change. The

spittlebug is a highly polyphagous insect xylem feeder, occurring in a variety of terrestrial plant

communities (Quartau & Borges, 1997; Yurtsever, 2000). Several invertebrates and vertebrates

are known to attack eggs, nymphs and the adults (Halkka & Halkka, 1990; Yurtsever, 2000). 

1.6.2 Dorsal colour variation

Philaenus  spumarius shows  an  adult  dorsal  colour  pattern  balanced  polymorphism

widely studied (Halkka & Halkka, 1990).  Thirteen main phenotypes are generally referred in

the literature (Fig. 2). These can be characterised as non-melanic forms, essentially pale brown

with a dark patterning –  populi (POP),  typicus (TYP),  trilineatus (TRI),  vittatus (VIT) and

praeustus (PRA) – and melanic forms, dark brown with pale marks in various combinations  –

marginellus (MAR),  flavicollis (FLA),  gibbus (GIB),  leucocephalus (LCE),  lateralis (LAT),

quadrimaculatus (QUA),  albomaculatus (ALB) and leucopthalmus (LOP) (Halkka & Halkka

1990;  Stewart  &  Lees  1996;  Quartau  &  Borges  1997;  Yurtsever,  2000).  Three  other  rare

phenotypes  were  also  described:  ustulata (UST),  hexamaculata (HEX)  and

marginellus/flavicollis (MAR/FLA) (Yurtsever, 2000).

Crossing  experiments  have  revealed  the  Mendelian  inheritance  of  this  trait  that  is

mainly  under  the control  of  an  autosomal  locus  (p)  with seven alleles.  These alleles  have

complex dominance and co-dominance relationships and are probably regulated by other loci

(Halkka et al., 1973; Stewart & Lees, 1988). The allele pT controls the phenotypes TRI + VIT

(a variation of TRI) while TYP and POP are controlled by pt. The melanic phenotype MAR is

controlled by the allele pM and the allele pL controls the phenotype LAT. The allele pC controls

the  phenotypes  FLA +  GIB  +  LCE,  forming  the  “C”  group.  The  allele  pO  controls  the
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Fig. 1:  The meadow spittlebug Philaenus spumarius. Nymph and adult (phenotype TYP).
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phenotypes QUA + ALB + LOP corresponding to the “O” group. The expression of FLA is also

controlled  by  another  allele, pF. The  genetic  basis  of  PRA is  unknown.  The  dominance

hierarchy differs in both sexes in Finnish populations (Halkka et al., 1973). The allele pT  was

found to be top dominant in both sexes but in females the allele  pt was the bottom recessive

allele while in males this allele was dominant over the melanic alleles. On the other hand, in

British  populations,  Stewart  & Lees  (1988)  found no difference  in  the  dominance  pattern

between sexes. In both sexes, the allele  pT is  top dominant and the allele  pt is  the bottom

recessive allele. However, they have observed a dominance of the allele pM over the allele pF in

females and the opposite in males. Figure 3 summarises the dominance hierarchy among alleles

according to Stewart & Lees (1988). Halkka & Lallukka (1969) suggested that the colour genes

may be linked to genes involved in response to the physical environment through epistatic

interactions, constituting a supergene, and selection may not be directly related to colour.

The occurrence and frequency of the dorsal colour phenotypes differ among natural

populations.  In  the  majority  of  populations  TYP  is  the  most  frequent  morph.  Melanic

phenotypes are usually expressed in females only, and in lower frequencies. Besides, in several

populations,  some  melanics  tend  to  be  rare  or  absent  (Halkka,  1964;  Whittaker,  1972;

Thompson & Halkka, 1973; Honěk, 1984; Boucelham et al., 1988; Quartau & Borges, 1997;

Zeybekoglu et al., 2004; Yurtserver et al., 2001, 2010). This pattern of frequency distribution

of  non-melanics  and  melanics  morphs  normally  exhibits  close  resemblance  in  many

14

Fig. 2:  The thirteen commonly referred dorsal  colour phenotypes of  Philaenus spumarius.  Full names of the

phenotypes are detailed in the text. Adapted from Silva et al. (2015).



populations (Halkka & Halkka,  1990), with only a few local populations sharply deviating

from this pattern (e.g. several urban areas of southern Great Britain; see Lees & Dent, 1983;

Stewart  &  Lees,  1988;  Stewart  &  Lees,  1996).  Halkka  et  al. (1975a)  demonstrated  that

phenotype frequencies  remain stable  for  long periods of time and that  there is  a  rapid re-

establishment  of  previous  frequencies  after  transfer  experiments  as  result  of  balancing

selection. The selective pressures behind the maintenance of this balanced polymorphism are

somehow  puzzling  but  habitat  composition,  climatic  conditions  (including  altitudinal  and

latitudinal gradients), industrial melanism and predation are pointed as some of the selective

forces (revised in Quartau & Borges 1997; Yurtsever, 2000). Apostatic/visual selection, a form

of negative frequency-dependent selection, has been suggested to be involved in the selection

regime  of  the  colour  polymorphic  P. spumarius populations.  However,  in  some  European

populations the colour polymorphism persist despite predation (Halkka & Kohila, 1976; Harper

& Whittaker, 1976), indicating that other types of selective pressures than mere visual selection

are contributing to this polymorphism. Geographic/clinal variation in the frequencies of the

colour phenotypes has been reported in several studies. The southern populations tend to have a

higher number of colour morphs than the northern ones (Halkka, 1987). A northward increase

in the frequencies of some melanic forms were observed in Finnish populations, in the eastern

central Europe (Halkka, 1964; Halkka  et al., 1975b), in Asia (Whittaker, 1972) and also in

North America (Thompson, 1988), suggesting that thermal melanism may play a role in the

maintenance of this polymorphism. Curiously, for MAR (melanic) the frequency vary in the

opposite direction from north to south (Halkka, 1987; Thompson, 1988). The latitude was also

associated with colour frequencies in P. spumarius populations of eastern United States mostly

due to climatic  factors (Boucelham  et  al.,  1988).  Positive correlation between altitude and

colour  morphs  frequencies  of  melanics  in  eastern  European  populations  was  also  found

(Halkka  et al., 1980). A negative association (probably a consequence of thermal selection)

between the frequency of TRI and the increasing altitude and latitude was observed for this

phenotype  in  Scotland  (Berry  &  Willmer,  1986),  in  Scandinavia  (Halkka  et  al.,  1974;

Boucelham  et  al.,  1987)  and in  North America  (Boucelham  et  al.,  1988),  and is  probably

related  to  the  highest  radiation  reflectance  and  lower  temperature  excess  of  TRI.  In

Scandinavian populations, a west-east cline was also reported for TYP probably as a result of

increasing  humidity  from  west  to  east  (Halkka  et  al.,  1974).  In  some  areas,  phenotypic

frequencies  may be associated  with the  type  of  habitat  more specifically  with  the  type  of

vegetation due to multi-niche selection (Halkka, 1987, Halkka et al., 2001). Quartau & Borges,

1997 observed differences  in  the number  of  melanics  in  Portuguese  populations  related to
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habitat  composition.  However,  in  Turkish  populations  no  association  was  found  between

phenotypes and habitat (Yurtsever, 2001). Industrial melanism most likely resulting from high

pollution  levels  is  another  factor  reported  to  be  responsible  for  the  variation  in  morph

frequencies in some British populations of England and Wales (Lees & Dent, 1983; Lees &

Stewart, 1987; Stewart & Lees, 1996). High levels of melanic phenotypes were observed for

both sexes in spittlebug populations closer to the industrial areas and in urban regions where

the  effect  of  pollution  is  higher. On the  other  hand,  no  correlation  between pollution  and

melanism was found in the industrial areas of Chicago (USA) (Thompson & Halkka, 1973) and

former Czechoslovakia (Honěk, 1984).  Apart from selection, the founder effect and genetic

drift  were  also  associated  with  variation  of  the  phenotypic  frequencies  in  this  species.  In

populations  of  New Zealand (Thompson,  1984)  and Azores  (São Miguel)  (Quartau  et  al.,

1992),  for  example,  only three morphs (POP, TYP and LOP) were found and this  can  be

explained by the loss of genetic variability due to founder effect and drift resulting from the

recent colonisation of the islands. This effect was also detected in some islands in the Golf of

Finland (Halkka & Halkka, 1990). In this case, the effects of stochastic processes such as drift

and gene flow seem to be overcome by the effect of natural selection (Halkka et al., 2001).

All  this  points  to  the  idea  that  the  maintenance  of  this  colour  polymorphism  in

Philaenus  spumarius is  probably  the  result  of  several  selective  pressures  acting  together.

However, its adaptive significance is still poorly understood. 

1.6.3 Evolutionary history of the species

The evolutionary history of P. spumarius has been investigated and recent studies on its

genetic diversity, using mitochondrial and nuclear genes, indicate a phylogeographic structure

across Europe with two main mitochondrial  lineages,  a north-eastern  lineage  ranging from

eastern Asia to central and northern Europe and a south-western lineage distributed in western

and  southern  Europe  and  also  in  the  Middle  East  (Rodrigues,  2010;  Seabra  et  al.,  2010;

Maryańska-Nadachowska et al., 2012a). The nuclear gene revealed the existence of three main

lineages: the  northeastern/Eurasiatic lineage, the southeastern/east Mediterranean – Caucasus

lineage and southwestern/Iberian lineage (Maryańska-Nadachowska et al., 2012a). According

to these lineages  two main routes of post-glacial colonisation of higher latitudes in Europe

were  suggested  for  the  species,  a  western  colonisation  from  the  Iberian  and  the  Italian

peninsulas to the United Kingdom and an eastern colonisation from the Middle East to Finland.

A recent work on Asian populations of Turkey and Iran found high levels of genetic diversity
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within these populations, the majority of the populations belonging to the south-western clade

with only a single population from north-eastern Turkey found to be a highly divergent group

within  the  north-eastern  clade (Maryańska-Nadachowska  et  al.,  2015).  The  same  study

suggested south-western Asia may be the region of origin of the P. spumarius, or at least one of

the main refugia for the species during the Pleistocene glaciations, from where it spread across

almost the whole Palaearctic region. Some insights were also given about North American

populations which probably originated from western European populations (Rodrigues, 2010;

Seabra  et al., 2010; Maryańska-Nadachowska et al., 2012a). A secondary contact zone along

the  Carpathians  mountains  was  also  investigated  and  the  results  showed  the  existence  of

hybrids indicating that individuals belonging to the main mitochondrial and nuclear lineages

meet in the region and interbreed (Lis et al., 2014). 

These genetic studies have contributed to our understanding of  P. spumarius current

biogeographic pattern and colonisation routes in Europe.  However, the current studies lack

estimates  of  time  for  the  main  evolutionary  events  and  are  mainly  focused  in  European

populations.  As a  widely distributed  species,  to  extend these studies  to  populations  out  of

Eurasia is also important. Furthermore, biogeographic studies are also essential to comprehend

the process of adaptation in  P. spumarius,  particularly the maintenance of its  dorsal colour

polymorphism. This is because, by comparing the pattern of neutral genes with the pattern of

adaptive genes, the non-selective effects of  evolutionary history and/or demography can be

distinguished from the effects of natural selection in natural populations.

1.6.4 Philaenus species

As observed in P. spumarius, the other Philaenus species exhibit identical variation in

dorsal  colour/pattern  (Drosopoulos,  2003).  Halkka  &  Halkka  (1990)  suggested  that  this

variation may be an old polymorphism maintained through the speciation process, probably

due to balancing selection, known for keeping genetic variability within species (Reininga et

al., 2009). Until few years ago, only three species were recognised by taxonomists: Philaenus

spumarius (Linnaeus,  1758),  Philaenus  tesselatus (Melichar,  1889)  and  Philaenus  signatus

(Melichar,  1896).  The  taxonomic  status  of  P. tesselatus has  been  suffering  considerable

revision  since  its  description,  having  been  considered  a  subspecies  of  P.  spumarius,

geographically  circumscribed  to  southern  Iberia  and  Northern  Africa  (Halkka  & Lallukka,

1969). More recent studies, based on differences in male genitalia suggested P. tesselatus as a

distinct species of P. spumarius (Drosopolous & Quartau, 2002). However, despite the reported
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morphological differences, recent genetic studies showed no differentiation between both taxa

(Maryańska-Nadachowska et al., 2010, 2012a), and its taxonomic position remains unsolved.

Meanwhile, more five species were described in the Mediterranean region:  Philaenus

loukasi present in Greece (Drosopoulos & Asche, 1991), Philaenus arslani in Lebanon (Abdul-

Nour & Lahoud, 1996), Philaenus maghresignus distributed through southern Iberia and North

Africa  (Drosopoulos  & Remane,  2000),  Philaenus  italosignus  distributed  through southern

Italy and Sicily (Drosopoulos & Remane, 2000) and Philaenus tarifa present in southern Iberia

(Remane  & Drosopoulos,  2001).  In  2013,  two  additional  species  were  described  in  Iran:

Philaenus elbursianus (Tishechkin, 2013) and  Philaenus iranicus (Tishechkin, 2013). These

species are currently separated into three groups based on male genitalia morphology:

• The spumarius group: P. spumarius, P. tesselatus, P. loukasi and P. arslani;

• The  signatus group:  P. signatus,  P. maghresignus,  P. italosignus,  P. tarifa  and  P.

elbursianus;

• The group comprising the subgenus Gyrurus: P. iranicus.

Philaenus spumarius, the most common and widely distributed species within the genus

occurs  in  sympatry  with  the  other  species.  On  the  other  hand,  the  remaining  species,  are

allopatric or parapatric with each other. Ecological data showed that P. spumarius can be found

in a variety of host plants (Halkka & Halkka, 1990; Quartau & Borges, 1997; Yurtsever, 2000)

while the other Mediterranean  species are mostly specialists regarding food and oviposition

plants (Drosopoulos, 2003). Cytogenetic analyses in Mediterranean species found differences

in the number of chromosomes and in  the type of  sex determination,  with four  groups of

species differing in karyotype (Maryańska- Nadachowska  et al., 2008, 2012b, 2013). These

findings seem to be in  agreement  with two of three main groups proposed based on male

genitalia morphology (Drosopoulos & Remane, 2000), and also with host plant preferences

division (Drosopoulos, 2003). However, the two species of Iran were not part of the analyses.

Nothing is known about their karyotype, and food/oviposition habits. Genetic studies, that did

not include  the Iranian species,  support the closer relationship between  P. spumarius and  P.

tesselatus and also between  P. arslani and  P. loukasi  but  the relationship among the other

Mediterranean species is not clear  (Maryańska-Nadachowska  et al., 2010; Rodrigues, 2010;

Seabra et al., 2010).

The spittlebugs group, due to its dorsal colour polymorphism, constitutes a potential

good  model  system  to  test  hypothesis  about  adaptation,  speciation  and  maintenance  of

polymorphisms in natural populations.  For this study in particular, the meadow spittlebug  P.

spumarius was selected because of its ubiquitous distribution, its genetic variation and mainly
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because of its widely studied dorsal colour variation (Halkka & Halkka, 1990). 

1.7 Objectives and thesis structure

The main purpose of this thesis is to address the genetic basis underlying the adaptive

variation in natural populations. Colour polymorphisms are good systems in which adaptation

can be investigated. 

The study system is the meadow spittlebug P. spumarius, an insect species for which

several  questions  related  to  its  dorsal  colour/pattern  balanced  polymorphism  and  to  its

evolutionary  history  remain  to  be  exploited  and  investigated.  Why  is  this  polymorphism

maintained in natural populations? What is its adaptive significance? What is the genetic basis

of this colour pattern variation? Which gene(s) or genomic regions are involved? Are colour

genes described in other insect species implicated? 

This  thesis  will  involve  (i)  analysing  the  evolutionary  pattern  of  P. spumarius;  (ii)

exploiting  the  adaptive  significance  of  its  dorsal  colour  polymorphism;  and,  (iii)  testing

genotype-phenotype  associations  aiming  to  identify  a  genomic  region  or  several  genomic

regions linked to this species' dorsal colour variation.

 The evolutionary pattern will be analysed using phylogeographic methods applied to

the  sequence  variation  in  two  mitochondrial  and  one  nuclear  markers.  The  adaptive

significance  will  be  exploited  trough  a  laboratory  experimental  procedure  to  understand

differential survival and reproductive success of three of the colour phenotypes. Finally, the

identification of a possible candidate genomic region or regions linked to colour variation will

be investigated by using two main approaches:  a  genome-wide association approach using

Single  Nucleotide  Polymorphisms  (SNPs)  obtained  through  Restriction  Associated  DNA

(RAD)  sequencing  on  individuals  of  the  same  three  colour  phenotypes  used  in  captivity

experiments;  and a candidate gene approach to investigate genes involved in melanin-based

colouration  in  other  insect  species,  for  which  sequence  variation  across  dorsal  colour

phenotypes in Philaenus spumarius, and in other congeneric species, will be analysed. 

The specific objectives of this work are:

1 – To study the evolutionary history of Philaenus spumarius by providing, for the first

time,  time  estimates  of  the  main  demographic  and  evolutionary  events  occurred  in  the

Mediterranean peninsulas, and by analysing colonisation patterns out of Eurasia;
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2 – To explore the adaptive significance of the colour variation of  P. spumarius by

conducting an experiment in captivity under semi-natural conditions and obtaining data on the

fitness of three dorsal colour phenotypes:  typicus  (the most common, non-melanic recessive

phenotype),  trilineatus (the  non-melanic  dominant  phenotype  with  the  highest  radiation

reflectance and with thermal properties different from the melanic and TYP phenotypes (Berry

&  Willmer,  1986)),  and  marginellus  (the  most  common  melanic  phenotype  found  in  the

population used for the study);

3 – To test for associations between SNPs obtained with RAD sequencing and the same

three  dorsal  colour  phenotypes  (typicus,  trilineatus and  marginellus)  used  in  the  captivity

study;

4  –  To sequence  and assemble  a  first  draft  genome of  P. spumarius,  an  important

genomic resource to help in the characterisation of the genomic regions found to be associated

with colour variation;

5 – To analyse the sequence variation of P. spumarius in a candidate gene involved in

melanin  synthesis  pathway  in  other  insects,  the  yellow gene,  by  looking  for  possible

associations between nucleotide/amino acid changes in yellow sequences and the dorsal colour

morphs,  typicus,  trilineatus and  marginellus. And  also  to  investigate yellow phylogenetic

pattern in other species of the genus.

The present thesis is organised in six main chapters. In Chapter 1, a general overview of

the  thematic  of  the  thesis  is  given  (Introduction).  The  phylogeographic  analysis  results

(objective 1) are provided in the Chapter 2 (Rodrigues et al., Plos One). Chapter 3 (Silva &

Rodrigues et al., Ecological Entomology) presents the experimental approach for investigating

fitness differences between colour types (objective 2). Chapter 4 (Rodrigues et al., submitted)

provides  the  association  study  using  RAD  sequencing  loci  (objective  3),  as  well  as  the

development of genomic and transcriptomic resources for Philaenus spumarius (objective 4).

The study of the candidate gene yellow is presented in Chapter 5, including the association with

colour types and the phylogenetic analysis of this gene (objective 5). Finally, the findings of

the thesis and their future implications are discussed in Chapter 6 as well as final remarks about

the work.
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Octávio S. Paulo1, Sofia G. Seabra1

1 Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, Departamento de Biologia Animal/Platform for Enhancing Ecological Research &

Sustainability, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 2 Department of Natural Sciences, National Museum of Wales, Cardiff, United Kingdom,

3 Metropolitan College of New York, New York, New York, United States of America, 4 Biology Department, Science Faculty, Trakya University, Edirne, Turkey,

5 Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland, 6 Azorean Biodiversity Group, Centro de Investigação e Tecnologias
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Abstract

Philaenus spumarius is a widespread insect species in the Holarctic region. Here, by focusing on the mtDNA gene COI but
also using the COII and Cyt b genes and the nuclear gene EF-1a, we tried to explain how and when its current
biogeographic pattern evolved by providing time estimates of the main demographic and evolutionary events and
investigating its colonization patterns in and out of Eurasia. Evidence of recent divergence and expansion events at less
than 0.5 Ma ago indicate that climate fluctuations in the Mid-Late Pleistocene were important in shaping the current
phylogeographic pattern of the species. Data support a first split and differentiation of P. spumarius into two main
mitochondrial lineages: the ‘‘western’’, in the Mediterranean region and the ‘‘eastern’’, in Anatolia/Caucasus. It also supports
a following differentiation of the ‘‘western’’ lineage into two sub-lineages: the ‘‘western-Mediterranean’’, in Iberia and the
‘‘eastern-Mediterranean’’ in the Balkans. The recent pattern seems to result from postglacial range expansion from Iberia
and Caucasus/Anatolia, thus not following one of the four common paradigms. Unexpected patterns of recent gene-flow
events between Mediterranean peninsulas, a close relationship between Iberia and North Africa, as well as high levels of
genetic diversity being maintained in northern Europe were found. The mitochondrial pattern does not exactly match to the
nuclear pattern suggesting that the current biogeographic pattern of P. spumarius may be the result of both secondary
admixture and incomplete lineage sorting. The hypothesis of recent colonization of North America from both western and
northern Europe is corroborated by our data and probably resulted from accidental human translocations. A probable
British origin for the populations of the Azores and New Zealand was revealed, however, for the Azores the distribution of
populations in high altitude native forests is somewhat puzzling and may imply a natural colonization of the archipelago.
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Introduction

Distribution patterns of animals and plants have faced dramatic

changes throughout time and are influenced by ecological

requirements and historical factors. In the northern hemisphere,

Quaternary long-term glacial (cold) and interglacial (warm)

climatic cycles that started about 2.6 million years (Ma) ago [1]

have strongly influenced the species distributions and range sizes

and, as a consequence, have affected the genetic structure of their

populations [2,3]. Evidence from numerous studies suggests that

southern European regions of Iberia, Italy and the Balkans and

areas near the Caucasus and western Asia, acted as glacial refugia

for temperate species during cold periods [4,5,6]. Recent work

indicates that temperate refugia might not have been restricted to

the three southern peninsulas and that cryptic northern refugia

might have existed in central, western, eastern and even northern

Europe in the Late Pleistocene [7,8,9]. The relative impact of the

post-glacial colonization history and more recent processes such as

gene flow and population fluctuations, strongly depend on the

dispersal mode and ability of the species [10,11].

Genetic analyses have proven to be useful for a more detailed

understanding of post-glacial expansions of several animals and
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plants [3,12]. Mitochondrial DNA (mtDNA), due to its particular

characteristics, has been widely used in determining population

dynamics and phylogeographic divergence in recent times, such as

the Quaternary period [13]. Nevertheless, the signal of deeper

history can be obscured by homoplasy or saturation resulting from

high mutation rate. On the other hand, reconstructing evolution-

ary histories using individual genes (gene trees) could lead to

misrepresentation of population or species histories because in this

case mtDNA, which reflects matrilineal history, might not

represent the overall lineage history of the species. Also, if multiple

population divergences or speciation events were closely spaced in

time, a single gene tree might be ‘incorrect’ by chance due to the

random nature of lineage sorting during the coalescence process

[14]. Therefore, the use of multiple types of molecular markers is

recommended.

Insects have been widely used as models for animal biogeo-

graphical studies (e.g., [15,16,17]). The meadow spittlebug

Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Aphrophoridae)

is a widely investigated species, very suitable for genetic and

ecological studies. It is a highly polyphagous insect which can be

found in a variety of terrestrial plant communities and habitats,

being the most common species within the genus Philaenus [18,19].

It is widespread across the Palaearctic region from where it is

native [20] having also colonized the Azores [21,22] and has been

introduced in the Nearctic region [20] and New Zealand [23].

The meadow spittlebug is very sensitive to humidity and

temperature, especially in the earlier stages of its life cycle, which

limits its range [24]. A remarkable example was reported for some

North American populations where a northward range shift,

probably as a result of climatic changes, was detected by [25]. This

species shows a well studied dorsal colour polymorphism with

eleven main described phenotypes which can be divided in

melanic and non-melanic forms [20]. The phenotype frequencies

differ among populations, probably due to the effects of natural

selection under different habitats, climatic conditions and preda-

tion pressure (reviewed in [18,19]). Recent studies on the genetic

diversity of P. spumarius have given insights on its evolutionary

history suggesting two routes of post-glacial colonization of higher

latitudes in Europe and indicating a probable western European

origin for North American populations [26,27].

In the present study we tried to explain how and when the

current biogeographic pattern of P. spumarius evolved by (i)

providing time estimates of the main demographic and evolution-

ary events with focus on the populations occurring in the main

Mediterranean peninsulas; and, (ii) investigating the colonization

patterns out of Eurasia, namely of north-western Africa, North

America, and the islands of the Azores and New Zealand.

Material and Methods

Ethics Statement
The field sampling was carried out on private lands with

owners’ permissions. The studied species, Philaenus spumarius, is

considered a widespread species across the Palaearctic and the

Nearctic regions, being a crop pest in some locations of USA and

Canada. It is not an endangered or protected species.

Sampling
A total of 196 specimens of P. spumarius were collected or sent by

collaborators between 2007 and 2011 from 75 sampling locations

across Europe, two from Anatolia, five from North Africa, three

from North America and one from New Zealand (Fig. 1 and Table

S1). Adult insects were captured using a sweep net suitable for low-

growing vegetation and an entomological aspirator. In some cases,

larval stages were collected by hand. Specimens were preserved in

absolute ethanol or dried in silica gel and stored at room

temperature.

DNA extraction, amplification and sequencing
Entire larval stage specimens were used for DNA extraction

while in the adults the wings and abdomen were removed and only

the thorax and head were used. Genomic DNA was extracted

Figure 1. Sampling locations of Philaenus spumarius in (a) Europe and Anatolia (b) North America and (c) New Zealand in each
geographic region. 1 – Azores; 2 – Iberian Peninsula; 3 – Morocco; 4 – France; 5 – United Kingdom; 6 – Belgium; 7 – Italian Peninsula; 8 – Sicily; 9 –
Slovenia; 10 – Balkans (Bulgaria; Greece; European Turkey); 11 – Anatolian Peninsula; 12 – Finland; 13 – North America (Canada and United States of
America); 14 – New Zealand. Circle sizes are proportional to the number of individuals. Circles: green – ‘‘western-Mediterranean’’ mtDNA group; red –
‘‘eastern-Mediterranean’’ mtDNA group; blue – ‘‘eastern’’ mtDNA group. Circle sizes are proportional to the number of samples.
doi:10.1371/journal.pone.0098375.g001
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using the E.Z.N.A. Tissue DNA Isolation kit (Omega Bio-Tek) and

a 800 bp fragment of the 3’-end of the mitochondrial gene

cytochrome c oxidase subunit I (COI) was amplified by polymerase

chain reaction (PCR) using the primers C1-J-2195 (59–

TTGATTTTTTGGTCATCCAGAAGT–3’) and TL2-N-3014

(59–TCCAATGCACTAATCTGCCATATTA–3’) [28]. Due to

DNA degradation in the New Zealand samples, a new set of

primers, COI-PspF (5’–GTATAGATGTTGATACACGTGC–

3’) and COI-PspR (5’–TCCAGTAAATAAAGGGTATC–3’)

was designed to amplify an informative smaller fragment with

300 bp of COI that included the variable sites that differentiate the

different haplogroups. Fragments with 500 bp of the mitochon-

drial genes cytochrome c oxidase subunit II (COII) and

cytochrome b (cyt b) were also amplified using the primers TL2-

J3033 (5’–GATATGGCAGAAATAGTGCA–3’) and C2-N3665

(5’–CCACAAATTTCTGAACACTG–3’) and CB-N3665 (5’–

GTCCTACCATGAGGTCAAATATC–3’) and CB-N11526

(5’–TTCAACTGGTCGTGCTCC–3’), respectively [29]. The

three mitochondrial genes were sequenced initially in a subset of

samples and similar genetic patterns and level of polymorphism

were observed for the three mitochondrial genes on a preliminary

analysis (results not shown). Thus, cytochrome c oxidase subunit I

gene was sequenced for all individuals and cyt b and COII were

only sequenced in a representative subset. The nuclear gene

elongation factor-1a (EF-1a) is widely used in insect genetic

studies. Therefore, we chose to sequence it in a subset of

individuals that covered all the geographical areas of the study. A

700 bp fragment of the nuclear gene EF-1a was amplified using

the primers M3 (59–CACATYAACATTGTCGTSATYGG–3’)

and rcM44.9 (59–CTTGATGAAATCYCTGTGTCC–3’) [30].

For COI gene, PCR was performed in a 12.5 mL reaction volume

containing: 1 mM of each primer, 0.1 mM dNTPs, 1 mM MgCl2,

2.5 mL 5x Colorless GoTaq Flexi Buffer, 0.02U GoTaq DNA

Polimerase (Promega) and approximately 30 ng of DNA. The

PCR conditions were: an initial denaturation step at 94 uC for

3 min, followed by 35 cycles of denaturation at 94 uC for 30 sec,

annealing at 50 uC for 45 sec and extension at 72 uC for 1 min,

with a final extension period at 72 uC for 7 min. The same PCR

conditions were used for COII and cyt b genes except for

annealing temperature where a touch up between 52.5 uC and 56

uC for COII and between 47 uC and 54 uC for cyt b was

performed. Nuclear EF-1a gene PCR was performed in a 20 mL

reaction volume containing: 0.6 mM of each primer, 0.2 mM

dNTPs, 1.125 mM MgCl2, 0.8 mL BSA (10 mg/mL), 4.0 mL 5x

Colorless GoTaq Flexi Buffer, 0.05U GoTaq DNA Polimerase

(Promega) and approximately 30 ng of DNA. PCR conditions

used were: an initial denaturation step at 95 uC for 5 min, followed

by 40 cycles of denaturation at 95 uC for 45 sec, annealing at 59

uC for 35 sec and extension at 72 uC for 1 min, with a final

extension period at 72 uC for 10 min. All PCR products were

purified with SureClean (Bioline) following the manufacturer’s

protocol, sequenced using the forward and the reverse primers

with the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied

Biosystems) and analysed on a genetic analyser ABI PRISM 310

(Applied Biosystems).

Molecular and population structure analyses
Sequences were verified and edited using the software

SEQUENCHER v. 4.0.5 (Gene Codes Corporation) and BIOEDIT v.

7.0.9 [31]. They were then aligned using MAFFT v. 7.029b (http://

mafft.cbrc.jp/alignment/software/) and converted in the appro-

priate format with CONCATENATOR v. 1.1.0 [32]. For nuclear EF-

1a sequences, haplotype phase from heterozygous individuals for

base positions and length-variable regions was determined using

CHAMPURU v. 1.0 [33]. Phylogenetic analysis using the Maximum

Parsimony (MP), Maximum Likelihood (ML) and the Bayesian

inference (BI) methods were performed for concatenated mtDNA

genes (COI, COII and cyt b) and for the nuclear gene EF-1a in

PAUP v. 4.0.d99 [34] and in MRBAYES v. 3.1.2 [35]. For MP and

ML analysis a heuristic search was performed using 100 replicates

and branch support was obtained by performing 1000 replicates of

non-parametric bootstrap. Gaps were treated as a fifth base in MP.

The BI analysis was performed using the Monte Carlo Markov

Chain (MCMC) method iterated for 2 000 000 generations, with a

sampling frequency of 1500 generations and a burn-in of 1000.

For each dataset the best fit model of sequence evolution was

estimated using MODELTEST v. 3.7 [36] under the Akaike

information criterion (AIC). Elongation factor-1a sequences of P.

spumarius and P. italosignus from [26] and available at NCBI

Genbank were added to our nuclear matrix and included in the

phylogenetic analysis (GenBank accession numbers: JF309079 and

JF309081-JF309095). Philaenus italosignus was used as outgroup in

all phylogenetic analysis. Polymorphic sites and mtDNA haplo-

types for COI, COII and cyt b genes were calculated using MEGA

v. 5.0 [37] and a median-joining haplotype network was

constructed using NETWORK v. 4.5.0.1 (Fluxus Technology Ltd.

2004). For COI mtDNA gene, haplotype (h) and nucleotide

diversities (p) were calculated for each geographical region

(defined as numbers in Fig. 1) and an analysis of molecular

variance (AMOVA) was performed using ARLEQUIN v. 3.5 [38] to

assess population genetic structure of P. spumarius. The groupings

were based in the several sub-regions of Europe, America, Africa

and Asia. This analysis produces estimates of variance components

and F-statistic analogues, designated as F-statistics, reflecting the

correlation of haplotypes at different levels of hierarchical

subdivision. Groupings with the highest significant FCT value in

AMOVA should reflect the most probable geographical subdivi-

sions [39].

Divergence time estimates
We used the software package BEAST v. 1.7.0 [40] and the

mtDNA gene COI to estimate divergence times of nodes of

interest, as well as their demographic history via Bayesian Skyline

plots (BSPs). For each dataset the best fit model of sequence

evolution was estimated using MODELTEST v. 3.7 under the Akaike

information criterion (AIC) and a piece-wise constant Bayesian

skyline tree prior was selected with 10 groups. Two additional

analyses of our data with 5 and 15 groups to assess the impact of

the number of groups on the final result were conducted. These

analyses did not reveal a significant impact on the overall result,

whether on the shape of the Bayesian Skyline plot or on the

estimation of divergence times. Preliminary runs using the

uncorrelated lognormal relaxed clock revealed a posterior

distribution of the sr (‘‘CoefficientOfVariation’’) parameter

consistently abutting 0, suggesting that the COI partitions do

not significantly deviate from a strict clock assumption. Therefore,

we employed a strict molecular clock for each dataset with a

normal prior distribution on the substitution rate with a mean of

0.0354, following the conserved rate of 3.54% per million years as

suggested by [41], and a standard deviation of 0.005 to account for

rate uncertainty. Two Markov chains Monte Carlo (MCMC) of 50

000 000 generations, sampled at every 5000th iteration, were

conducted and combined with LOGCOMBINER v. 1.6.1 [40].

TRACER v. 1.4 [42] was used to assess the convergence and

mixing for all model parameters and to create the Bayesian Skyline

plots.
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Demographic analyses and neutrality tests
Neutrality tests of Tajima’s D [43] and Fu’s F statistics [44] were

performed using ARLEQUIN. These statistics are widely used with

molecular data to detect changes in population size and/or

estimating deviations from neutrality, assuming a constant

population size at mutation-drift equilibrium. Thus, significant

negative values of Tajima’s D and Fu’s Fs are considered to be

evidence of expanding populations. Signatures of population

expansion can also be detected through the frequency distribution

of the number of pairwise differences between haplotypes and thus

statistics based on the mismatch distribution and taking into

account the Sudden Expansion Model [45] were also performed to

detect and estimate the time of population growth. Estimated

expansion values were obtained using ARLEQUIN and graphics of

frequency distribution using DNASP v. 5 [46]. To test the observed

mismatch distribution goodness-of-fit to the Sudden Expansion

Model and to obtain confidence intervals around the estimated

mode of mismatch distribution, 1000 permutation replicates were

used [47]. Statistically significant differences between observed

and expected distributions were evaluated with the sum of the

square deviations (SSD) and Harpending’s raggedness index (hg)

[48,49].

Timing of the demographic expansion as well as the 95%

confidence interval for each mitochondrial haplogroup was

estimated by converting the expansion time parameter t,
generated by ARLEQUIN, to time (t) in years using the formula t
= 2ut, where u is the mutation rate per nucleotide per year

multiplied by sequence length (i.e. number of nucleotides), and t is

the time since population expansion in years [45,49]. We assumed

a generation time of one year [24] and the conserved evolutionary

rate of 3.54% per million years suggested by [41] for insect

mitochondrial gene COI.

Results

A total fragment of 539 bp was obtained for the mitochondrial

gene COI in 190 samples. The remaining samples from Finland,

Turkey, Canada (GenBank accession numbers: KJ699232–

KJ699234) and New Zealand were not included in the main

analysis due to their reduced size. In the 190 individuals there

were a total of 71 haplotypes (GenBank accession numbers:

KC111886 – KC111956) of which 44 occurred only once (Table

S2). Of a total of 539 sites sequenced, 53 were polymorphic but

only 26 were parsimony informative. For the mtDNA COII

(495bp) and cyt b (434bp) genes, 47 individuals were sequenced

and a total of 14 (GenBank accession numbers: KF280589 –

KF280602) and 18 haplotypes (GenBank accession numbers:

KF280603 – KF280620) were found, respectively. As commonly

observed for insects [28], nucleotide sequences were A+T rich

(approximately 71%). No gaps or early stop codons were detected

in the 3 mtDNA genes sequences suggesting that all of them are

functional mitochondrial DNA copies.

From the 24 individuals sequenced, we were able to successfully

sequence a fragment of the nuclear gene EF-1a for only 13

individuals of P. spumarius. Almost all sequences exhibited double

peaks due to the frameshift resulting from indels (length-variable

regions) located at several sites of the intron in the EF-1a
gene. Ten individuals were heterozygous in respect to indels and/

or to base positions and the phased haplotypes (alleles) were

differentiated by adding the letter a or b at the end of

name (Table S1) (GenBank accession numbers: KF280621

– KF280642).

Phylogenetic and population structure analyses
Phylogenetic trees obtained for concatenated mtDNA genes and

for a subset of P. spumarius individuals by the three methods, MP,

ML and BI, presented a congruent topology. Maximum likelihood

(Fig. 2), MP (not shown) and BI (not shown) trees, revealed the

existence of two main haplotype groups: the ‘‘western’’ and the

‘‘eastern’’. The ‘‘western’’ is divided in the ‘‘western-Mediterra-

nean’’ and the ‘‘eastern-Mediterranean’’ sub-groups. The same

phylogeographic pattern was found in the COI median-joining

haplotype network (Fig. 3) and also in the COII and Cyt b median-

joining haplotype networks (Fig. S1 and S2). The ‘‘eastern’’

haplogroup includes haplotypes from a wide geographical area,

including northern Anatolia (Cerkes), Finland, Belgium, the UK

(Aberdare – Wales) and eastern North America (New Hampshire –

USA). In the ‘‘western-Mediterranean’’ group, the most common

haplotype (H29) and several derived haplotypes, differing by one

or two mutational steps, are shared between populations from the

Iberian Peninsula, Morocco, France, Belgium, Italian Peninsula,

Sicily and one individual from Balkans (H18). A group of

haplotypes derived from H29 (H23, H24, H25, H70 and H71)

includes samples from the Azores, western North America (British

Columbia – Canada), eastern North America (Michigan – USA)

and the UK, differing by two or three mutations. In the ‘‘eastern-

Mediterranean’’ group, a similar star-like pattern is present with

rare haplotypes connected to the most common (H57), usually by

one mutational step. This group encompasses populations from

the Balkans (Greece, Bulgaria and European Turkey), Slovenia,

Italian Peninsula and Sicily. This lineage is also present in five

samples from the eastern part of the Iberian Peninsula (H56)

(Figs. 1 and 2).

The haplotype median-joining network based on smaller

sequences of 289 bp of the COI gene, used in this analysis to

include the samples from New Zealand, showed a total of 31

haplotypes and a pattern congruent to that observed for the 539

bp of COI region, with the same three distinct groups (‘‘western-

Mediterranean’’, ‘‘eastern-Mediterranean’’ and ‘‘eastern’’). The

haplotype H14 belonging to the ‘‘western’’ haplogroup was found

in the three New Zealand individuals and this same haplotype was

shared with seven individuals from the UK, five from the Azores,

three from Canada and four from the USA (Fig. S3).

In the MP (Fig. 4) and BI (not shown) phylogenetic trees

obtained for nuclear gene EF-1a three main groups could also be

distinguished: clade A, clade B and clade C. However, these groups

were not totally congruent to the groups found for the

concatenated mtDNA genes. The clade A includes samples from

our ‘‘eastern-Mediterranean’’ haplogroup and also from Georgia,

Bulgaria, Hungary, Greece and Italy (E2 clade, in [26]). The clade B

includes individuals from our ‘‘western-Mediterranean’’ group and

from Portugal, Spain and Italy (E3 clade, in [26]). The clade C,

however, is constituted by individuals from our three main

mitochondrial groups and from Russia, Norway, Alps, Crimea,

Poland and Ukraine (E1 clade, in [26]). Although the three groups

have good bootstrap support, the branching order is unsolved

since there is very low support for the branch clustering the clades A

and B (Fig. 4). We also observed that both alleles of the most

heterozygous samples are clustered within the same clade (Clade C –

Arrabida_5, Spain_2, UK_7, Belgium_1, Slovenia_1.1 and

USA_2 and Clade B – Morocco_6.1), with the exception for the

Azores_1, Italy_2 and Keçan_N1 samples which have one allele in

the clade C and the other allele in the clades A or B.

Genetic variability and diversity
Mitochondrial haplotype diversity of COI was generally high (h

. 0.6000), except for the Azores (h = 0.4000) and Slovenia (h =
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0.0000) (Table 1), that may be related to the low sample size. On

the other hand, Anatolia and the Balkans have the highest values

of haplotype diversity (h = 0.9048 and h = 0.9128, respectively).

Interestingly, Finland and North America also have high

haplotype diversity (h = 0.8971 and h = 0.8939). Analysing

nucleotide diversity, Anatolia, United Kingdom and North

America have the highest values (p = 0.009895, p = 0.009318

and p = 0.008236, respectively). The high values of both

haplotype and nucleotide diversities detected in Anatolia and

North America are likely a result of the presence of different

mitochondrial lineages in these regions. The AMOVA performed

for the P. spumarius groupings defined revealed that most of the

Figure 2. Maximum Likelihood tree based on the 3 concatenated mtDNA genes (COI, COII and cyt b) (1527bp). Values above branches
correspond to MP and ML bootstrap values (only values . 50% are shown) and values below branches correspond to Bayesian posterior probability.
PT – Portugal; SP – Spain; UK – United Kingdom; BL – Belgium; FN – Finland; SC – Sicily; TK – European Turkey; AT – Anatolia; USA – United States of
America; CA – Canada.
doi:10.1371/journal.pone.0098375.g002
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genetic variation (47% and 43.87%) is explained by genetic

differences within populations and not by geographic subdivisions

(Table S3).

Divergence times
The mean ages and 95% highest posterior density (HPD)

determined for the TMRCA of mtDNA COI haplogroups are

presented in Table S4. Estimated divergence times of all

mitochondrial groups are less than 0.5 Ma. The ‘‘eastern’’

mtDNA group seems to be the oldest having diverged from the

‘‘western’’ mtDNA group at approximately 0.270 Ma ago and

then begun its diversification around 0.190 Ma ago (0.374–0.056

Ma ago). The split of the ‘‘western’’ mtDNA group into the

‘‘eastern-Mediterranean’’ and the ‘‘western-Mediterranean’’ sub-

groups was estimated to have occurred at approximately 0.146 Ma

ago (0.243–0.067 Ma ago), while the TMRCA of both groups was

quite similar and was estimated to be around 0.080 Ma ago. The

confidence interval associated with our time estimates, however, is

broad and the mutation rate of 3.54% per million years, in which

these calculations are based, was estimated for COI in tenebrionid

beetles [41]. Therefore, our results should be treated with caution

and regarded as the best approximations given the current

methods and calibrations [50,51].

Demographic analyses and neutrality tests
The demographic history of P. spumarius populations was

analysed separately for the three COI groups. The distribution

of pairwise nucleotide differences (mismatch distribution) showed

that the ‘‘western-Mediterranean’’ and the ‘‘eastern-Mediterra-

nean’’ groups exhibited a smooth and unimodal shape while the

‘‘eastern’’ group revealed a slightly bimodal curve (Fig. S4). All

distributions, except for the ‘‘eastern’’ group distribution, were

consistent with sudden and spatial population expansions. The

observed raggedness index was low for all groups and both PSSD

and PRAG showed that the observed distributions did not differ

significantly from those expected under a sudden and a spatial

population expansion model (Table 2). Negative significant

deviations from neutrality were detected with Tajima’s D and

Fu’s F statistics for the ‘‘western-Mediterranean’’ and the ‘‘eastern-

Mediterranean’’ mtDNA groups, which corroborate the hypoth-

esis of past population expansion events. The ‘‘eastern’’ group

presented a non significant p-value with Tajima’s D test although

the Fu’s F was significant (Table 3) indicating that it may have

undergone negligible population growth. Demographic recon-

structions (BSPs) for all mtDNA groups suggest a trend of

population growth (Fig. S5), with a more evident demographic

expansion in the ‘‘western-Mediterranean’’ and the ‘‘eastern-

Figure 3. Median-joining haplotype network of Philaenus spumarius sampled geographic regions for mitochondrial gene COI
(539bp). Size of the circles is in proportion to the number of haplotypes. Branches begin in the centre of the circles and their sizes are in proportion
to the number of mutations.
doi:10.1371/journal.pone.0098375.g003
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Mediterranean’’ mtDNA groups, and very slight or absent

population growth for the ‘‘eastern’’ lineage.

Assuming a slight population growth for the ‘‘eastern’’ group,

the timing of demographic expansion was estimated to have

occurred at approximately 0.121 Ma ago (0.195–0.041 Ma ago),

while for the ‘‘western-Mediterranean’’ and the ‘‘eastern-Medi-

terranean’’ haplogroups it was more recent, at 0.055 Ma ago

(0.085–0.021 Ma ago) and 0.058 Ma ago (0.079–0.027 Ma ago),

respectively. The spatial expansion for the three mtDNA groups

was estimated to be slightly more recent than demographic

Figure 4. Maximum Parsimony tree based on nuclear gene elongation factor-1a. Values above branches correspond to MP bootstrap (only
values . 50% are shown) and Bayesian posterior probability values. Black: GenBank sequences (see [26]); blue individuals correspond to the eastern
mtDNA group; red individuals correspond to the eastern-Mediterranean mtDNA group and green individuals to the western-Mediterranean mtDNA
group.
doi:10.1371/journal.pone.0098375.g004
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expansion, at 0.080 Ma ago (0.152–0.035 Ma ago) for the

‘‘eastern’’ group, at 0.056 Ma ago (0.075–0.028 Ma ago) for the

‘‘eastern-Mediterranean’’ and at 0.054 Ma ago (0.074–0.022 Ma

ago) for the ‘‘western-Mediterranean’’ group.

Discussion
Biogeographical patterns, divergence time and demographic

events in Philaenus spumarius

Our time estimates indicate that the evolutionary history of P.

spumarius is most likely related to climate changes of the Pleistocene

epoch (,2.588–0.0117 Ma ago [1]). Divergence within species is

estimated to be recent (no more than 0.5 Ma) occurring most

probably in the Middle/Late Pleistocene. The biogeographical

pattern of P. spumarius obtained from mtDNA genes shows the

differentiation of two main mtDNA lineages, the ‘‘western’’ in the

Mediterranean region and the ‘‘eastern’’ in Anatolia/Caucasus.

Within the ‘‘western’’ lineage we observed two sub-lineages: the

‘‘western-Mediterranean’’ centred in the Iberian Peninsula and

the ‘‘eastern-Mediterranean’’ centred in the Balkans (Fig 1). This

pattern was first found by [27], who gave more emphasis to the

westernmost lineages, and was later corroborated by [26] that

brought some insights regarding possible refugia located in eastern

Europe and western Asia. According to our data, during the

Mindel or Riss glacial period, a first split between the western and

eastern populations seems to have occurred with the diversification

of the ‘‘western’’ lineage in the Mediterranean region, and of the

‘‘eastern’’ lineage maybe in Anatolia and surrounding area of the

Caucasus, or even in territories of western Asia, as also suggested

by [26].During the following interglacial, the ‘‘eastern’’ lineage

seems to have suffered a negligible population growth compared

with a more significant demographic expansion of the ‘‘western’’

lineage, which appears to have later retracted to two Mediterra-

nean refugia, the Iberian Peninsula and the Balkans, where it

diverged into two sub-lineages (the ‘‘western-Mediterranean’’ and

the ‘‘eastern-Mediterranean’’), maybe during the Würm glacial.

After that period, the ‘‘eastern-Mediterranean’’ lineage centred in

the Balkans seems to have expanded to the Italian Peninsula. The

land bridge which existed in the northern and central part of the

present Adriatic Sea between the Italian and the Balkan

peninsulas, during the Quaternary cold periods [6], would have

made the contact between these two peninsulas easier. The

expansion was followed by a slight differentiation in Italy from the

Balkans. The COI haplotype network shows that the dispersal of

haplotypes from the Iberian Peninsula to the north of Italy has also

occurred, maybe either crossing mountains or along the Mediter-

ranean coast of Spain and France as suggested for Cicada orni [52].

Although a weak flier, it is also possible that P. spumarius dispersed

over the sea facilitated by wind (anemohydrochoric dispersal) since

this mode of dispersal has already been observed in this species

[20].

The expansion dates estimated here have wide confidence

intervals. However, the lowest boundaries of these dates are about

0.015 Ma ago, suggesting that the demographic and spatial

expansion of this species may have occurred earlier than

Holocene. Our data and reference [26] suggest the current

geographic pattern of the species seems to result from postglacial

range expansion from the Iberian Peninsula to the central and

north-western Europe and, from the Anatolia/Caucasus (and

eventually from western Asia) to east, north and central Europe,

thus seemingly not following one of the common four paradigms

[12,53]. Although a northern expansion from Balkans cannot be

completely ruled out, the current data indicates that the

Carpathians may have represented a geographic barrier to the

northern expansion of Balkans populations. Further detailed

sampling and genetic analysis of the Carpathian region would

be important to test this hypothesis.

Contact zones in Europe have been recorded for several

European temperate species (reviewed in [54]). According to our

results, the mtDNA lineages are geographically separated in most

part of the range of P. spumarius but came into contact in some

geographic regions (Fig. 1). This suggests the existence of recent

admixture (secondary contact of diverged lineages) between

mtDNA lineages in populations from these regions, also corrob-

orated by [26]. The presence of the ‘‘eastern-Mediterranean’’ sub-

lineage in some populations from the eastern part of the Iberian

Peninsula (haplotype H56) and of the ‘‘western’’ sub-lineage in

Balkans (haplotype H18) indicates that recent migrations between

Mediterranean refugia may have occurred during the Quaternary

period as reported in the olive fly Bactrocera oleae [55]. However,

incomplete lineage sorting of an ancestral polymorphism cannot

Table 1. Number of individuals, number of haplotypes and genetic diversity indices calculated for geographic regions of Philaenus
spumarius and for mitochondrial gene Cytochrome c oxidase I (COI).

Geographic regions Number of Number of Haplotype diversity (h) Nucleotide diversity (p)

individuals haplotypes

Morocco 7 3 0.6667 +/2 0.1598 0.001414 +/2 0.001338

Iberian Peninsula 63 19 0.7798 +/2 0.0493 0.003133 +/2 0.002062

Azores 5 2 0.4000 +/2 0.2373 0.000742 +/2 0.000944

Western Europe 9 4 0.7500 +/2 0.1121 0.006597 +/2 0.004194

Slovenia 3 1 0.0000 +/2 0.0000 0.000000 +/2 0.000000

Italy 17 8 0.8162 +/2 0.0815 0.004666 +/2 0.002957

Balkans 40 21 0.9128 +/2 0.0303 0.003825 +/2 0.002431

Anatolian Peninsula 7 5 0.9048 +/2 0.1033 0.009895 +/2 0.006223

United Kingdom 10 3 0.6889 +/2 0.1038 0.009318 +/2 0.005592

Finland 17 9 0.8971 +/2 0.0534 0.006603 +/2 0.003950

North America 12 8 0.8939 +/2 0.0777 0.008236 +/2 0.004917

Western Europe: Belgium and France; Italy: Italian peninsula and Sicily.
doi:10.1371/journal.pone.0098375.t001
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be ruled out as another possible explanation for the current

mtDNA pattern of P. spumarius. Our data also indicate the

existence of incomplete lineage sorting and/or admixture in the

nuclear gene EF-1a. Although nuclear clades A and B correspond

well to the ‘‘eastern-Mediterranean’’ and to the ‘‘western-

Mediterranean’’ mtDNA sub-lineages, respectively, clade C is a

mix of individuals from the three mitochondrial lineages.

Heterozygous individuals whose alleles grouped within different

clades were found, a fact not detected by [26], since they analysed

homozygous individuals only. In the nuclear gene there was a lack

of support for the monophyly of the ‘‘western’’ lineage (‘‘western-

Mediterranean and ‘‘eastern-Mediterranean’’ mitochondrial sub-

lineages). Taken together, our results suggest that the current

biogeographic pattern of P. spumarius may be the result of both

secondary admixture and incomplete lineage sorting.

Also quite interesting is the uncommon [12] high genetic

diversity detected in P. spumarius populations from northern

Europe (Scandinavia) indicating that the north of Europe was

colonized by populations that may have survived in several extra-

Mediterranean glacial refugia in addition to the ‘‘classical’’

Mediterranean ones [7].

Gene-flow between the Iberian Peninsula and Morocco
The presence of the ‘‘western-Mediterranean’’ sub-lineage in

Morocco suggests a close relationship between these P. spumarius

populations and the Iberian Peninsula. This close relationship is

also corroborated by the nuclear data. There is evidence that the

Strait of Gibraltar has not been an effective barrier to the

dispersal, having been, in fact, the route of dispersal for many

species from Africa to Europe and vice-versa [56,57,58]. Lowered

sea levels during glacial periods possibly facilitated exchange

across the Strait of Gibraltar [59]. It is quite possible that, during

such lower sea level periods, individuals from the Iberian

Peninsula reached North Africa via anemohydrochoric dispersal.

Contrarily to the thermophilous species Cicada barbara, a common

cicada in southern Portugal and Spain [60], the Rif Mountains did

not appear to have acted as a geographical barrier to the dispersal

of P. spumarius through Morocco, since this latter can be found in a

variety of terrestrial habitats and even at altitudes above 1700m

(e.g. Mt Parnassus, in Greece: observations by Ana Rodrigues,

Sara Silva and Eduardo Marabuto). Although the haplotypes

found in samples from Morocco were the same as some of the ones

found in the Iberian Peninsula, indicating that they belong to P.

spumarius, the analysis of four male genitalia from these populations

revealed similarities with P. tesselatus [61] and showed the necessity

of further investigation on the taxonomic status of these species, as

previously suggested by [26].

The UK and the origin of the North American and insular
populations

Our analyses suggest the presence of at least two mitochondrial

lineages in the UK, the ‘‘western-Mediterranean’’ and the

‘‘eastern’’, and support a British origin for the populations of the

Azores and New Zealand, and a multiple origin for the North

American populations (Figs. 1 and 2). Populations from the Azores

and New Zealand seem to have originated from only one of the

British lineages here represented (the ‘‘western-Mediterranean’’

lineage). North American populations seem to have a mixed

origin: a British origin, already suggested in the preliminary study

by [27], from the ‘‘western-Mediterranean’’ lineage present in the

UK, and an Iberian origin, due to the close relationship between

one haplotype (H26) from the eastern United States and the

Iberian Peninsula haplotypes. In fact, multiple translocations from

different localities from western Europe have already been

suggested for North American populations [26]. The close

relationship of some North American haplotypes (New Hamp-

shire) to the ones found in Anatolia and Finland indicates another

origin from the ‘‘eastern’’ mitochondrial lineage, and that was

never reported before. Nevertheless, a morphological variation in

North American populations was already reported by [62]. The

author shows that P. spumarius populations from New Hampshire

and adjacent areas of North American exhibit morphological

variation in male genitalia features and attributes this variation to

hybridization between P. spumarius subspecies from different parts

of Europe. Verification of whether there is any correlation

between Hamilton’s morphological subspecies and haplotype

variation would require a parallel investigation of morphology

beyond the scope of this work. The colonization of New Zealand

and North America was probably recent and resulted from non-

intentional anthropogenic introductions. This recent colonization

could explain the spittlebug pest status in some locations of the

USA and Canada, where P. spumarius reaches high densities,

perhaps as result of the lack of competitors and predators [19,24].

Concerning the Azorean populations, the fact that they only occur

in high altitude native habitats (e.g. in the geologically older areas

of S. Miguel), very far from human altered habitats, is somewhat

puzzling and we cannot exclude the possibility of a natural

colonization by long-distance dispersal.

Conclusion

P. spumarius is one of the most widespread insects in Europe. We

successfully provided time estimates of the main demographic and

evolutionary events for the populations occurring in the main

Mediterranean peninsulas, and in addition interpreted the

colonization patterns out of Eurasia, namely of north-western

Africa, North America, and the islands of Azores and New

Zealand. This combination of a well analysed phylogeographic

Table 3. Tajima’s D and [44] Fu’s Fs test values and their statistical significance for Philaenus spumarius Cytochrome c oxidase I
mtDNA groups.

Neutrality Tests

Tajima’s D test Fu’s Fs test

Eastern Group 0.15553 26.28375**

Western-Mediterranean Group 21.77941* 223.61561***

Eastern-Mediterranean Group 21.75709* 226.22826***

*: indicates significant values at P,0.05; **: indicates significant values at P,0.01 and ***: indicates significant values at P,0.001.
doi:10.1371/journal.pone.0098375.t003
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and demographic pattern with the multiple transcontinental

colonization events, some putatively natural, others recent non-

intentional anthropogenic introductions, with ecosystem level

consequences, make this species well placed for understanding

the long term effects of invasive species and their post-invasion

evolution.

Supporting Information

Figure S1 Median-joining haplotype network of a set of
Philaenus spumarius sampled geographic regions for
mitochondrial gene COII (495bp). Size of the circles is in

proportion to the number of haplotypes. Branches begin in the

centre of the circles and their size is in proportion to the number of

mutations.

(TIF)

Figure S2 Median-joining haplotype network of a set of
P. spumarius sampled geographic regions for mitochon-
drial gene cyt b (434bp). Size of the circles is in proportion to

the number of haplotypes. Branches begin in the centre of the

circles and their size is in proportion to the number of mutations.

(TIF)

Figure S3 Median-joining haplotype network of P.
spumarius sampled geographic regions for mitochon-
drial gene COI (289bp). Size of the circles is in proportion to

the number of haplotypes. Branches begin in the centre of the

circles and their size is in proportion to the number of mutations.

(TIF)

Figure S4 Mismatch distribution of mtDNA COI haplo-
types for each of the three P. spumarius haplogroups. (a)

Eastern lineage; (b) Western-Mediterranean sub-lineage and (c)

Eastern-Mediterranean sub-lineage. The expected frequency is

based on a population growth-decline model, determined using

DNASP and is represented by a continuous line. The observed

frequency is represented by a dotted line. Parameter values for the

mismatch distribution are given in Table 2.

(TIF)

Figure S5 Bayesian skyline plots showing the historical
demographic trends for each main Philaenus spumarius
mtDNA group detected using COI gene. Along the y-axis is

the expressed population size estimated in units of Nem (Ne:

effective population size, m: mutation rate per haplotype per

generation). The y-axis is in a log-scale. Solid lines represent

median estimates and blue lines represent the 95% high

probability density (HPD) intervals.

(TIF)

Table S1 Analysed samples of Philaenus spumarius
with description of the sampling locations and indica-
tion of the corresponding mtDNA Cytochrome c oxidase
I (COI), Cytochrome c oxidase II (COII), Cytochrome b
haplotype/code and Elongation Factor-1a code (EF-1a).
(PDF)

Table S2 Haplotype distribution within P. spumarius
geographic regions for mitochondrial gene COI. The total

number of haplotypes per geographic region and the total number

of individuals per haplotype are also shown. Western Europe:

Belgium and France; Italy: Italian peninsula and Sicily.

(PDF)

Table S3 Analyses of molecular variance (AMOVA)
among regions of P. spumarius based on COI data.
(PDF)

Table S4 Divergence time estimates in million years
(Ma) from the most recent common ancestor of each
main Philaenus spumarius mtDNA COI haplogroup
estimated using a mean mutation rate of 3.54% per
million years as suggested by [41].
(PDF)
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Appendix S1

Table S1 - Analysed samples of Philaenus spumarius with description of the sampling locations and indication of the corresponding mtDNA 

Cytochrome c oxidase I (COI), Cytochrome c oxidase II (COII), Cytochrome b haplotype/code and Elongation Factor-1α code (EF-1α).

Location (Collector) EF-1α Code GPS Coordinates
Portugal
Quinta da Ranca, Vinhais, Trás-os-Montes (Seabra) H27/Ranca_1 H7/Ranca_1 H9/Ranca_1 41°48'48.80"N; 6°59'44.51"W
Viana do Castelo, Minho (Seabra) H30 41°42'40.10"N; 8°51'20.95"W
Parque Nacional Peneda Gerês, Minho (Rodrigues, Silva, Marabuto) H29 41°43'44.34"N; 8° 9'46.46"W
São Jacinto, Aveiro (Seabra) H29 40°40'36.19"N; 8°43'13.53"W
São Jacinto, Aveiro (Marabuto) H29/S.Jacinto_3 H3/S.Jacinto_3 H9/S.Jacinto_3 40°40'36.19"N; 8°43'13.53"W
Bom Sucesso, Foz do Arelho (Quartau, Seabra & Penado) H37 39°25'2.95"N; 9°13'39.18"W
Bom Sucesso, Foz do Arelho (Quartau, Seabra & Penado) H36 39°25'2.95"N; 9°13'39.18"W
Bom Sucesso, Foz do Arelho (Rodrigues, Marabuto, Pereira & Seabra) H29/ F. Arelho_8 H10/ F. Arelho_8 H9/ F. Arelho_8 39°25'2.95"N; 9°13'39.18"W
Covão da Ametade, Serra da Estrela (Seabra) H29 40°19'33.85"N; 7°34'19.08"W
Santa Combadão, Serra da Estrela (Marabuto) H29/S.Estrela_3 H3/S.Estrela_3 H9/S.Estrela_3 40°23'51.71"N; 8° 7'49.97"W
Olival, Ourém (Quartau) H29 39°42'38.51"N; 8°36'4.39"W
Olival, Ourém (Quartau) H37/ Olival_6 H9/ Olival_6 H9/ Olival_6 39°42'38.51"N; 8°36'4.39"W
Évora de Alcobaça, Alcobaça (Nunes) H37 39°30'55.84"N; 8°58'20.40"W
Évora de Alcobaça, Alcobaça (Nunes) H29/ Alcobaça_3 Alcobaça_3 Alcobaça_3 39°30'55.84"N; 8°58'20.40"W
Évora de Alcobaça, Alcobaça (Nunes) H37/ Alcobaça_4 H3/ Alcobaça_4 H9/ Alcobaça_4 39°30'55.84"N; 8°58'20.40"W
Évora de Alcobaça, Alcobaça (Nunes) H29 39°30'55.84"N; 8°58'20.40"W
Serra d' Aire (Seabra) H21/S.Aire_5 H4/S.Aire_5 H9/S.Aire_5 39°31'56.98"N; 8°31'52.56"W
Serra d' Aire (Seabra) H37 39°31'56.98"N; 8°31'52.56"W
Serra Montejunto (Marabuto) H29/Montejunto_2 H3/Montejunto_2 H9/Montejunto_2 39°10'24.53"N; 9° 2'55.66"W
Gouveia, Sintra (Quartau,  Seabra & Penado) H36 38°50'15.75"N; 9°25'20.77"W
Fontanelas, Sintra (Rodrigues, Seabra & Pereira) H29/ Sintra_10 H3/ Sintra_10 H9/ Sintra_10 Sintra_10 38°50'15.75"N; 9°25'20.77"W
Arrábida, Setúbal (Fonseca) H29 Arrabida_5 38°28'20.09"N; 8°59'41.77"W
Arrábida, Setúbal (Fonseca) H37/Arrabida_6 H8/Arrabida_6 H6/Arrabida_6 38°28'20.09"N; 8°59'41.77"W
Vale do Gaio, Torrão, Alentejo (Seabra) H37 38°14'57.66"N; 8°17'49.32"W
Grândola, Alentejo (Seabra) H29 38°10'5.83"N; 8°36'34.40"W
Grândola, Alentejo (Seabra) H22 38°10'5.83"N; 8°36'34.40"W
Grândola, Alentejo (Quartau & Seabra) H38/Grandola_1 H8/Grandola_1 H6/Grandola_1 38°10'5.83"N; 8°36'34.40"W
Grândola, Alentejo (Quartau & Seabra) H26 38°10'5.83"N; 8°36'34.40"W
Beringel, Ferreira do Alentejo (Quartau & Simões) H29/F.Alentejo_1 H3/F.Alentejo_1 H4/F.Alentejo_1 38° 3'23.09"N; 7°59'5.45"W
Beja, Alentejo (Marabuto) H37 38° 5'22.11"N; 7°58'26.53"W
Sines, Alentejo (Rodrigues & Marabuto) H29/Sines_1 H3/Sines_1 H4/Sines_1 37°57'58.98"N; 8°52'25.14"W
Cercal, Alentejo (Seabra) H40 37°46'39.12"N; 8°39'46.80"W
Ribeira do Torgal, Odemira, Alentejo (Ribeiro & Pires) H20 37°39'35.14"N; 8°37'40.86"W
Ribeira do Torgal, Odemira, Alentejo (Ribeiro & Pires) H29 37°39'35.14"N; 8°37'40.86"W
Ribeira do Torgal, Odemira, Alentejo (Ribeiro & Pires) H29 37°39'35.14"N; 8°37'40.86"W

COI
Haplotype/Code

COII
Haplotype/Code

Cyt b
Haplotype/Code



Table S1 - Analysed samples of Philaenus spumarius with description of the sampling locations and indication of the corresponding mtDNA 

Cytochrome c oxidase I (COI), Cytochrome c oxidase II (COII), Cytochrome b haplotype/code and Elongation Factor-1α code (EF-1α) (cont.).

Location (Collector) EF-1α Code GPS Coordinates
Portugal
Santa Clara a Velha, Rio Mira, Alentejo (Ribeiro) H40/R.Mira_1 H8/R.Mira_1 H8/R.Mira_1 37°30'38.22"N; 8°28'27.23"W
Santa Clara a Velha, Rio Mira, Alentejo (Ribeiro) H39/Mira_1 H8/Mira_1 H6/Mira_1 37°30'38.22"N; 8°28'27.23"W
Santa Clara a Velha, Rio Mira, Alentejo (Ribeiro) H40/Mira_2 H8/Mira_2 H7/Mira_2 37°30'38.22"N; 8°28'27.23"W
Santa Clara a Velha, Rio Mira, Alentejo (Rodrigues & Marabuto) H29/Mira_3 H3/Mira_3 H4/Mira_3 37°30'38.22"N; 8°28'27.23"W
Santa Clara a Velha, Rio Mira, Alentejo (Rodrigues & Marabuto) H37 H8 H5 37°30'38.22"N; 8°28'27.23"W
Aljezur, Alentejo (Rodrigues & Marabuto) H41/Aljejur_9.1 H8/Aljejur_9.1 H7/Aljejur_9.1 37°18'11.22"N; 8°47'59.88"W
Silves, Algarve (Seabra) H29 37°11'40.31"N; 8°27'55.28"W
Silves, Algarve (Seabra) H29 37°11'40.31"N; 8°27'55.28"W
Silves, Algarve (Seabra) H29/Silves_3 H3/Silves_3 Silves_3 37°11'40.31"N; 8°27'55.28"W
Silves, Algarve (Seabra) H29 37°11'40.31"N; 8°27'55.28"W
Silves, Algarve (Seabra) H29 37°11'40.31"N; 8°27'55.28"W
Silves, Algarve (Seabra) H29 37°11'40.31"N; 8°27'55.28"W
Barranco do Velho, Algarve (Quartau) H29 37° 8'15.13"N; 8° 1'24.27"W
São Miguel, Açores (Borges) H24/ Azores_1 H3/ Azores_1 H13/ Azores_1 Azores_1 37°47'46.86"N; 25°11'4.50"W
São Miguel, Açores (Borges) H24 37°47'46.86"N; 25°11'4.50"W
São Miguel, Açores (Borges) H71 37°47'46.86"N; 25°11'4.50"W
São Miguel, Açores (Borges) H24 37°47'46.86"N; 25°11'4.50"W
São Miguel, Açores (Borges) H24 37°47'46.86"N; 25°11'4.50"W
Finland
Tvarminne (Halkka) H2/ Tvarminne_4 H2/ Tvarminne_4 H1/ Tvarminne_4 59°50'37.60"N; 23°14'21.68"E
Tvarminne (Halkka) H16 59°50'37.60"N; 23°14'21.68"E
Tvarminne (Halkka) H16 59°50'37.60"N; 23°14'21.68"E
Tvarminne (Halkka) H16 59°50'37.60"N; 23°14'21.68"E
Norra Grisselgrundet (Halkka) Grisselgrundet_4 Grisselgrundet_4 Grisselgrundet_4 59°50'17.48"N; 23°14'46.87"E
Norra Grisselgrundet (Halkka) H16 59°50'17.48"N; 23°14'46.87"E
Windskar (Halkka) H2 59°49'40.56"N; 23°12'42.74"E
Brannskar (Halkka) H5/ Brannskar_7 H2/ Brannskar_7 H3/ Brannskar_7 59°50'39.51"N; 23°16'22.50"E
Brannskar (Halkka) H15 59°50'39.51"N; 23°16'22.50"E
Brannskar (Halkka) H15 59°50'39.51"N; 23°16'22.50"E
Brannskar (Halkka) H16 59°50'39.51"N; 23°16'22.50"E
Segelskar (Halkka) H8/ Segelskar_4 H2/ Segelskar_4 H3/ Segelskar_4 59°45'52.22"N; 23°22'24.53"E
Segelskar (Halkka) H16 59°45'52.22"N; 23°22'24.53"E
Punkalaidun (Halkka) H1 61° 7'0.75"N; 23° 5'35.54"E
Punkalaidun (Halkka) H4 61° 7'0.75"N; 23° 5'35.54"E
Punkalaidun (Halkka) H7 61° 7'0.75"N; 23° 5'35.54"E
Punkalaidun (Halkka) H12 61° 7'0.75"N; 23° 5'35.54"E
Haaparnaki-Keuruu (Halkka) H4 62°15'32.75"N; 24°42'28.08"E
Haaparnaki-Keuruu (Halkka) H7 62°15'32.75"N; 24°42'28.08"E

COI
Haplotype/Code

COII
Haplotype/Code

Cyt b
Haplotype/Code



 Table S1 - Analysed samples of Philaenus spumarius with description of the sampling locations and indication of the corresponding mtDNA 

Cytochrome c oxidase I (COI), Cytochrome c oxidase II (COII), Cytochrome b haplotype/code and Elongation Factor-1α code (EF-1α) (cont.).

Location (Collector) EF-1α Code GPS Coordinates
Turkey
Cerkes (Yurtserver) Cerkes_3 H1/ Cerkes_3 H2/ Cerkes_3 40°48'59.24"N; 32°54'9.50"E
Cerkes (Yurtserver) H4 40°48'59.24"N; 32°54'9.50"E
Cerkes (Yurtserver) H6 40°48'59.24"N; 32°54'9.50"E
Cerkes (Yurtserver) H6 40°48'59.24"N; 32°54'9.50"E
Cerkes (Yurtserver) H11 40°48'59.24"N; 32°54'9.50"E
Cerkes (Yurtserver) H14 Turkey_3 40°48'59.24"N; 32°54'9.50"E
Cerkes (Yurtserver) H14 40°48'59.24"N; 32°54'9.50"E
Azdavay (Yurtserver) H57/Azdavay_1 H11/Azdavay_1 H16/Azdavay_1 41°38'29.26"N; 33°17'52.54"E
Keçan (North) (Yurtserver) H57/ Keçan_N1 H13/Keçan_N1 H17/Keçan_N1 Keçan_N1 40°53'29.60"N; 26°38'42.81"E
Keçan (North) (Yurtserver) H64 40°53'29.60"N; 26°38'42.81"E
Keçan (South) (Yurtserver) H57/Keçan_S1 H12/Keçan_S1 H16/Keçan_S1 40°44'41.83"N; 26°36'6.98"E
Keçan (South) (Yurtserver) H64 40°44'41.83"N; 26°36'6.98"E
Lapseki (Yurtserver) H46/ Lapseki_1 H12/ Lapseki_1 H16/ Lapseki_1 40°19'3.46"N; 26°43'46.86"E
Lapseki (Yurtserver) H57 40°19'3.46"N; 26°43'46.86"E
Lapseki (Yurtserver) H59 40°19'3.46"N; 26°43'46.86"E
Kucukuyu (Yurtserver) H55/ Kucukuyu_1 H12/ Kucukuyu_1 H16/ Kucukuyu_1 39°36'35.48"N; 26°33'2.11"E
Kucukuyu (Yurtserver) H57 39°36'35.48"N; 26°33'2.11"E
Kucukuyu (Yurtserver) H67 39°36'35.48"N; 26°33'2.11"E
Suloglu (Yurtserver) H57/ Suloglu_1 H14/ Suloglu_1 H16/ Suloglu_1 41°46'52.25"N; 26°53'1.74"E
Suloglu (Yurtserver) H57 41°46'52.25"N; 26°53'1.74"E
Suloglu (Yurtserver) H62 41°46'52.25"N; 26°53'1.74"E
Pabucdere (Yurtserver) H50/ Pabucdere_1 H14/ Pabucdere_1 H16/ Pabucdere_1 41°38'18.49"N; 27°54'54.61"E
Pabucdere (Yurtserver) H57 41°38'18.49"N; 27°54'54.61"E
Pabucdere (Yurtserver) H64 41°38'18.49"N; 27°54'54.61"E
Demirkoy (Yurtserver) H54/ Demirkoy_1 H12/ Demirkoy_1 H18/ Demirkoy_1 41°52'34.74"N; 27°46'8.04"E
Demirkoy (Yurtserver) H57 41°52'34.74"N; 27°46'8.04"E
Italy
Tardaria, Etna, Sicily (d'Urso) H4 37°43'53.05"N; 14°59'8.12"E
Tardaria, Etna, Sicily (d'Urso) H29 37°43'53.05"N; 14°59'8.12"E
Bosco di Acisantantonio, Etna, Sicily (d'Urso) H49/Sicily_5 H12/Sicily_5 Sicily_5 37°41'16.21"N; 15° 9'30.01"E
Torcello, Veneze (Quartau) H47 45°29'47.21"N; 12°25'11.44"E
Via Appia, Rome (Quartau) H53 41°44'33.26"N; 12°42'44.66"E
Emilia, Parma (Quartau) H32 44°48'12.33"N; 10°20'45.45"E
Emilia, Parma (Quartau) H32 44°48'12.33"N; 10°20'45.45"E
Emilia, Parma (Quartau) H32 44°48'12.33"N; 10°20'45.45"E
Emilia, Parma (Quartau) H32 44°48'12.33"N; 10°20'45.45"E
Emilia, Parma (Quartau) H32 44°48'12.33"N; 10°20'45.45"E
Emilia, Parma (Quartau) H32 44°48'12.33"N; 10°20'45.45"E
Emilia, Parma (Quartau) H33 Italia_2 44°48'12.33"N; 10°20'45.45"E
Emilia, Parma (Quartau) H51 44°48'12.33"N; 10°20'45.45"E

COI
Haplotype/Code

COII
Haplotype/Code

Cyt b
Haplotype/Code



Table S1 - Analysed samples of Philaenus spumarius with description of the sampling locations and indication of the corresponding mtDNA 

Cytochrome c oxidase I (COI), Cytochrome c oxidase II (COII), Cytochrome b haplotype/code and Elongation Factor-1α code (EF-1α) (cont.).

Location (Collector) EF-1α Code GPS Coordinates
Italy
Florence, Toscana (Marabuto) H49 43°49'21.87"N; 11°21'9.66"E
Mt. Calvi, Toscana (Marabuto) H53 43° 5'9.00"N; 10°36'28.00"E
Greve in Chienti, Toscana (Marabuto) H49 43°35'2.00"N; 11°18'50.00"E
Bologna (Marabuto) H52 44° 2'45.00"N; 11°17'44.00"E
Villaromagnana, Alps (Lessio) H32 44°50'59.56"N; 8°53'25.52"E
United Kingdom
Cardiff, Wales (Wilson) H24 51°28'57.16"N; 3°11'0.41"W
Cardiff, Wales (Wilson) H24 51°28'57.16"N; 3°11'0.41"W
Aberdare, Wales (Wilson) H13 UK_7 51°42'49.13"N; 3°26'43.27"W
Aberdare, Wales (Wilson) H13 51°42'49.13"N; 3°26'43.27"W
Aberdare, Wales (Wilson) H13 51°42'49.13"N; 3°26'43.27"W
Aberdare, Wales (Wilson) H24 51°42'49.13"N; 3°26'43.27"W
Cambridge, England (Borges) H23/Cambridge_1 H3/Cambridge_1 H12/Cambridge_1 52°12'22.80"N; 0° 7'29.41"E
Cambridge, England (Borges) H23/Cambridge_2 H3/Cambridge_2 H12/Cambridge_2 52°12'22.80"N; 0° 7'29.41"E
Cambridge, England (Borges) H24 52°12'22.80"N; 0° 7'29.41"E
Oxfordshire, England (Corlev) H24 51°39'30.43"N; 1°35'5.11"W
Canada
Burnaby Mt. British Columbia (Beckenbach) H24 53°43'36.00"N; 127°38'51.43"W
Burnaby Mt. British Columbia (Beckenbach) H24/Canada_3 H3/Canada_3 H12/Canada_3 53°43'36.00"N; 127°38'51.43"W
Burnaby Mt. British Columbia (Beckenbach) H70 53°43'36.00"N; 127°38'51.43"W
Burnaby Mt. British Columbia (Beckenbach) Canada_5 Canada_5 Canada_5 53°43'36.00"N; 127°38'51.43"W
United States of America
Michigan (Fonseca) H25 USA_2 44°18'49.13"N; 85°35'6.26"W
Michigan (Fonseca) H25 44°18'49.13"N; 85°35'6.26"W
Michigan (Fonseca) H25/USA_4 H5/USA_4 H4/USA_4 44°18'49.13"N; 85°35'6.26"W
Michigan (Fonseca) H25 44°18'49.13"N; 85°35'6.26"W
Michigan (Fonseca) H26/USA_6 H3/USA_6 H11/USA_6 44°18'49.13"N; 85°35'6.26"W
Wonalancet – New Hampshire (Thompson) H1 43°53'58.93"N; 71°21'33.47"W
Wonalancet – New Hampshire (Thompson) H3 43°53'58.93"N; 71°21'33.47"W
Wonalancet – New Hampshire (Thompson) H9 43°53'58.93"N; 71°21'33.47"W
Wonalancet – New Hampshire (Thompson) H10 43°53'58.93"N; 71°21'33.47"W
Spain
C. R. Fauna et Ed. Amb. “Los Hornos” (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H30 39°26'14.10"N; 6°17'17.46"W
Valdenoches, Castille La Mancha (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H56/Spain_3.1 H12/Spain_3.1 H15/Spain_3.1 40°41'11.03"N; 3° 5'18.87"W
Caspe, Aragon (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H56/Spain_4.1 H12/Spain_4.1 H15/Spain_4.1 41°21'41.30"N; 0° 6'17.83"W
Tolva, Aragon (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H26 42° 6'42.89"N; 42° 6'42.89"N
El Pont de Suert, Catalunha (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H35 42°24'46.98"N; 0°44'22.89"E
Forgais de Montclús, Catalunha (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H19 41°43'42.20"N; 2°26'13.21"E
Chert, Valencia (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H56 40°30'55.36"N; 0° 8'27.38"E

COI
Haplotype/Code

COII
Haplotype/Code

Cyt b
Haplotype/Code



Table S1 - Analysed samples of Philaenus spumarius with description of the sampling locations and indication of the corresponding mtDNA 

Cytochrome c oxidase I (COI), Cytochrome c oxidase II (COII), Cytochrome b haplotype/code and Elongation Factor-1α code (EF-1α) (cont.).

Location (Collector) EF-1α Code GPS Coordinates
Spain
San Agustin, Aragon (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H56 40° 8'24.18"N; 0°43'0.50"W
Cheste, Valencia (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H56/Spain_22.1 H12/Spain_22.1 H15/Spain_22.1 39°31'9.33"N; 0°40'8.49"W
Vélez-Rubio, Andalusia (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H29 37°38'49.42"N; 2° 5'13.65"W
Ronda, Andalusia (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H29 36°43'52.11"N; 5°10'55.79"W
El Gastor, Andalusia (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H29 36°50'16.20"N; 5°20'51.02"W
Valdés, Asturias (Rodrigues, Silva & Nunes) H34/Spain_1 H3/Spain_1 H10/Spain_1 43°32'49.08"N; 6°31'28.92"W
Meira, Galiza (Rodrigues, Silva & Nunes) H34/Spain_2 H3/Spain_2 H9/Spain_2 Spain_2 43°13'44.40"N; 7°17'26.64"W
France
Saint-Antonin-Noble-Val (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H19 44° 9'29.52"N; 1°43'16.45"E
Lautrec (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H29 43°42'47.14"N; 2° 7'6.04"E
Fitou (Rodrigues, Silva, Marabuto, Nunes & Ferreira) H19 42°52'49.11"N; 2°59'34.12"E
Aube, Lusigny-sur-Barse (Constant) H17 48°15'7.19"N; 4°16'7.76"E
Aube, Lusigny-sur-Barse (Constant) H29 48°15'7.19"N; 4°16'7.76"E
Belgium
Namur (Constant) H16/ Belgium_1 H2/ Belgium_1 H2/ Belgium_1 Belgium_1 50°27'55.51"N; 4°52'3.33"E
Namur (Constant) H19 50°27'55.51"N; 4°52'3.33"E
Namur (Constant) H19 50°27'55.51"N; 4°52'3.33"E
Namur (Constant) H29 Belgium_4 50°27'55.51"N; 4°52'3.33"E
Morocco
Near Rabat (Rodrigues, Silva, Marabuto & Ferreira) H28 33°46'37.56"N; 7°13'58.92"W
Rabat (Rodrigues, Silva, Marabuto & Ferreira) H29 34° 0'41.70"N; 6°42'32.94"W
Rif (Rodrigues, Silva, Marabuto & Ferreira) H29 Morocco_6.1 35°51'58.14"N; 5°24'30.30"W
Ifrane (Rodrigues, Silva, Marabuto & Ferreira) H37 33°30'41.82"N; 5° 5'34.08"W
Ifrane Centre (Rodrigues, Silva, Marabuto & Ferreira) H37 33°31'58.86"N; 5° 6'7.86"W
Azrou (Rodrigues, Silva, Marabuto & Ferreira) H29 33°26'57.78"N; 5°13'55.14"W
Azrou (Rodrigues, Silva, Marabuto & Ferreira) H29 33°29'39.48"N; 5°15'47.46"W
Greece
Bralou (Rodrigues, Silva, Marabuto) H57 38°44'35.70"N; 22°26'55.50"E
Iti National Park (Rodrigues, Silva, Marabuto) H63 38°44'6.96"N; 22°22'10.20"E
Mt Olympus (Rodrigues, Silva, Marabuto) H43 40° 6'22.32"N; 22°27'33.66"E
Mt Olympus (Rodrigues, Silva, Marabuto) H68 40° 5'35.94"N; 22°25'10.62"E
Mt Olympus (Rodrigues, Silva, Marabuto) H18 40° 5'3.12"N; 22°24'25.26"E
Meteora (Rodrigues, Silva, Marabuto) H57 39°43'11.76"N; 21°38'14.28"E

COI
Haplotype/Code

COII
Haplotype/Code

Cyt b
Haplotype/Code



Table S1 - Analysed samples of Philaenus spumarius with description of the sampling locations and indication of the corresponding mtDNA 

Cytochrome c oxidase I (COI), Cytochrome c oxidase II (COII), Cytochrome b haplotype/code and Elongation Factor-1α code (EF-1α) (cont.).

Location (Collector) EF-1α Code GPS Coordinates
Greece
Mt Vourinos (Rodrigues, Silva, Marabuto) H66 40° 6'28.50"N; 21°40'21.78"E
Mt Vourinos (Rodrigues, Silva, Marabuto) H57 40° 9'26.94"N; 21°43'36.36"E
Mt Vourinos (Rodrigues, Silva, Marabuto) H65 40°12'1.68"N; 21°39'30.00"E
Mt Giona (Rodrigues, Silva, Marabuto) H57 38°40'29.40"N; 22°18'31.62"E
Mt Giona (Rodrigues, Silva, Marabuto) H44 38°40'6.24"N; 22°18'31.62"E
Mt Parnassus (Rodrigues, Silva, Marabuto) H57 38°36'50.16"N; 22°34'33.00"E
Mt Parnassus (Rodrigues, Silva, Marabuto) H46 38°34'42.24"N; 22°34'30.30"E
Mt Parnassus (Rodrigues, Silva, Marabuto) H57 38°37'23.94"N; 22°33'12.96"E
Mt Parnassus (Rodrigues, Silva, Marabuto) H69 38°33'19.98"N; 22°34'44.04"E
Mt Menalo (Rodrigues, Silva, Marabuto) H45 37°37'50.64"N; 22°19'34.56"E
Mt Menalo (Rodrigues, Silva, Marabuto) H57 37°38'26.10"N; 22°16'1.62"E
Mt Menalo (Rodrigues, Silva, Marabuto) H60 37°40'49.38"N; 22°13'46.26"E
Mt Menalo (Rodrigues, Silva, Marabuto) H58 37°37'37.32"N; 22°17'39.18"E
Mt Taygetus (Rodrigues, Silva, Marabuto) H61 36°53'20.10"N; 22°21'4.68"E
Mt Parnonas (Rodrigues, Silva, Marabuto) H57 37°11'13.44"N; 22°33'30.96"E
Slovenia
Dragonja (Derlink) H48 Slovenia_1 45°27'18.00"N; 13°42'4.68"E
Dragonja (Derlink) H48 45°27'18.00"N; 13°42'4.68"E
Gorice pri Famljah (Derlink) H48 45°40'21.05"N; 14° 0'52.99"E
Bulgaria
Petrich (Paulo) H57 41°25'60.00"N; 23° 1'0.00"E
New Zealand
Lincoln, South Island (Yurtserver) H14 FigS3 43°38'40.41"S; 172°28'9.98"E
Lincoln, South Island (Yurtserver) H14 FigS3 43°38'40.41"S; 172°28'9.98"E
Lincoln, South Island (Yurtserver) H14 FigS3 43°38'40.41"S; 172°28'9.98"E

COI
Haplotype/Code

COII
Haplotype/Code

Cyt b
Haplotype/Code



Table S2 – Haplotype distribution within P. spumarius geographic regions for mitochondrial gene COI. The total number of haplotypes per geographic 

region and the total number of individuals per haplotype are also shown. Western Europe: Belgium and France; Italy: Italian peninsula and Sicily.



Table S3 – Analyses of molecular variance (AMOVA) among regions of P. spumarius based on COI data. 

Source of variation d.f.
Sum of
squares

Variance of compo-
nents

% of varia-
tion

Fixation

Indices (Ф)
     
*[North America][Azores][North Africa][Northern Europe] [Western Europe]
[South-western Europe][Central Europe][South-eastern Europe][South-western Asia]

Among groups 8 196.948 0.73116 Va 27.73 ФCT 0.2773

Among regions within groups 4 29.265 0.66613 Vb 25.26 ФSC 0.2526

Within regions 177 219.194 1.23930 Vc 47.00 ФST 0.4700

Total 189 445.568 2.63658   

**[North America][Azores][North Africa][Northern Europe] [United Kingdom]

[Southern Europe][Central Europe][South-western Asia]

Among groups 7 155.904 0.77953 Va 27.59 ФCT 0.2759

Among regions within groups 5 70.309 0.80628 Vb 28.54 ФSC 0.2854

Within regions 177 219.356 1.23930 Vc 43.87 ФST 0.4387

Total 189 445.568 2.82511   

* North America: United States of America and Canada; North Africa: Morocco; Northern Europe: Finland; Western Europe: United Kingdom, France and Belgium; South-western Europe: Iberian Peninsula; Central 
Europe: Slovenia; South-eastern Europe: Italian Peninsula, Sicily and Balkans; South-western Asia: Anatolia Peninsula.

** North America: United States of America and Canada; North Africa: Morocco; Northern Europe: Finland; Southern Europe: Iberian Peninsula, Italian Peninsula, Sicily and Balkans; Central Europe: Belgium, France and 
Slovenia; South-western Asia: Anatolia Peninsula.



Table S4 - Divergence time estimates in million years (Ma) from the most recent common ancestor of each main Philaenus spumarius mtDNA COI 

haplogroup estimated using a mean mutation rate of 3.54% per million years as suggested by Papadopoulou et al. (2010).

Lower 95%
HPD

Mean
Upper 95%

HPD
Eastern-Mediterranean 0.031 0.084 0.153
Western-Mediterranean 0.026 0.079 0.148
Eastern 0.056 0.190 0.374
Eastern vs western-Mediterranean 0.118 0.269 0.450
Eastern-Mediterranean vs western-Mediterranean 0.067 0.146 0.243
Eastern-Mediterranean vs eastern 0.120 0.270 0.447
Combined 0.122 0.270 0.448



Appendix S2

Figure S1 – Median-joining haplotype network of a set of  Philaenus spumarius sampled geographic regions for mitochondrial gene COII (495bp).

Size of the circles is in proportion to the number of haplotypes. Branches begin in the centre of the circles and their size is in proportion with the

number of mutations.



Figure S2 – Median-joining haplotype network of a set of P. spumarius sampled geographic regions for mitochondrial gene cyt b (434bp). Size of the

circles is in proportion to the number of haplotypes. Branches begin in the centre of the circles and their size is in proportion with the number of

mutations.



Figure S3 – Median-joining haplotype network of P. spumarius sampled geographic regions for mitochondrial gene COI (289bp). Size of the circles is

in proportion to the number of haplotypes. Branches begin in the centre of the circles and their size is in proportion with the number of mutations.



Figure  S4  -  Mismatch distribution  of  mtDNA COI haplotypes  for  each  of  the  three  P.

spumarius haplogroups: (a) Eastern lineage; (b) Western-Mediterranean sub-lineage and (c)

Eastern-Mediterranean sub-lineage. The expected frequency is based on a population growth-

decline model, determined using DNASP and is represented by a continuous line. The observed

frequency is represented by a dotted line. Parameter values for the mismatch distribution are

given in Table 3. 
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Figure  S4  -  Mismatch distribution  of  mtDNA COI haplotypes  for  each  of  the  three  P.

spumarius haplogroups: (a) Eastern lineage; (b) Western-Mediterranean sub-lineage and (c)

Eastern-Mediterranean sub-lineage. The expected frequency is based on a population growth-

decline model, determined using DNASP and is represented by a continuous line. The observed

frequency is represented by a dotted line. Parameter values for the mismatch distribution are

given in Table 3 (cont.). 
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Figure S5 - Bayesian skyline plots showing the historical demographic trends for each main

Philaenus spumarius mtDNA group detected using COI gene. Along the y-axis is the expressed

population size estimated in units of Neμ (Ne: effective population size, μ: mutation rate per

haplotype per generation). The y-axis is in a log-scale. Solid lines represent median estimates

and blue lines represent the 95% high probability density (HPD) intervals.
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Differential survival and reproduction in colour forms
of Philaenus spumarius give new insights to the study
of its balanced polymorphism
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Abstract. 1. Colour polymorphisms are common across animals and are often the
result of complex selection regimes. Philaenus spumarius (Linnaeus) (Hemiptera,
Aphrophoridae) shows a widely studied dorsal colour polymorphism with several
described phenotypes whose variation in their occurrence and frequency, as well as
their maintenance across time, have been reported. Several selective influences have
been suggested to play a role, but the mechanisms underlying the maintenance of this
polymorphism are still poorly understood.

2. To explore the adaptive significance of the colour polymorphism of P. spumarius,
an experiment was conducted in captivity under semi-natural conditions to measure
survival, reproductive success, and duration of egg maturation.

3. It was found that there was higher longevity, a higher number of oviposition events,
and a higher number of eggs laid by trilineatus phenotype females than by typicus and
marginellus, supporting previous reports of an increase in trilineatus frequency during
the season. The duration of egg maturation did not differ among phenotypes.

4. The higher longevity and fertility of the trilineatus phenotype may compensate, for
example, the higher rate of attack by parasitoids and/or higher solar radiation reflectance
in this phenotype, which have already been reported in previous studies, constituting a
possible mechanism for the maintenance of this polymorphism.

Key words. Colour polymorphism, meadow spittlebug, reproduction, survival.

Introduction

Animal colour polymorphisms have been a major source
for understanding processes affecting adaptation and
eco-evolutionary dynamics and the understanding of how these
occur and are maintained is one of the central problems in evo-
lutionary biology (e.g. Jones et al., 1977; Oxford, 1985; Grant,
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1999). Variation within patterning and colour is known to influ-
ence fitness through processes which include thermoregulation
(Phifer-Rixey et al., 2008) and inter-/intra-specific communi-
cation (e.g. camouflage, Bush et al., 2008; sexual selection,
Maan & Cummings, 2008). Several maintenance mechanisms
have been described, namely: negative frequency-dependent
selection, where rare phenotypes have a fitness advantage over
common phenotypes, for example as a strategy to avoid preda-
tors or to lower sexual conflict intensity (Ayala & Campbell,
1974; Punzalan et al., 2005; Svensson et al., 2005; Kusche &
Meyer, 2014); heterozygote advantage, where individuals with
heterozygous genotypes have a higher fitness than individuals
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Fig. 1. Thirteen commonly referred dorsal phenotypes of Philaenus spumarius, including the phenotypes used in this study [typicus (TYP), trilineatus
(TRI) and marginellus (MAR)].

with homozygous genotypes (Vercken et al., 2010); divergence
with gene-flow, in which different local conditions may favour
different colour phenotypes, but with an exchange of migrants
that maintain the polymorphism (Jones et al., 1977; Oxford,
1985); alternative strategies, that result in almost the same fitness
values (Roulin et al., 2003).

The meadow spittlebug Philaenus spumarius (Linnaeus)
(Hemiptera, Aphrophoridae) is a potential good model to test
hypotheses about adaptation and maintenance of polymor-
phisms. It is an abundant, widespread and genetically diverse
insect species (Rodrigues et al., 2014) with a widely studied
dorsal colour polymorphism (Halkka & Halkka, 1990; Stewart
& Lees, 1996; Drosopoulos, 2003). More than 16 different adult
dorsal colour/pattern phenotypes are known to occur throughout
its distribution range (Yurtsever, 2000), 13 of which are com-
monly referred to, being generally divided into non-melanic
and melanic forms (Halkka & Halkka, 1990; Stewart & Lees,
1996; Quartau & Borges, 1997; Yurtsever, 2000). Five are
non-melanic with a pale and limited patterning: populi (POP),
typicus (TYP), vittatus (VIT), trilineatus (TRI), and praeustus
(PRA). The remaining are melanic, predominantly black or dark
brown, with different combinations of pale markings: marginel-
lus (MAR), flavicollis (FLA), gibbus (GIB), leucocephalus
(LCE), lateralis (LAT), quadrimaculatus (QUA), albomac-
ulatus (ALB), and leucopthalmus (LOP) (Fig. 1). Breeding
experiments have revealed the Mendelian inheritance of this
trait, which is mainly controlled by a single autosomal locus
with seven alleles with complex dominance and co-dominance
relationships (Halkka & Halkka, 1990; Stewart & Lees, 1996).

The non-melanic typicus generally predominate over the
remaining phenotypes. It represents the expression of the bottom
recessive allele of this pigmentation locus and its pattern
can range from totally pale (populi phenotype) to an almost
completely melanic type. In contrast, the non-melanic trilineatus
is produced by the top dominant allele. Melanic phenotypes

have other alelles and are usually expressed in females only
and in lower frequencies. Some of the melanic phenotypes are
rare or absent in several populations (Halkka, 1964; Whittaker,
1972; Thompson & Halkka, 1973; Honěk, 1984; Boucelham
et al., 1988; Quartau & Borges, 1997). This general pattern of
frequency distribution concerning non-melanics and melanics
usually exhibits close resemblance in many populations (Halkka
& Halkka, 1990). Only a few local populations sharply deviate
from this general pattern (e.g. several urban areas of southern
Great Britain; see Stewart & Lees, 1996).

Remarkable geographical, clinal and local variations in the
occurrence and frequency of the dorsal phenotypes of P. spumar-
ius have been demonstrated (e.g. Thompson, 1984b, 1988; Berry
& Willmer, 1986; Halkka & Halkka, 1990; Quartau & Borges,
1997). The association found between high melanic frequen-
cies and cooler climates (higher latitudes, higher altitudes, and
cooler habitats) suggests a possible effect of thermal selection
(Thompson, 1984b, 1988). Berry and Willmer (1986) experi-
mentally found that thermal selection is possible and verified the
frequencies of the melanic patterns to be positively correlated
with altitude. However, the same positive correlation was found
for typicus, and a statistically significant negative correlation
with altitude was only found for trilineatus. They experimentally
demonstrated higher reflectance and lower temperature excesses
of trilineatus individuals in relation to the other phenotypes,
therefore, suggesting trilineatus as the only true non-melanic
form. Several studies have reported trilineatus being more abun-
dant in more humid locations than in dry areas (reviewed in
Halkka et al., 2001).

Variation in morph frequencies may even occur within one
habitat, owing to the influence of the niche composition,
with different phenotypes preferring different vegetation types
(Boucelham & Raatikainen, 1984; Halkka & Halkka, 1990;
Quartau & Borges, 1997). The selective preference/avoidance
of predators (especially birds) or parasites/parasitoids for some
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colour patterns can also influence the frequency distribu-
tion (particularly by apostatic and/or aposematic selection)
(Thompson, 1973, 1984a; Harper & Whittaker, 1976; Halkka &
Halkka, 1990). Atmospheric pollution in some industrial areas
also seems to influence high melanic frequencies (Lees & Dent,
1983; Lees et al., 1983; Lees & Stewart, 1987).

Halkka et al. (1975, 1976) demonstrated that phenotype fre-
quencies remain stable for long periods of time and that there
is a rapid re-establishment of previous frequencies after trans-
fer experiments. All these factors and the continuous mainte-
nance of the rarer phenotypes in populations indicate that there
is probably a strong selective mechanism involved. Halkka and
Lallukka (1969) suggested the colour genes may be linked to
genes reacting to the physical environment, constituting a super-
gene, and selection may not be directly related to colour.

Further processes have to be taken into account to explain the
distribution of the phenotypes (Halkka et al., 2001). Stochastic
events such as genetic drift may be significant in small isolated,
marginal or recently colonised areas, for example in insular
populations, leading to loss of genetic variation that is reflected
in a reduced number of phenotypes (Halkka et al., 1974;
Brakefield, 1990; observations in Azores archipelago by
P.A.V.B.). Counteracting with this is migration, as it may in part
explain the maintenance of the polymorphism if there are local
selective forces acting in different areas (Halkka et al., 2001).

Possibly there is a combination of evolutionary mechanisms
acting on the colour polymorphism and more experimental
work is needed to disentangle all the factors involved. The
present study aims to investigate the adaptive significance of
the colour polymorphism, by obtaining data on the fitness of
different colour patterns. An experimental approach in captivity
under semi-natural conditions was created to perform selected
crosses of the phenotypes and measure survival, reproductive
success, and the duration of egg maturation. Our main objectives
were to test: (i) differential survival and reproductive success
among phenotypes, in order to explore if the maintenance
of the polymorphism can be explained by higher survival of
rare phenotypes that could be counter-balanced by another
factor(s) that would favour the common TYP; (ii) the relation
between melanism and egg maturation efficiency, in particular
to test if egg maturation is faster in melanic females, as only
females are melanic in most populations. Three different colour
phenotypes were used in these experiments: typicus (TYP),
the most common, non-melanic recessive phenotype; trilineatus
(TRI), the non-melanic dominant phenotype that shows the
highest radiation reflectance and different thermal properties
from the melanic and TYP phenotypes (Berry & Willmer, 1986);
and marginellus (MAR), the most common melanic phenotype
found in the population used for sampling.

Materials and methods

P. spumarius collections and maintenance in captivity

In order to obtain the desired number of individuals per pheno-
type for survival and reproductive measurements, a total of 3866
larval stage (nymphs) spittlebugs were randomly hand-collected
from a Portuguese population at Quinta do Bom Sucesso, Lagoa

de Óbidos (Lat 39∘25′2.95′′N, Long 9∘13′39.18′′W), on the 31
March (3355 nymphs), 29 April (400 nymphs), and 26 May 2011
(111 nymphs). The sample site is characterised by an extensive
semi-open pine tree woodland (Pinus pinaster) over a sandy
substrate with a predominance of psammophile and peri-litoral
scrubland of grey dunes (Corema album, Daphne gnidium, Cis-
tus salvifolius, Halimium commutatum, Ononis ramosissima,
Stauracanthus genistoides, Erica scoparia, and Calluna vul-
garis). More exposed areas such as clearings have been severely
invaded by Carpobrotus edulis, an invasive Aizoaceae from
South Africa, which is also used as a food plant by the nymphs
of P. spumarius. Collected nymphs were kept on potted C.
edulis (easy to maintain and readily accepted as food source
by the spittlebug) in three cages covered with mesh which
avoided excess of humidity, fungus contamination, and allows
for proper oxygenation. Cages were stored outdoors in the Lis-
bon’s Faculty of Science campus and checked daily for the
presence of newly emerged adults, then separated by sex and
age (by week of emergence) in distinct cages (one cage for
each sex/week). Adults were scored for dorsal colour/pattern
according to Halkka et al. (1973) and Stewart and Lees (1996).
A shade on top of the cages avoided the most intense sun-
light directly hitting the cages and prevented rain from soaking
the pots.

Survival and reproductive success measurements

From the emerged adults, three main different types of mating
pairs were isolated: 36 ♀ TYP×♂ TYP, 35 ♀ TRI×♂ TYP
and 31 ♀ MAR×♂ TYP. Crosses were performed by isolating
the virgin pairs in small cages with a little portion of the food
plant. The mating cage design included mesh-covered plastic
cups and a portion of the plant leaf kept inside (and frequently
changed). Cages were kept outdoors as well. This setup was
checked hourly for the existence of mating pairs (except for
a night period when the activity is lower). Once mating pairs
were detected, the duration of the copula was recorded, by
checking approximately every 10 min. After mating, the male
was removed to prevent re-mating and the female was kept
individually in a separate pot with the food plant and hay for
oviposition. Weekly counts of all eggs laid were made. We
defined the batch of one or more eggs laid by one female in one
week as an oviposition event (time intervals between successive
oviposition events can vary from one to several weeks).

The time between union (isolation of virgin pairs in the
small cages) and mating (copula), duration of mating, num-
ber of oviposition events, number of eggs, duration of egg
maturation (time between copula and oviposition event), and
female longevity (time between adult emergence and death)
were recorded for each pair.

The differences in measured parameters among phenotype
groups were tested with non-parametric Kruskal–Wallis and
Mann–Whitney U-tests. When appropriate, we controlled for
false discovery rate (Benjamini & Hochberg, 1995), to compen-
sate for multiple tests of significance, and consequently adjusted
P-values were reported. Statistical tests were carried out in R
version 3.0.2 (R Development Core Team, 2008).
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Table 1. Number of adult Philaenus spumarius resulted from the 3866 nymphs captured, by week of final moult, sex and phenotype.

Phenotype Week 1∗ Week 2 Week 3 Week 4 Week 5† Week 6 Week 7 Week 8‡ Week 9 Total Freq (%)

Females (N = 1037; 53.23%)
TYP/POP 196 249 195 87 97 39 8 – 33 904 87.17
TRI 13 9 19 5 6 5 3 – 3 63 6.08
MAR 8 9 8 5 4 3 0 – 1 38 3.66
QUA 0 19 5 1 2 0 0 – 0 27 2.60
LOP 0 0 3 0 0 0 0 – 0 3 0.29
ALB 0 0 2 0 0 0 0 – 0 2 0.19
Total 217 286 232 98 109 47 11 – 37 1037

Males (N = 911; 46.77%)
TYP/POP 214 280 166 78 58 37 8 – 21 862 94.62
TRI 13 7 13 8 2 0 1 – 4 48 5.27
VIT 0 0 0 1 0 0 0 – 0 1 0.11
Total 227 287 179 87 60 37 9 – 25 911

∗New sampling event at 31 March 2011.
†New sampling event at 29 April 2011.
‡New sampling event at 26 May 2011.
Note that, as populi (POP) is considered an extreme form of typicus (TYP), they are often grouped together (TYP/POP) (Halkka et al., 1973).
– indicate no data.

Results

P. spumarius phenotype frequency

Of the total of 3866 collected nymphs, 2420 reached an adult
stage (63% survival). Of these, 1948 were separated by sex,
while still freshly moulted, to ensure they had not mated. The
remaining were already too mature and were discarded from
the experiment. The number of adult P. spumarius by a week
of final moult, sex, and phenotype is presented in Table 1. The
total number of emerged females was similar to the number of
males (N = 1037, 53% and N = 911, 47%, respectively), as well
as the number of emerged females and males in each week.
Percentages of emergence for each phenotype, by week, are
also similar between both sexes. A percentage of 21–22% of
TYP/POP, TRI and MAR females and 25–27% of TYP/POP
and TRI males emerged on the first week; 14–28% of TYP/POP,
TRI and MAR females and 15–33% of TYP/POP and TRI
males emerged on the second week; 21–30% of TYP/POP, TRI
and MAR females and 19–27% of TYP/POP and TRI males
emerged on the third week; the remaining individuals emerged
on weeks 4, 5, 6, 7, and 9 (Table 1).

TYP and POP predominate over the remaining phenotypes
both in females and males (F= 87%; M= 95%), followed by
TRI (F= 6%; M= 5%). Melanic phenotypes (MAR, QUA, LOP,
and ALB) were only found in females and in very low fre-
quencies (<4%). Similar patterns of frequency distribution have
been observed in other Portuguese populations (see Quartau &
Borges, 1997).

Survival and reproductive success

As the last moult tends to occur at different times for each
individual, we tried to use similar numbers of randomly selected
specimens of each phenotype from each week. A total of 116
mating pairs were set up and 107 (92%) were successful (the

absence of mating in the remaining 9 pairs was as a result
of female death or escape). Most copulations occurred in July
(N = 35) and August (N = 51). We also observed copulations in
September (N = 18), October (N = 1), and December (N = 2),
probably as a result of the absence of effects such as predation
and severe wind and rain conditions in captivity (note that the
setup was kept under natural temperature and light conditions).

The mean values of measured variables are shown in Table 2.
There was a significant difference in longevity of the total
number of females (Kruskal–Wallis test, 𝜒2 = 8.5, d.f.= 2,
P-value= 0.0145) among phenotypes, particularly evident in
females that oviposited (𝜒2 = 6.2, d.f.= 2, P-value= 0.0443).
This difference is not evident for females that did not oviposit or
did not mate, probably owing to the few number of specimens
that were not successful in the mating process. Also, a signif-
icant difference can be observed in the number of oviposition
events (𝜒2 = 7.8, d.f.= 2, P-value= 0.0205) and the number of
eggs (𝜒2 = 6.1, d.f.= 2, P-value= 0.0461) among phenotypes.
Despite these differences in the total number of eggs and ovipo-
sition events among phenotypes, the mean number of eggs that
can be laid in each oviposition event is very similar among
phenotypes (𝜒2 = 2.3, d.f.= 2, P-value= 0.3176). However, this
number varied from just one egg to a maximum of 89 eggs laid
in one oviposition event.

A greater longevity, higher number of oviposition events
and a higher number of eggs was observed for TRI females
(Table 2, Fig. 2). Paired analysis revealed significant dif-
ferences between TRI and MAR females for longevity
(Mann–Whitney U-test, W = 579, P-value= 0.0071, adjusted
P-value= 0.0213) and the number of oviposition events
(W = 268, P-value= 0.0145, adjusted P-value= 0.0432),
and marginally significant differences for the number of eggs
(W = 259, P-value= 0.0300, adjusted P-value= 0.0814). When
comparing TRI and TYP, longevity was not significantly differ-
ent, although marginally for the non-adjusted P-value (W = 379,
P-value= 0.0789, adjusted P-value= 0.1184), the number of
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Table 2. Mean values± standard deviation (minimum–maximum) of each survival and reproductive variable for each female phenotype TYP, TRI,
and MAR.

TYP TRI MAR

Variables N Average N Average N Average

Time between union and mating
(weeks)

35 1.34± 1.81 (0–8) 34 1.97± 3.87 (0–20) 26 1.54± 1.45 (0–5)

Duration of mating (hours) 22 05.13± 02.59 (01.30–11.00) 24 04.40± 02.32 (01.45–09.30) 15 04.39± 02.06 (01.10–09.20)
Number of oviposition events 22 4.14± 2.68 (1–10) 26 6.27± 3.37 (1–13) 14 3.64± 2.06 (1–8)
Number of eggs 22 68.77± 44.56 (7–153) 26 110.23± 77.49 (14–322) 14 66.93± 47.41 (3–186)
Number of eggs in each oviposition

event
22 16.41± 11.76 (1–49) 26 17.37± 14.92 (2–88) 14 18.74± 18.06 (1–89)

Duration of egg maturation first (time
between copulation and first
oviposition event) (weeks)

22 16.96± 4.13 (8–23) 26 18.81± 6.18 (9–39) 14 17.21± 3.79 (11–23)

Duration of egg maturation second
(time between copulation and
second oviposition event) (weeks)

17 20.53± 3.78 (13–27) 25 21.20± 5.70 (12–40) 11 21.73± 3.35 (15–27)

Longevity (females that oviposited)
(weeks)

19 44.63± 9.45 (32–68) 26 54.42± 14.81 (36–78) 12 43.58± 6.52 (33–59)

Longevity (females that did not
oviposit) (weeks)

10 31.20± 8.60 (19–46) 8 26.00± 6.55 (18–37) 9 27.67± 5.27 (22–38)

Longevity (females that did not
mate) (weeks)

1 12.00 0 – 3 16.33± 2.52 (14–19)

Longevity (total females) (weeks) 30 39.07± 12.05 (12–68) 34 47.74± 18.03 (18–78) 24 34.21± 11.61 (14–59)

N, sample size.

oviposition events was significantly different (W = 180.5,
P-value= 0.0288, adjusted P-value= 0.0432) and the num-
ber of eggs was marginally significantly different (W = 192,
P-value= 0.0543, adjusted P-value= 0.0814). No significant
differences were observed between TYP and MAR females
(W = 447, P-value= 0.1317, adjusted P-value= 0.1317;
W = 166, P-value= 0.7055, adjusted P-value= 0.7055;
W = 169, P-value= 0.6379, adjusted P-value= 0.6379) for
the same variables, respectively (Table 2, Fig. 2). No differ-
ences in egg maturation time were found among phenotypes
(Kruskal–Wallis test, 𝜒2 = 0.9, d.f.= 2, P-value= 0.6250), as
well as in the time between the union of both male and female
and mating (𝜒2 = 1.3, d.f.= 2, P-value= 0.5170) and in mating
duration (𝜒2 = 0.5, d.f.= 2, P-value= 0.7891) (Table 2, Fig. 2).

Discussion

In this study, we present evidence for both increased longevity
and a higher number of oviposition events and egg counts in the
trilineatus females compared with the other phenotypes studied.
Although P-values and adjusted P-values are in some cases
only marginally significant or close to significance at the 0.05
level, this pattern is consistent and gives experimental support
to previous field observations where trilineatus survives longer,
i.e. its frequency increases as the season progresses towards
the end of summer (Owen & Wiegert, 1962; Halkka, 1964).
In 1976, Harper and Whittaker reported a higher attack rate
by the dipteran pipunculid parasitoid Verrallia aucta (Fallen)
towards trilineatus than for other phenotypes (even against
the most abundant typicus). This would lead to instability of
population phenotype frequencies unless, as they suggested,

trilineatus has an increased survival rate or higher fertility
than the other phenotypes. Our study brings evidence for
this higher survival and fertility when compared with a very
common phenotype (typicus) and another scarce phenotype
(marginellus). In contrast, in several species of insects, melanic
individuals are reported to be more resistant to pathogens,
probably owing to the fact that melanin is one product of
the phenoloxidase cascade that is involved in the immunity
function of invertebrates (Wilson et al., 2001; Dubovskiy et al.,
2013). The heavy defence investments made by melanic insects
seems to carry life-history costs, namely decreased longevity
and lower fecundity in comparison with their non-melanic
phenotypes in some of these species [e.g. Spodoptera littoralis
(Boisduval), Cotter et al., 2008; Galleria mellonella (Linnaeus),
Dubovskiy et al., 2013]. This aspect has not been tested in
P. spumarius but may be one of the factors maintaining the
polymorphism.

Another balancing mechanism that could be acting to explain
trilineatus phenotype frequencies is its different thermal proper-
ties, as demonstrated by Berry and Willmer (1986). The highest
radiation reflectance and lower temperature excess of trilin-
eatus, is pointed as an explanation for the observed negative
correlation between the frequency of this phenotype and alti-
tude and latitude (probably a consequence of thermal selection)
(Thompson, 1984b, 1988; Berry & Willmer, 1986; Boucelham
& Raatikainen, 1987; Halkka & Halkka, 1990). The evidences
for the higher intrinsic survival capacity of trilineatus females
observed in this study may counter-balance the increased ther-
mal deficits in some low radiation environments. In contrast,
individuals of marginellus demonstrated to be particularly
sensitive to high-temperature periods during this study, as we
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(a) (b)

(c) (d)

Fig. 2. Boxplots of the (a) number of oviposition events, (b) number of eggs, (c) egg maturation time, and (d) longevity of females. The rectangular
box is delimited by the quartiles 25% and 75%, with the median value shown as a tick horizontal line; the whiskers indicate the non-outlier maximum
and minimum, and the circles are the outliers. Statistically significant (P< 0.05) differences (Mann–Whitney U-tests) are indicated with the *.

observed a tendency for increased mortality during these peri-
ods, albeit not fully tested. The differences in thermal properties
of pale versus dark phenotypes are reported in several insect
species and constitute an important adaptive factor (Brakefield
& Willmer, 1985; Rhamhalinghan, 1990; True, 2003).

The sex-specific restriction of many melanic patterns (Halkka
et al., 1973), and the highest radiation absorbency observed
for these phenotypes (Berry & Willmer, 1986), could suggest
an influence of the different colour types on the egg matura-
tion time. Brakefield and Willmer (1985) and Rhamhalinghan
(1990) reported that the higher fecundity of darker females in
some ladybird species could be ascribed to their higher thermal
absorption, which would lead to faster egg maturation. How-
ever, in this study we observed no differences in the duration
of egg maturation among colour phenotypes, suggesting that
thermal properties are not directly associated with egg matura-
tion efficiency. Nevertheless, Horsefield (1978) and Berry and
Willmer (1986) suggested that colouration seems to be essential
to the duration of activity periods through the regulation of
upper and lower body temperature thresholds between which
the animal can undertake normal activity. The extent of the
active period is possibly critical to P. spumarius owing to its

feeding on nutrient-poor xylem, requiring long feeding periods
to gain sufficient nutrition from its food source. This is par-
ticularly important to females owing to the greater nutritional
requirements for egg production. The role of temperature in
influencing egg survival and hatching time of polymorphic phe-
notypes has also been investigated in three female phenotypes
of Ischnura elegans (Vander Linden) (Zygoptera: Coenagri-
onidae) (Bouton et al., 2011). For I. elegans, the different
colour forms did not differ in their response to temperature
treatments.

This study allowed for monitoring the emergence patterns
of adults across several weeks. No differences were observed
within the emergence times of males and females or of differ-
ent phenotypes in the weeks between March and May. An early
study by Halkka et al. (1967) suggested that an early emergence
of males, as well as typicus, in comparison with other pheno-
types, would be favoured by natural selection to prevent pre-
dation (apostatic selection) and increase protection of females
until egg-laying. However, we have no data regarding the early
emergences in the field, as first nymphs were observed in early
February (pers. obs. by S.E.S.) and adults were already present
in early March.
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We consider that P. spumarius constitute a still under-studied
model system for the study of adaptation, in particular of
evolutionary mechanisms maintaining polymorphisms. The
long life cycle of P. spumarius and its sensibility to factors
such as humidity and temperature are the main challenges
in laboratory fitness studies on this species. Despite these
difficulties, this study managed to give insights on the effect
of the colour phenotypes in the survival and reproduction of
P. spumarius, contributing to the exploration of the adaptive
significance of the colour polymorphism in this species. These
experiments were carried out by placing all the phenotypes in
the same semi-natural conditions, but it would also be important
to test differential fitness among phenotypes under different
environmental conditions. These would include different plant
species and (micro)climates. Moreover, the distribution range
of P. spumarius in California has been reported to have moved
northwards, presumably associated with climate change (Kar-
ban & Strauss, 2004). Studying the potential effects of climate
change on the distribution and frequency of phenotypes in
this species may also constitute an opportunity to test some
predictions about the selective effect of increased tempera-
ture, UV-radiation, humidity, and pathogens in melanin-based
colouration polymorphisms (Roulin, 2014). Also, the range of
colour variation of the typicus phenotype, from pale to almost
melanic, should also be explored in future studies as this may
be influencing variation in the studied traits within typicus.

Most certainly, a combination of factors is acting on the main-
tenance of this polymorphism worldwide. A full understanding
of the process will require investigating the interactions of selec-
tion, migration and drift, and the role of metapopulation dynam-
ics in this system (Brakefield, 1990; Halkka et al., 2001). Inter-
estingly, a computational model developed by Craze (2009),
showed that a biased phenotype ratio favouring the homozygous
recessive phenotype in relation to the dominant phenotype (as
we also see in P. spumarius), could be explained by a sce-
nario involving a highly fragmented metapopulation with low
migration and with a low level of frequency-dependent selection.
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Abstract

Background: Colour  polymorphisms are  common among animal  species.  When combined

with genetic and ecological data, these polymorphisms can be excellent systems in which to

understand  adaptation  and  the  molecular  changes  underlying  phenotypic  evolution.  The

meadow spittlebug, Philaenus spumarius (L.) (Hemiptera, Aphrophoridae), a widespread insect

species  in  the  Holarctic  region,  exhibits  a  striking  dorsal  colour/pattern balanced

polymorphism. Although experimental crosses have revealed the Mendelian inheritance of this

trait, its genetic basis remains unknown. In this study we aimed to identify candidate genomic

regions associated with the colour balanced polymorphism in this species.

Results: By using restriction site-associated DNA (RAD) sequencing we were able to obtain a

set of 1,837 markers across 33 individuals to test  for associations with three dorsal colour

phenotypes (typicus,  marginellus, and  trilineatus).  Single  and  multi-association  analyses

identified a total of 60 SNPs associated with dorsal colour morphs. The genome size of  P.

spumarius was estimated by flow cytometry, revealing a 5.3 Gb genome, amongst the largest

found in insects. A partial genome assembly, representing 24% of the total size, and an 81.4 Mb

transcriptome, were also obtained. From the SNPs found to be associated with colour, 35%

aligned to  the  genome and 10% to the transcriptome.  Our data  suggested that  major  loci,

consisting of multi-genomic regions, may be involved in dorsal colour variation among the

three dorsal colour morphs analysed. However, no homology was found between the associated

loci and candidate genes known to be responsible for coloration pattern in other insect species.

The associated markers showed stronger differentiation of the  trilineatus colour phenotype,

which  has  been  shown  previously  to  be  more  differentiated  in  several  life-history  and

physiological characteristics as well.  It is possible that colour variation and these traits are

linked in a complex genetic architecture. 

Conclusions: The  loci  detected  to  have  an  association  with  colour  and  the  genomic  and

transcriptomic resources developed here  constitute a basis for further research on the genetic

basis of colour pattern in the meadow spittlebug P. spumarius.
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Background

Understanding  the  genetic  basis  underlying  phenotypic  variation  responsible  for

evolutionary change and adaptation in natural populations remains a major goal and one of the

most interesting challenges in evolutionary biology. Not long ago, despite the development of

new molecular tools, establishing genotype-phenotype associations, mapping adaptive loci, and

identifying gene function, was limited to a few taxa due to technological and cost constraints.

With  the  latest  advances  in  sequencing  technologies,  the  relationships  between  genetic

variation and adaptive traits can now be investigated in a broader range of species for which, in

some  cases,  there  is  extensive  knowledge  of  ecological  and  evolutionary  history, but  few

genomic  resources  [1–7]. Moreover,  with  the  development  of  population  genomics  it  has

become possible not only to assess the genetic basis of adaptation directly at a genomic level,

but also to distinguish the evolutionary effects of forces acting on the whole genome from

those influencing only particular loci [8,9].

Intraspecific  colour  variation  is  commonly  found  in  many  different  taxa,  including

mammals  [10],  fishes  [11],  amphibians  [12],  reptiles  [13,14],  birds  [15,16],  and  many

invertebrates (e.g. land snails, spiders, grasshoppers and butterflies; see [17] for references).

Colour patterns may serve a wide variety of adaptive functions, ranging from a visual signal

used in mate choice, to crypsis or aposematism to avoid predators, to aiding in the regulation of

body temperature [18]. Through their interactions with other physiological and/or ecological

traits, colour polymorphisms may also influence the habitat choice, dispersal capability and

adaptation to a changing or novel environment, thus influencing the ecological success and

evolutionary dynamics of populations and species [19].  When combined with genomic and

ecological  data,  these colour  polymorphisms can be an excellent  system for  understanding

adaptation and speciation  and for  the  study of  the micro-evolutionary  forces  that  maintain

genetic variation [20]. Negative frequency-dependent selection, resulting from processes such

as  predation  or  sexual  selection  [21–23],  heterozygote  advantage  [24],  and  disruptive

selection/divergence  with  gene-flow [25,26] are  some  of  the  mechanisms  suggested  to  be

involved in  the  maintenance  of  colour  polymorphisms.  Alternative  strategies  that  result  in

almost the same fitness values for colour morphs have also been reported [27].

The  meadow  spittlebug,  Philaenus  spumarius  (Linnaeus,  1758)  (Hemiptera,

Aphrophoridae),  a  widespread  and  highly  polyphagous  sap-sucking  insect  species  in  the

Holarctic  region,  shows  a  well  studied  balanced  polymorphism  of  dorsal  colour/pattern

variation  [28].  It is the  most  investigated  species  of  its  genus  and  has  high  genetic  and

morphological variation [29]. Sixteen adult colour phenotypes are known to occur in natural
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populations [30] but only thirteen are referred in the literature. These are divided into non-

melanic (populi,  typicus,  vittatus,  trilineatus and  praeustus) and melanic forms (marginellus,

flavicollis,  gibbus,  leucocephalus,  lateralis,  quadrimaculatus,  albomaculatus and

leucopthalmus) [28,30–32].  The occurrence  and  frequency  of  the  colour  phenotypes  differ

among  populations  and  may  result  from  different  selective  pressures  such  as  habitat

composition,  climatic  conditions  (including  altitudinal  and  latitudinal  gradients),  industrial

melanism and predation (reviewed in [30,32]). Silva and colleagues [33] have shown higher

longevity and fertility of the  trilineatus phenotype in laboratory conditions, which was also

found to have the highest reflectance [34] and to be more prone to parasitoid attacks [35],

supporting  the  idea  that  complex  mechanisms  are  involved  in  the  maintenance  of  this

polymorphism.  Crossing experiments have revealed the Mendelian inheritance of this  trait,

which  is  mainly  controlled  by  an  autosomal  locus  p with  seven  alleles,  with  complex

dominance and co-dominance relationships, being likely regulated by other loci [31,36]. The

typicus phenotype is the most common (over 90% frequency in most populations) and it is the

bottom double recessive form. It is believed to be the ancestral form because its main colour

pattern  characteristics  are  shared  with  several  other  cercopid species  [36].  The completely

melanic form leucopthalmus is dominant over typicus, and several other forms, with pale heads

and/or spots, are dominant over the completely dark form. The trilineatus phenotype, pale with

three dark stripes, is controlled by the top dominant allele pT [36,37]. Halkka and Lallukka [38]

suggested the  colour  genes  may  be  linked  to  genes  involved  in  response  to  the  physical

environment through epistatic interactions, constituting a supergene, and selection may not be

directly related to colour. Evidence that balanced polymorphisms can result from tight genetic

linkage  between  multiple  functional  loci,  known as supergenes  [39],  has  been  reported  in

mimetic  butterflies  [40,41],  land  snails  [42]  and  birds  [43]. In  P. spumarius the  genetic

architecture  of  its  balanced  dorsal  colour  polymorphism  and  the  possible  existence  of  a

supergene remain to be investigated.

A genome-wide association study has the potential to identify the genetic and/or genomic

region(s) associated with these dorsal colour patterns. In this study we used  restriction site-

associated DNA (RAD) sequencing [1] to obtain a  set of  Single Nucleotide Polymorphisms

(SNPs) that were tested for associations with three dorsal colour phenotypes in P. spumarius.

The  phenotypes  used  were:  typicus (TYP),  the  most  common  and  non-melanic  recessive

phenotype;  trilineatus (TRI), the non-melanic dominant phenotype; and  marginellus (MAR),

the  most  common  melanic  phenotype  found  in  the  population  from  which  samples  were

collected. The first partial draft genome and transcriptome of P. spumarius are presented here
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and were used to help the characterisation of the genomic regions found to be associated with

colour variation. The size of the genome of this insect species was also estimated by flow

cytometry.

Methods

Sampling and DNA extraction

A total of 36 female specimens of P. spumarius from three different colour phenotypes –

12  typicus (TYP), 12  trilineatus (TRI), and 12  marginellus (MAR) – were collected from a

Portuguese  population  near  Foz do Arelho locality  (39°25'2.95"N; 9°13'39.18"W)  in  2011.

Adult  insects were captured using a sweep net suitable for low-growing vegetation and an

entomological aspirator (pooter). Specimens were preserved in absolute ethanol and stored at 4

ºC. The wings and abdomen were removed  to avoid DNA contamination by endosymbionts,

parasitoids and parasites and only the thorax and head were used. Genomic DNA was extracted

using the DNeasy Blood & Tissue Kit (Qiagen).

Illumina sequencing of genomic libraries

Three RAD libraries with twelve individuals each were prepared following a modified

RAD sequencing protocol  [1], using PstI-HF (New England BioLabs) restriction enzyme to

digest 300 ng of genomic DNA per sample. Digested DNA was ligated to P1 barcoded adapters

using twelve different barcodes for each library. Adapter-ligated fragments were pooled and

sheared targeting a 500 bp average fragment size using a sonicator. To remove adapter dimers,

libraries were purified with Agencourt AMPure XP (Beckman Coulter) magnetic beads after

P2  adapter  ligation  with  a  volume  DNA/beads  ratio  of  1:0.8.  After  end-repair  using  a

commercial  kit  (New  England  BioLab),  libraries  were  amplified by  Polymerase  Chain

Reaction (PCR) performing an initial denaturation step at 98 ºC for 30 s, followed by 18 cycles

of one denaturation step at 98 ºC for 10 s, annealing at 65 ºC for 30 s, extension at 72 ºC for 30

s and a final 5 min extension step.  PCR-enriched libraries were purified with AMPure XP

beads and the DNA concentration of each library was quantified in a Qubit 2.0 (Invitrogen).

Libraries,  in a proportional  representation,  were  paired end  sequenced in three lanes of an

Illumina HiSeq 2000 at Genepool (Ashworth Laboratories).
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SNP calling and genotyping

Raw reads were trimmed, demultiplexed and aligned using the pyRAD software pipeline

v3.0.5  [44], which follows the method of  [45]. Reads were first clustered by individual and

highly similar reads assembled into “clusters” using the programs MUSCLE v3.8.31 [46] and

VSEARCH v1.9.3 [47] that allowed reads within “clusters” to vary not only for nucleotide

polymorphisms  but  also  for  indels.  All  bases  with  a  Phred  quality  score  below  20  were

converted  to  N  (undetermined  base).  For  each  individual,  consensus  sequences  based  on

estimates  of  the  sequencing  error-rate  and  heterozygosity  were  obtained  for  each  locus.

Similarity threshold required to cluster reads together and individuals into a locus was 0.88.

Minimum  “cluster”  depth  for  each  individual  was  six  reads.  Only  loci  with  a  minimum

coverage of  nine individuals  (25%) were retained in  the final  dataset.  To limit  the risk of

including  paralogs  in  analysis,  loci  sharing  more  than  50%  heterozygous  sites  were  not

considered and the maximum number of heterozygous sites in a consensus sequence (locus)

allowed was five.  After  clustering  sequences,  a  data  matrix  for  each locus  was generated.

Further filtering and summary statistics were, posteriorly, performed using VCF Tools v 0.1.13

[48]. Loci were excluded from the final matrix based on (i) a missing data higher than 90% per

individual, (ii) a minor allele frequency lower than 5% and (iii) a missing data per loci higher

than  25%. Linkage  disequilibrium  (LD)  was  also  measured  using  the  squared  correlation

coefficient (r2) in VCFtools. In association analysis, the detection of statistical associations may

be affected when a marker  is  replaced with a  highly  correlated one  [49].  Taking this  into

account, highly correlated SNPs in the same locus (r2 =1) were randomly eliminated and only

one of them was retained in the final VCF matrix. The filtered VCF file with the genotypes for

each  individual  was  converted  into  the  file  formats  needed  for  further  analyses  using

PGDSpider v2.0.4.0 [50], fcGENE v1.0.7 [51] and/or using customised python scripts.

Association with dorsal colour phenotypes

For the SNPs dataset, single-SNP associations between allele frequencies and dorsal colour

phenotypes were tested using a Fisher's exact test of allelic association in PLINK v1.07 [52].

Three pairwise analyses  were performed:  MAR vs.  TRI,  MAR vs.  TYP and TRI vs.  TYP.

Allele frequencies in each pair, the odds ratio and p-values were obtained for each SNP and a

false discovery rate (FDR) of 5% was applied  [53] to each pairwise analysis to test for false

positives. 

To test for single and multi-SNP correlations between SNPs and colour morphs, a Bayesian

85



Variable Selection Regression (BVSR) model proposed by [54] was also performed in the same

three  pairs  and  carried  out  in  piMASS v  0.9.  Generally  used  for  association  studies  with

continuous response variables, piMASS is also appropriate for studies with binary phenotypes

[54]. This method uses the phenotype as the response variable and genetic variants (SNPs) as

covariates to evaluate SNPs that may be associated with a particular phenotype  [54]. SNPs

statistically associated with phenotypic variation are identified by the posterior distribution of

γ, or the posterior inclusion probability (PIP). In our multi-locus analyses, markers with a PIP

greater than 99% empirical quantile (PIP0.99  SNPs) were considered as highly associated with

colour morphs. For all PIP0.99 SNPs we reported their PIP and the estimates of their phenotypic

effect (β).  A positive  β in the pairwise morph1-morph2 (e.g. MAR-TRI) analysis means that

the  frequency of  the  minor  allele  (maf)  is  higher  in  morph2 (TRI  in  the  example)  and a

negative β means that maf is higher in morph1 (MAR in the example). Thus, to investigate the

phenotypic  effect  size  of  each  PIP0.99  SNP,  the  |  β  |  was  considered.  The  model  contains

additional parameters that are estimated from the data: proportion of variance explained by the

SNPs (PVE), the number of SNPs in the regression model (nSNPs) and the average phenotypic

effect of a SNP that is in the model (σSNP). For all pairwise analyses, we obtained four million

Markov Chain Monte Carlo samples from the joint posterior probability distribution of model

parameters (recording values every 400 iterations) and discarded the first 100,000 samples as

burn-in. piMASS also outperforms a single-SNP approach to detect causal SNPs even in the

absence of interactions between them [54]. For single-marker tests, SNPs above 95% empirical

quantile for Bayes Factor (BF) (BF0.95  SNPs) were considered to be strongly associated to the

colour phenotypes. Those above 99% empirical quantile for BF (BF0.99 SNPs) were considered

to  have  the  strongest  associations.  Imputation  of  the  missing  genotypes  was  performed in

BIMBAM v1.0 [55].

Genetic differences among populations were tested using a  G–test  [56]  and estimates of

FST were obtained following the method of  [57]  implemented in GENEPOP v4.2.2  [58]. To

better visualise and explore the correlation between significant SNPs, obtained in the several

association analyses, and colour phenotypes, a Principal Component Analysis (PCA) was done

using R Package SNPRelate (Bioconductor v3.2; R v3.2.3) implemented in the  vcf2PCA.R

script [59]. 

De novo sequencing and assembly of the meadow spittlebug genome

To attempt potential de novo assembly of the genome, genomic DNA of one P. spumarius

individual from Quinta do Bom Sucesso, Lagoa de Óbidos (Portugal) was extracted using the
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DNeasy Blood & Tissue  Kit (Qiagen)  and sequenced externally  in GenoScreen. A whole-

genome shotgun sequencing approach using one lane of Illumina HiSeq 2000 to generate a

paired-end  library  of  approximately  366  million  100  bp  reads  was  carried  out.  After

sequencing, the quality of the sequence reads was assessed in FastQC v0.10.1  [60] and low

quality sequences were trimmed by using Trimmomatic v 0.35 [61] and the default parameters.

De novo assembly of large genomes tends to be computationally demanding, requiring very

large  amounts  of  memory  to  facilitate  successful  assembly.  Taking  these  conditions  into

account,  the  assembler  SOAPdenovo2  [62,63]  was  chosen  to  assemble  the  sequenced  P.

spumarius genome.  This  assembler  implements  the  de  Bruijn graph algorithm  tailored

specifically to perform the assembly of short Illumina sequences and is optimised for large

genomes.  A k-mer parameter of 33 was used for this assembly. The quality of the assembly

results was investigated through several metrics: N50, percentage of gaps, number of contigs,

number of scaffolds and genome coverage (total number of base pairs). 

De novo sequencing and assembly of the meadow spittlebug transcriptome

Fresh  adult  specimens  of  P. spumarius were  obtained  from  Lexington,  Fayette  Co.,

Kentucky, USA in July 2013 and frozen at  -80 C. Total  RNA was extracted from 6 adult

specimens by first grinding the entire body using a 1 mL glass tissue grinder with 1 mL Trizol

(Invitrogen).  This  was  followed  by  passing  the  homogenate  over  a  Qiagen  Qiashredder

column. The eluate was extracted with 200 µL chloroform, and the RNA was precipitated with

500 µL isopropanol. Pellets were resuspended in RNAse-free water.  

Paired-end RNA libraries were prepared using Illumina’s TruSeq Stranded RNA sample

preparation kit with an average cDNA size of 250 bp (range 80-550 bp). These libraries were

sequenced using an Illumina HiSeq2500 machine with a TruSeq SBS sequencing kit version 1

analysed with Casava v1.8.2. Raw reads were filtered for duplicates using a custom script and

trimmed for 5’ bias and 3’ quality using the FASTX-toolkit [64]. Transcriptome was assembled

using SOAPdenovo-Trans v1.02 [65] with a k-mer of 49.

Genome size estimation by flow cytometry

Genome  size  estimates  were  obtained  through  flow  cytometry  [66].  A  total  of  22

individuals were analysed, seven females and six males of P. spumarius, and nine females of P.

maghresignus, a closely related species of the same genus. A suspension of nuclei from both

the Philaenus sample and a reference standard (Solanum lycopersicum, S.l., ‘Stupické’ with 2C

= 1.96 pg; [67]) were prepared by chopping the thorax and the head of the insect together with
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0.5 cm2 of S. lycopersicum fresh leaf with a razor blade in a Petri dish containing 1 mL of WPB

(0.2 M Tris.HCl, 4 mM MgCl2.6H2O, 1% Triton X-100, 2 mM EDTA Na2.2H2O, 86 mM NaCl,

10 mM metabisulfite, 1% PVP-10, pH adjusted to 7.5 and stored at 4 ºC; [68]). The nuclear

suspension was filtered through a 30 µm nylon filter and 50 µg mL-1 of propidium iodide (PI,

Fluka, Buchs, Switzerland) and 50 µg mL-1 of RNAse (Fluka, Buchs, Switzerland) were added

to stained DNA and avoid staining of double stranded RNA, respectively. After 5 minutes of

incubation,  the nuclear suspension was analysed in a Partec CyFlow Space flow cytometer

(532 nm green solid-state laser, operating at 30 mW; Partec GmbH., Görlitz, Germany). Data

was acquired using the Partec FloMax software v 2.4d (Partec GmbH, Münster, Germany) in

the form of four graphics: histogram of fluorescence pulse integral in linear scale (FL); forward

light scatter (FS) vs. side light scatter (SS), both in logarithmic (log) scale; FL vs. time; and FL

vs. SS in log scale. To remove debris, the FL histogram was gated using a polygonal region

defined in the FL vs. SS histogram. At least 1,300 nuclei were analysed per Philaenus’ G1 peak

[69]. Only CV values of 2C peak of Philaenus below 5% were accepted [70]. The homoploid

genome size (2C in pg; [71]) was assessed through the formula: sample nuclear DNA content

(pg)  =  (sample  G1 peak  mean  /  S.  lycopersicum  G1 peak  mean)  *  genome  size  of  S.

lycopersicum. The obtained values were expressed in picograms (pg) and in giga base pairs

(Gb), using the formula by [72] (1 pg = 0.978 Gb).

Differences  in  genome  size  between  males  and  females  were  evaluated  using  a  one-way

ANOVA, followed by a Tukey test for multiple comparisons at  P < 0.05. Statistical analyses

were performed using SigmaPlot for Windows v. 12.5 (Systat Software).

Characterisation of RAD loci

A consensus sequence, with IUPAC ambiguity codes for variable sites, was generated for

each RAD locus across individuals using the python script loci_consensus.py [73].

Homology to non-coding and coding regions  was investigated  for  the  inferred loci  by

locally  querying consensus sequences against  Arthropoda sequences available  in  the NCBI

nucleotide database (RefSeq release 73, last modified 2 November 2015 and GenBank release

211, last modified 14 December 2015), using BLASTN 2.2.28+ [74]. A protein blast (RefSeq

release  73,  last  modified  2  November  2015  and  GenBank  release  211,  last  modified  14

December 2015), using BLASTX 2.2.28+ [75], was also performed. An E-value threshold of

1e-5 was used. 

RAD loci were also queried using BLASTN against the drafts of the P. spumarius genome

and transcriptome assembled in  this  study. In  this  case,  an  E-value  threshold  of  1e-15 was
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chosen as the cutoff for restricting the alignments to the most significant ones. The top five

contigs  and/or  scaffolds  were  subsequently  investigated  by  querying them using  BLASTN

against Arthropoda sequences available in nucleotide and protein databases of NCBI.

Availability of data and materials

Raw reads and assemblies of the transcriptome and genome are submitted to NCBI under

BioProjects  PRJNA272277  and  PRJNA321110,  respectively.  RAD  libraries  used  for

association  analyses  are  submitted  to  NCBI  under  BioProject  PRJNA321110.  Vcf  file  is

available as additional file 3.

Ethics statement

This research does not involve any endangered or protected species and did not require any

permits to obtain the spittlebug individuals.

Results

RAD sequencing and SNPs data matrix

The sequencing set produced a total of  341 million reads. After filtering reads based on

quality scores,  269 million reads were retained, corresponding to an average of  7.4 million

reads per individual.  Before filtering,  individuals yielded 335,767 to 12,711,816 sequenced

reads of 90 bp each (Additional file 1: Fig. S1).

The  average  number  of  reads  per  locus  per  individual  used  to  estimate  a  consensus

sequence was 51.0 (Additional file 1:  Fig. S2). For the clustering results, a total of 133,127

loci, consisting of 12,144,351 aligned nucleotides, inferred with a minimum of nine individuals

(25%) per locus, and a total of 470,470  SNPs with a mean percentage of missing data per

individual of 63.92%, were produced. Aligned loci, including gaps inserted in the course of the

alignment, ranged from 90 to 109 bp in length (mean = 91 bp). When filtering by percentage of

missing data, three individuals (TYP_5, TYP_13 and TRI_13;  Additional file 1: Fig. S1, S2,

S3) had more than 90% missing data and were excluded. After filtering, a set of  928 loci,

85,056 bases  and 2,195 SNPs was retained.  However, only 1,837 SNPs on 928 loci  were

considered for the analyses after those in the same locus sequence with a complete LD (r2 = 1)

were randomly excluded.
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Single-SNP associations with colour phenotypes

The dataset  was tested  for  allele  frequency differences  between pairs  of  dorsal  colour

phenotypes – MAR vs. TRI, MAR vs. TYP and TRI vs. TYP – using the Fisher's exact test and

a  Bayesian  regression  approach. Single-marker  association  analyses  performed  using  the

frequentist  method found 205 SNPs  with  p-value  < 0.05,  corresponding to  11.16% of  the

analysed SNPs, but these were not significant  after FDR correction (Additional file 2: Table

S1).  Single-SNP analyses using the Bayesian regression approach identified a total  of  230

BF0.95  SNPs  (>  95%  quantile  Bayes  Factor)  associated  with  dorsal  colour  phenotypes,

corresponding to 12.52% of the analysed markers. When a more strict, 99% quantile, threshold

was  applied  50  BF0.99  SNPs  (2.7%)  showed  the  strongest  associations  to  colour  morphs,

including eight shared among colour morph comparisons (Fig. 1) (Table 1) The number of

BF0.95  SNPs and BF0.99  SNPs for each pairwise comparison were: 92 and 19, respectively, for

MAR-TYP; 92 and 20, respectively, for TRI-TYP; 101 and 19, respectively, for MAR-TRI.

Estimates  of  the phenotypic  effects  associated with BF0.99  SNPs for  each comparison were

moderate with 0.10 < | β | < 0.15 but much higher than the overall average for each pairwise

analysis (| β | = 0.0001, MAR-TRI; | β | = 0.0037, MAR-TYP; | β | = 0.0028, TRI-TYP) (Table

1).  Allele frequencies for the 50 SNPs involved in the differentiation of these colour morphs

varied across the three colour phenotypes (Table 1).  For the 50 BF0.99  SNPs,  FST estimates

between pairs of colour morphs  were highly significant (p-value < 0.000) (Additional file 2:

Table  S2),  with the  highest  genetic  differentiation  between TRI and MAR (FST = 0.2145),

intermediate between TRI and TYP (FST = 0.2125) and the lowest between MAR and TYP (FST

= 0.1787) (Additional file 2: Table S3). Principal Component Analysis using the associated

BF0.99  SNPs showed a clear distinction among the three morphs when compared with the PCA

using all 1,837 SNPs (Fig. 2a). Principal component 1 explained 13% of the total variation and

indicated a differentiation between TRI and the other two colour morphs while PC2 explained

10% of the differences, separating TYP from MAR (Fig. 2b). 

Multi-SNP Associations with colour phenotypes

The 1,837 SNPs dataset explained between 60 and 65% of the variance in dorsal colour

phenotypes across all pairwise analyses of colour morphs. The highest proportions of variation

explained by the investigated SNPs were detected in comparisons involving the TRI phenotype

(Table 2). The highest proportion was observed in TRI-TYP analysis (PVE = 0.6515) while the

lowest proportion was found in MAR-TYP analysis (PVE = 0.6018) (Table 2). Estimates of the

mean number of SNPs (nSNPs) underlying dorsal colour variation ranged from 63 to 67 (Table
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2). However, 95% credible intervals for these  parameters estimates were typically large.  The

average effect of associated SNPs was high and similar among analyses but once again higher

in comparisons involving TRI (σSNP = 1.1200, MAR-TRI; σSNP = 0.9776, TRI-TYP; σSNP =

0.9495, MAR-TYP) (Table 2). When considering models with the highest BFs (log10(BF) > 10)

only, the  mean  number  of  SNPs  included in  the  model  (nSNPs_BF)  for  each comparison

decreased up to values between nine and 12 while the mean effect size of the SNPs (σSNP_BF)

increased ranging between 2.4 and 4.1 (Table 2).  The posterior inclusion probabilities (PIPs)

for the analysed SNPs were quite similar among all pairwise analyses but slightly higher in

comparisons  involving TRI (PIP = 0.0366, MAR-TRI;  PIP = 0.0362,  TRI-TYP and PIP =

0.0345,  MAR-TYP)  (Fig.  3)  (Table  2).  A subset  of  19  SNPs  with  the  highest  inclusion

probabilities (PIP0.99  SNPs) were identified for each analysis and investigated (Table 3). This

number was within the 95% credible intervals for the number of SNPs found to be associated

with dorsal colour variation by the models with the highest BF (Additional file 1: Fig. S4)

(Table 3). Estimates of the strength of association between genotypic variation at individual

SNPs and phenotypic variation (| β |) varied among the analyses and all were greater than 0.5.

We obtained SNPs with larger effect sizes for MAR-TRI analysis than for all other analyses.

Seven PIP0.99 SNPs were shared between two pairwise analyses (Table 3). In total, 50 different

SNPs  revealed  a  multi-association  with  colour  morphs  and,  from  those,  40  were  also

significant in the single-SNP analyses shown previously.  For the 50 PIP0.99  SNPs, population

differentiation tests were also highly significant (p-value < 0.000) (Additional file 2: Table S2).

Similarly,  the  highest  genetic  differentiation  was  observed  between  TRI  and  TYP (FST =

0.2159), intermediate between TRI and MAR (FST = 0.1907) and the lowest genetic differences

were observed between MAR and TYP (FST = 0.1650) (Additional file 2: Table S3). Principal

Component Analysis for all 50 PIP0.99  SNPs of multi-association tests (Fig. 2c) and for the 40

intersected SNPs (Fig. 2d) showed the expected differentiation among dorsal colour morphs.

Principal Component 1 explained 13% to 14% of the variance, differentiating TRI from the

other  morphs  while  PC2  explained  11% of  the  differences  and  revealed  a  differentiation

between TYP and MAR.

Linkage patterns

The associated loci detected here had on average low levels of linkage disequilibrium for

both  analyses  including  all  samples  or  analyses  on  each  colour  phenotype  separately

(Additional file 1: Fig. S5). However, strong allelic correlations (r² > 0.7) were found for five

pairs of SNPs within MAR and for two pairs in TYP phenotypes (Additional file 2: Table S4).
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Only two pairs, in MAR, consisted of SNPs present in the same RAD locus.

Genome size estimation

Philaenus spumarius and P. maghresignus estimates of genome size were 5.27 ± 0.25 pg

(5.15 Gb) and 8.90 ± 0.20 pg (8.90 Gb), respectively. In  P. spumarius,  males and females

differed significantly in genome size (F1,11 = 14.292, p-value = 0.0030), with males presenting

on average a lower genome size (5.07 ± 0.20 pg; 4.96 Gb) than females (5.44 ± 0.15 pg; 5.33

Gb)  (Additional file 2:  Table S5). Overall, the quality of the analyses was excellent, with a

mean CV value of 2.97% being obtained for the sample’s G1 peak.

De novo sequencing and assembly of meadow spittlebug genome and transcriptome

The genome sequencing set produced a total of 366 million reads. After filtering reads

based on quality,  353 million reads  (96.46%) were  retained (Additional  file  2:  Table  S6).

SOAPdenovo2 produced 6,843,324 contigs and 4,010,521 scaffolds. The N50 was 686 bp and

the percentage of gaps was 20.47%. In total, 1,218,749,078 bp were assembled which based on

the  total  estimated  genome  size  of  5.3  Gb,  corresponds  to  approximately  24% of  the  P.

spumarius genome. 

For the transcriptome, the total number of 150 nt reads for each paired-end of the library

was 17 million resulting in 5110.8 Mb of sequence (Additional file 2: Table S6). After quality

filtering, 14 million (86.81%) read pairs were used in the assembly  (Additional file 2:  Table

S6). The transcriptome assembly produced 173,691 contigs and 31,050 scaffolds. In this case,

the observed N50 obtained was 803 bp and the percentage of gaps 0.39%. A total of 81,442,967

bp were assembled. Assembly statistics for the genome and transcriptome are summarised in

Additional file 2: Table S6. 

Characterisation of RAD loci

No significant  hits  were  found  when  querying  the  928  RAD loci  against  Arthropoda

sequences  of  NCBI  nt  database  and  only  15  hits  (E-value  <  1e -11)  were  found  against

Arthropoda sequences of NCBI nr database (Additional file 2:  Table S7). However, this was

not unexpected considering RAD loci sequences are less than 100 bp and the most closely

related insect species with an available genome is the pea aphid Acyrthosiphon pisum, which

belongs to a separate hemipteran infraorder.

A total of 392 RAD loci (42.24%) aligned to the draft of  P. spumarius genome (E-value

threshold of 1e-15), 18 of which were associated with colour morphs (34.62% of the colour-
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associated  loci  sequences)  (Additional  file  2:  Table  S8).  On  the  other  hand,  134  loci,

corresponding to 14.44% of the total loci, aligned to P. spumarius transcriptome assembly. Five

of those were colour-associated (9.62% of the colour-associated loci) (Additional file 2: Table

S8).  From the 18 colour-associated loci  that  aligned with  the genome,  four  (22.22%) also

aligned with the transcriptome. The proportion of colour-associated loci that aligned either with

the genome or with the transcriptome was not significantly different from the proportions of

the  other  loci  (Fisher's  exact  test  p-value  = 0.8096).  Some RAD loci  had  more  than  one

contig/scaffold hit (Additional file 1: Fig. S6).

Transcriptome and genome scaffolds/contigs with RAD loci alignments, ranging from 100

to  12,325  bp  (gaps  included),  were  queried  against  Arthropoda  nt  and  nr  databases  using

BLASTN  and  BLASTX.  Out  of  210  transcriptome  sequences,  22  (E-value  <  1e -06) had

homology with the nucleotide database (Additional file 2:  Table S9) and 98 with the protein

database (Additional file 2: Table S10). The majority of those sequences hits have E-values <

1e-12 in nucleotide (86.36%) and in protein (69.38%) blasts.  On the other hand, one genome

scaffold, out of 484 with RAD loci hits, matched with the nucleotide sequences (E-value < 1e-

25) (Additional file 2:  Table S11) and 90 with the protein database (Additional file 2:  Table

S12). The majority of those protein hits have E-values < 1e-12 (55.55%). Of the transcriptome

and genome sequences with protein hits, five and three included associated loci, respectively

(Additional file 2:  Table S13). Four of these genome and transcriptome sequences matched

with known proteins, the other four with uncharacterised ones. One of the identified proteins,

to  which  the  colour-associated  locus  16628  aligned  (genome  scaffold 1372429  and

transcriptome scaffolds 17697 and 17698), was a lysosomal-trafficking regulator, known to be

involved in the trafficking of materials into lysosomes. Furthermore, a mutation of this protein

in humans is  associated with a pigmentation disorder [76].  The other  identified protein,  to

which  the  colour-associated  locus  22795  aligned  (transcriptome  scaffold  29739),  was  the

nucleolar and coiled-body phosphoprotein 1.

Discussion

In  this  study, we  aimed  to  identify  candidate  genomic  regions  associated  with  colour

polymorphism in the meadow spittlebug  P. spumarius,  an insect  species with a  very large

genome (5.3 Gb), as estimated here by flow cytometry. This large size is among the largest

genomes  reported  in  insects [77],  making  genomic  analysis  in  this  species  particularly

challenging.  By using  restriction  site-associated  DNA (RAD) sequencing  in  individuals  of

three dorsal colour phenotypes (typicus,  marginellus, and trilineatus), we were able to detect
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association with colour in 3% of the analysed SNPs (60 out of 1,837).  These phenotypes did

not reveal significant genome-wide differences but when considering only the associated SNPs,

the three colour morphs were differentiated and the trilineatus phenotype showed the highest

genetic  differentiation.  Interestingly, greater  differences  involving life-history  traits  such as

longevity, number  of  eggs,  and number  of  oviposition  events  are  also  known to  occur  in

trilineatus [33]. It may be that the genetic differences detected in this morph also reflect some

part of the genetic basis of these life-history differences among colour morphs. Therefore, we

may not only be on the track to finding a colour gene but also perhaps an extensive region, or

several regions of the genome, that links colour variation and other life-history or physiological

traits, as previously suggested  [38]. Our finding of several colour-associated SNPs, some of

them mapped to different genome and transcriptome scaffolds, suggests to a complex genetic

architecture involving this colour polymorphism.

In the single-SNP association analyses, the 50 individual SNPs found to be associated at

99% quantile (BF0.99  SNPs) showed moderate phenotypic effects (0.10 <  |  β | < 0.15). In the

multi-SNP association analyses, 50 SNPs with posterior inclusion probabilities at quantile 99%

(PIP0.99 SNPs) showed large effects for pairs of colour phenotypes (σSNP > 0.9 and individual

PIP0.99  SNPs |  β | > 0.5). From these, 40 were common to the SNPs identified in single SNP

analyses  (BF0.99  SNPs),  increasing  the  confidence  for  the  detected  associations.  Although

inferences about the genetic architecture are only tentative in this study, due to the relatively

small proportion of the genome covered, our results suggest that differences among the three

dorsal colour phenotypes are associated with several loci with large effects. However, it is still

not entirely clear if these constitute the major loci, determining dorsal colour pattern revealed

by Mendelian crosses in P. spumarius [31,36]. Large effect loci controlling colour pattern have

been reported  for  Heliconius species  [78,79], land snail  Cepaea nemoralis [42], and more

recently in  Timema cristinae stick insects [80]. Several other examples  [81–83] have shown

that  adaptive  traits  are  affected by loci  with large phenotypic effects  and that  this  genetic

architecture may be more common than initially thought. The majority of the colour-associated

loci  that  we  detected  here  did  not  show  significant  allelic  correlations,  being  likely  in

independent genomic regions. However, a few loci were strongly correlated, indicating either

physical linkage, random drift of rare alleles, or occurrence of recent mutations. The existence

of tightly linked loci (a supergene) that can be maintained due to chromosomal rearrangements

or selection of co-adapted loci with epistatic effects is also possible. In the mimetic butterfly

Heliconius melpomene, a cluster of three tightly linked loci (HmN, HmYb and HmSb), lying

just  a  few centimorgans  apart,  as  well  as  other  unlinked loci  have  been shown to control
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distinct  wing  colour  pattern  elements  in  this  species  [84].  In  a  closely  related  species

Heliconius numata, polymorphic colour variation is controlled by a single locus P, forming a

supergene, resulting from chromosomal rearrangements  [85]. A single gene,  doublesex, with

closely linked mutations, also controls supergene mimicry in Papilio polytes [86].

Various genes and pathways have been reported to be involved in insect coloration and

pigmentation. These pathways comprise genes regulating the distribution of pigments in space

and time, as well as genes that are involved in the synthesis of pigments [87]. Several colour

genes have been described, mostly in Drosophila spp. (see [87] for a review) and are known to

be involved in colour variation in the silk worm Bombyx mori [88] and Papilio spp. [86,89,90]

as well. Novel and unexpected genes were found to be responsible for wing colour patterning

in  Heliconius species. Red wing elements are associated with expression of the transcription

factor  optix [91], which in turn is regulated by two distinct  cis-regulatory loci  [92]. Another

gene, cortex, a member of a conserved cell cycle regulator family, appears to have adopted a

novel function controlling colour pattern in  Heliconius and probably across the Lepidoptera

[93]. Regulatory regions are also known to control colour pattern in Drosophila flies [94,95].

However,  none  of  the  colour-associated  loci  that  we  found  in  our  study  matched  these

candidate genes and/or genomic regions of other insects. Approximately 10% of the loci with

colour associations aligned with the P. spumarius transcriptome indicating that those loci are in

coding regions  that  are  expressed  in  adult  stage.  A similar  proportion  of  alignment  to  the

transcriptome was found between associated loci and all  loci (Fisher's  exact test  p-value =

0.8096), suggesting that there is no enrichment/depletion of coding regions in the associated

loci in relation to the total number of loci. Around 35% of the colour-associated loci aligned

with  the  genome  and  22%  also  aligned  with  the  transcriptome.  If  we  assume  a  good

representation of the total transcriptome, this result point to the majority of the associated loci

being in non-coding regions. Considering that our assembled genome represents only 24% of

the total genome size, the low percentage of hits in the genome was expected. Also, the low

number of nucleotide and protein matches of genome and transcriptome sequences is certainly

due to the degree of similarity of P. spumarius to other available Arthropoda sequences being

too low to  allow significant  matches.  Increasing  the  genomic  resources  for  this  or  related

species will allow exploring the candidate loci here described and provide insight into some of

the key questions that remain to be answered. What are the specific genes contributing to this

balanced colour polymorphism? What mutations cause allelic differences in these genes and

how do they contribute  to  the  different  colour  phenotypes?  Are  there  epistatic  or  additive

effects among the alleles responsible for the polymorphism? Does this constitute a supergene?
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Are coding or regulatory mutations involved? In the future,  it  would also be interesting to

investigate  the  evolutionary  history  of  the  colour  polymorphism  within  Philaenus since

identical variation in dorsal colour/pattern can be observed in the other species of the genus,

suggesting an ancestral polymorphism maintained through the speciation process.
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Table 1 – SNPs associated with dorsal colour morphs for each pairwise comparison and obtained through Single-SNP association tests using Bayesian

regression approach.

Bayes factor values above 0.99 quantile (BF0.99); Effect size of an individual SNP on the phenotype (β); Minor allele frequency for each locus and morph (maf); Mean effect size of

BF0.99 SNPs (Mean BF0.99 SNPs); Mean effect size of all 1837 SNPs. SNPs common to comparisons are underlined.

MAR-TRI MAR-TYP
SNP_ID Minor Allele Major Allele β maf_TRI maf_MAR maf_TYP SNP_ID Minor Allele Major Allele β maf_TRI maf_MAR maf_TYP
3950:1 G A 0.432 -0.1198 0.1667 0.7727 0.3750 3950:10 T A 0.264 -0.1010 0.1667 0.7273 0.3125

3950:10 T A 0.337 -0.1099 0.1667 0.7273 0.3125 7095:50 C T 0.319 0.1123 0.0556 0.0417 0.2000
22795:88 G A 0.457 -0.1246 0.0500 0.5000 0.4286 11381:9 A G 0.329 0.1131 0.1667 0.0000 0.2857
40633:18 A G 0.365 0.1159 0.4500 0.0000 0.0714 16628:65 C A 0.502 -0.1287 0.0000 0.5000 0.0000
41239:75 G T 0.373 0.1170 0.3333 0.0000 0.1000 20734:39 T C 0.463 0.1275 0.4286 0.3000 0.7778
43069:10 C G 0.492 -0.1305 0.0000 0.4167 0.5714 24668:63 C G 0.369 0.1173 0.3333 0.3182 0.7500
43069:34 A T 0.492 -0.1305 0.0000 0.4167 0.5000 35205:6 G C 0.444 0.1255 0.0625 0.2273 0.0000
50515:83 A T 0.349 0.1165 0.2857 0.0000 0.0000 45009:87 T G 0.365 0.1096 0.1500 0.1818 0.6500
54226:66 A T 0.418 -0.1245 0.0000 0.3500 0.0000 54049:70 G A 0.424 0.1231 0.5000 0.2727 0.7500
55187:79 G T 0.490 0.1303 0.3889 0.0000 0.5000 55187:46 A G 0.719 0.1555 0.2778 0.0000 0.5000
63439:28 C A 0.403 -0.1203 0.1818 0.6000 0.3889 55187:79 G T 0.784 0.1603 0.3889 0.0000 0.5000
63439:8 A C 0.430 -0.1224 0.1364 0.5500 0.3500 56842:83 A G 0.265 0.1053 0.2000 0.0455 0.2500

75897:50 A G 0.339 0.1158 0.2500 0.0000 0.0000 64204:16 T G 0.303 -0.1080 0.1250 0.5000 0.1111
75897:7 C T 0.785 0.1581 0.5833 0.0000 0.0000 64204:46 G T 0.296 -0.1072 0.2778 0.5000 0.1111

83460:19 C T 0.376 -0.1173 0.0000 0.3889 0.0000 64258:61 G A 0.376 0.1207 0.1500 0.0455 0.4286
87932:85 C T 0.410 -0.1238 0.0000 0.5000 0.5556 82682:38 T G 0.258 0.1019 0.4000 0.1111 0.5833

106126:52 C T 0.337 0.1161 0.2500 0.0000 0.0000 92187:65 A C 0.265 -0.1028 0.5000 0.6111 0.1875
124817:20 A G 0.338 0.1159 0.3500 0.0000 0.0625 102702:13 T A 0.314 0.1120 0.0000 0.0000 0.2143
126355:29 T C 0.579 0.1369 0.5500 0.0455 0.1667 104139:11 T A 0.267 -0.1040 0.3500 0.7000 0.3333

Mean BF0.99 SNPs |0.1235| |0.1177|
Mean all SNPs |0.0001| |0.0037|

TRI-TYP
SNP_ID Minor Allele Major Allele β maf_TRI maf_MAR maf_TYP
6535:26 T C 0.270 -0.1035 0.4444 0.2222 0.0000
6535:35 G A 0.270 0.1023 0.1667 0.5556 0.6250

22795:88 G A 0.279 0.1075 0.0500 0.5000 0.4286
24031:66 C T 0.292 0.1099 0.0000 0.1111 0.2000
24031:81 T G 0.370 0.1202 0.0000 0.0556 0.2000
27816:86 G A 0.352 -0.1155 0.6364 0.4375 0.1875
37095:26 T G 0.313 -0.1110 0.4444 0.1000 0.0556
41742:86 C G 0.316 0.1133 0.0000 0.4167 0.5714
43069:10 C G 0.778 0.1577 0.0000 0.4167 0.5714
43069:34 A T 0.717 0.1551 0.0000 0.4167 0.5000
43143:5 T C 0.408 -0.1195 0.7222 0.4000 0.2500

45009:87 T G 0.429 0.1180 0.1500 0.1818 0.6500
56752:20 G A 0.431 -0.1223 0.6875 0.4444 0.1250
59359:24 G A 0.447 0.1285 0.1000 0.2000 0.6000
75897:7 C T 0.528 -0.1342 0.5833 0.0000 0.0000

87932:85 C T 0.355 0.1135 0.0000 0.5000 0.5556
103746:74 T A 0.496 0.1342 0.0909 0.4000 0.5833
118051:49 G C 0.335 -0.1170 0.1000 0.1500 0.0000
118835:54 C A 0.322 -0.1122 0.0455 0.3636 0.0000
123202:88 T A 0.330 0.1130 0.0909 0.1000 0.4286

Mean BF0.99 SNPs |0.1204|
Mean all SNPs |0.0028|

BF0.99 BF0.99

BF0.99



Table 2 – Parameter estimates from Bayesian variable selection regression for each pairwise analysis. 

Proportion of variance explained (PVE);  mean phenotypic effect associated with a SNP in the regression model including all models  (σSNP) and models with a  log10(BF) > 10

(σSNP_BF); mean number of SNPs in the model considering all models (nSNP) and models with a log10(BF) > 10 (nSNP_BF) and; mean posterior inclusion probability associated

to SNPs in the model (PIP). 95% empirical quantiles are reported in parenthesis.

Analyses PVE σSNP_BF nSNP nSNP_BF PIP SNP 
MAR-TRI 0.6429 (0.031 – 0.998) 1.1200 (0.0570 – 5.559) 3.4300 (0.8475 – 11.8320) 67 (1 –268) 12 (2 – 31) 0.0366 (0.0320 – 0.0465)
MAR-TYP 0.6018 (0.027 – 0.995) 0.9495 (0.0520 – 4.0220) 2.4070 (0.8531 – 7.2788) 63 (1 – 264) 9 (2 – 26) 0.0345 (0.0303 – 0.0418)
TRI-TYP 0.6515 (0.035– 0.996) 0.9776 (0.0570– 4.4040) 4.1420 (1.6660 – 8.7020) 66 (1 – 263) 10 (2 – 25) 0.0361 (0.0320 – 0.0448)

σSNP



Table 3 -  SNPs PIP0.99 associated with dorsal colour morphs obtained through Multi-SNP association tests using Bayesian regression approach. 

Posterior inclusion probability associated to SNP (PIP); Effect size of an individual SNP on the phenotype (β) and minor allele frequency for each locus and morph (maf).
MARTRI MARTYP

SNP_ID PIP β Minor Allele Major Allele MAF TRI MAF MAR MAF TYP SNP_ID PIP β Minor Allele Major Allele MAF TRI MAF MAR MAF TYP

41239:75 0.05228 0.73688 G T 0.3333 0.0000 0.1000 7095:50 0.04707 0.65574 C T 0.0556 0.0417 0.2000

50515:83 0.05294 0.70499 A T 0.2857 0.0000 0.0000 11381:9 0.04714 0.61586 A G 0.1667 0.0000 0.2857

55187:46 0.05326 0.67185 A G 0.2778 0.0000 0.5000 20734:39 0.0621 1.06957 T C 0.4286 0.3000 0.7778

55187:79 0.07371 1.18427 G T 0.3889 0.0000 0.5000 23155:83 0.04559 0.58512 T G 0.1111 0.1000 0.5000

69098:53 0.0545 4.0856 C A 0.1818 0.0000 0.2778 24668:63 0.05372 0.84822 C G 0.3333 0.3182 0.7500

75897:7 0.13035 1.89186 C T 0.5833 0.0000 0.0000 27059:59 0.04681 1.00875 T C 0.2222 0.2083 0.5000

94147:30 0.05298 0.7147 G A 0.6818 0.3182 0.3889 35205:6 0.06037 0.89098 G C 0.0625 0.2273 0.0000

106126:52 0.05356 1.10651 C T 0.2500 0.0000 0.0000 54049:70 0.0568 0.76067 G A 0.5000 0.2727 0.7500

126355:29 0.08618 3.89385 T C 0.5500 0.0455 0.1667 55187:46 0.11972 1.88694 A G 0.2778 0.0000 0.5000

3950:1 0.05946 -0.86693 G A 0.1667 0.7727 0.3750 55187:79 0.13314 1.66567 G T 0.3889 0.0000 0.5000

22795:88 0.06048 -0.98089 G A 0.0500 0.5000 0.4286 64258:61 0.05429 0.96162 G A 0.1500 0.0455 0.4286

25027:11 0.05188 -1.28702 T A 0.0000 0.1667 0.1667 102702:13 0.04718 1.03275 T A 0.0000 0.0000 0.2143

43069:10 0.07528 -2.3343 C G 0.0000 0.4167 0.5714 104623:88 0.04711 0.70632 G A 0.1875 0.0000 0.1429

43069:34 0.06763 -1.50904 A T 0.0000 0.4167 0.5000 108304:78 0.04626 0.48985 C A 0.3571 0.2917 0.6250

54226:66 0.05956 -1.00561 A T 0.0000 0.3500 0.0000 16628:65 0.06209 -0.89022 C A 0.0000 0.5000 0.0000

63439:8 0.05754 -0.73234 A C 0.1364 0.5500 0.3500 51349:15 0.04563 -0.59847 T C 0.1667 0.2500 0.0000

83460:19 0.05406 -0.72601 C T 0.0000 0.3889 0.0000 64204:16 0.04703 -0.60862 T G 0.1250 0.5000 0.1111

87932:85 0.05747 -0.72742 C T 0.0000 0.5000 0.5556 64204:46 0.04626 -0.59146 G T 0.2778 0.5000 0.1111

103246:16 0.05827 -1.14876 T C 0.0000 0.3571 0.1000 66105:38 0.04521 -0.53359 A C 0.3000 0.2143 0.0500

TRITYP

SNP_ID PIP β Minor Allele Major Allele MAF TRI MAF MAR MAF TYP

6535:35 0.0534 0.92979 G A 0.1667 0.5556 0.6250

22795:88 0.0519 0.71932 G A 0.0500 0.5000 0.4286

24031:66 0.05241 1.12531 C T 0.0000 0.1111 0.2000

24031:81 0.05745 0.84617 T G 0.0000 0.0556 0.2000

41742:86 0.05111 0.74532 C G 0.0000 0.4167 0.5714

43069:10 0.09056 1.35007 A T 0.0000 0.4167 0.5000

43069:34 0.09699 1.79618 A T 0.0000 0.4167 0.5000

45009:87 0.05206 0.64932 T G 0.1500 0.1818 0.6500

59359:24 0.05896 1.0716 G A 0.1000 0.2000 0.6000

87932:85 0.05394 0.98257 C T 0.0000 0.5000 0.5556

103746:74 0.07094 1.25641 T A 0.0909 0.4000 0.5833

123202:88 0.05166 0.6811 T A 0.0909 0.1000 0.4286

27816:86 0.05363 -0.79657 G A 0.6364 0.4375 0.1875

37095:26 0.05663 -0.84607 T G 0.4444 0.1000 0.0556

43143:5 0.05286 -0.67184 T C 0.7222 0.4000 0.2500

56752:20 0.05638 -0.73623 G A 0.6875 0.4444 0.1250

75897:7 0.07396 -1.31379 C T 0.5833 0.0000 0.0000

118051:49 0.05605 -0.82887 G C 0.1000 0.1500 0.0000

118835:54 0.05156 -0.68197 C A 0.0455 0.3636 0.0000



List of Figure Legends

Figure 1 – Bayes factor for each SNP in each pairwise comparison in single-SNP association

tests. (a) MAR vs. TRI; (b) MAR vs. TYP; and (c) TRI vs. TYP. The horizontal straight lines

correspond to the Bayes factor 95% empirical quantile threshold and the dash lines to the 99%

empirical quantile.

Figure 2 – Genetic variation of the 33 individuals summarized on principal component axis 1

(PC1)  and  2  (PC2)  from a  Principal  Component  Analysis  using  SNPs  identified  through

Bayesian regression analyses. (a) All 1,837 SNPs; (b) 50 SNPs BF0.99 identified in Single-SNP

association tests;  (c)  50 SNPs PIP0.99 identified in  Multi-SNP Association tests;  and (d) 40

SNPs shared between both association analyses. 

Figure 3 – Posterior inclusion probabilities (PIPs) for each SNP in each pairwise comparison

in multi-SNP association tests. (a) MAR vs. TRI; (b) MAR vs. TYP; and (c) TRI vs. TYP. The

horizontal straight lines correspond to the PIP 95% empirical quantile threshold and the dash

lines to the 99% empirical quantile.
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Additional File 1

Caption for entire file:

Histograms of the total number of raw reads, mean depth and proportion of missing data per

individual and of the R² values for each colour-associated SNP comparison; scatterplots of the

number of SNPs in the model as a function of the Bayes factor for each pairwise comparison in

multi-SNP association tests; and number of RAD loci hits with genome and transcriptome.
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Figure S1 – Total number of raw reads per individual.



Figure S2 – Mean depth per individual.



Figure S3 – Proportion of missing data per individual



Figure S4 – Number of SNPs in the model as a function of the Bayes factor for each pairwise comparison in multi-SNP association tests. (a) MAR vs

TRI; (b) MAR vs TYP; and (c) TRI vs TYP.



Figure S5 –  Histograms with R² values for each SNP comparison. Values for the 60 SNPs

associated with dorsal colour phenotypes in single and multi-association tests  using (a) all

individuals;  (b)  only  marginellus individuals;  (c)  only  trilineatus individuals;  and (d)  only

typicus individuals.
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Figure S6 – Number of RAD loci hits with genome and transcriptome contigs/scaffolds.



Additional File 2
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Table S1 – Associated SNPs obtained for each pairwise comparison through Fisher's exact test,

no significant after a 5% FDR correction.

Estimated odds ratio for minor allele (OR); Standard error for odds ration (SE); Lower bound of 99% confidence

interval for odds ratio (L99); Upper bound of 99% confidence interval for odds ratio (U99).

123

SNP_ID Minor Allele Major Allele P-value Q-value OR SE L99 U99 MAR-TRI
3950:1 G A 0.001 0.777 17.000 0.927 2.765 104.500

3950:10 T A 0.003 0.990 13.330 0.911 2.238 79.440
3950:42 G T 0.036 1.000 NA NA NA NA
5407:80 C T 0.035 1.000 5.667 0.784 1.219 26.330
5480:14 A G 0.036 1.000 0.000 inf 0.000 nan
6535:35 G A 0.035 1.000 6.250 0.791 1.327 29.430

11205:42 T C 0.020 1.000 0.000 inf 0.000 nan
11244:17 C T 0.025 1.000 0.191 0.728 0.046 0.793
12131:31 G C 0.020 1.000 6.000 0.764 1.343 26.810
12421:26 A G 0.044 1.000 10.230 1.128 1.121 93.340
14632:5 A C 0.017 1.000 NA NA NA NA

14632:66 C T 0.007 1.000 NA NA NA NA
15962:90 C T 0.037 1.000 0.245 0.659 0.067 0.891
16195:63 T C 0.048 1.000 0.000 inf 0.000 nan
16628:65 C A 0.004 0.998 NA NA NA NA
20573:80 A T 0.031 1.000 0.000 inf 0.000 nan
22795:88 G A 0.003 0.971 19.000 1.129 2.078 173.700
23056:51 A C 0.047 1.000 0.000 inf 0.000 nan
27421:1 C T 0.042 1.000 0.200 0.733 0.048 0.842

27421:54 G A 0.041 1.000 0.000 inf 0.000 nan
30435:35 T A 0.049 1.000 0.143 0.900 0.024 0.833
36583:13 G A 0.005 0.998 NA NA NA NA
36583:91 G A 0.005 0.998 NA NA NA NA
37095:26 T G 0.027 1.000 0.139 0.884 0.025 0.785
38603:51 A C 0.013 1.000 NA NA NA NA
39061:36 A G 0.047 1.000 0.000 inf 0.000 nan
40633:18 A G 0.001 0.819 0.000 inf 0.000 nan
41239:75 G T 0.004 0.993 0.000 inf 0.000 nan
41889:55 T C 0.029 1.000 NA NA NA NA
42568:80 C T 0.022 1.000 0.000 inf 0.000 nan
43069:10 C G 0.001 0.591 NA NA NA NA
43069:34 A T 0.001 0.591 NA NA NA NA
43143:1 A T 0.048 1.000 NA NA NA NA

46573:72 G A 0.048 1.000 NA NA NA NA
47224:67 A G 0.018 1.000 NA NA NA NA
47824:70 A C 0.045 1.000 4.714 0.753 1.077 20.630
48889:5 G C 0.004 0.997 0.000 inf 0.000 nan

50515:83 A T 0.014 1.000 0.000 inf 0.000 nan
51251:64 A G 0.041 1.000 0.000 inf 0.000 nan
51349:87 G T 0.031 1.000 NA NA NA NA
54226:66 A T 0.003 0.982 NA NA NA NA
54456:51 A T 0.040 1.000 0.257 0.645 0.073 0.910
55187:46 A G 0.010 1.000 0.000 inf 0.000 nan
55187:79 G T 0.001 0.806 0.000 inf 0.000 nan
55519:56 T A 0.035 1.000 6.667 0.864 1.227 36.230
60545:46 G A 0.045 1.000 9.154 1.131 0.998 83.970
63439:28 C A 0.010 1.000 6.750 0.717 1.656 27.510
63439:8 A C 0.008 1.000 7.741 0.767 1.722 34.790

63685:86 T C 0.009 1.000 0.000 inf 0.000 nan
64204:16 T G 0.030 1.000 7.000 0.891 1.221 40.120
66474:79 T G 0.030 1.000 NA NA NA NA
69098:53 C A 0.045 1.000 0.000 inf 0.000 nan
70991:59 A T 0.008 1.000 NA NA NA NA
74826:17 T C 0.045 1.000 0.000 inf 0.000 nan
75133:13 A G 0.020 1.000 6.111 0.776 1.336 27.960
75897:50 A G 0.037 1.000 0.000 inf 0.000 nan
75897:7 C T 0.000 0.186 0.000 inf 0.000 nan
77054:5 G T 0.041 1.000 0.000 inf 0.000 nan

77054:74 A T 0.026 1.000 10.000 1.129 1.094 91.440



Table S1 – Associated SNPs obtained for each pairwise comparison through Fisher's exact test,

no significant after a 5% FDR correction (cont.).

Estimated odds ratio for minor allele (OR); Standard error for odds ration (SE); Lower bound of 99% confidence

interval for odds ratio (L99); Upper bound of 99% confidence interval for odds ratio (U99).

124

SNP_ID Minor Allele Major Allele P-value Q-value OR SE L99 U99 MAR-TRI
80830:68 T C 0.040 1.000 5.833 0.869 1.063 32.020
81088:18 A T 0.027 1.000 9.714 1.120 1.081 87.310
83460:19 C T 0.003 0.970 NA NA NA NA
86470:57 T G 0.017 1.000 0.000 inf 0.000 nan
87569:17 A C 0.009 1.000 NA NA NA NA
87932:85 C T 0.002 0.967 NA NA NA NA
88696:40 C A 0.036 1.000 0.000 inf 0.000 nan
89787:21 T A 0.020 1.000 12.670 1.123 1.402 114.400
89892:81 G T 0.035 1.000 0.098 1.151 0.010 0.936
90363:3 A T 0.033 1.000 0.000 inf 0.000 nan

92099:34 T C 0.041 1.000 NA NA NA NA
92238:67 A T 0.033 1.000 NA NA NA NA
93686:64 A G 0.041 1.000 5.000 0.730 1.195 20.920
94147:30 G A 0.034 1.000 0.218 0.647 0.061 0.775

103246:16 T C 0.010 1.000 NA NA NA NA
103746:74 T A 0.030 1.000 6.667 0.871 1.210 36.740
105384:90 T C 0.041 1.000 10.820 1.137 1.165 100.400
106126:52 C T 0.020 1.000 0.000 inf 0.000 nan
106126:64 C T 0.001 0.785 NA NA NA NA
111157:13 A G 0.019 1.000 NA NA NA NA
111157:86 A C 0.012 1.000 10.000 0.887 1.756 56.930
115255:45 G A 0.020 1.000 NA NA NA NA
116514:82 T C 0.020 1.000 NA NA NA NA
118835:54 C A 0.021 1.000 0.083 1.115 0.009 0.742
118835:73 C T 0.021 1.000 0.083 1.115 0.009 0.742
120070:36 A T 0.003 0.992 0.000 inf 0.000 nan
120286:48 G A 0.033 1.000 0.000 inf 0.000 nan
124817:20 A G 0.003 0.982 0.000 inf 0.000 nan
126355:29 T C 0.000 0.431 0.039 1.118 0.004 0.349
130757:44 T C 0.025 1.000 10.380 1.120 1.156 93.290
130757:61 C A 0.025 1.000 0.000 inf 0.000 nan



Table S1 – Associated SNPs obtained for each pairwise comparison through Fisher's exact test,

no significant after a 5% FDR correction (cont.).

Estimated odds ratio for minor allele (OR); Standard error for odds ration (SE); Lower bound of 99% confidence

interval for odds ratio (L99); Upper bound of 99% confidence interval for odds ratio (U99).

125

SNP_ID Minor Allele Major Allele P-value Q-value OR SE L99 U99 MAR-TYP
3950:1 G A 0.020 1.000 5.667 0.725 1.369 23.460
3950:10 T A 0.020 1.000 5.867 0.721 1.427 24.110
5407:44 T C 0.048 1.000 NA NA NA NA
5407:80 C T 0.027 1.000 8.000 0.886 1.409 45.410
6195:66 T C 0.044 1.000 0.000 inf 0.000 nan

10593:75 T G 0.043 1.000 0.000 inf 0.000 nan
11381:70 T G 0.042 1.000 0.200 0.733 0.048 0.842
11381:9 A G 0.014 1.000 0.000 inf 0.000 nan

11396:42 A T 0.031 1.000 0.000 inf 0.000 nan
11425:84 T C 0.013 1.000 NA NA NA NA
13813:20 T A 0.035 1.000 5.833 0.767 1.298 26.220
16628:2 A G 0.021 1.000 NA NA NA NA

16628:65 C A 0.000 0.486 NA NA NA NA
20573:80 A T 0.041 1.000 0.000 inf 0.000 nan
20734:39 T C 0.004 0.998 0.122 0.748 0.028 0.531
22879:47 A T 0.049 1.000 NA NA NA NA
23155:23 T A 0.048 1.000 NA NA NA NA
23155:79 A G 0.003 0.969 0.000 inf 0.000 nan
23155:83 T G 0.011 1.000 0.111 0.882 0.020 0.626
24155:20 G A 0.031 1.000 0.000 inf 0.000 nan
24668:63 C G 0.020 1.000 0.156 0.737 0.037 0.659
25027:36 A G 0.044 1.000 5.200 0.726 1.253 21.570
31166:54 G T 0.028 1.000 0.000 inf 0.000 nan
33164:47 T C 0.049 1.000 0.161 0.840 0.031 0.834
34535:49 A G 0.016 1.000 NA NA NA NA
35205:28 C T 0.020 1.000 0.177 0.725 0.043 0.731
35205:6 A T 0.008 1.000 0.134 0.741 0.031 0.572

35580:77 C T 0.048 1.000 NA NA NA NA
38512:7 C G 0.027 1.000 0.150 0.832 0.029 0.766

38603:51 A C 0.012 1.000 NA NA NA NA
41742:47 A G 0.018 1.000 13.750 1.147 1.452 130.200
41742:86 T C 0.028 1.000 0.000 inf 0.000 nan
42253:58 C T 0.035 1.000 0.171 0.767 0.038 0.771
43343:68 A G 0.029 1.000 7.222 0.823 1.440 36.220
45009:87 T G 0.004 0.996 0.120 0.725 0.029 0.495
47799:36 T C 0.045 1.000 0.000 inf 0.000 nan
51349:15 T C 0.039 1.000 NA NA NA NA
54049:70 G A 0.008 1.000 0.125 0.750 0.029 0.544
55187:46 A G 0.001 0.712 0.000 inf 0.000 nan
55187:79 G T 0.001 0.712 0.000 inf 0.000 nan
55519:56 T A 0.012 1.000 12.500 1.118 1.397 111.800
59359:24 G A 0.045 1.000 0.167 0.854 0.031 0.889
59359:5 A G 0.011 1.000 NA NA NA NA

59615:31 T A 0.039 1.000 0.000 inf 0.000 nan
59756:39 A G 0.036 1.000 NA NA NA NA
64204:16 T G 0.027 1.000 8.000 0.886 1.409 45.410
64204:46 G T 0.027 1.000 8.000 0.886 1.409 45.410
64258:61 G A 0.008 1.000 0.063 1.157 0.007 0.614
69098:53 C A 0.010 1.000 0.000 inf 0.000 nan
69168:75 C T 0.020 1.000 NA NA NA NA
73849:2 G T 0.017 1.000 0.152 0.747 0.035 0.655

79183:11 T A 0.031 1.000 0.000 inf 0.000 nan



Table S1 – Associated SNPs obtained for each pairwise comparison through Fisher's exact test,

no significant after a 5% FDR correction (cont.).

Estimated odds ratio for minor allele (OR); Standard error for odds ration (SE); Lower bound of 99% confidence

interval for odds ratio (L99); Upper bound of 99% confidence interval for odds ratio (U99).
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SNP_ID Minor Allele Major Allele P-value Q-value OR SE L99 U99 MAR-TYP
81653:72 G A 0.049 1.000 NA NA NA NA
82682:38 T G 0.013 1.000 0.089 0.952 0.014 0.576
82682:56 T C 0.018 1.000 0.000 inf 0.000 nan
83460:19 C T 0.024 1.000 NA NA NA NA
86470:57 T G 0.004 0.997 0.000 inf 0.000 nan
87569:17 A C 0.047 1.000 8.867 1.123 0.981 80.180
88684:50 T A 0.045 1.000 9.154 1.131 0.998 83.970
89026:32 G T 0.003 0.990 0.000 inf 0.000 nan
90805:28 T C 0.018 1.000 0.088 1.126 0.010 0.803
92187:65 A C 0.017 1.000 6.810 0.803 1.413 32.830
96962:7 A C 0.022 1.000 0.000 inf 0.000 nan

101939:54 T C 0.030 1.000 0.143 0.891 0.025 0.819
102198:61 A G 0.008 1.000 0.062 1.141 0.007 0.576
102702:13 T A 0.043 1.000 0.000 inf 0.000 nan
103460:91 C A 0.039 1.000 0.000 inf 0.000 nan
104139:11 T A 0.050 1.000 4.667 0.699 1.187 18.350
105240:56 A T 0.031 1.000 0.000 inf 0.000 nan
105384:90 T C 0.010 1.000 NA NA NA NA
119443:36 G C 0.025 1.000 NA NA NA NA
122410:33 A G 0.025 1.000 0.000 inf 0.000 nan
122441:74 T A 0.030 1.000 NA NA NA NA
123202:88 T A 0.042 1.000 0.148 0.920 0.024 0.900
124278:24 T C 0.008 1.000 0.000 inf 0.000 nan
124812:88 T G 0.031 1.000 0.000 inf 0.000 nan
127190:89 A C 0.028 1.000 0.000 inf 0.000 nan
127431:25 G C 0.043 1.000 0.000 inf 0.000 nan
130525:56 T C 0.039 1.000 0.000 inf 0.000 nan
131716:37 G A 0.039 1.000 0.000 inf 0.000 nan
132574:59 G A 0.008 1.000 0.094 0.924 0.015 0.574



Table S1 – Associated SNPs obtained for each pairwise comparison through Fisher's exact test,

no significant after a 5% FDR correction (cont.).

Estimated odds ratio for minor allele (OR); Standard error for odds ration (SE); Lower bound of 99% confidence

interval for odds ratio (L99); Upper bound of 99% confidence interval for odds ratio (U99).

127

SNP_ID Minor Allele Major Allele P-value Q-value OR SE L99 U99 TRI-TYP
6535:26 T C 0.003 0.985 NA NA NA NA
6535:35 G A 0.012 1.000 0.120 0.817 0.024 0.595
7111:45 G A 0.018 1.000 0.000 inf 0.000 nan
9382:30 G A 0.046 1.000 NA NA NA NA
9495:57 T C 0.046 1.000 0.143 0.926 0.023 0.877

10593:75 T G 0.043 1.000 0.000 inf 0.000 nan
11425:84 T C 0.041 1.000 NA NA NA NA
11717:84 T A 0.025 1.000 0.125 0.880 0.022 0.702
14153:54 A G 0.025 1.000 10.830 1.123 1.200 97.800
14632:5 A C 0.044 1.000 0.000 inf 0.000 nan

14632:66 C T 0.044 1.000 0.000 inf 0.000 nan
22795:88 G A 0.012 1.000 0.070 1.159 0.007 0.681
23155:83 T G 0.027 1.000 0.125 0.886 0.022 0.710
23577:46 A C 0.039 1.000 NA NA NA NA
23772:67 T A 0.033 1.000 0.000 inf 0.000 nan
24668:63 C G 0.020 1.000 0.167 0.764 0.037 0.745
27816:86 G A 0.009 1.000 7.583 0.779 1.648 34.900
31166:54 G T 0.022 1.000 0.000 inf 0.000 nan
33164:47 T C 0.050 1.000 0.165 0.868 0.030 0.903
33497:69 T G 0.041 1.000 0.000 inf 0.000 nan
34753:54 A G 0.043 1.000 NA NA NA NA
36283:34 G C 0.047 1.000 0.225 0.704 0.057 0.895
36583:13 G A 0.005 0.999 0.000 inf 0.000 nan
36583:91 G A 0.037 1.000 0.000 inf 0.000 nan
37095:11 T C 0.041 1.000 10.820 1.137 1.165 100.400
37095:26 T G 0.018 1.000 13.600 1.133 1.476 125.300
38067:37 T C 0.028 1.000 NA NA NA NA
38305:87 T C 0.041 1.000 0.000 inf 0.000 nan
40633:18 A G 0.024 1.000 10.640 1.131 1.159 97.590
41742:86 T C 0.017 1.000 0.000 inf 0.000 nan
42137:43 A G 0.047 1.000 0.000 inf 0.000 nan
42568:80 C T 0.028 1.000 NA NA NA NA
43069:10 C G 0.000 0.126 0.000 inf 0.000 nan
43069:34 A T 0.000 0.427 0.000 inf 0.000 nan
43143:1 A T 0.021 1.000 0.000 inf 0.000 nan
43143:5 T C 0.008 1.000 7.800 0.737 1.839 33.090
43343:4 G A 0.023 1.000 5.571 0.744 1.297 23.930

45009:87 T G 0.003 0.984 0.095 0.782 0.021 0.440
51349:23 A C 0.045 1.000 9.154 1.131 0.998 83.970
56372:77 A C 0.027 1.000 0.150 0.832 0.029 0.766
56752:20 G A 0.003 0.987 15.400 0.929 2.495 95.050
56752:7 T C 0.016 1.000 15.000 1.147 1.583 142.200

57440:74 C T 0.024 1.000 0.000 inf 0.000 nan
57896:39 A G 0.005 0.998 0.000 inf 0.000 nan
57969:64 A G 0.046 1.000 NA NA NA NA
59359:24 G A 0.007 1.000 0.074 0.986 0.011 0.512
59359:5 A G 0.011 1.000 NA NA NA NA

59756:39 A G 0.010 1.000 NA NA NA NA
66474:79 T G 0.018 1.000 0.000 inf 0.000 nan
70991:59 A T 0.018 1.000 0.000 inf 0.000 nan
73849:2 G T 0.014 1.000 0.130 0.783 0.028 0.602

74826:17 T C 0.046 1.000 NA NA NA NA



Table S1 – Associated SNPs obtained for each pairwise comparison through Fisher's exact test,

no significant after a 5% FDR correction (cont.).

Estimated odds ratio for minor allele (OR); Standard error for odds ration (SE); Lower bound of 99% confidence

interval for odds ratio (L99); Upper bound of 99% confidence interval for odds ratio (U99).
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SNP_ID Minor Allele Major Allele P-value Q-value OR SE L99 U99 TRI-TYP
75897:7 C T 0.001 0.595 NA NA NA NA

77054:74 A T 0.043 1.000 0.105 1.140 0.011 0.979
81058:20 A G 0.031 1.000 0.000 inf 0.000 nan
81058:3 A T 0.031 1.000 0.000 inf 0.000 nan

81653:10 A G 0.047 1.000 NA NA NA NA
83243:8 G A 0.019 1.000 0.083 1.137 0.009 0.773

83606:76 C G 0.038 1.000 9.500 1.141 1.014 88.970
84043:12 C T 0.021 1.000 9.167 0.880 1.634 51.430
87087:62 A C 0.022 1.000 0.000 inf 0.000 nan
87932:59 A G 0.020 1.000 6.000 0.764 1.343 26.810
87932:85 C T 0.000 0.414 0.000 inf 0.000 nan
91056:66 A G 0.033 1.000 0.000 inf 0.000 nan
96962:7 A C 0.037 1.000 0.000 inf 0.000 nan

99654:23 T A 0.050 1.000 0.165 0.868 0.030 0.903
102198:31 T A 0.045 1.000 NA NA NA NA
102198:61 A G 0.012 1.000 0.100 0.887 0.018 0.569
102870:54 A C 0.018 1.000 0.093 0.946 0.015 0.591
103246:89 T C 0.045 1.000 0.109 1.131 0.012 1.002
103746:74 T A 0.004 0.993 0.071 0.945 0.011 0.455
105240:56 A T 0.031 1.000 0.000 inf 0.000 nan
105681:85 T A 0.045 1.000 0.000 inf 0.000 nan
106126:64 C T 0.016 1.000 0.000 inf 0.000 nan
108159:78 T A 0.026 1.000 NA NA NA NA
111157:42 T G 0.017 1.000 NA NA NA NA
111157:7 A G 0.041 1.000 NA NA NA NA

111750:29 T A 0.050 1.000 9.000 1.137 0.969 83.580
116514:82 T C 0.008 1.000 0.000 inf 0.000 nan
117209:38 A C 0.031 1.000 0.000 inf 0.000 nan
118835:54 C A 0.004 0.994 NA NA NA NA
118835:73 C T 0.022 1.000 10.860 1.118 1.215 97.060
123202:88 T A 0.036 1.000 0.133 0.917 0.022 0.805
125972:31 T C 0.043 1.000 9.545 1.140 1.021 89.220
126393:2 A C 0.024 1.000 11.000 1.146 1.164 103.900

126742:83 A G 0.018 1.000 0.000 inf 0.000 nan
126991:11 G A 0.017 1.000 0.147 0.803 0.030 0.708
126991:84 T A 0.039 1.000 0.185 0.797 0.039 0.880
130757:44 T C 0.019 1.000 0.083 1.137 0.009 0.773
130757:61 C A 0.031 1.000 NA NA NA NA
132574:59 G A 0.008 1.000 0.094 0.924 0.015 0.574



Table S2 – Genic and genotypic differentiation among dorsal colour phenotypes using single-association SNPs with Bayes factor above 0.99 quantile

(BF0.99 SNPs), multi-association SNPs with a posterior inclusion probability above 0.99 quantile (PIP0.99 SNPs) and all 1,837 SNPs.

Table S3 – Pairwise Fst estimates among dorsal colour phenotypes using single-association SNPs with Bayes factor above 0.99 quantile (BF0.99

SNPs), multi-association SNPs with a posterior inclusion probability above 0.99 quantile (PIP0.99 SNPs) and all 1,837 SNPs.

TYP MAR
MAR 0.1787 --
TRI 0.2125 0.2145

TYP MAR
MAR 0.1650 --
TRI 0.2159 0.1907

TYP MAR

All 1,837 SNPs
MAR -0.0017 --
TRI 0.0042 0.0051

50 BF0.99 SNPs

50 PIP
0.99

 SNPs

Genic differentiation Genotypic differentiation
Pairwise analysis χ² df P-Value χ² df P-Value

MAR vs TRI 336.88622 96 Highly sign. 237.695648 96 Highly sign.
MAR vs TYP 245.03116 92 Highly sign. 179.46547 92 0.00000
TRI vs TYP 290.11909 94 Highly sign. 210.880335 94 Highly sign.

Pairwise analysis χ² df P-Value χ² df P-Value
MAR vs TRI 301.39129 96 Highly sign. 217.427269 96 Highly sign.
MAR vs TYP 248.37097 94 Highly sign. 183.95215 94 0.00000
TRI vs TYP 283.1366 94 Highly sign. 208.907152 94 Highly sign.

Pairwise analysis χ² df P-Value χ² df P-Value

All 1,837 SNPs
MAR vs TRI 3277.69821 32 1.000 2408.80810 32 1.000
MAR vs TYP 3168.21556 96 1.000 2347.58297 96 1.000
TRI vs TYP 3240.57252 84 1.000 2321.40547 84 1.000

50 BF0.99 SNPs

50 PIP
0.99

 SNPs



Table S4 – SNP correlation value (r²) in linkage disequilibrium analyses. A FDR of 5% was

applied.
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SNP_a SNP_b r²
All phenotypes 43069:10 43069:34 0.922

3950:1 3950:10 0.851
63439:8 63439:28 0.824

55187:46 55187:79 0.793
64204:16 64204:46 0.791
27816:86 43143:5 0.490
40633:18 104623:88 0.448
75897:7 106126:52 0.435

41239:75 75897:50 0.430
75897:7 75897:50 0.391

41742:86 104623:88 0.387
16628:65 54226:66 0.384
11381:9 41742:86 0.373

59359:24 123202:88 0.371
3950:1 82682:38 0.342

41742:86 55187:46 0.335
118835:54 126355:29 0.319
20734:39 59359:24 0.315
6535:26 20734:39 0.300
3950:1 55187:79 0.300

24668:63 55187:46 0.295
23155:83 64258:61 0.293
3950:10 82682:38 0.291

92187:65 108304:78 0.285
20734:39 27816:86 0.283
22795:88 43069:34 0.282
11381:9 55187:46 0.281
43143:5 87932:85 0.276

43069:10 103746:74 0.272
11381:9 55187:79 0.267

41742:86 55187:79 0.266
23155:83 41742:86 0.264
41239:75 50515:83 0.263
50515:83 118835:54 0.262
24668:63 103746:74 0.261
3950:10 55187:79 0.255

25027:11 103746:74 0.251
35205:6 64204:16 0.244

102702:13 123202:88 0.241
22795:88 43069:10 0.239
6535:26 6535:35 0.238
43143:5 118835:54 0.201

43069:34 63439:28 0.187
MAR phenotype 55187:46 55187:79 1.000

37095:26 40633:18 0.999
7095:50 50515:83 0.909

54049:70 54226:66 0.814
3950:1 3950:10 0.784

TYP phenotype 51349:15 54049:70 0.999
45009:87 50515:83 0.846

TRI phenotype No significant LD comparisons



Table S5 – Genome size estimated by flow cytometry for each individual tested of P. spumarius and P. maghresignus.

Florescence (FL); Coefficient of variation (CV)

Species Sex Individual FL Sample FL Standard DI 2C genome size (pg) CV Sample (%) CV Standard (%) Standard
P. spumarius M 2 277.75 105.31 2.64 5.17 2.12 2.48 S.l.
P. spumarius M 3 264.53 104.04 2.54 4.98 2.73 2.78 S.l.
P. spumarius M 4 246.14 102.23 2.41 4.72 2.77 2.74 S.l.
P. spumarius M 5 281.04 106.58 2.64 5.17 2.98 3.72 S.l.
P. spumarius M 6 272.27 100.93 2.70 5.29 3.01 3.31 S.l.
P. spumarius M 7 276.82 106.86 2.59 5.08 2.96 3.07 S.l.
P. spumarius F 1 279.18 103.47 2.70 5.29 3.09 3.26 S.l.
P. spumarius F 2 279.72 102.46 2.73 5.35 3.14 3.13 S.l.
P. spumarius F 3 276.62 103.66 2.67 5.23 2.77 3.11 S.l.
P. spumarius F 4 292.74 102.11 2.87 5.62 2.70 3.00 S.l.
P. spumarius F 5 290.21 102.96 2.82 5.52 2.85 2.75 S.l.
P. spumarius F 8 287.97 103.49 2.78 5.45 3.39 4.38 S.l.
P. spumarius F 9 301.03 105.28 2.86 5.60 2.44 2.92 S.l.

P. maghresignus F 1 451.81 103.18 4.38 8.58 2.94 3.26 S.l.
P. maghresignus F 2 482.33 104.36 4.62 9.06 3.25 3.9 S.l.
P. maghresignus F 3 480.16 107.15 4.48 8.78 3.64 4.38 S.l.
P. maghresignus F 4 490.48 104.07 4.71 9.24 3.15 3.65 S.l.
P. maghresignus F 5 489.65 105.28 4.65 9.12 2.9 2.92 S.l.
P. maghresignus F 6 471.38 104.76 4.50 8.82 2.73 3.96 S.l.
P. maghresignus F 7 471.1 104.38 4.51 8.85 3.39 2.89 S.l.
P. maghresignus F 8 480.27 105.47 4.55 8.93 3.69 3.58 S.l.
P. maghresignus F 9 487.09 109.04 4.47 8.76 3.48 3.63 S.l.



Table  S6  – Results  of  the  filtering  process  and  assembly  statistics  for  genome  and

transcriptome.
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Genome Transcriptome
Total sequences analyzed 366,658,698 17,035,046
Total sequences trashed (%) 12,966,076 (3.54%) 2,247,494 (13.19%)
Total sequences retained (%) 353,692,622 (96.46%) 14,787,552 (86.81%)
Number of assembled contigs 6,843,324 173,691
Maximum contig length 2,6118 bp 9,381 bp
Minimum contig length 100 bp 100 bp
Average contig length 226 bp 235 bp
Number of scaffolds 4,010,521 31,050
Maximum scaffold length with gaps 34,575 bp 17,088 bp
Average scaffold length with gaps 382 bp 1,318 bp
N50 686 bp 803 bp
% of gaps 20.47 0.39
Total assembled length with gaps 1,532,459,407 bp 81,759,018 bp
Total assembled length without gaps 1,218,749,078 bp 81,442,967 bp



Table S7 – Blast results of RAD loci against Arthropoda protein sequences of NCBI. 

Full table available at https://dl.dropboxusercontent.com/u/5639287/Additional_file_2_edited_link.xlsx

query id  subject id Description  % identity  alignment length  mismatches  gap opens  q. start  q. end  s. start  s. end  E-value  bit score

locus19718

gi|646705714|gb|KDR13273.1| Protein BTG3, partial [Zootermopsis nevadensis] 76.67 30 7 0 3 92 9 38 2.00E-008 52.4
gi|501293050|dbj|BAN20554.1| b-cell translocation protein [Riptortus pedestris] 80 30 6 0 3 92 9 38 3.00E-007 48.5

gi|939680495|ref|XP_014285444.1| PREDICTED: protein BTG3-like [Halyomorpha halys] 76.67 30 7 0 3 92 9 38 4.00E-007 48.9
gi|939278830|ref|XP_014259974.1| PREDICTED: protein BTG3-like [Cimex lectularius] 73.33 30 8 0 3 92 9 38 3.00E-006 47

locus34634 gi|861615211|gb|KMQ86051.1| retrovirus-related pol polyprotein from transposon tnt 1-94 [Lasius niger] 65.52 29 10 0 2 88 131 159 4.00E-005 44.3

locus58509

gi|827552693|ref|XP_012548103.1| PREDICTED: uncharacterized protein LOC105842033 [Bombyx mori] 66.67 30 10 0 1 90 213 242 1.00E-008 54.7
gi|641650328|ref|XP_008189178.1| PREDICTED: uncharacterized protein LOC103311361 [Acyrthosiphon Pisum] 66.67 30 10 0 1 90 219 248 1.00E-007 52
gi|913295464|ref|XP_013194825.1| PREDICTED: uncharacterized protein LOC106138234 [Amyelois transitella] 63.33 30 11 0 1 90 229 258 8.00E-007 49.7

gi|930673761|gb|KPJ14194.1| Pogo transposable element with KRAB domain [Papilio machaon] 63.33 30 11 0 1 90 104 133 1.00E-006 49.3
gi|641652957|ref|XP_008178605.1| PREDICTED: uncharacterized protein LOC103307917 [Acyrthosiphon Pisum] 65.38 26 9 0 1 78 185 210 2.00E-006 48.1

locus59359 gi|913295464|ref|XP_013194825.1| PREDICTED: uncharacterized protein LOC106138234 [Amyelois transitella] 62.07 29 11 0 95 9 270 298 6.00E-005 44.3

locus66967
gi|795015422|ref|XP_011858146.1| PREDICTED: tigger transposable element-derived protein 6-like [Vollenhovia emeryi] 67.86 28 9 0 3 86 406 433 5.00E-006 47
gi|795018711|ref|XP_011859321.1| PREDICTED: uncharacterized protein LOC105556820 [Vollenhovia Emeryi] 67.86 28 9 0 3 86 377 404 1.00E-005 46.2

gi|861625729|gb|KMQ88629.1| tigger transposable element-derived protein 6-like protein [Lasius niger] 67.86 28 9 0 3 86 377 404 1.00E-005 45.8

locus67578

gi|478256910|gb|ENN77079.1| hypothetical protein YQE_06414, partial [Dendroctonus ponderosae] 75.86 29 7 0 89 3 37 65 8.00E-008 49.7
gi|861625729|gb|KMQ88629.1| tigger transposable element-derived protein 6-like protein [Lasius niger] 68.97 29 9 0 89 3 308 336 2.00E-006 48.1
gi|321454537|gb|EFX65704.1| PREDICTED: uncharacterized protein LOC105202865 [Solenopsis invicta] 62.07 29 11 0 89 3 222 250 9.00E-006 45.4

gi|751232467|ref|XP_011169850.1| PREDICTED: uncharacterized protein LOC105202865 [Solenopsis invicta] 68.97 29 9 0 89 3 320 348 2.00E-005 45.8
gi|780616041|ref|XP_011696449.1| PREDICTED: uncharacterized protein LOC105455090 [Wasmannia auropunctata] 65.52 29 10 0 89 3 315 343 3.00E-005 44.7

locus68031
gi|805822205|ref|XP_012151115.1| PREDICTED: fibrillin-2-like isoform X3 [Megachile rotundata] 90.91 22 2 0 90 25 715 736 4.00E-006 48.1
gi|805822203|ref|XP_012151113.1| PREDICTED: fibrillin-2-like isoform X2 [Megachile rotundata] 90.91 22 2 0 90 25 1170 1191 4.00E-006 48.1
gi|815916428|ref|XP_003491105.2| PREDICTED: fibrillin-2-like [Bombus impatiens] 90.91 22 2 0 90 25 1170 1191 4.00E-006 48.1

locus69741

gi|939660472|ref|XP_014278153.1| PREDICTED: tetratricopeptide repeat protein 28 [Halyomorpha halys] 81.48 27 5 0 1 81 68 94 4.00E-007 50.8
gi|939241274|ref|XP_014239890.1| PREDICTED: tetratricopeptide repeat protein 28 [Cimex lectularius] 81.48 27 5 0 1 81 68 94 4.00E-007 50.8
gi|242011457|ref|XP_002426466.1| rapsynoid, putative [Pediculus humanus corporis] 74.07 27 7 0 1 81 63 89 3.00E-005 45.4
gi|195588763|ref|XP_002084127.1| GD12984 [Drosophila simulans] 70.37 27 8 0 1 81 66 92 8.00E-005 43.9

locus80449
gi|827542484|ref|XP_012544315.1| PREDICTED: uncharacterized protein LOC105841373 [Bombyx mori] 75.86 29 7 0 87 1 429 457 1.00E-007 52.4
gi|913328928|ref|XP_013196001.1| PREDICTED: uncharacterized protein LOC106139163 isoform X1 [Amyelois transitella] 62.07 29 11 0 87 1 499 527 3.00E-006 47.8

locus81867
gi|641657266|ref|XP_003242632.2| PREDICTED: uncharacterized protein LOC100575723 [Acyrthosiphon pisum] 79.17 24 5 0 15 86 236 259 5.00E-005 43.9
gi|170068745|ref|XP_001868982.1| conserved hypothetical protein [Culex quinquefasciatus] 59.26 27 11 0 6 86 215 241 9.00E-005 43.5



Table  S8–  Summary of  the  alignment  results  of  RAD loci  against  drafts  of P. spumarius

genome and transcriptome.
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Genome Transcriptome
hits no hits hits no hits

Number of RAD loci 392 536 134 795
% of RAD loci 42.24 57.76 14.44 85.67
Number of associated RAD loci 18 34 5 47
% of associated RAD loci 34.62 65.38 9.62 90.38



Table S9 – Blast results of P. spumarius transcriptome contigs/scaffolds with RAD loci alignments against Arthropoda nucleotide sequences of NCBI.

Full table available at https://dl.dropboxusercontent.com/u/5639287/Additional_file_2_edited_link.xlsx

query id  subject id  % identity  alignment length  mismatches  gap opens  q. start  q. end  s. start  s. end  evalue  bit score
C56875 gi|780644672|ref|XM_011690559.1| 100 35 0 0 9 43 1,071 1,037 1.00E-007 66

scaffold18605
gi|242012820|ref|XM_002427080.1| 74.04 1,256 254 65 4,902 6,118 2,246 1,024 5.00E-122 448
gi|805769431|ref|XM_012280733.1| 78.91 147 25 6 2,558 2,701 4,976 4,833 8.00E-016 95
gi|805769428|ref|XM_003701235.2| 78.91 147 25 6 2,558 2,701 5,009 4,866 8.00E-016 95

C42981
gi|571568204|ref|XM_006562746.1| 74.49 294 52 16 232 509 2,166 2,452 4.00E-020 106
gi|571568202|ref|XM_003250115.2| 74.49 294 52 16 232 509 2,163 2,449 4.00E-020 106
gi|571568197|ref|XM_006562745.1| 74.49 294 52 16 232 509 2,163 2,449 4.00E-020 106

scaffold1670 gi|755990511|ref|XM_011314251.1| 72.57 689 141 48 368 1,032 951 1,615 2.00E-042 182

scaffold1669 gi|755990511|ref|XM_011314251.1| 72.57 689 141 48 368 1,032 951 1,615 2.00E-042 182

C68167
gi|805766218|ref|XM_003700821.2| 74.57 2,273 425 139 80 2,280 160 2,351 0 854
gi|751236556|ref|XM_011173816.1| 73.69 2,258 456 127 85 2,278 103 2,286 0 752
gi|936572716|ref|XM_014363177.1| 75.94 1,168 219 58 94 1,230 136 1,272 6.00E-151 544

scaffold29880 gi|964098332|ref|XM_001964584.2| 83.19 119 18 2 634 751 702 585 2.00E-020 108

scaffold21260
gi|630575147|gb|KF383591.1| 78.86 946 168 31 5,553 6,482 939 10 1.00E-170 610
gi|630574795|gb|KF383583.1| 78.82 949 163 34 5,553 6,482 939 10 5.00E-169 604

scaffold21259
gi|630575147|gb|KF383591.1| 78.86 946 168 31 5,553 6,482 939 10 6.00E-171 610
gi|630574795|gb|KF383583.1| 78.82 949 163 34 5,553 6,482 939 10 3.00E-169 604

scaffold21258
gi|630575147|gb|KF383591.1| 78.86 946 168 31 5,553 6,482 939 10 6.00E-171 610
gi|630574795|gb|KF383583.1| 78.82 949 163 34 5,553 6,482 939 10 3.00E-169 604

C64171 gi|780644672|ref|XM_011690559.1| 100 34 0 0 10 43 1,071 1,038 6.00E-007 64



Table S10 – Blast results of P. spumarius transcriptome contigs/scaffolds with RAD loci alignments against Arthropoda protein sequences of NCBI.

Full table available at https://dl.dropboxusercontent.com/u/5639287/Additional_file_2_edited_link.xlsx

query id  subject id  % identity  alignment length  mismatches  gap opens  q. start  q. end  s. start  s. end  evalue  bit score

scaffold17698

gi|795040272|ref|XP_011866546.1| 40 251 113 4 504 1,142 1,479 1,729 1.00E-058 183
gi|795040272|ref|XP_011866546.1| 28 159 96 5 11 463 1,313 1,461 1.00E-058 69
gi|795040277|ref|XP_011866548.1| 40 251 113 4 504 1,142 1,462 1,712 1.00E-058 183
gi|795040277|ref|XP_011866548.1| 28 159 96 5 11 463 1,296 1,444 1.00E-058 69
gi|795040284|ref|XP_011866550.1| 40 251 113 4 504 1,142 1,479 1,729 1.00E-058 183
gi|795040284|ref|XP_011866550.1| 28 159 96 5 11 463 1,313 1,461 1.00E-058 69
gi|795040287|ref|XP_011866551.1| 40 251 113 4 504 1,142 1,479 1,729 1.00E-058 183
gi|795040287|ref|XP_011866551.1| 28 159 96 5 11 463 1,313 1,461 1.00E-058 69

gi|915667197|gb|KOC69033.1| 39 251 115 4 504 1,142 1,348 1,598 1.00E-054 174

scaffold17697

gi|939653348|ref|XP_014275474.1| 40 382 183 9 2 1,138 1,148 1,484 2.00E-069 265
gi|939653344|ref|XP_014275473.1| 40 382 183 9 2 1,138 1,148 1,484 2.00E-069 265
gi|939263801|ref|XP_014251876.1| 37 383 190 7 11 1,138 1,148 1,487 3.00E-066 255
gi|939263799|ref|XP_014251875.1| 37 383 190 7 11 1,138 1,148 1,487 3.00E-066 255
gi|939263797|ref|XP_014251874.1| 37 383 190 7 11 1,138 1,148 1,487 3.00E-066 255

scaffold29739

gi|746865007|ref|XP_011063523.1| 26 265 176 6 756 7 241 499 2.00E-007 61
gi|746865005|ref|XP_011063522.1| 26 265 176 6 756 7 241 499 2.00E-007 61

gi|332019345|gb|EGI59851.1| 26 265 176 6 756 7 277 535 2.00E-007 61
gi|808130549|ref|XP_012168000.1| 23 251 179 6 744 7 344 585 4.00E-006 56
gi|662198534|ref|XP_008472393.1| 23 435 296 12 1,221 34 63 496 6.00E-006 56

scaffold13661

gi|646715032|gb|KDR18788.1| 48 367 176 5 1,082 3 11 369 2.00E-088 328
gi|907617340|ref|XP_013119188.1| 40 359 196 8 1,073 6 70 413 3.00E-072 275
gi|749789658|ref|XP_011148137.1| 39 362 203 7 1,070 6 25 374 6.00E-072 274

gi|906467269|gb|KNC28514.1| 40 368 204 8 1,100 6 535 887 5.00E-071 271
gi|906467269|gb|KNC28514.1| 37 358 209 7 1,070 6 89 433 1.00E-063 246

gi|195440672|ref|XP_002068164.1| 40 379 211 9 1,130 3 39 402 3.00E-070 268

scaffold13660

gi|646715032|gb|KDR18788.1| 48 367 176 5 1,082 3 11 369 2.00E-088 328
gi|907617340|ref|XP_013119188.1| 40 359 196 8 1,073 6 70 413 3.00E-072 275
gi|749789658|ref|XP_011148137.1| 39 362 203 7 1,070 6 25 374 6.00E-072 274

gi|906467269|gb|KNC28514.1| 40 368 204 8 1,100 6 535 887 5.00E-071 271
gi|906467269|gb|KNC28514.1| 37 358 209 7 1,070 6 89 433 1.00E-063 246

gi|195440672|ref|XP_002068164.1| 40 379 211 9 1,130 3 39 402 3.00E-070 268



Table S11 – Blast results of P. spumarius genome contigs/scaffolds with RAD loci alignments against Arthropoda nucleotide sequences of NCBI.

query id  subject id  % identity  alignment length  mismatches  gap opens  q. start  q. end  s. start  s. end  evalue  bit score

C111684269

gi|795024761|ref|XM_012005991.1| 87 1,932 218 28 3,821 5,741 3 1,914 0 2,159
gi|795024758|ref|XM_012005990.1| 88 1,073 124 10 11,088 12,155 1 1,068 0 1,230
gi|936711822|ref|XM_014378388.1| 82 151 23 4 1,779 1,927 7,708 7,856 9E-026 126
gi|936711819|ref|XM_014378387.1| 82 151 23 4 1,779 1,927 7,815 7,963 9E-026 126
gi|936711817|ref|XM_014378385.1| 82 151 23 4 1,779 1,927 7,881 8,029 9E-026 126
gi|936711815|ref|XM_014378384.1| 82 151 23 4 1,779 1,927 7,935 8,083 9E-026 126
gi|936711812|ref|XM_014378383.1| 82 151 23 4 1,779 1,927 7,947 8,095 9E-026 126



Table S12 – Blast results of P. spumarius genome contigs/scaffolds with RAD loci alignments against Arthropoda protein sequences of NCBI.

Full table available at https://dl.dropboxusercontent.com/u/5639287/Additional_file_2_edited_link.xlsx

query id  subject id  % identity  alignment length  mismatches  gap opens  q. start  q. end  s. start  s. end  evalue  bit score

scaffold1372429

gi|939653348|ref|XP_014275474.1| 43 76 36 3 1,576 1,797 1,188 1,258 6.00E-009 67.4
gi|939653348|ref|XP_014275474.1| 50 52 26 0 4,702 4,857 1,286 1,337 7.00E-007 60.5
gi|939653344|ref|XP_014275473.1| 43 76 36 3 1,576 1,797 1,188 1,258 6.00E-009 67.4
gi|939653344|ref|XP_014275473.1| 50 52 26 0 4,702 4,857 1,286 1,337 7.00E-007 60.5
gi|939263801|ref|XP_014251876.1| 40 70 41 1 1,567 1,773 1,182 1,251 5.00E-008 64.3
gi|939263801|ref|XP_014251876.1| 44 52 29 0 4,690 4,845 1,279 1,330 1.00E-006 59.7
gi|939263799|ref|XP_014251875.1| 40 70 41 1 1,567 1,773 1,182 1,251 5.00E-008 64.3
gi|939263799|ref|XP_014251875.1| 44 52 29 0 4,690 4,845 1,279 1,330 1.00E-006 59.7
gi|939263797|ref|XP_014251874.1| 40 70 41 1 1,567 1,773 1,182 1,251 5.00E-008 64.3

C106506244

gi|646715032|gb|KDR18788.1| 63 59 22 0 179 3 295 353 3.00E-016 86.3
gi|817068467|ref|XP_012256173.1| 49 61 31 0 185 3 107 167 7.00E-013 75.1
gi|751781541|ref|XP_011199940.1| 54 63 27 1 185 3 372 434 9.00E-013 74.7
gi|195496390|ref|XP_002095674.1| 55 62 26 1 182 3 323 384 2.00E-012 73.6
gi|195128499|ref|XP_002008700.1| 52 62 28 1 182 3 313 374 3.00E-012 73.2

scaffold1264404

gi|827539751|ref|XP_012553005.1| 45 158 85 1 1,288 821 61 218 2.00E-031 140
gi|827539751|ref|XP_012553005.1| 49 102 45 3 349 50 307 403 4.00E-019 99.4
gi|827539751|ref|XP_012553005.1| 54 50 23 0 663 514 235 284 4.00E-009 66.2
gi|641653467|ref|XP_003241645.2| 46 157 84 1 1,288 821 61 217 4.00E-031 139
gi|641672247|ref|XP_008185868.1| 47 157 82 1 1,288 821 25 181 5.00E-031 139
gi|641672247|ref|XP_008185868.1| 56 50 22 0 663 514 198 247 2.00E-009 67
gi|913332317|ref|XP_013197778.1| 44 156 85 1 1,282 821 61 216 1.00E-030 137
gi|913332317|ref|XP_013197778.1| 54 50 23 0 663 514 233 282 3.00E-009 66.6
gi|913332317|ref|XP_013197778.1| 57 54 20 2 349 194 305 357 4.00E-007 59.7
gi|913326429|ref|XP_013194622.1| 44 156 85 1 1,282 821 61 216 1.00E-030 137



Table S13 – Genome and transcriptome sequences which aligned with associated RAD loci and had protein hits.

 Final column indicates if scaffold/contig region that had a protein hit comprise the region of the RAD loci.

TRANSCRIPTOME
RAD Position

Scaffold id  Protein id Protein Description
Scaffold Protein RAD

loci id  in scaffold alignment region  alignment region  loci region

16628 From 123 to 36

scaffold17698

gi|795040272|ref|XP_011866546.1| PREDICTED: lysosomal-trafficking regulator isoform X1 [Vollenhovia emeryi] 504 to 1142 1479 to 1729 no
gi|795040272|ref|XP_011866546.1| PREDICTED: lysosomal-trafficking regulator isoform X1 [Vollenhovia emeryi] 11 to 463 1313 to 1461 yes
gi|795040277|ref|XP_011866548.1| PREDICTED: lysosomal-trafficking regulator isoform X3 [Vollenhovia emeryi] 504 to 1142 1462 to 1712 no
gi|795040277|ref|XP_011866548.1| PREDICTED: lysosomal-trafficking regulator isoform X3 [Vollenhovia emeryi] 11 to 463 1296 to 1444 yes
gi|795040284|ref|XP_011866550.1| PREDICTED: lysosomal-trafficking regulator isoform X5 [Vollenhovia emeryi] 504 to 1142 1479 to 1729 no
gi|795040284|ref|XP_011866550.1| PREDICTED: lysosomal-trafficking regulator isoform X5 [Vollenhovia emeryi] 11 to 463 1313 to 1461 yes
gi|795040287|ref|XP_011866551.1| PREDICTED: lysosomal-trafficking regulator isoform X6 [Vollenhovia emeryi] 504 to 1142 1479 to 1729 no
gi|795040287|ref|XP_011866551.1| PREDICTED: lysosomal-trafficking regulator isoform X6 [Vollenhovia emeryi] 11 to 463 1313 to 1461 yes

gi|915667197|gb|KOC69033.1| Lysosomal-trafficking regulator [Habropoda laboriosa] 504 to 1142 1348 to 1598 no

scaffold17697

gi|939653348|ref|XP_014275474.1| PREDICTED: lysosomal-trafficking regulator isoform X2 [Halyomorpha halys] 2 to1138 1148 to 1484 yes
gi|939653344|ref|XP_014275473.1| PREDICTED: lysosomal-trafficking regulator isoform X1 [Halyomorpha halys] 2 to1138 1148 to 1484 yes
gi|939263801|ref|XP_014251876.1| PREDICTED: lysosomal-trafficking regulator isoform X3 [Cimex lectularius] 11 to 1138 1148 to 1487 yes
gi|939263799|ref|XP_014251875.1| PREDICTED: lysosomal-trafficking regulator isoform X2 [Cimex lectularius] 11 to 1138 1148 to 1487 yes
gi|939263797|ref|XP_014251874.1| PREDICTED: lysosomal-trafficking regulator isoform X1 [Cimex lectularius] 11 to 1138 1148 to 1487 yes

22795 From 593 to 507 scaffold29739

gi|746865007|ref|XP_011063523.1| PREDICTED: nucleolar and coiled-body phosphoprotein 1 isoform X2 [Acromyrmex echinatior] 756 to 7 241 to 499 yes
gi|746865005|ref|XP_011063522.1| PREDICTED: nucleolin 1 isoform X1 [Acromyrmex echinatior] 756 to 7 241 to 499 yes

gi|332019345|gb|EGI59851.1| Protein unc-79-like protein [Acromyrmex echinatior] 756 to 7 277 to 535 yes
gi|808130549|ref|XP_012168000.1| PREDICTED: LOW QUALITY PROTEIN: nucleolar and coiled-body phosphoprotein 1 [Bombus terrestris] 756 to 7 344 to 585 yes
gi|662198534|ref|XP_008472393.1| PREDICTED: nucleolar and coiled-body phosphoprotein 1-like [Diaphorina citri] 1221 to 34 63 to 496 yes

56752 From 128 to 218

scaffold13661

gi|646715032|gb|KDR18788.1| hypothetical protein L798_06469, partial [Zootermopsis nevadensis] 1082 to 3 11 to 369 yes
gi|907617340|ref|XP_013119188.1| PREDICTED: uncharacterized protein LOC106096144 [Stomoxys calcitrans] 1073 to 6 70 to 413 yes
gi|749789658|ref|XP_011148137.1| hypothetical protein FF38_05739 [Lucilia cuprina] 1070 to 6 25 to 374 yes

gi|906467269|gb|KNC28514.1| hypothetical protein FF38_05739 [Lucilia cuprina] 1100 to 6 535 to 887 yes
gi|906467269|gb|KNC28514.1| hypothetical protein FF38_05739 [Lucilia cuprina] 1070 to 6 89 to 433 yes

gi|195440672|ref|XP_002068164.1| uncharacterized protein Dwil_GK10387 [Drosophila willistoni] 1130 to 3 39 to 402 yes

scaffold13660

gi|646715032|gb|KDR18788.1| hypothetical protein L798_06469, partial [Zootermopsis nevadensis] 1082 to 3 11 to 369 yes
gi|907617340|ref|XP_013119188.1| PREDICTED: uncharacterized protein LOC106096144 [Stomoxys calcitrans] 1073 to 6 70 to 413 yes
gi|749789658|ref|XP_011148137.1| hypothetical protein FF38_05739 [Lucilia cuprina] 1070 to 6 25 to 374 yes

gi|906467269|gb|KNC28514.1| hypothetical protein FF38_05739 [Lucilia cuprina] 1100 to 6 535 to 887 yes
gi|906467269|gb|KNC28514.1| hypothetical protein FF38_05739 [Lucilia cuprina] 1070 to 6 89 to 433 yes

gi|195440672|ref|XP_002068164.1| uncharacterized protein Dwil_GK10387 [Drosophila willistoni] 1130 to 3 39 to 402 yes



Table S13 – Genome and transcriptome sequences which aligned with associated RAD loci and had protein hits (cont.).

 Final column indicates if scaffold/contig region that had a protein hit comprise the region of the RAD loci.

GENOME
RAD Position

Scaffold id  Protein id Protein Description
Scaffold Protein RAD

loci id  in scaffold alignment region  alignment region  loci region

16628 From 582 to 495 scaffold1372429

gi|939653348|ref|XP_014275474.1| PREDICTED: lysosomal-trafficking regulator isoform X2 [Halyomorpha halys] 1576 to 1797 1188 to 1258 no
gi|939653348|ref|XP_014275474.1| PREDICTED: lysosomal-trafficking regulator isoform X2 [Halyomorpha halys] 4702 to 4857 1286 to 1337 no
gi|939653344|ref|XP_014275473.1| PREDICTED: lysosomal-trafficking regulator isoform X1 [Halyomorpha halys] 1576 to 1797 1188 to 1258 no
gi|939653344|ref|XP_014275473.1| PREDICTED: lysosomal-trafficking regulator isoform X1 [Halyomorpha halys] 4702 to 4857 1286 to 1337 no
gi|939263801|ref|XP_014251876.1| PREDICTED: lysosomal-trafficking regulator isoform X3 [Cimex lectularius] 1567 to 1773 1182 to 1251 no
gi|939263801|ref|XP_014251876.1| PREDICTED: lysosomal-trafficking regulator isoform X3 [Cimex lectularius] 4690 to 4845 1279 to 1330 no
gi|939263799|ref|XP_014251875.1| PREDICTED: lysosomal-trafficking regulator isoform X2 [Cimex lectularius] 1567 to 1773 1182 to 1251 no
gi|939263799|ref|XP_014251875.1| PREDICTED: lysosomal-trafficking regulator isoform X2 [Cimex lectularius] 4690 to 4845 1279 to 1330 no
gi|939263797|ref|XP_014251874.1| PREDICTED: lysosomal-trafficking regulator isoform X1 [Cimex lectularius] 1567 to 1773 1182 to 1251 no

56752 From 80 to 170 C106506244

gi|646715032|gb|KDR18788.1| hypothetical protein L798_06469, partial [Zootermopsis nevadensis] 179 to 3 295 to 353 yes
gi|817068467|ref|XP_012256173.1| PREDICTED: uncharacterized protein LOC105686127 [Athalia rosae] 185 to 3 107 to 167 yes
gi|751781541|ref|XP_011199940.1| PREDICTED: uncharacterized protein LOC105223789 [Bactrocera dorsalis] 185 to 3 372 to 434 yes
gi|195496390|ref|XP_002095674.1| uncharacterized protein Dyak_GE19581 [Drosophila yakuba] 182 to 3 323 to 384 yes
gi|195128499|ref|XP_002008700.1| uncharacterized protein Dmoj_GI13641 [Drosophila mojavensis] 182 to 3 313 to 374 yes

59359 From 515 to 586 scaffold1264404

gi|827539751|ref|XP_012553005.1| PREDICTED: uncharacterized protein LOC105842971 [Bombyx mori] 1288 to 821 61 to 218 no
gi|827539751|ref|XP_012553005.1| PREDICTED: uncharacterized protein LOC105842971 [Bombyx mori] 349 to 50 307 to 403 no
gi|827539751|ref|XP_012553005.1| PREDICTED: uncharacterized protein LOC105842971 [Bombyx mori] 663 to 514 235 to 284 yes
gi|641653467|ref|XP_003241645.2| PREDICTED: uncharacterized protein LOC100571097 [Acyrthosiphon pisum] 1288 to 821 61 to 217 no
gi|641672247|ref|XP_008185868.1| PREDICTED: uncharacterized protein LOC103310201 [Acyrthosiphon pisum] 1288 to 821 25 to 181 no
gi|641672247|ref|XP_008185868.1| PREDICTED: uncharacterized protein LOC103310201 [Acyrthosiphon pisum] 663 to 514 198 to 247 yes
gi|913332317|ref|XP_013197778.1| PREDICTED: uncharacterized protein LOC106140695 [Amyelois transitella] 1282 to 821 61 to 216 no
gi|913332317|ref|XP_013197778.1| PREDICTED: uncharacterized protein LOC106140695 [Amyelois transitella] 663 to 514 233 to 282 yes
gi|913332317|ref|XP_013197778.1| PREDICTED: uncharacterized protein LOC106140695 [Amyelois transitella] 349 to 194 305 to 357 no
gi|913326429|ref|XP_013194622.1| PREDICTED: uncharacterized protein LOC106138118 [Amyelois transitella] 1282 to 821 61 to 216 no
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Abstract

The study of the colour polymorphisms in many animal species have greatly contributed to

understand  the  molecular  mechanisms  underlying  phenotypic  variation  and  its  role  in  the

process of adaptation. The widespread meadow spittlebug Philaenus spumarius shows a dorsal

colour/pattern polymorphism, mainly characterised by melanic and non-melanic forms, with a

relatively simple mendelian inheritance, but unknown molecular genetic basis.  Similar dorsal

colour variation is observed in the other species of the genus, suggesting the maintenance of an

old polymorphism. In this work,  a candidate gene approach was used, for the first time,  to

investigate the genetic basis of P. spumarius dorsal colour polymorphism. A fragment of 482

bp of a candidate gene known to be involved in melanic colouration in Drosophila, yellow was

isolated and analysed. No association  between  yellow variation (at nucleotide and haplotype

levels)  was  found,  but  a  possible  effect  of  this  gene  in  colour  variation  cannot  be  totally

excluded since we analysed only a fraction of its coding region (29.64%). The phylogenetic

relationships at the yellow fragment in P. spumarius and in other closely related species were

examined.  yellow pattern contrasted  with the neutral pattern of the gene  Internal Transcribed

Spacer 2 (ITS2).  For  yellow,  the same haplotype,  probably the ancestral  one, was found in

almost  all  Philaenus species,  except  for  P. maghresignus and  P. arslani. The inter-specific

differentiation in two main groups, observed for ITS2, and already described in previous works,

was not found for  yellow.  These results indicate that, contrary to  ITS2, yellow is conserved

within Philaenus,  probably,  a  functional  gene  whose  evolution  is  constrained  with  new

deleterious mutations being eliminated by natural selection.  A higher genetic  diversity was

found for P. spumarius. Probably, due to its different ecology this species was less affected by

factors such as drift and population declines. Although applying a candidate gene approach in a

model species like  P. spumarius has been challenging, it would be important to investigate

other candidates. Ultimately, novel and unexpected genes, including regulatory genes, could

revealed to be implicated in this species' colour polymorphism.

Keywords: candidate genes, colour variation, molecular evolution; population genetics
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Introduction

Investigating the colour polymorphisms in vertebrate and invertebrate species have greatly

contributed to understand the genetic mechanisms underlying phenotypic variation, and its role

in the process of adaptation. Many colour patterns are known to have an adaptive function (for

a review see Forsman et al., 2008) and several mechanisms have been proposed to explain the

observed polymorphisms (for a review see Gray & McKinnon, 2007).

The widespread meadow spittlebug  Philaenus spumarius (Linnaeus,  1758) (Hemiptera,

Aphrophoridae)  shows  a  dorsal  colour/pattern  variation  with  thirteen  main  phenotypes

described and other three rare colour morphs reported (Halkka & Halkka, 1990; Stewart &

Lees, 1996; Quartau & Borges, 1997; Yurtsever, 2000). These are divided into non-melanic and

melanic forms (Halkka & Halkka, 1990; Yurtsever, 2000). Different selective pressures such as

habitat  composition,  climatic  conditions  (including  altitudinal  and  latitudinal  gradients),

industrial melanism and predation (reviewed in Halkka & Halkka, 1990; Yurtsever, 2000) may

explain the  differences observed in the  occurrence and frequency of the colour phenotypes

among populations. The idea that complex mechanisms are involved in the maintenance of this

polymorphism was also supported by Silva et al. (2015) that  detected a higher longevity and

fertility of the trilineatus phenotype in laboratory conditions.

A similar  dorsal  colour  polymorphism  is  observed  in  the  other  species  of  the  genus

(Drosopoulos, 2003). Currently, ten species are recognised within the Philaenus: P. spumarius

(Linnaeus, 1758) in the Holarctic region, P. tesselatus (Melichar, 1889) in southern Iberia and

North  Africa,  P. signatus (Melichar,  1896)  in  eastern  Mediterranean  and  western  Asia,  P.

loukasi in  Greece  (Drosopoulos  &  Asche,  1991),  P. arslani  in  Lebanon  (Abdul-Nour  &

Lahoud, 1996), P. maghresignus in southern Iberia and North Africa (Drosopoulos & Remane,

2000), P. italosignus in southern Italy and Sicily (Drosopoulos & Remane, 2000), P. tarifa in

southern Iberia (Remane & Drosopoulos, 2001), and P. elbursianus (Tishechkin, 2013) and P.

iranicus (Tishechkin,  2013)  in  Iran.  Phylogenetic analyses  using  the  mitochondrial  genes

cytochrome oxidase I (COI), cytochrome oxidase II (COII) and cytochrome b (Cyt b), and the

nuclear gene Internal Transcribed Spacer 2 (ITS2), and that did not include the Iranian species,

support the division of the group into two main groups: a group including  P. spumarius, P.

tesselatus, P. arslani and P. loukasi and another group comprising P. signatus, P. maghresignus,

P. tarifa and P. italosignus (Maryańska-Nadachowska et al., 2010; Rodrigues, 2010; Seabra et

al., 2010). A closer relationship between  P. spumarius and  P. tesselatus and also between  P.

arslani and P. loukasi was found but the relationship between the other Mediterranean species
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is not clear (Maryańska-Nadachowska et al., 2010; Rodrigues, 2010; Seabra et al., 2010). The

dorsal colour morphs in P. spumarius, P. tesselatus, P. signatus, P. italosignus, P. maghresignus

and P. tarifa are similar in pattern, although, differing in frequencies. In the remaining species

the  number  of  morphs  is  lower.  The  Mediterranean  species  P. arslani and  P. loukasi  are

monomorphic  and  trimorphic,  respectively  (Drosopoulos  et  al., 2010)  and  in  the  Iranian

species only two colour  morphs are described (Tishechkin,  2013). The presence of similar

colour morphs suggests that this colour polymorphism may be old, having appeared in the

ancestral form of the genus and  maintained through the speciation process, probably due to

balancing  selection  (Halkka  &  Halkka,  1990)  keeping  genetic  variability  within  species

(Reininga et al., 2009).

Crossing experiments showed that dorsal colour variation in P. spumarius has a Mendelian

inheritance and is mainly controlled by an autosomal locus (p) with seven alleles (Halkka et

al., 1973).  These alleles  have complex dominance and co-dominance relationships  and are

probably interacting with other loci (Halkka et al. 1973; Stewart & Lees, 1988). The molecular

basis of this colour polymorphism is unknown. Notwithstanding, Halkka & Lallukka (1969)

suggested the colour genes may be epistatically linked to genes responsible for the response to

the physical environment, constituting a supergene, and selection may not be directly related to

colour. In mimetic butterflies (Joron et al., 1999; Nijhout, 2003), land snails (Richards et al.,

2013)  and  birds  (Tuttle  et  al., 2016),  for  example,  there  is  evidence  that  balanced

polymorphisms can result from tight genetic linkage between multiple functional loci, known

as supergenes (Thompson & Jiggins, 2014). 

In  P.  spumarius and  remaining  species,  dorsal  colour  patterns,  which  range  from

completely dark to pale/brown with lighter spots or stripes, are likely melanin based (Halkka &

Halkka, 1990; Yurtsever, 2000). Several genes and pathways involved in insect colouration and

pigmentation have been identified, mainly in Drosophila and in some Lepidoptera (Wittkopp &

Beldade, 2009). In the melanin synthesis pathway of Drosophila, the yellow gene promotes the

formation  of  the  black  pigment  and mutants  for  this  gene  are  unable  to  produce  melanin

(Wittkopp et al., 2002a).  This gene is also involved in larval colour pattern in the silk worm

Bombyx mori (Futahashi et al., 2008). Therefore, yellow can be a potential candidate to control

melanisation  pattern  within  Philaenus  species  as  well.  Here,  association  between  yellow

variation and three  P. spumarius dorsal colour morphs (typicus,  trilineatus and  marginellus)

was tested. The evolutionary relationships at the yellow gene fragment in P. spumarius and in

other  closely  related  species  was  also  examined.  The  pattern  of  yellow was  posteriorly

compared with the neutral pattern of the nuclear gene  Internal Transcribed Spacer 2 (ITS2).

145



This  gene is  a  molecular  marker  very suited for phylogenetic  analysis  at  the species  level

(Schultz & Wolf, 2009) and was already used in previous studies on the phylogeny of the

Philaenus species (Maryańska-Nadachowska et al., 2010; Rodrigues, 2010).

Material & Methods

Sampling and DNA extraction

A total  of 61 individuals of  P. spumarius  from Portugal,  Finland, Turkey, Greece,  and

Morocco, 15 individuals of P. arslani from Lebanon, 15 specimens of P. italosignus from Italy,

15  samples  of  P. signatus from Turkey, 14  individuals  of  P. tarifa from Gibraltar  and 13

samples of  P. maghresignus  from Portugal were collected or sent by collaborators between

2007 and 2012 (Table S1). Additional individuals were collected for ITS2 analysis (Table S1).

One individual of  Mesoptyelus impictifrons from Lebanon was also captured and sent by a

collaborator in 2011 (Table S1).  Adult insects were captured using a sweep net suitable for

low-growing vegetation  and an  entomological  aspirator. In  some cases,  larval  stages  were

collected by hand. Specimens were preserved in absolute ethanol and stored at 4 ºC. Entire

larval  stage  specimens  were  used  for  DNA extraction  while  in  the  adults  the  wings  and

abdomen were removed and only the thorax and the head were used.  Genomic DNA was

extracted using the DNeasy Blood & Tissue Kit (Qiagen).

yellow gene isolation, amplification and sequencing

Aiming  to  look  for  conserved  regions  in  the  yellow gene  to  design  primers  for  its

amplification in the  P. spumarius and other  related species,  Drosophila melanogaster gene

sequence of yellow (FlyBase Acession number: FBgn0004034) was initially aligned against the

partial draft genome and transcriptome of P. spumarius (see Chapter 4), using a local BLASTN

2.2.28+ (Altschul et al. 1997). However, no homology was found. Alternatively, this sequence

was queried against the online database of Expressed Sequenced Tags (ESTs) from the pea

aphid  (Acyrthosiphon  pisum),  using  the  Aphidbase  blast  server

(http://tools.genouest.org/tools/aphidblast/, last modified 21/10/2011). Although belonging to a

different infraorder, this species is the most closely related of  P. spumarius (mtDNA genetic

distance of 0.48 (Song et al., 2012)) with available genomic sequences that could be used to

isolate the yellow gene and to look for conserved regions. A significant match (E-value of 9e-11)

of  the  Drosophila sequence  to  a  608  bp  pea  aphid  EST  (GenBank  Acession  number:
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DY226299.1) was obtained, and the sequence confirmed to correspond to the A. pisum yellow-

y reference mRNA sequence (NCBI Reference Sequence: NM_001172377.1). This sequence

was, posteriorly, queried against the partial draft genome of P. spumarius and also against the

transcriptome  to look  for an homologous region of the pea aphid  yellow-y mRNA sequence.

The sequence aligned to the genome scaffold number 776671 only. Primers were designed in a

conserved region, targeting a 530 bp fragment of the yellow gene in P. spumarius.

A fragment of 482 bp of the  yellow gene was amplified by polymerase chain reaction

(PCR) using the designed primers PSP22460074_y_fw (5’– CTGATGAATTAGGCTACGG –

3') and PSP22460074_y_rv_comp (5’ – GTATACTCTAAAGTTGACATCCC – 3').  PCR was

performed in a 20 µL reaction volume containing: 1 µM of each primer, 0.1 mM dNTPs, 1 mM

MgCl2, 4 µL 5x Colorless GoTaq Flexi Buffer, 0.0375U GoTaq DNA Polimerase (Promega)

and approximately 30 ng of DNA. The PCR conditions were: an initial denaturation step at 95

ºC for 5 min, followed by 36 cycles of denaturation at 95 ºC for 45 sec, annealing at 59 ºC for

35 sec and extension at 72 ºC for 2 min, with a final extension period at 72 ºC for 10 min. All

PCR products were purified with SureClean (Bioline) following the manufacturer’s protocol

and sequenced at Beckman Coulter Genomics (United Kingdom) and Macrogen (Netherlands).

Sequences were verified and edited using the software  SEQUENCHER v. 4.0.5 (Gene Codes

Corporation) and BIOEDIT v. 7.0.9 (Hall, 1999). They were then aligned using MAFFT v. 7.029b

(Katoh & Standley, 2013) and converted in the appropriate format with  CONCATENATOR v.

1.1.0  (Pina-Martins & Paulo, 2008). Haplotype phase for individuals that were heterozygous

for base positions was determined using  PHASE (Stephens  et al., 2001; Stephens & Donelly

2003), implemented in DNASP v. 5 (Librado & Rozas, 2009).

In Drosophila this gene encodes a simple transcription unit of two exons, encoding a 541

amino acid protein (http://flybase.org).  The region amplified in  Philaenus is homologous to

part  of  exon  2  of  the  D.  melanogaster yellow gene,  more  specifically  to  the  region

encompassing a conserved domain commonly found in proteins belonging to the MRJP (Major

Royal Jelly Proteins) family and from which yellow protein is a member.

Internal Transcribed Spacer 2 (ITS2) amplification and sequencing

A fragment of 445 bp of the nuclear region  ITS2 was also amplified using the primers

CAS5p8sFt (5'–TGAACATCGACATTTCGAACGCACAT–3')  and  CAS28sB1d (5'–

TTGTTTTCCTCCGCTTATTAATATGCTTAA–3')  (Kim & Lee,  2008).  PCR concentrations

and conditions were the same used for the  yellow gene except for the annealing temperature

(55 ºC). All PCR products were purified with SureClean (Bioline) and sequenced at Beckman
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Coulter Genomics (France) and Macrogen (Netherlands). 

Genetic analyses

yellow diversity

For  the yellow gene fragment and each  Philaenus species, number of homozygotes and

heterozygotes, number of polymorphic sites (S), number of haplotypes (H), haplotype diversity

(h),  nucleotide diversity (π) and number of synonymous and non-synonymous substitutions

were  calculated  using  the  program  DNASP v.  5.  Amino  acid  replacements  were  assessed

through the translation of the putative ORFs (Open Reading Frame) in MEGA v. 5.0 (Tamura et

al., 2011). Alignments with yellow sequences from M. impictifrons and other insects available

in GenBank (Drosophila melanogaster NM_057444;  Acyrthosiphon pisum  NM_001172377;

Apis  melifera NM_001098223.1)  and  in  European  Nucleotide  Archive  (Lygus  hesperus

GBHO01038061.1) were performed in MAFFT. Sequences were translated into amino acids and

sequence variation in the yellow protein investigated.

Neutrality tests

The  neutrality  test  Tajima's  D (Tajima,  1989) was performed in  DNASP v. 5 to  detect

signals of natural selection in the  yellow gene fragment.  For analysis of selective pressures

acting on site-specific  yellow sequences, a maximum likelihood approach was implemented

using CODEML from PAML v4.6 (Yang, 2007). To test for positive selection on different sites

across the protein sequence, two site models were tested: M1, which corresponds to neutrality

and assumes two values for ω (ω=1 and ω<1), and M2, that estimates three values of ω (ω=1,

ω<1 and ω>1) and accounts for positive selection. ω corresponds to the ratio between the non-

synonymous rate (dN) and the synonymous rate (dS). The branch-site model was also tested to

estimate different  dN/dS among sites  and among branches.  Two branches,  where  the  non-

synonymous mutations occurred, were tested. The null model assumes that sites have different

values of  ω, but always ω<1 (neutral selection) and the alternative model assumes that sites

have different values of ω, but always ω>1 (positive selection) (Yang, 2007). Likelihood ratio

tests (LRT) were performed to compare the models, and a χ² distribution was used to check for

significant differences. The analyses were conducted using M. impictifrons as outgroup. 

yellow structure analyses

To infer the  evolutionary dynamics at the  yellow gene fragment in  P. spumarius and in
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other  close  related  species,  a  median-joining  network  was  constructed  for  yellow using

NETWORK V. 4.5.0.1 (FLUXUS TECHNOLOGY LTD. 2004), and its pattern was compared with the

pattern  of  the  nuclear  ITS2.  To this  analysis  ITS2 sequences  of  Philaenus species  from

Maryańska-Nadachowska et al. (2010) and available at NCBI Genbank were added to our ITS2

matrix and included in the phylogenetic analysis (GenBank accession numbers:  FJ560708 –

FJ560716). For ITS2 and each Philaenus species, number of homozygotes and heterozygotes,

number  of  polymorphic  sites  (S),  number  of  haplotypes  (H),  haplotype  diversity  (h)  and

nucleotide diversity (π) were calculated using the program DNASP v. 5.

Association analyses between yellow variation and dorsal colour patterns

Association  between  Single  Nucleotide  Polymorphisms  (SNPs),  distributed  along  the

yellow fragment, and dorsal colour phenotypes was tested using a Fisher's exact test of allelic

association in PLINK v 1.07 (Purcell et al., 2007) (http://pngu.mgh.harvard.edu/purcell/plink/).

Three pairwise analyses  were performed:  MAR vs.  TRI,  MAR vs.  TYP and TRI vs.  TYP.

Allele frequencies in each pair, the odds ratio and p-values were obtained for each SNP and a

false discovery rate (FDR) of 5% was applied (Benjamini & Hochberg, 1995) to each pairwise

analysis  to  test  for  false  positives.  A total  of 14 MAR, 14 TRI and 13 TYP  P. spumarius

females from Portugal were analysed. To analyse the relationship among  yellow haplotypes,

and a  possible  association with colour  variation,  a  median-joining haplotypre network was

obtained for P. spumarius colour phenotypes in NETWORK.

Results

yellow sequence diversity

A total  of  12  different  haplotypes  was  obtained.  Seven haplotypes  were  unique  to  P.

spumarius, two to  P. maghresignus and one to  P. arslani  (Fig. 1). Values of nucleotide and

haplotype diversity were higher in  P. spumarius (π  = 0.0046 and  h = 0.803). In  P. tarifa,  P.

signatus and  P. arslani, no genetic variation was found (one single haplotype) among all 15

individuals  of  each  species  sequenced  and  in  P.  italosignus (15  individuals)  and  P.

maghresignus (13 individuals) only 2 haplotypes were detected. (Fig. 1 and Table 1). A higher

number of heterozygotes was observed for  P. spumarius, compared with the other  Philaenus

species. From the 53 P. spumarius sequences, 38 were heterozygous. Individuals of P. signatus,

P. tarifa and  P. arslani were all  homozygous.  Homozygosity  was also observed for  all  P.
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italosignus and  P. maghresignus  individuals,  except  for  one  and  two,  respectively.  In  P.

spumarius, from a total of nine haplotypes, seven were unique to this species (Fig. 1). One

most  common  haplotype  (H7)  is  shared  among  some  individuals  of  P.  spumarius,  all

individuals of  P. signatus and  P. tarifa, and all individuals of  P. italosignus, except for one

heterozygous individual, that also have the haplotype H9 (Fig. 1). Philaenus maghresignus and

P. arslani are the only species that do not share this haplotype.

A total of 12 segregating sites (S) were observed in the yellow fragment, two of them being

non-synonymous  at  positions  91  and  132.  At  site  91  the  mutation  corresponds  to  a  G-T

transversion in the third position of the codon 30 that led to the replacement of a glutamic acid

residue (E) for an aspartic acid (D). A glutamic acid residue (E) was found in P. spumarius, P.

tarifa, P. maghresignus, P. italosignus and P. signatus. For P. spumarius an aspartic residue (D)

was also found. Curiously, only an aspartic residue (D) was detected in P. arslani. In the other

analysed species, M. impictifrons and A. pisum (Hemiptera), Apis melifera (Hymenoptera) and

D. melanogaster (Diptera), a glutamic acid residue (E) at this position was also found. On the

other  hand,  an  alanine  residue  (A)  was  found at  this  position  in  L.  hesperus (Hemiptera)
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Fig. 1: Median-joining haplotype network for the yellow gene (482bp) and Philaenus species. A mutational step

between haplotypes is represented by a dash. Site number and bold indicates mutations that  are fixed for  P.

arslani and for P. maghresignus species. Site number and asterisks denote nonsynonymous changes.



indicating that this position is not conserved across insects. The mutation at site 132 was an A-

G transition in the second position of codon 44, where an asparagine residue (N) was replaced

by a serine (S). All species within  Philaenus showed an asparagine (N) at this position. The

exception  was  found  for  P. spumarius that  have  both  amino  acid  residues,  an  asparagine

residue (N) and a serine (S). Mesoptyeflus impictifrons and A. melifera have an asparagine (N)

while  a  serine  (S)  was  found  in  A.  pisum. Lygus  hesperus and  D.  melanogaster showed

different amino acid residues at this codon position, an alanine (A) and an aspartic acid (D),

respectively. Both replacements were conservative mutations within Philaenus (Fig. 2).

From the 10 silent sites (nine were synonymous mutations) observed in  Philaenus, two

mutations  at  positions  271 and 343 were  fixed  in  P. arslani,  separating  it  from the  other

species.  Philaenus maghresignus has also a fixed mutation at position 133. By contrast, the

remaining species can not be distinguished from each other by any fixed mutation. 

Signatures of selection in yellow sequences

No signature of selection was detected with Tajima’s D test. For  P. spumarius the value

was positive but not significant (Table 1). Two non-synonymous mutations were found in the

yellow fragment. Therefore, PAML was used for detecting signal of positive selection in this

fragment  and a  possible  protein  evolution. The site  model  M2 was not  significantly more

adjusted to the data than the site model M1 for the investigated region.  However, the M2

detected one position potentially under positive selection, SNP position 91 (amino acid position

30) but no significant p-value. For the branch-site model selection, two branches were tested.

The results indicated that the alternative model, was not significantly different from the null

model for the tested branches. However, the alternative model for one of the branches detected

one position potentially under positive selection, SNP position 132 (amino acid position 44),

with a significant p-value (p-value < 0.05). This indicates that in some P. spumarius individuals

from Morocco and Iberian Peninsula, yellow may be under positive selection.
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Table 1: Number of alleles, number of haplotypes, haplotype diversity (h), number of segregating sites (S), number of silent sites, synonymous (Syn. Sub) and non-synonymous

(Nonsyn. Sub) mutations, nucleotide diversity (π), Tajima's D value and number of homozygotes and heterozygotes calculated for yellow fragment and for Philaenus species and P.

spumarius populations.

Species
Number of Number of

h
Segregating

Silent Sites Syn. Sub Nonsyn. Sub π
Number of Number of

alleles haplotypes Sites (S) Homozygotes Heterozygotes
Philaenus 252 12 0.766 12 10 9 2 0.0043 0.14236 85 41
P. spumarius 106 9 0.803 9 (4 Singleton) 7 6 2 0.0046 0.71663 15 38

Portugal 82 6 0.759 7 (1 Singleton) 5 4 2 0.0047 1.5028 9 32
Morocco 14 5 0.769 4 (1 Singleton) 3 2 1 0.0031 0.56234 3 4
Finland 2 2 1.000 2 2 2 0 0.0042 NA 0 1

Balkans 4 3 0.833 2 2 2 0 0.0021 -0.7099 1 1
Anatolia 4 2 0.667 1 1 1 0 0.0014 1.63299 2 0

P. italosignus 30 2 0.067 1 1 1 0 0.0001 -1.147 14 1
P. maghresignus 26 2 0.148 1 1 1 0 0.0003 -0.71385 11 2
P. tarifa 30 1 0.000 0 0 0 0 0.0000 NA 15 0
P. signatus 30 1 0.000 0 0 0 0 0.0000 NA 15 0
P. arslani 30 1 0.000 0 0 0 0 0.0000 NA 15 0

Tajima's D

Fig. 2: Partial alignment of yellow amino acid chain from Philaenus species with other insect species. The positions where amino acid changes were detected within Philaenus are

highlighted to white (positions 30 and 44).

9 14 19 24 29 34 39 44 49 54 59
* . . . . * . . . . * . . . . * . . . . * . . . . * . . . . * . . . . * . . . . * . . . . * . . . . *

PSP_scaffold Y F M P D P L A G D F N I A G L N F Q W G D E G I F G L A L T P L Q S S G F R T L L F H P L A S N R E
Philaenus spumarius_V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N . . . . . . . . . . . . . . .
Philaenus spumarius_V3 . . . . . . . . . . . . . . . . . . . . . E . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Philaenus spumarius_V4 . . . . . . . . . . . . . . . . . . . . . E . . . . . . . . . . . . . N . . . . . . . . . . . . . . .
Philaenus maghresignus . . . . . . . . . . . . . . . . . . . . . E . . . . . . . . . . . . . N . . . . . . . . . . . . . . .
Philaenus tarifa . . . . . . . . . . . . . . . . . . . . . E . . . . . . . . . . . . . N . . . . . . . . . . . . . . .
Philaenus italosignus . . . . . . . . . . . . . . . . . . . . . E . . . . . . . . . . . . . N . . . . . . . . . . . . . . .
Philaenus signatus . . . . . . . . . . . . . . . . . . . . . E . . . . . . . . . . . . . N . . . . . . . . . . . . . . .
Philaenus arslani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N . . . . . . . . . . . . . . .
Mesoptyeflus impictifrons . . . . . . . . . . . . V . . . . . . . . E . . . . . . . . . . . . . N . . . . . . . . . . . . . . .
Acyrthosiphon pisum F L . . . . . . . . Y . . G . I . . . . . E . . . . . I T . S . I T E . . . . L . F . . . . . . . . .
Lygus hesperus F . H . . . . K . . . . . G . . . . . . E A . . . . . M . . S . - R Q A A D . F . F . . . . . . . . .
Drosophila melanogaster . . F . . . . R . . . . V . . I . . . . . E . . . . . M S . S . I R . D . Y . . . Y . S . . . . H . Q
Apis melifera . . . . . . . . . . Y . . G . . . . . . . E . . . . . M S . S . I A V N . Y . . . F . . . . S . R . .



Phylogenetic patterns comparisons between yellow and ITS2

A phylogenetic pattern was observed for Philaenus genus using the fragment ITS2 (Fig. 3).

Species are divided in two main lineages: a lineage A which includes the species P. signatus, P.

maghresignus, P. tarifa and P. italosignus, and a lineage B that contains the P. spumarius, the P.

tesselatus, P. loukasi and P. arslani. The lineage B is divided in two sub-lineages diverging by

more than one mutation: a sub-lineage including individuals from species  P. spumarius and

from P. tesselatus; and a lineage that clustered the high-altitude habitat species P. arslani and P.

loukasi. Species within the group A cannot be distinguished by any fixed mutation. This pattern

of inter-specific differentiation contrasted with the pattern observed for the yellow gene (Fig. 1

and 3). Nucleotide and haplotype diversities were slightly higher for ITS2 (π = 0.0093 and h =

0.779) than for yellow (Table 2).
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Fig. 3: Median-joining haplotype network for the nuclear ITS2 gene (445bp) and for Philaenus species. A 

mutational step between haplotypes is represented by a dash.



Association analyses

 Association  analyses  performed using  Fisher's  exact  test  did  not  found any statistical

association between yellow SNPs and the three dorsal colour phenotypes (p-value > 0.05). The

median-joining network did not show any association between  yellow haplotypes and colour

morphs. The haplotypes were all uniformly distributed across the three colour morphs, except

H4 that only exists in  trilineatus individuals (Fig. 4). There were genotypes (combination of

two haplotypes) that were exclusive to a colour morph. Genotype 2 (H1/H2) and genotype

12(H3/H3) were only found in marginellus while genotype 1 (H1/H1), genotype 8 (H2/H3) and

genotype 19 (H5/H5) were observed only in typicus individuals (Table S2 and S3). trilineatus
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Table  2: Number of alleles,  number of haplotypes,  haplotype diversity (h),  number of segregating sites (S),

nucleotide diversity (π) and number of homozygotes and heterozygotes calculated for  ITS2 fragment and for

Philaenus species.

Species
Number of Number of

h
Segregating

π
Number of Number of

alleles haplotypes Sites (S) Homozygotes Heterozygotes
Philaenus 128 9 0.779 15 0.0093 56 8
P. spumarius 42 2 0.048 0 0.0001 20 1
P. italosignus 28 1 0.000 0 0.0000 14 0
P. maghresignus 26 1 0.000 0 0.0000 13 0
P. tarifa 10 2 0.533 1 0.0012 1 4
P. signatus 8 1 0.000 0 0.0000 4 0
P. arslani 10 3 0.600 2 0.0023 2 3
P. loukasi 2 1 0.000 0 0.0000 1 0
P. tesselatus 2 1 0.000 0 0.0000 1 0

Fig. 4:  Median-joining haplotype network for the putative yellow gene (482bp) and for the three dorsal colour

phenotypes of P. spumarius. A mutational step between haplotypes is represented by a dash.



presented the higher number of unique genotypes (genotype 3 (H1/H3); genotype 7 (H2/H2);

genotype 16 (H4/H4); genotype 17 (H4/H5) and genotype 18 (H4/H6) (Table S2 and S3). On

the contrary, the genotypes more common were the genotypes 11 (n=8), 20 (n=5) and 21 (n=6)

(Table S2 and S3). The majority of the individuals were heterozygous. From 14 individuals

marginellus and  trilineatus,  10  and  11 were  heterozygous,  respectively.  Eleven  out  of  13

typicus individuals were heterozygous. 

Discussion

In this work, we chose to investigate the  yellow  gene, a gene known to be involved in

melanin production. This is because it seemed more relevant in  P. spumarius where melanin

based pigments are, most likely, responsible for its different colour patterns. Because sequence

similarity  to  Drosophila was  low, to  isolate  the  coding sequence  of  yellow in  this  species

revealed challenging. Moreover, only a small fraction (25%) of the P. spumarius genome (5.3

Gb),  previously  sequenced  and assembled  (see  Chapter  4),  was  available  to  be  examined.

Therefore, it is possible the entire coding sequence of the yellow gene was not represented in

that  part  of  P.  spumarius genome.  The  attempting  to  isolate  yellow also  failed  in  the

transcriptome, probably, because the individual used to obtained the transcripts was in a stage

of its life cycle when the expression of yellow is limited or inexistent.

Nevertheless, we successfully amplified a fragment of 482 bp, corresponding to part of

exon 2 of  Drosophila's  yellow gene.  The association analyses did not  find any association

between  yellow SNPs  and the  three  dorsal  colour  morphs.  No correlation  between  yellow

variants (haplotypes) and these morphs was found either. It is possible that, as this fragment

corresponds to a coding region, more exactly to a conserved domain,  it  is under purifying

selection. In fact all mutations detected were conservative, and did not implicate a change in

the protein structure. The number of heterozygotes and homozygotes did not differ among the

three  dorsal  colour  morphs  analysed.  However,  a  higher  number  of  heterozygotes  than

homozygotes  was  observed  for  all  morphs.  Although  only  part  of  the  coding  sequence

(29.64%,  Drosophila gene size used as reference)  has been investigated,  these results  may

indicate that  yellow is not involved in colour variation in this species. However, we can not

totally exclude a possible effect of this gene until its entire coding sequence be analysed.

The  phylogenetic  pattern  of  yellow was  also  investigated.  Low  differentiation  was

observed  within  Philaenus  indicating  that  this  gene  is  conserved  across  the  genus.  In

Drosophila, this  gene  promotes  the  formation  of  black  melanin  (Wittkopp  et  al.,  2002b).

Assuming that yellow has also a function in these species, new mutations that may arise and
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alter the protein are expected to be eliminated by natural selection. This would explain the lack

of genetic divergence found for this fragment within Philaenus. Although we cannot exclude

the possibility of  yellow be involved in the melanin pathway in Philaenus, it is also possible

that  colour  variation  is  related  to  differences  in  the  expression  of  yellow and/or  other

candidates, and is not directly related to sequence variation. Mutations in regulatory regions are

more likely to contribute to adaptive divergence because, contrary to changes in protein-coding

sequences,  this  changes  can  produce  tissue-specific  expression  patterns  while  avoiding

deleterious pleiotropic effects (Stern, 2000; Wittkopp & Kalay, 2011). Therefore, regulatory

elements may be the responsible as they have been shown to control colour in  Drosophila

(Wittkopp et al., 2002b; Cooley et al., 2012).  The haplotype H7 is shared among the studied

species, except for  P. maghresignus and  P. arslani, indicating that this may be the ancestral

haplotype. This observed pattern contrasted with the neutral pattern obtained for ITS2 with two

main  groups,  already described in  previous  works  (Maryanska-Nadachowska, et  al.,  2010;

Rodrigues, 2010): a group including P. spumarius, P. tesselatus, P. arslani and P. loukasi and

another group comprising  P. signatus,  P. maghresignus,  P. tarifa and  P. italosignus, and that

corroborates the established division based on the morphology of male genitalia (Drosopoulos

& Remane,  2000)  and  chromosomes  (Maryańska-Nadachowska  et  al.,  2008,  2012,  2013).

These contrasting patterns found between yellow and ITS2 indicate that the evolution of yellow

is constrained, limiting the number of mutations that can be fixed without the protein function

be affected. Curiously, a higher haplotype and nucleotide diversity for yellow was found for P.

spumarius. This could be related to a higher sample size, but for the 13 or 15 individuals of

species P. maghresignus, P. italosignus, P. tarifa, P. signatus and P. arslani, we only detected 1

or 2 haplotypes, while in some populations of P. spumarius with 1, 2 or 7 individuals, 2, 3 and

5 haplotypes were detected. These species have different ecologies.  Philaenus spumarius is

widely distributed, occupying a higher number of terrestrial habitats (Halkka & Halkka, 1990;

Quartau & Borges, 1997; Yurtsever, 2000), thus having probably been less affected by drift or

population declines (bottlenecks) during less favourable periods.  On the contrary, the other

Mediterranean  species  are  mostly  specialists  regarding  food  and  oviposition  plants

(Drosopoulos, 2003), and, in this way, more susceptible to these factors.

Although the entire sequence of yellow is not included in the available draft genome, and it

has not been found in the transcriptome of P. spumarius that we assembled (see Chapter 4), the

candidate  gene  approach  still  remains  valid  and  other  colour  genes,  already  described  in

insects,  should  be  investigated.  Ultimately, the  analysis  of  the  candidates  could  reveal  no

relation to colour in this species. Novel and uncharacterised genes may be implicated as in
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Heliconius group, where a new gene was found to control wing colour pattern (Nadeau et al.,

2016). On the other hand, in Philaenus, the pattern of colouration, with some body regions

darker  and  others  lighter,  suggests  that  variation  may  be  in  the  differential  expression  of

pigment genes across those body regions and not due to mutations on coding genes. Therefore,

further gene expression analyses in  P. spumarius individuals from different colour morphs,

using techniques like tiling arrays (Bertone  et al.,  2005; Mockler & Ecker, 2005) or RNA

sequencing (Wang  et al.,  2009),  would be important to uncover the genes involved in this

species' colour variation. In some Lepidoptera species, gene expression analyses proved to be

very useful (Nadeau et al., 2016).  Since major loci, consisting of multi-genomic regions, are

suggested to control dorsal colour variation in this species (see Chapter 4),  identifying the

independent contribution of a single genetic variant for this polymorphism may be challenging.

Individuals  from different  colour  morphs  could  be  used  for  transcriptome sequencing  and

differences in the transcripts investigated. However, in the 5thinstar, the stage when many genes

controlling adult color pattern are presumed to be expressed, the different colour morphs are

undistinguished.  Genome  wide  association  mapping  analyses  can  be,  therefore,  a

complementary  approach  to  highlight  unsuspected  targets  of  selection  in  the  genome  and

possible candidates.
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GPS Coordinates yellow ITS2

Philaenus

P. spumarius

Portugal Bom Sucesso, Foz do Arelho (Quartau, Seabra & Penado) yes

Fontanelas, Sintra (Rodrigues, Seabra & Pereira) 38°50'15.75"N; 9°25'20.77"W yes yes

Ribeira do Torgal, Odemira, Alentejo (Ribeiro & Pires) 37°39'35.14"N; 8°37'40.86"W yes

Santa Clara a Velha, Rio Mira, Alentejo (Rodrigues & Marabuto) 37°30'38.22"N; 8°28'27.23"W yes

Silves, Algarve (Seabra) 37°11'40.31"N; 8°27'55.28"W yes

Morocco Near Rabat (Rodrigues, Silva, Marabuto & Ferreira) 33°46'37.56"N; 7°13'58.92"W yes yes

Rabat (Rodrigues, Silva, Marabuto & Ferreira) 34°0'41.70"N; 6°42'32.94"W yes yes

Rif (Rodrigues, Silva, Marabuto & Ferreira) 35°51'58.14"N; 5°24'30.30"W yes yes

Ifrane (Rodrigues, Silva, Marabuto & Ferreira) 33°30'41.82"N; 5°5'34.08"W yes yes

Ifrane Centre (Rodrigues, Silva, Marabuto & Ferreira) 33°31'58.86"N; 5°6'7.86"W yes yes

Azrou (Rodrigues, Silva, Marabuto & Ferreira) 33°26'57.78"N; 5°13'55.14"W yes yes

Azrou (Rodrigues, Silva, Marabuto & Ferreira) 33°29'39.48"N; 5°15'47.46"W yes yes

Finland Brannskar (Halkka) yes yes

Greece Mt Parnassus (Rodrigues, Silva, Marabuto) 38°34'42.24"N; 22°34'30.30"E yes

Turkey Azdavay (Yurtserver) 41°38'29.26"N; 33°17'52.54"E yes

Keçan (North) (Yurtserver) 40°53'29.60"N; 26°38'42.81"E yes

Cerkes (Yurtserver) 40°48'59.24"N; 32°54'9.50"E yes yes

UK Cambridge, England (Borges) 52°12'22.80"N; 0°7'29.41"E yes

France Lautrec (Rodrigues, Silva, Marabuto, Nunes & Ferreira) 43°42'47.14"N; 2°7'6.04"E yes

USA Michigan (Fonseca) 44°18'49.13"N; 85°35'6.26"W yes

P. italosignus

Italy Tardaria, Etna, Sicily (d'Urso) 37°43'53.05"N; 14°59'8.12"E yes

Puglia (Marabuto) 40°41'26.60"N; 16°57'22.90"E yes yes

Cosenza (Marabuto, Silva) 39°25'49.19"N; 16°36'19.55"E yes yes

P. maghresignus

Portugal Ribeira do Torgal, Odemira, Alentejo (Ribeiro & Pires) 37°39'35.14"N; 8°37'40.86"W yes yes

Amadora (Marabuto) 38°44'10.27"N; 9°14'32.57"W yes

Negrais – Sintra (Rodrigues, Silva & Seabra) 38°52'19.50"N; 9°17'11.82"W yes yes

P. tarifa

Gibraltar Gibraltar (Rodrigues, Marabuto) 36° 8'12.17"N; 5°20'51.36"W yes yes

P. signatus

Turkey Gokçeada (Yurtserver) 40°12'44.04"N; 25°54'25.47"E yes yes

P. arslani

Lebanon Chabrouh (Quartau) 34°1'42.12"N; 35°50'17.36"E yes yes

Faqra (Quartau) 34°0'28.09"N; 35°50'16.90"E yes yes

Mesoptyelus impictifrons

Lebanon Laqlouk (Quartau) 34° 8'2.13"N; 35°51'40.61"E yes

Location (Collector)

39°25'2.95"N; 9°13'39.18"W

Table S1: Analysed samples of Philaenus and of the outgroup with description of the sampling locations. 
Indication of the samples that were sequenced for yellow and/or ITS2.
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Table S2: yellow haplotypes obtained for the three dorsal colour morphs of P. spumarius and frequency.

Total Freq.

H1 : T C T A G A C 4 2 3 9

H2 : T C C A G A C 4 5 5 14

H3 : T T T A T A C 5 1 2 8

H4 : T C C C G A C 0 4 0 4

H5 : C C T A G G C 2 3 8 13

H6 : C C T A G G T 13 13 8 34

yellow haplotypes marginellus Freq. trilineatus Freq. typicus Freq.

Table S3: yellow genotypes for the three dorsal colour morphs of P. spumarius and frequency.

Genotypes Haplotype Combination Total Freq.

G1 H1 H1 0 0 1 1

G2 H1 H2 1 0 0 1

G3 H1 H3 0 1 0 1

G4 H1 H4 0 0 0 0

G5 H1 H5 1 0 1 2

G6 H1 H6 2 1 0 3

G7 H2 H2 0 1 0 1

G8 H2 H3 0 0 1 1

G9 H2 H4 0 0 0 0

G10 H2 H5 1 1 1 3

G11 H2 H6 2 3 3 8

G12 H3 H3 1 0 0 1

G13 H3 H4 0 0 0 0

G14 H3 H5 0 0 0 0

G15 H3 H6 3 0 1 4

G16 H4 H4 0 1 0 1

G17 H4 H5 0 1 0 1

G18 H4 H6 0 1 0 1

G19 H5 H5 0 0 1 1

G20 H5 H6 0 1 4 5

G21 H6 H6 3 3 0 6

marginellus Freq. trilineatus Freq. typicus Freq.
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6.1 GENERAL DISCUSSION

The present study aimed to give insights on the genetic basis underlying phenotypic

variation involved in evolutionary change and adaptation. In order to do that, the molecular

basis  and  the  adaptive  significance  of  Philaenus  spumarius'  dorsal/pattern  colour

polymorphism  was  explored,  and  possible  genomic  regions  linked  to  this  polymorphism

identified.  The  evolutionary  history  of   this  species  was  also  investigated  in  more  detail.

Patterns  of  neutral  variation  were  analysed  and  time  estimates  provided  for  the  main

evolutionary  events.  The  following chapter  presents  a  brief  discussion  of  the  main  results

reported in chapters 2 to 5.

On the evolutionary history of P. spumarius

The biogeographic pattern of the meadow spittlebug P. spumarius has been investigated

in the last few years, using mitochondrial and nuclear genes (Rodrigues, 2010; Seabra  et al.,

2010;  Lis  et  al.,  2014;  Maryańska-Nadachowska  et  al.,  2012,  2015).  Mitochondrial  DNA

markers  showed  an  earlier  split  of  P. spumarius in  two  main  mitochondrial  lineages,  the

‘‘western’’ in the Mediterranean region and the ‘‘eastern’’ in Anatolia/Caucasus region. Within

the  ‘‘western’’ lineage  a  posterior  differentiation  in  two  sub-lineages  was  observed:  the

‘‘western-Mediterranean’’, centred in the Iberian Peninsula, and the ‘‘eastern-Mediterranean’’,

centred in the Balkans. Mitochondrial haplogroups did not correspond to the nuclear clades,

suggesting the existence of admixture and/or incomplete lineage sorting.  In this work, we do

not  only  corroborated  this  general  pattern  as  also  contributed  with  new  findings  for  the

knowledge of  P. spumarius evolutionary history (Chapter  2).  Time estimates indicated that

divergence within  P. spumarius is recent, having  occurred most probably in the Middle/Late

Pleistocene  (no more than 0.5 Ma),  and is  probably  related  to  the climate changes  of  the

Quaternary period (~2.588–0.0117 Ma ago (Gibbard  et al.,  2010)). There are evidence that

divergence  events  took  place  in  southern  Mediterranean  refugia  during  Pleistocene  glacial

periods, and that they were followed by northwards population expansions from the Iberian

Peninsula  to  the  central  and  north-western  Europe  and,  from  the  Anatolia/Caucasus  (and

eventually  from  western  Asia)  to  east,  north  and  central  Europe,  during  the  warmer

interglacials  periods.  This  study  also  detected  gene-flow  among  the  main  southern

Mediterranean peninsulas. Therefore, the current biogeographic pattern of the species do not

follow none of the common four paradigms described for the European species (Hewitt, 1999;

Habel et al., 2005).
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The colonisation patterns out of Eurasia, namely those of north-western Africa, North

America, and the islands of Azores and New Zealand, were investigated here for the first time.

The analysed individuals from the Azores archipelago and New Zealand were found to have

originated most likely from British populations. Apart from the geographic origin from western

Europe, already reported in previous studies (Rodrigues, 2010; Seabra et al., 2010; Maryańska-

Nadachowska  et al., 2012; Lis  et al., 2014), a new origin, from the “eastern” lineage, was

identified for North American populations. This study also indicates that, as observed for many

species (Franck et al., 2001; Schimitt et al., 2005; Horn et al., 2006; Rodriguez-Sanchez et al.,

2008), the Strait of Gibraltar appears have not been an effective barrier to the dispersal of P.

spumarius between Europe and Africa during glacial periods. This is suggested by the sharing

of mitochondrial haplotypes from the ‘‘western-Mediterranean’’ sub-lineage, between Morocco

and the Iberian Peninsula populations, and corroborated by the nuclear data. Here, once again,

it was evident that the taxonomic status of P. tesselatus species is puzzling and demands further

investigation. Although the genetic data indicate individuals from Morocco are P. spumarius,

morphological analyses of male genitalia revealed similarities with the genitalia described for

P. tesselatus (Drosopoulos & Quartau, 2002). 

No long ago, the majority of phylogeographic analyses were based on the traditional

mitochondrial DNA and sometimes complemented with a few nuclear markers (e.g. Lunt et al.,

1998;  Kawahara  et  al.,  2009;  Bihari  et  al.,  2011).  Despite  their  advantages,  information

provided by mitochondrial genes may not always be concordant with information from nuclear

markers. Because they are maternally inherited, they may have an unique evolutionary history.

Furthermore, mitochondrial and nuclear genes may not represent the whole genome diversity

and tell an incomplete history. With the new sequencing methods it is now possible to address

the  evolutionary  history  of  organisms  in  a  genome  wide  scale  by  analysing  thousands  of

independent  loci  (Emerson  et  al.,  2010;  McCormack  et  al.,  2013).  For  P. spumarius,  a

phylogeographic  study  based  on  genome  wide  markers  would  potentially  improve  the

robustness and complement the results obtained by the traditional genetic markers. This was

true for the montane caddisfly Thremma gallicum (Macher et al., 2015). A population genomic

analysis using genome wide markers would also be useful to disentangled the taxonomic status

of  P. tesselatus and  to  understand  if  we  are  in  the  presence  of  two  distinct  taxonomic

units/species or in the presence of intra-specific morphological variation within P. spumarius.

An effective method to generate genome wide loci for P. spumarius, a species with a genome

size larger than 5.0 Gb and lacking a complete reference genome, would be the restriction-site-

associated DNA sequencing (RAD) technique (Baird et al., 2008).
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The investigation of the evolutionary history of P. spumarius and its main demographic

events are important contributions to our understanding of the process of adaptation in this

species, and, particularly, to help us to understand how the dorsal colour/pattern polymorphism

is maintained in natural populations. This is because, by comparing genes with a neutral pattern

with  genes  evidencing  an  adaptive  pattern,  it  may  be  possible  to  distinguish  the  effects

resulting from evolutionary history and demography from the effects of natural selection. 

Assessing the adaptive significance of P. spumarius dorsal colour polymorphism

Colouration is known to have an adaptive function (Forsman  et al., 2008). Although

several  mechanisms, have been proposed to  explain the observed polymorphisms (Gray &

McKinnon, 2007), the maintenance of different colour morphs in natural populations is still

puzzling.  As  already  refered,  P. spumarius shows  a  dorsal  colour/pattern  polymorphism

extensively studied (Halkka & Halkka, 1990) but whose adaptive significance and evolutionary

mechanisms are  still  poorly  understood.  Aiming  to  uncover  this  polymorphism's  adaptive

function, an experimental approach, conducted in captivity under semi-natural conditions, was

performed and the differential survival, reproductive success, and duration of egg maturation in

three  dorsal  colour  phenotypes  (typicus,  trilineatus and  marginellus)  tested  (Chapter  3).

Interestingly, a higher longevity, a higher number of oviposition events, and a higher number of

eggs laid was found for  trilineatus phenotype females than for  typicus and marginellus. This

supports previous reports of an increase in  trilineatus frequency during the season (Owen &

Wiegert,  1962; Halkka, 1964). The higher values observed for  trilineatus may be a way to

counteract the higher rate of attack by parasitoids (Harper & Whittaker, 1976) and/or the higher

solar radiation reflectance (Berry & Willmer, 1986) reported for this phenotype in previous

studies, thus constituting a possible mechanism for the maintenance of this polymorphism in P.

spumarius populations. Contrary to what was found for some ladybird species (Brakefield &

Willmer, 1985; Rhamhalinghan, 1990), the duration of egg maturation did not differ among the

three P. spumarius colour phenotypes analysed. This indicates that, maybe there is no relation

between melanism and egg maturation efficiency in this species. However, only the melanic

form  marginellus was  investigated.  It  would  be  important  to  study the  remaining  melanic

phenotypes and even the different levels of melanism in  typicus. In the tested conditions, no

differences  were  observed  between  the  emergence  times  of  males  and  females,  or  among

different phenotypes. This was curious since an early emergence of males, as well as typicus, in

comparison with other phenotypes was observed by Halkka et al. (1967). They suggested that

males and typicus emerged earlier and were favoured by natural selection as a form to prevent
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predation (apostatic selection) and increase protection of females until egg-laying. This was not

supported by our results. It is possible that the very beginning of the emergence has not be

recorded, however, it is very unlikely.

Laboratory studies have been widely used to  study polymorphisms in many animal

species (e.g ladybirds, Brakefield & Willmer (1985); coral-reef fishes, Munday et al. (2003)).

In P. spumarius, laboratory experiments revealed extremely challenging mainly due to the long

life cycle of the species (annual) and its sensibility to factors such as humidity and temperature,

specially during the earlier stages of its life cycle. Despite the difficulties, it was possible to

evaluate the effect of the colour phenotypes in the survival and reproduction of P. spumarius,

and  therefore,  to  contribute  to  the  knowledge  of  the  adaptive  function  of  this  colour

polymorphism. In this experiment, the same semi-natural conditions were applied to all colour

phenotypes.  It  would  be  useful  to  carry  out  experiments  under  different  environmental

conditions (different plant species and (micro)climates) and to test differential fitness among

phenotypes. Besides, the potential effects of climate change on the distribution and frequency

of  phenotypes  in  this  species  should  be  addressed  as  well.  Climate  change  was  already

implicated in  the northward range shift  detected for  P. spumarius in  California (Karban &

Strauss,  2004). There  are  also  predictions  that  the  increased  temperature,  UV  radiation,

humidity, and pathogens have a selective effect in melanin-based colouration polymorphisms

(Roulin, 2014). Therefore, by analysing the effects of climate change on the distribution and

frequency of phenotypes in  P. spumarius may constitute an opportunity to test some of this

predictions. During this work, it was also observed a range of colour variation of the typicus

phenotype, from pale to almost melanic. This variation should be explored in future studies as

this may be influencing variation in the studied traits within typicus. Other colour phenotypes

should also be considered in the future since  only three of the sixteen described phenotypes

have been tested.

Having been a first step toward the comprehension of the adaptive significance of  P.

spumarius'  dorsal  colour  polymorphism,  this  work  indicated  that  several  factors,  acting

together, are most likely responsible for the maintenance of this polymorphism. However, to

fully understand the process, is essential to know the biogeographic patterns of the species and,

at same time, to investigate possible interactions among selection, migration and drift. 

On the genetic basis of dorsal colour polymorphism

Although  experimental  crosses  have  revealed  the  Mendelian  inheritance  of  dorsal

colour polymorphism in  P. spumarius, its molecular basis remains unknown. In the present
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work we tried to identify a genomic region or genomic regions that could be associated with

this  species  colour  variation.  Two  approaches  were  chosen:  a  genome-wide  association

approach using Single Nucleotide Polymorphisms (SNPs) obtained through RAD sequencing

(Chapter 4); and a candidate gene approach to investigate genes involved in melanin-based

colouration in other insect species (Chapter 5).

RAD sequencing (Baird  et al. 2008) has proved to be extremely useful, namely for

genome wide association studies (e.g  Parchman  et al., 2010; Hecht  et al., 2013), in species

lacking a  reference genome or  in  organisms in which a  complete  sequence genome is  not

always possible or suitable. This reduced complexity method of sampling allows to increase

the number and type of molecular markers, reduce the costs and increase the speed analyses.

By using this method we were able to obtain a set of 1,837 markers across 33 individuals to

test for associations with three dorsal colour phenotypes (typicus, marginellus, and trilineatus)

in P. spumarius. A total of 60 SNPs associated with the dorsal colour pattern were identified by

single and multi-association analyses. The associated loci showed stronger differentiation of

the  trilineatus colour  phenotype.  Interestingly,  in  the  experimental  study  (Chapter  3),

trilineatus also  revealed  to  be  more  differentiated  in  life-history  and  physiological  traits,

showing a  higher longevity, a higher number of oviposition events, and a higher number of

eggs laid, compared with the marginellus and typicus. The RAD data suggested that major loci,

consisting of multi-genomic regions, may be involved in dorsal colour variation among the

three  dorsal  colour  morphs  investigated.  Taking  these  findings  into  account,  it  can  be

hypothesised that a complex molecular basis is likely controlling not only colour variation but

also  life-history  and/or  physiological  traits,  and  that,  as  suggested  by  Halkka  & Lallukka

(1969), natural selection may not be acting directly in colour variation. In this RAD study, no

homology  was  found  between  the  associated  loci  and  genes  known to  be  responsible  for

colouration pattern in other insect species. It is possible that these loci are in linkage with the

real colour gene/region or that they belong to a regulatory region. The lack of homology can

also be due to the absence of a genome sequence belonging to a species close enough to get

significant matches, and/or due to the small size of the RAD sequences (less than 100 bp).

In this genomic study, additional genomic and transcriptomic resources were developed

to help in the characterisation of the genomic regions associated with colour variation. These

consisted of  a partial genome assembly, representing 24% of the total size (5.3 Gb), and an

81.4  Mb transcriptome assembly. From the  loci  found  to  be  associated  with  colour,  35%

aligned to the genome and 10% to the transcriptome. The fact that the RNA sequences used to
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assembly the transcriptome were obtained from a fully  sclerotised adult  P. spumarius may

partly  accounts  for  the  low  recovery  of  mRNA  transcripts  associated  with  colour

polymorphism.  It  would  be  interesting  to  use  mature  5 th  instar  nymphs  for  transcriptome

sequencing since this is probably the stage when many genes controlling adult colour pattern

are being expressed.

This work was a first attempt to investigate the genetic architecture of  P. spumarius

dorsal  colour  polymorphism.  It  allowed  the  detection  of  loci  associated with  colour,  and

contributed  to  the  development  of  genomic  and transcriptomic  resources  that  can  be  very

useful for further research on the genetic basis of P. spumarius' dorsal colour pattern. The study

also showed that working with a non-model species, with a limited genetic knowledge and a

large genome size, may be a challenge. In the case of P. spumarius, this was evidenced in the

RAD sequencing by the  high  percentage  of  missing  data  per  individual  (63.92%) that  we

obtained. After filtering for missing data, the number of RAD markers, with a coverage good

enough  to  be  used  in  the  association  study,  decreased  from  470,470  to  1,837  SNPs.  As

consequence,  the  chances  of  finding  the  genomic  regions  responsible  for  colour  pattern

differences were limited, and, in the future, it would be important re-sequencing the individuals

in order to improve coverage. The challenge of working with large genomes was also clear by

the low fraction of the genome covered in the  whole-genome shotgun sequencing performed

for P. spumarius.

A candidate gene approach can be a powerful tool for studying the genetic architecture

of  complex  traits,  being  and  effective  and  economical  method  for  direct  gene  discovery.

However, in a non-model species like P. spumarius, the difficulties of using this approach, for

identifying genes involved in colour variation, were clear (Chapter 5). The choice of candidate

genes was one of them. Despite  the association study (Chapter 4) has detected loci linked to

colour variation, it was not able to characterise those loci. Its identification could, somehow,

have given some insights on the genes involved in this species' colour polymorphism. Several

regulatory regions are  known to control colour pattern in  insects.  However, they are more

variable than coding regions, thus being more difficult to detect and study. In P. spumarius, as

colour  patterns  are  mainly  melanic/non-melanic  and,  probably, melanin  based, three  genes

(yellow, ebony and tan), known to be involved in the melanin synthesis pathway in Drosophila

(Wittkopp  et  al.,  2002a;  True  et  al.,  2005;  Wittkopp  et  al.,  2009),  and  that  seemed more

relevant, were selected.  To isolate those genes and to look for conserved regions to design

primers  for  their  amplification  in  P. spumarius,  was another  challenge. Initially, the  three
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Drosophila's gene sequences were queried against the partial genome draft of P. spumarius and

also against its transcriptome. No homology was found, probably, because these two species

were not close enough to get significant matches. Besides, as the available draft genome of the

P. spumarius was incomplete, and the transcriptome was obtained using an adult specimen,

sequences of these genes may not have been represented. Alternatively, sequences of the pea

aphid A. pisum, the closest species to P. spumarius with available genome, were used to look

for homologous of  Drosophila's genes. Unfortunately, also between those species, homology

was difficult to obtain.  By querying the Drosophila's gene sequences against pea aphid ESTs

database, only an homologous coding sequence of the yellow gene was found. It is possible that

the other genes are not expressed in the stage of the individuals that were used to obtain the

EST database.

The  yellow sequence  was  queried  against  P.  spumarius draft  genome  and  an

homologous region was found. Primers were designed in conserved regions and a fragment of

482  bp,  corresponding  to  part  of  exon  2  in  Drosophila's  yellow gene,  was  successfully

amplified  in three  P. spumarius colour morphs  (typicus,  marginellus, and  trilineatus)  and in

some of its close related species. The sequence variation and the amino acid changes observed

did not show any association with the three colour morphs (p-value > 0.05). All mutations

detected were conservative and did not implicate a change in the protein. These results may

indicate that yellow is not involved in colour variation in this species but, a possible effect of

this  gene  can not be totally  excluded until  its  entire  coding sequence be investigated.  The

phylogenetic pattern of yellow was also investigated. Low genetic differentiation was observed

within  Philaenus,  indicating  that  this  gene  is  conserved  across  the  genus.  This  pattern

contrasted  with  the  neutral  pattern  of  ITS2,  with  two  main  lineages,  already  described  in

previous works (Maryanska-Nadachowska, et al., 2010; Rodrigues, 2010). yellow is probably a

functional gene under a relatively high evolutionary pressure that prevents the accumulation of

deleterious mutations and variation. In Drosophila, this gene promotes the formation of black

melanin (Wittkopp et al., 2002b). It is possible that it is also involved in the melanin pathway

in Philaenus but that colour variation is related to differences in the expression of yellow and/or

other  candidates,  and is  not  directly  related to  sequence variation.  A higher  haplotype and

nucleotide diversity, that could be related to a higher sample size or to the different ecology of

the species, was observed for P. spumarius. Being a widely distributed species, that occupies a

higher  number  of  terrestrial  habitats  (Halkka  &  Halkka,  1990;  Quartau  &  Borges,  1997;

Yurtsever, 2000), P. spumarius could have been less affected by the effects of genetic drift or

population declines (bottlenecks).
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In this study, we tried to explore a set of colour candidates and investigate their possible

involvement in colour variation in P. spumarius, and also in its close related species. Although

only a fragment of the yellow gene have been isolated and analysed with success (Chapter 5),

this work showed that it is possible to apply a candidate gene approach to a species like  P.

spumarius. Therefore, other candidate genes for colouration should be investigated, including

regulatory  elements  since  they  are  showed to  control  wing pattern  in  other  insect  species

(Wittkopp et al., 2002b; Gompel et al., 2005; Wallbank et al., 2016).

6.2 Final Remarks

This  thesis  provided  new  insights  on  the  biogeographic  pattern  of  the  meadow

spittlebug P. spumarius, and explored the adaptive significance and the molecular genetic basis

underlying  this  species  dorsal  colour  polymorphism.  Therefore,  it  contributed  to  our

understanding of the evolutionary history of P. spumarius and the importance of dorsal colour

variation  in  the  process  of  adaptation.  This  study  was  the  first  attempt  to  identify  and

characterise regions of the genome associated with adaptive colour variation in this species.

The  many  challenges  faced  to  accomplish  this  task,  in  a  non-model  species  with  a  large

genome size, were evidenced.

In more detail, the present work allowed:

- To provide time estimates for the main demographic and evolutionary events occurred

for  European  populations  during  the  climate  oscillations  of  the  Quaternary  period,  and  to

analyse  colonisation  patterns  for  populations  out  of  Eurasia.  We found evidence  of  recent

divergence and expansion events at less than 0.5 Ma ago indicating that Quaternary climate

fluctuations were important in shaping the current phylogeographic pattern of the species. A

pattern of recent gene-flow between Mediterranean peninsulas, a close relationship between

Iberia and North Africa, as well as a probable British origin for the populations of the Azores

and New Zealand, and the colonisation of North America from both western and northern

Europe was found;

- To study the  effect of the colour phenotypes in the survival and reproduction of  P.

spumarius and to explore the adaptive function of its dorsal colour polymorphism. trilineatus

showed a higher longevity, a higher number of oviposition events, and a higher number of eggs

laid, compared with the marginellus and typicus.

-  To  obtain  hundreds  of  genomic  markers  (SNPs)  through  the  RAD  sequencing
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technique and use them in a genome wide association study to identify regions related to dorsal

colour variation. Sixty SNPs associated with the three colour morphs studied were detected,

and should be further investigated and validated. None of these SNPs showed homology with

candidate genes known to be responsible for colouration pattern in other insect species.

-  To  develop  genomic  and  transcriptomic  resources  that  can  be  used  for  further

identification and characterisation  of  the genomic regions  involved in  P. spumarius colour

variation. The proportion of the genome here obtained corresponded to only 25% of the total

genome,  estimated  to  be  among the  largest  in  insects  (5.3  Gb).  Although  it  has  not  been

possible  to  obtain  a  complete  genome sequence  of  P. spumarius,  the  partial  genome  and

transcriptome drafts constitute important tools and a basis for future research in this species.

- To be aware of the difficulties of carrying out a candidate gene approach in a non-

model species like P. spumarius, lacking information about the genetic basis of dorsal colour

polymorphism and without a complete reference genome to properly isolate candidate genes.

6.3 Future directions

Understanding  the  genetic  basis  underlying  adaptive  traits  is  a  central  problem  in

evolutionary  biology.  However,  its  investigation  in  non-model  species  could  be  very

challenging. In studies exploring the genetic basis of adaptive traits, is still difficult to detect

not  only  the  genes/loci  that  are  involved  in  a  trait,  but  also  their  relative  contribution

(major/minor effect), specially, when the trait has a polygenic basis as seems to be the case of

colour variation in  P. spumarius. With the rapid development of new methods of sequencing

and analysis, to get information about the genetic architecture of adaptive traits is expected to

be much easier in the future.

The present work contributed with new and important  findings in  P. spumarius but

many questions remain unanswered and, future research demands more detailed phenotypic

and genotypic data. Regarding the adaptive function of P. spumarius' colour polymorphism, it

would be important to carry out experiments to test differential fitness among different colour

phenotypes  under  different  environmental  conditions  (different  plant  host  species  and

(micro)climates). Many species around the world are currently suffering the effects of climate

change, namely in  their  distribution range and survival.  Therefore,  to address the potential

effects of climate change on the distribution and frequency of phenotypes in this species should

also be considered.

To disentangle the genetic basis of this polymorphism, it is necessary to validate the

177



SNPs found to be associated with colour, to genotype these markers in other  P. spumarius

populations, and finally to characterise them. Additional RAD sequencing, covering a higher

fraction of the genome, is needed to increase the number of SNPs, thus increasing the changes

of identifying genomic regions linked to  colour. A genome-wide scan using RAD markers

should also be performed in other dorsal colour phenotypes.

To do  RNA sequencing  using  different  colour  phenotypes  at  the  phase  of  higher

expression of colour genes, could also be useful in future studies. In this species, the 5thinstar is

presumably the stage when many genes controlling adult colour pattern are highly expressed.

Therefore,  using  mature  5thinstar  nymphs  for  obtaining  the  transcripts would  be  prefered.

However, as dorsal  colour morphs are  only discernible  in the adult  stage,  this  may not be

possible. The alternative would be the use of the adult forms. Since this species small size can

limit the quantity of RNA material to be recovered, using pools of individuals of the same

colour morphs would be a effective way of overcoming this problem. 

A complete reference genome for P. spumarius will help in further studies related to this

species' polymorphism as well. The rapid evolution of sequencing technologies are expected to

provide very soon the technical resources to be able to fully sequencing a genome of this size.

Adding to  this  are  the  fast  reducing costs.  Moreover, the concomitant  development  of  the

bioinformatics resources will also allow not only to deal  with the huge amounts of data, but

also the fully assemblage, annotation and structural understanding of large genomes. 

Although a still under-studied organism, this work showed that P. spumarius constitutes

a potential good model system to study the process of adaptation, specially the evolutionary

mechanisms maintaining polymorphisms.
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