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a b s t r a c t

This article presents and validates a general framework to build a linear dynamic Finite

Element-based model of large flexible structures for integrated Control/Structure design. An

extension of the Two-Input Two-Output Port (TITOP) approach is here developed. The authors

had already proposed such framework for simple beam-like structures: each beam was con-

sidered as a TITOP sub-system that could be interconnected to another beam thanks to the

ports. The present work studies bodies with multiple attaching points by allowing complex

interconnections among several sub-structures in tree-like assembly. The TITOP approach is

extended to generate NINOP (N-Input N-Output Port) models. A Matlab toolbox is developed

integrating beam and bending plate elements. In particular a NINOP formulation of bending

plates is proposed to solve analytic two-dimensional problems. The computation of NINOP

models using the outputs of a MSC/Nastran modal analysis is also investigated in order to

directly use the results provided by a commercial finite element software. The main advan-

tage of this tool is to provide a model of a multibody system under the form of a block diagram

with a minimal number of states. This model is easy to operate for preliminary design and

control. An illustrative example highlights the potential of the proposed approach: the syn-

thesis of the dynamical model of a spacecraft with two deployable and flexible solar arrays.

1. Introduction

Structural and control co-design has attracted a particular interest in the last three decades thanks to the efforts which have

been made to combine the different requirements of the two disciplines. In particular in Space applications the development of

larger and more flexible satellite structures makes flexible mode analysis mandatory [1]. Large appendages correspond to low

flexible modes that have to be taken into account to design and optimize appropriate control laws.

However the analysis of large structures involves complex model synthesis based on a large amount of degrees-of-freedom

(DOFs) with high computational costs and difficult structural understanding. As a consequence the efforts of researchers have

focused on exploration of substructuring techniques consisting in analyzing large complex structures separately by a multibody

approach. This approach makes it possible to deal with simpler models subjected to different constraint conditions and mechan-
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ical properties and facing the control issue at the same time. Examples of applications are the verification of spacecraft stability

robustness as in Ref. [2] or the analysis of collocated actuators as in Ref. [3].

Moreover, all the methods developed in the multibody context can benefit from the powerful results provided by the Finite

Element Method (FEM), the most widely used and proven numerical method in structural analysis.

Two methods which include FEM results in a substructure approach are widespread: the Finite Element-Transfer Matrix (FE-

TM) method and the component modes synthesis (CMS). The Transfer Matrix method was first introduced by Holzer in 1921

[4] and independently by Myklestad in 1945 [5]. Recently, it was somewhat revived by Rui et al. [6], with specific reference

to the multibody dynamic field. The FE-TM combines the finite element approach with transfer matrix models, whose basis

were already stated by Leckie and Pestel [7]. The basic principle is the connection of flexible structures in series by simple

multiplication of their transfer functions, characterized by the relation between the state vector computed at the left and right

points of the single body. Each state vector is defined by two contributions: the generalized displacements of the point and the

corresponding generalized forces. Its application to FEM procedure in vibration analysis allowed Dokainish [8] to considerably

reduce model complexity (stiffness and mass matrix size) and computational cost without any reduction of DOF. The FE-TM

approach was then applied for chain-like structure analysis [9] and closed-loop kinematic chain of flexible structures like the

four-bar mechanism [10]. A modified version of FE-TM allowed researchers to extend the method to Space structures for control

purposes: Tan et al. [11] proposed the collocated control of a beam by Linear Quadratic Regulator (LQR) theory. Rui et al. [12]

provided the dynamic model of a multiple launch rocket system. Modern application of Transfer Matrix method can be found in

Ref. [13] for the real-time control of multibody systems and in Ref. [14] to analyze complex mufflers.

There are mainly two limitations in FE-TM formulation: the first one comes from the derivation of the transfer-matrix which

requires the inversion of the sub-matrices associated with each element [11], that is possible if and only if these sub-matrices

are non-singular and square; the second one consists in the difficulty to model non tree-like multibody structures with both

multiple input and multi output ends [15]. The latter limitation is an important issue in the Space field, where complex and

different flexible appendages such as solar arrays, antennas or robotic arms are attached to the spacecraft’s central body. For

this type of application the information for control and design purposes is the dynamic model at the tree attachment point.

The CMS approach [16–18] has earned a great following in the aerospace sector thanks to its matrix condensation reduction

well suited for substructuring problems [19–22]. Young [3] proposed the so called controlled component synthesis (CCS) based

on the CMS theory for large flexible structures like planar trusses. He demonstrated the integration of the structure modeling

and the decentralized control design at the component level of a complex body divided into a collection of substructures. The

limitations of this approach come from the overlapping of the different components done at the matrix level. In-depth knowl-

edge of the FEM models was thus mandatory.

Later many methods based on the effective mass/inertia model of each flexible appendage of a complex structure [23] or

on the impedance matrix [24] were developed. All these methods inherited from Craig, Bampton and Chang’s works [25,26] as

particular cases of CMS approach. Regarding the mass/inertia approach, many important contributions [1,2,27] have to be cited.

They all proposed a way to obtain a linear dynamic model of a spacecraft with different appendages for an Attitude and Orbital

Control System (AOCS). In particular they took into account the influence of each flexible appendage on the spacecraft rigid hub.

The main drawback of these models is the loss of the dynamic information corresponding to the free tip appendage points. As a

consequence the representation of multiple flexible body in chain-like configuration was not technically possible. The Two-Input

Two-Output (TITOP) Port model, proposed for the first time by Alazard et al. [28], finally overcame this limitation. It conceives

the dynamic model of each substructure as a transfer between the accelerations and the external forces at each connection

point in a state-space form. It embeds, in the same minimal state-space representation, the direct and inverse dynamic models

of the substructure for any kind of complex boundary conditions. One of the greatest advantages of the TITOP model is the

invertibility of all sub-element channels: any kind of boundary conditions can be solved starting from the same model. Murali et

al. [29] proposed an analytical model of a uniform beam in TITOP approach to model a spacecraft sub-structured antenna. Perez

et al. [30,31] stated the basis for the model parametrization in Linear Fractional Representation (LFT) form for co-design/robust

control of TITOP assemblies. Perez et al. [32] finally presented a rigorous formalization of the TITOP approach with a comparison

with non-linear existing models.

Chebbi [33] completed the formulation by presenting a rigorous comparison of the TITOP model of a uniform beam, the

same stated in Ref. [29], for several boundary conditions, with results provided by the Euler-Bernoulli theory. In particular,

in this work, the problem of model inversion was directly addressed for the first time by application. Thanks to the latter, a

closed-loop four-bar mechanism was analyzed.

However all the previous works only dealt with simple beams in direct chainlike assembly.

The main contribution of the present work is to better investigate the TITOP inversion operation in order to provide coherent

models not only for analytical simple models but also for numerical models provided by FEM commercial software products. This

need is essential in order to use the TITOP approach in the case of structures modeled by FEM with complex boundary conditions.

Moreover the TITOP approach will be extended to two-dimensional problems to build N-Input N-Output Port models (NINOP).

The case of a bending plate will be treated analytically with the NINOP approach and an application to a deployable spacecraft

solar array will be provided. In this case the NINOP model will provide the dynamic information of multiple free points of the

flexible substructure. This work aims at providing preliminary design tools and a framework for the Control/Structure design of

large flexible appendages by taking into account the needs of both disciplines: a true description of the structural flexibility and

a minimal representation of the system’s dynamic behaviour (no excessive number of states) for control purposes. To achieve

this objective, the TITOP/NINOP approach is proposed and developed in Sec. 2. The analysis of the channel inversion is addressed



Fig. 1. Internal (i) and junction (j) DOFs of a structure.

in Sec. 3 applied to a clamped-free beam problem. The NINOP approach is applied to a bending plate in Sec. 4 and an application

to a satellite deployable solar array is shown in Sec. 4.2. Finally Sec. 5 outlines the main contributions of the present work.

2. TITOP and NINOP models

2.1. Formalism of the dynamic analysis

The TITOP method introduced in Ref. [28] is based on the Craig-Bampton method [34] (particular case of CMS method)

where the dynamic analysis is performed by a modal approach. The formalization used in this paper is based on Girard and

Roy’s synthesis [23]. The basis of the modal approach consists in two steps:

1. The resolution of the motion equation without any excitation source, which provides the so called ‘normal modes’;

2. The superposition of the modes.

Let us consider a general structure (Fig. 1). In its complete set of DOFs two sets can be distinguished: the internal DOFs

(subscript i) and the junction DOFs (subscript j). By definition, the excitation is an external force/torque and the response is a

motion (linear or angular displacement, speed or acceleration) for the internal DOFs. Conversely if the excitation is a motion,

the response is a force/torque (in particular the reaction forces/torques will be considered) for the junction DOFs.

The classical second order equation of motion of the structure obtained by Lagrangian formulation using the FEM method

can be written thanks to matrix representation as:[
𝐌ii 𝐌ij

𝐌ji 𝐌jj

][
�̈�i

�̈�j

]
+

[
𝐂ii 𝐂ij

𝐂ji 𝐂jj

][
�̇�i

�̇�j

]
+

[
𝐊ii 𝐊ij

𝐊ji 𝐊jj

][
𝐮i

𝐮j

]
=

[
𝐅i

𝐅j

]
(1)

where 𝐮, �̇� and �̈� are respectively the linear/angular displacement, speed and acceleration of the complete set of DOFs taken into

account. They are associated with each node of a FEM discretization of the considered structure. The symmetric matrices 𝐌, 𝐂
and 𝐊 are respectively the mass, damping and stiffness matrices obtained by the FEM synthesis. Finally 𝐅i are the forces/torques

imposed on the internal DOFs and 𝐅j are the reaction forces/torques imposed on the structure by the junction. Note that for the

generic symmetric matrix 𝐗 (𝐌, 𝐂 or 𝐊), 𝐗T
ij
= 𝐗ji.

The normal modes are obtained from the solution of the equation of motion without any excitation (𝐅i = 0i , 𝐮j = 0j). Two

equations are obtained from Eq. (1). Let us concentrate on the first one which allows us to solve 𝐮i. If the damping term is

neglected this homogeneous equation takes the form:

𝐌ii�̈�i +𝐊ii𝐮i = 0i (2)

The solution of this problem corresponds to the well known eigenvalues/eigenvectors system of N equations (where N is the

total number of internal DOFs):

(−𝜔2
k
𝐌ii +𝐊ii)𝚽ik = 0i (3)

with k = 1…N and 𝜔k and 𝚽ik are respectively the k-eigenvalue and the associated k-eigenvector.

After resolution of Eq. (2) the complete Eq. (1) is solved by projection of all the physical proprieties onto the base com-

posed by the already computed modes 𝚽ik and the so called junction modes matrix 𝚿 obtained by successively imposing a unit

displacement 𝐮j, while blocking all other junction displacements (�̇�j = 0, �̈�j = 0). For cases with a single junction the junction

modes verify [23]:

𝚿jj = 𝐈jj (4)

where 𝐈 is the identity matrix and

𝐊ii𝚿ij +𝐊ij = 0ij ⇒ 𝚿ij = −𝐊−1
ii
𝐊ij (5)



The projection onto the base composed by the normal and junction modes allows us to perform the Craig-Bampton transforma-

tion 𝛀i+j,k+j [34]:[
𝐮i

𝐮j

]
=

[
𝚽ik 𝚿ij

0jk 𝐈jj

][
𝜼k

𝐮j

]
= 𝛀i+j,k+j

[
𝜼k

𝐮j

]
(6)

where 𝜼k are the modal displacements. 𝛀i+j,k+j, introduced in Eq. (1), gives the new form of the equation of motion:[
𝐦kk 𝐋kj

𝐋jk 𝐌jj

][
�̈�k

�̈�j

]
+

[
𝐜kk 0kj

0jk 0jj

][
�̇�k

�̇�j

]
+

[
𝐤kk 0kj

0jk 𝐊jj

][
𝜼k

𝐮j

]
=

[
𝚽ki𝐅i

𝚿ji𝐅i + 𝐅j

]
(7)

where:

• 𝐦kk = 𝚽ki𝐌ii𝚽ik is the diagonal matrix of the generalized masses mk. The eigenvectors in 𝚽ik can be normalized in such a

way that 𝐦kk = 𝐈kk.

• 𝐜kk = 𝚽ki𝐂ii𝚽ik is the damping matrix. It is assumed diagonal, i.e. 𝐜kk = diag(2𝜁k𝜔kmk), after neglecting the intermodal

damping terms, although such condition is only strictly met when the damping matrix is proportional to the mass and

stiffness matrices;

• 𝐤kk = 𝚽ki𝐊ii𝚽ik = diag(mk𝜔
2
k
) is the diagonal matrix of the generalized stiffnesses kk;

• 𝐋kj = 𝚽ki(𝐌ii𝚿ij +𝐌ij) is the matrix of the participation factors;

• 𝐌jj = 𝚿ji𝐌ii𝚿ij +𝚿ji𝐌ij +𝐌ji𝚿ij +𝐌jj is the condensed mass matrix. In case of a rigid statically determinate junction (junc-

tion represented by one and only one node) this matrix is exactly equal to the rigid body matrix 𝐌rr of the considered struc-

ture. This one includes the information about the mass, the inertia and the center of mass of the structure with respect to the

unique junction node;

• 𝐊jj = 𝐊jj −𝐊ji𝐊−1
ii
𝐊ij is the condensed stiffness matrix, equal to 0jj in case of a rigid statically determinate junction.

In TITOP approach [28,29] a previous coordinate transformation before starting the modal analysis by Eq. (3) allows us to

have a largely simplified equivalent version of the problem in Eq. (7) and 𝐦kk = 𝐈kk without any normalization operation. This

fact will be more extensively addressed in Section 2.2.

2.2. The TITOP approach

Let us consider the i-th flexible linking appendage i taking part in a complex sub-structured body (Fig. 2). It is discretized

by a FEM approach and is linked to the parent sub-structure i−1 by the node P and to the child sub-structure i+1 by the node

C. In the TITOP model, the node P is considered as a rigid or statically determinate junction (called thereafter junction node

and characterized by clamped boundary condition) and the node C is considered as an internal node and is characterized by

free boundary condition. This first assumption does not constrain the dynamic analysis to the clamped-free condition as already

demonstrated in Ref. [33] for an homogeneous beam, but it allows simplifying Eq. (7) without any loss of information and

studying any kind of boundary conditions.

Let us consider that the mesh of i globally contains Nn nodes and, in the general case, each node has 6 DOFs (3 translations

and 3 rotations). The vectors 𝐮, �̇�, �̈� and 𝐅 in Eq. (1) will have globally Ng = 6Nn components and FEM matrices will be Ng × Ng

matrices. Moreover let us define N = Ng − 6 the total number of the internal DOFs and the inertial frame 0 = (P0, 𝐱0, 𝐲0, 𝐳0)

Fig. 2. i-th flexible appendage of a complex sub-structured body.



Fig. 3. TITOP model 
i

PC
(s) block-diagram.

centered in node P of i in equilibrium condition.

The TITOP model 
i

PC
(s) (where s is the Laplace variable) is a linear state-space model with 12 inputs (6 for each of the two

input ports):

1. The 6 components in 0 of the wrench 𝐅i+1∕i,C
composed of the three-components force vector 𝐅C and the three-

components torque vector 𝐓C applied by i+1 to i at the free node C;

2. The 6 components in 0 of the acceleration vector �̈�P composed of the three-components linear acceleration vector 𝐚P and

the three-components angular acceleration vector �̇�P at the clamped node P;

and 12 outputs (6 for each of the two output ports):

1. The 6 components in 0 of the acceleration vector �̈�C at the free node C;

2. The 6 components in 0 of the wrench 𝐅i∕i−1,P
applied by i to the parent structure i−1 at the clamped node P.

In Fig. 3 a block diagram of the TITOP model 
i

PC
(s) is illustrated.

The matrix 
i

PC
(s) is constructed using the terms of Eq. (1) computed by a FEM analysis. In this case P is a junction node, so

the subscript substitution j = P is admitted. Besides we get 𝐅j = −𝐅i∕i−1,P
and 𝐅i = 𝐅i+1∕i,C

. Now a coordinate transforma-

tion 𝛀P is performed in order to have all the internal DOFs i with respect to the reference frame 0:[
𝐮i

𝐮P

]
=

[
𝐈ii 𝝉CP

0Pi 𝐈66

][
𝐮i

𝐮P

]
= 𝛀P

[
𝐮i

𝐮P

]
(8)

where 𝝉CP describes the rigid kinematic model between the DOFs of the generic internal node C and the m junction DOFs of the

node P. In this example m = 6, thus:

𝜏CP =

[
𝐈33

∗𝐂𝐏
033 𝐈33

]
(9)

where ∗𝐂𝐏 is the skew-symmetric matrix associated with the vector from C to P. Note that 𝜏CP corresponds exactly to the

junction modes matrix 𝚿ij of the previous section without any need of inversion as in Eq. (5). By using Eq. (8) and all the

previous considerations, Eq. (1) takes the form:[
𝐌ff 𝐌fr

𝐌T
fr

𝐌rr

][
̃̈𝐮i

�̈�P

]
+

[
𝐂ii �̃�ij

�̃�ji �̃�jj

][
̃̇𝐮i

�̇�P

]
+

[
𝐊ii 0ij

0ji 0jj

][
�̃�i

𝐮P

]
=

[
𝐅
i+1∕i,C

𝝉
T
CP
𝐅i+1∕i,C

− 𝐅i∕i−1,P

]
(10)

where 𝐌rr is the rigid body matrix associated with i seen from the node P and 𝐌ff and 𝐌fr are respectively the mass sub-

matrix associated with the flexible DOFs �̃�i and the flexible-rigid cross-coupling sub-matrix. A modal analysis is performed with

the new system in Eq. (10) and, noticing that the junction modes matrix 𝚿ij = 0ij (from Eq. (5)), Eq. (7) is written as:[
𝐈kk 𝐋kP

𝐋Pk 𝐌rr

][
�̈�k

�̈�P

]
+

[
𝐜kk 0kj

0jk 0jj

][
�̇�k

�̇�P

]
+

[
𝐤kk 0kj

0jk 0PP

][
𝜼k

𝐮P

]
=

[
𝚽kC𝐅i+1∕i,C

𝜏T
CP
𝐅i+1∕i,C

− 𝐅i∕i−1,P

]
(11)

where now:

• 𝐋kP = 𝚽ki𝐌fr

• 𝐜kk = diag(2𝜁k𝜔k)
• 𝐤kk = diag(𝜔2

k
)

By using Eq. (11) and by computing the acceleration vector �̈�C at point C (thanks to Eq. (8)) and the modal superposition in

Eq. (6):

�̈�C = 𝚽Ck�̈�k + 𝜏CP�̈�P (12)



Fig. 4. i-th flexible appendage of a complex sub-structured body with two child sub-structures.

the state space representation of the TITOP model 
i

PC
(s) is finally expressed as:

(13)

This model, conceived with the clamped-free condition, is useful to study any other kind of boundary configuration as proved

in Ref. [33] thanks to the invertibility of all of its 12 input-output channels. Moreover the TITOP model allows us to directly link

several sub-structures of an open/closed chain-like complex body.

Note that the same formulation is also suitable for TITOP model obtained by the results provided by MSC/Nastran dynamic

analysis as well. The channel inversion operation will be more extensively analyzed in Sec. 3, where a possible source of error

will be highlighted.

2.2.1. Extension to the NINOP approach

The model in Eq. (13) can be easily extended to the case in which the flexible appendage i is connected to several child

sub-structures like the example in Fig. 4, where a configuration with two child sub-structures is illustrated. Note that there

must be a single junction node P in order to build the TITOP model. Thus if i has more than one parent, only one has to be

chosen as clamped. The other ones will be considered as child nodes in free boundary condition for the model synthesis. Then

the appropriate boundary conditions will be set on these nodes thanks to the inversion on the respective model channels.

In this example the three-input three-output port state-space realization 
i

PC1C2
(s) is written as:

The same pattern is easily adapted to N-input N-output port models.

3. The problem of inversion

Let us see an illustrative example of inversion to obtain a dynamic model of a complex multibody structure in tree-like

configuration. As said before, if �̈�P = 0 and 𝐅i+1∕i,C
= 0 in the model 

i

PC
(s) of Eq. (13), the appendage is in clamped-free

condition. Thanks to the fact that a residual mass of the sub-structure i is associated with nodes P and C by FEM synthesis, all

the 12 input-output channels are invertible. The single-channel inversion procedure is described in Appendix 1 of [33].

If the inverted channels are contained in a vector called 𝐘, the resulting model will be denoted
[


i

PC

]−1𝐘
(s). If for example

𝐘 =
[

2 4 8

]
,
[


i

PC

]−1𝐘
(s) is the model obtained by 

i

PC
by inverting the channels 2, 4 and 8.



Fig. 5. Tree-like multibody system.

Fig. 6. Block diagram model of the tree-like multibody system of Fig. 5.

Fig. 5 shows a structure with four flexible sub-structures interconnected in tree-like chain by the element 3. The entire

structure is clamped at the point P1
of the substructure 1 and a wrench 𝐖C4

acts at the point C4
of the sub-structure 4.

The objective is to compute the transfer function between the wrench 𝐖C4
and the displacement (linear and angular) 𝐮P2

of

the point P2
of the sub-structure 2.

Assuming that the TITOP models 
1

P1
C1

(s), 2

P2
C2

(s), 4

P4
C4

(s) and the NINOP model 
3

P3
C13

C23

(s) have already

been computed and considering the four inertial reference frames 1
= (P1

, 𝐱1, 𝐲1, 𝐳1), 2
= (P2

, 𝐱2, 𝐲2, 𝐳2), 3
=

(P
3
, 𝐱3, 𝐲3, 𝐳3) and 

4
= (P

4
, 𝐱4, 𝐲4, 𝐳4) and the three direction cosine matrices 𝐓

31
(the matrix components of unitary

vectors 𝐱1, 𝐲1, 𝐳1 in 
3

), 𝐓
32

(between 
3

and 
1

) and 𝐓
34

(between 
3

and 
4

), Fig. 6 shows the block represen-

tation of the model of the structure with the four flexible sub-structures.

The example has shown how the computation of inverse models is useful. The operating procedure to compute TITOP or

NINOP inverse models is thus important and needs to be studied specifically. In particular, when the direct models are estab-

lished from finite elements, the modal base used to build the models and the possible mode truncation will be discussed.

3.1. Direct model of a uniform beam

Before computing the inverse model, let us start by analysing the direct model of a uniform beam in pure flexion. The beam

is characterized by a density 𝜌, a Young Modulus E, a length L, a cross-sectional area S and a second moment of area J about the

y axis. The TITOP model can be computed by integrating the results provided by three different FEM analyses into three TITOP

elements:



Fig. 7. The beam finite element under bending in the xz plane.

Fig. 8. The beam finite super-element under bending in the xz plane.

Table 1

Clamped-free beam 1st mode comparison with Euler-Bernoulli theory. Frequencies are unit-normalized

by
√

EJ

𝜌SL4
.

Euler - Bernoulli clamped-free beam 1st mode: 𝜔1ref = 3.5160

Elements Beam Super-Beam Nastran

DOFs 𝜔1 DOFs 𝜔1 DOFs 𝜔1

1 2 3.5327 4 3.5160 2 3.5327

2 4 3.5177 7 3.5160 4 3.5177

3 6 3.5164 10 3.5160 6 3.5164

4 8 3.5161 13 3.5160 8 3.5161

5 10 3.5161 16 3.5160 10 3.5161

6 12 3.5160 19 3.5160 12 3.5160

1. The classical beam element (Fig. 7) with two DOFs for each node (the deflection v and the angle of deflection 𝜃). It is a

polynomial model of degree 3;

2. The super-element based on the model used in Ref. [33] and introduced by Ref. [29] (Fig. 8). For this case, the beam model

consists in a polynomial model of degree 5 with three DOFs for each of the two boundary nodes (the deflection, the angle

of deflection and the double derivative of deflection
𝜕2v

𝜕x2 (x, t) = Tb(x,t)
EJ

, where Tb(x, t) is the bending moment at abscissa x) in

planar flexion;

3. The MSC/Nastran CBEAM element. As said before, in practical industrial applications where complex FEM mesh is mandatory

to have reliable results, the number of DOFs of the entire structure is really huge and the model is truncated. A FEM toolbox

has been developed with Matlab to integrate all these results. In particular an interface has been elaborated in order to

recover all the modal parameters needed in Eq. (7) from MSC/Nastran f06 analysis file and to compute the TITOP model from

the equations of Section 2.2.

According to the MSC/Nastran model the default value for the element beam (CBEAM) mass matrix is the lumped mass, that

contains only the uncoupled, translational components of mass. The use of this mass is strongly discouraged both in terms of

accuracy of results and loss of a certain number of modes. The latter fact causes single-channel inversion problems as shown

hereafter. The use of the so called coupled mass matrix makes it possible to recover all the modes expected from the number

of the complete set of DOFs. However it is not exactly the consistent mass matrix 𝐌e analytically obtained. Two terms of this

matrix are in fact different [35]: the mass in the axial direction is the lumped mass and the torsional inertia is the lumped inertia.

The first four frequencies of the three TITOP models are compared with the results provided by the Euler-Bernoulli beam

theory for a clamped-free configuration while considering the entire modal basis. The results for the four direct frequencies are

summarized in Tables 1–4, where DOFs is referred to the internal DOFs. Note that, for the Super-Beam element, the DOF relative

to the double derivative of deflection of the clamped node is in free condition.

Notice that the results provided by the classical beam element and the MSC/Nastran beam element (in planar case: 2 DOFs

for each node) are the same. The beam super-element has more DOFs than the other two elements, thus a small number of

elements is needed to reach a determinate level of accuracy. It allows us to develop less complex dynamic models with a small

number of states (the number of states is equal to the double of the internal DOFs) while reaching high levels of accuracy.



Table 2

Clamped-free beam 2nd mode comparison with Euler-Bernoulli theory. Frequencies are unit-normalized by√
EJ

𝜌SL4
.

Euler - Bernoulli clamped-free beam 2nd mode: 𝜔2ref = 22.0345

Elements Beam Super-Beam Nastran

DOFs 𝜔2 DOFs 𝜔2 DOFs 𝜔2

1 2 34.8069 4 22.1578 2 34.8069

2 4 22.2215 7 22.0347 4 22.2215

3 6 22.1069 10 22.0345 6 22.1069

4 8 22.0602 13 22.0345 8 22.0602

5 10 22.0455 16 22.0345 10 22.0455

6 12 22.0399 19 22.0345 12 22.0399

7 14 22.0375 22 22.0345 14 22.0375

8 16 22.0362 25 22.0345 16 22.0362

9 18 22.0356 28 22.0345 18 22.0356

10 20 22.0352 31 22.0345 20 22.0352

Table 3

Clamped-free beam 3rd mode comparison with Euler-Bernoulli theory. Frequencies are unit-normalized by√
EJ

𝜌SL4
.

Euler - Bernoulli clamped-free beam 3rd mode: 𝜔3ref = 61.6972

Elements Beam Super-Beam Nastran

DOFs 𝜔3 DOFs 𝜔3 DOFs 𝜔3

1 2 – 4 63.3466 2 –

2 4 75.1571 7 61.8308 4 75.1571

3 6 62.4660 10 61.6984 6 62.4660

4 8 62.1749 13 61.6975 8 62.1749

5 10 61.9188 16 61.6973 10 61.9188

6 12 61.8101 19 61.6972 12 61.8101

7 14 61.760 22 61.6972 14 61.760

8 16 61.7347 25 61.6972 16 61.7347

9 18 61.7209 28 61.6972 18 61.7209

10 20 61.7129 31 61.6972 20 61.7129

Table 4

Clamped-free beam 4th mode comparison with Euler-Bernoulli theory. Frequencies are unit-normalized by√
EJ

𝜌SL4
.

Euler - Bernoulli clamped-free beam 4th mode: 𝜔4ref = 120.9019

Elements Beam Super-Beam Nastran

DOFs 𝜔4 DOFs 𝜔4 DOFs 𝜔4

1 2 – 4 281.5962 2 –

2 4 218.1380 7 122.5912 4 218.1380

3 6 140.6711 10 121.0851 6 140.6711

4 8 122.6576 13 120.9057 8 122.6576

5 10 122.3197 16 120.9036 10 122.3197

6 12 121.6810 19 120.9023 12 121.6810

7 14 121.3483 22 120.9020 14 121.3483

8 16 121.1727 25 120.9019 16 121.1727

9 18 121.0748 28 120.9019 18 121.0748

10 20 121.0171 31 120.9019 20 121.0171

3.2. Inverse model and modal basis truncation

In Ref. [33] the inversion of the TITOP model 

PC(s) (with P and C as boundary nodes) of an homogeneous beam was proven:

the first two natural frequencies obtained by 


PC
(s) (clamped-free configuration) and its inverse

[




PC

]−1

(s) (free-clamped

configuration) are the same. Note that this condition is valid only if the geometric and structural properties are symmetric with



Fig. 9. The four Singular Values plot for a clamped-free uniform beam obtained from the direct model 

PC
(s) and its inverse

[




PC

]−1(s).

respect to midpoint. The question now arises for the inversion of the TITOP model obtained from Nastran FEM analysis.

A way to verify the fact that the direct model 

PC
(s) (clamped-free configuration) and its inverse model

[




PC

]−1

(s) (free-

clamped configuration) of a uniform beam have the same set of modal frequency is to analyze the frequency domain response

of the singular values of 

PC(j𝜔) in Eq. (13) while neglecting the damping term. The singular value responses according to the

frequency 𝜔 in logarithmic scale (thanks to the Matlab function sigma) has to be symmetric w.r.t. the frequency axis since:

𝜎i

(




PC (j𝜔)
)
= 𝜎i

([




PC

]−1

(j𝜔)
)

∀ i (14)

The singular values of the inverse model
[




PC

]−1

(s) are exactly the inverse singular values of 

PC(s). In practice and for

illustration, by building the model of a clamped-free beam with five super-element beams, the plot of Fig. 9 shows that the

peaks and the wells of
[




PC

]−1

(s) occur at the same frequencies of those of 

PC
(s). Note that the direct TITOP model for the

beam working in pure flexion in the plane (x, z) (see Fig. 8) has 4 inputs:

• the force along z-axis and the torque around y-axis applied to the beam at the point C;

• the linear acceleration along z-axis and the angular acceleration around y-axis of the point P

and 4 outputs:

• the linear acceleration along z-axis and the angular acceleration around y-axis of the point C;

• the force along z-axis and the torque around y-axis applied by the beam at the point P.

Let us now consider a model obtained by commercial FEM analysis. One issue of the FEM approach is to limit the computa-

tional cost and data storage. It is usually common practice to truncate the modal basis, by removing the less significant modes.

The final set of modal solutions 𝜂k is thus truncated to a smaller set 𝜂q, with q < k, obtained by removing the higher frequency

modes since their participation in response to the total low frequency excitation is negligible [36].

This section will now show why the modal truncation is detrimental for TITOP single-channel inversion. Let us consider a

TITOP model 

PC
(s) of a uniform beam analyzed by only two element beams. The natural frequencies embedded in this system

are four. If now a truncated model 

PCtru, 2
(s), taking the contribution of only the first two modes, is considered, the computed

natural frequencies are resumed in Table 5. A comparison with the complete model 

PC(s) and a MSC/Nastran beam model

(with two CBEAM elements and four modes) is done. Fig. 10 finally compares the singular values plot of the three direct models.

Two observations can be made:

1. Let us define the frequency relative error defined as Δ𝜔i% = 100
|𝜔inv

i
−𝜔dir

i
|

𝜔dir
i

, with 𝜔dir
i

(𝜔inv
i

) frequency of the mode i of the

direct (inverse) model. For the model synthesized by MSC/Nastran is equal to 0.09% for the first mode and 0.03% for the

second one. These extremely small errors can be further reduced if a finer mesh is used. These errors can also be visualized



Table 5

TITOP Direct (clamped-free) and inverse (free-clamped) first two normal frequencies for a uniform beam: comparison between the

complete model 

PC
(s), the truncated one 



PCtru,2
(s) and a MSC/Nastran TITOP beam model 

PCMSC
(s) (all the modal basis is taken into

account: no truncation performed). Frequencies are unit-normalized by
√

EJ

𝜌SL4
.

Mode 


PC
(s)

[




PC

]−1
(s) 



PCtru, 2
(s)

[




PCtru,2

]−1

(s) 


PCMSC
(s)

[




PCMSC

]−1

(s)

1 3.5177 3.5177 3.5177 5.7879 3.5177 3.5144

2 22.2215 22.2215 22.2215 72.2116 22.2215 22.2272

Fig. 10. Singular Values plot for a clamped-free uniform beam: comparison between the complete model 

PC
(s), the truncated one 



PCtru, 2
(s) and a MSC/Nastran TITOP

beam 


PCMSC
(s).

in Fig. 10 where 


PCMSC
(s) singular values are not perfectly symmetric as 

PC
(s) ones;

2. The frequency relative error for the truncated inverse model
[




PCtru, 2

]−1

(s) is catastrophically erroneous: 64.54% for the

first mode and 224.96% for the second one. These errors are caused by a non-compensation of the truncated modes. They

are nonetheless unacceptable and the advantage of truncation is lost because of the augmented complexity of the system.

3.2.1. Conclusions on the problem of the inversion of dynamic FEM models

When the inversion of dynamic FEM models is required (to compute models in boundary conditions different from free-

clamped conditions or to compute inverse models), the entire modal basis is mandatory and the use of consistent mass matrices

is preferable. Only the super-element beam complies with these two requirements. Moreover the classical operation of statically

residualizing the response of the truncated modes, used to obtain the good value for the static gain, does not solve the problem

of the location of the modes of the inverse model. Note: when only direct dynamic FEM models are required (e.g. for control

purposes of clamped-free multibody structures), only a few modes at the lowest frequencies are important. The use of super-

element beams to compute FEM models of such structures is not mandatory but gives a high level of precision with a limited

set of elements. Another option is to use truncated dynamic FEM models obtained by any commercial software. This promotes

the direct use of MSC/Nastran results in the developed toolbox where any kind of elements (even 3-dimensional elements for

complex structures) are supported.

This article continues with an extension of the TITOP approach to N-Input N-Output port systems in the particular case of a

bending plate. The problem of the augmented system complexity will be addressed.

4. Finite-element plate model in NINOP formulation

In this section a FEM NINOP model is developed for a bending plate. The thin-plate theory proposed by Kirchhoff in 1850 has

been adopted to formulate plate elements. Note that the goal of this article is not actually to produce really efficient elements

but to show the potential of the NINOP approach to provide models easily manageable by control engineers for the purpose of



Fig. 11. A four-node plate element: notation and deformed cross-section.

Table 6

Mechanical characteristics of a sample bending plate.

Description Symbol Value

Density 𝜌 2015 kg∕m3

Young Modulus E 69.8692 MPa

Shear Modulus G 22.1615 MPa

Length lx 1 m

Width ly 1 m

Thickness t 0.003 m

Fig. 12. Mesh of a clamped (in P) -free (in C) plate.

structural design under uncertainty.

A plate element with four nodes is considered with the notations of Fig. 11. Each node has three DOFs: the displacement w

along z-axis, the rotation 𝜃x around x-axis and the rotation 𝜃y around y-axis. The plate thickness is denoted t. We note w,x =
𝜕w

𝜕x

and w,y = 𝜕w

𝜕y
the plate surface slopes. For an exhaustive treatment of the Kirchhoff plate theory refer to [37].

As is well known, this element could be incompatible in normal slope: along a shared side (for instance x = const), adjacent

elements generally display different values of w,x. These incompatibilities tend towards zero if the mesh is refined and the

element performs satisfactorily.

Table 7

Direct and inverse TITOP models obtained by Kirchhoff element plate (TITOP(s)) and

MSC/Nastran CQUAD4 element (MSC(s)). Frequencies are expressed in rad/s.

Mode TITOP(s) MSC(s)

Direct Inverse Direct Inverse

1 8.3932 8.3932 8.2887 9.1241

2 17.0366 17.0366 16.9616 18.2827

3 53.5979 53.5979 53.3940 55.1281

4 108.6055 108.6055 110.8640 114.5049

5 139.0182 139.0182 142.4158 148.1564

6 169.4045 169.4045 173.3120 174.3294

7 201.2494 201.2494 205.2948 210.7449

8 312.0921 312.0921 326.9772 340.4803

9 354.5345 354.5345 376.0121 387.5427

10 368.7387 368.7387 396.7305 396.4752



Fig. 13. Bode plot of the direct TITOP models obtained by Kirchhoff element plate (TITOP(s)) and MSC/Nastran CQUAD4 element (MSC(s)): transfer between the force

applied at the point C in z direction and the displacement of point C along z.

Fig. 14. Singular values plot of the TITOP models obtained by Kirchhoff element plate (TITOP(s)) and MSC/Nastran CQUAD4 element (MSC(s)).

4.1. An academic example: a uniform bending plate

In this section a simple uniform plate will be studied in TITOP approach both with the Kirchhoff element and with the

CQUAD4 element available in MSC/Nastran, based on Mindlin-Reissner theory [38]. For this element transverse shear strains are

also taken into account (neglected in Kirchhoff theory). Let us consider the bending plate whose mechanical characteristics are

listed in Table 6.

Table 8

Total computational time for the models TITOP(s) and MSC(s).

Time TITOP(s) MSC(s)

Direct Inverse Direct Inverse

minimum 6.271 s 4.214 ms 4.176 s 1.001 ms

average 6.574 s 4.720 ms 4.187 s 1.371 ms



Fig. 15. Reference frames of a spacecraft with two deployable solar panels.

Fig. 16. Finite element mesh for a three plate deployable solar array.

Fig. 17. Block diagram model for a three plate deployable solar array.

A mesh of six plate elements (Fig. 12) in x and y directions is used to study a plate clamped at the node P. All the other nodes

are in free condition. All the 6 DOFs of P are blocked for the MSC/Nastran model and, for the other nodes, only DOFs 1,2,6 are

blocked in order to compare the results of the modal analysis with the developed Kirchhoff element. The goal of the present

section is to provide the TITOP model between the clamped node P and the free node C (Fig. 12). The two nodes have been

chosen symmetrically in order to verify the invertibility of the channels. The inverse TITOP model indeed provides the model

of the plate clamped in C and free in P. Since this condition is exactly symmetric to the previous one, the same set of modal

frequencies has to be found.

Table 7 gives the results of the first ten modes computed from the direct and inverse TITOP models (clamped in P and free

in C) based on the developed Kirchhoff plate (model designed as TITOP(s)) and the MSC/Nastran normal mode analysis (model

designed as MSC(s)). In Fig. 13 the transfer between the force applied at the point C in z direction and the displacement of

point C along z is shown.

By comparison of the direct and the inverse model (clamped in C and free in P) in Table 7, notice that the MSC/Nastran

CQUAD4 element leads to different results of natural frequencies w.r.t. the direct model while the developed Kirchooff element

performs the same results for both models. Moreover the diagram of the singular values for the CQUAD4 element (Fig. 14) is not

symmetric as expected for the reasons given in Sec. 3.2. This small difference is caused by two reasons:



Fig. 18. Singular values plot of the complete (SA(s)) and reduced model (SAred
(s)) of the solar array.

Fig. 19. Bode plot of the transfer between the angular acceleration around SA x-axis of the node P1 and the corresponding reaction torque at the same point: complete

(SA(s)) and reduced model (SAred
(s)) of the solar array.

1. the use of a coupled mass matrix instead of the consistent mass matrix in MSC/Nastran environment;

2. the modal basis truncation: only 48 modes are found by MSC/Nastran SOL 103 instead of the expected 144. A truncation ratio

3 is thus performed.

A short discussion follows on the computation time of the different models. Table 8 resumes the minimum and the aver-

age computation times obtained by 100 executions for the direct and the inverse models of TITOP(s) and MSC(s). Note that

the computation times of the direct model MSC(s) include 4s taken by the Nastran analysis process. The remaining time is

due to the Matlab interface for the reading of the results file and the state-space synthesis. Note that for the computation

of the direct model TITOP(s) no code optimization has been performed at this stage. Referring to the inverse model, the

computation time depends on the number of states of the direct model. TITOP(s) has three times the number of states of

MSC(s) because no modal basis truncation is performed, as remarked before, thus the computation time is larger as shown in

Table 8. For both cases (direct and inverse models), the computation time for TITOP(s) is acceptable even if it is larger than for

MSC(s).



Table 9

Spacecraft mechanical characteristics.

Description Symbol Value Unit

Main Body Position gravity center CGMB

[
0 0 0

]
m

Mass mMB 100 kg

Main Inertia in (CGMB, xMB, yMB, zMB) IxxMB
, IyyMB

, IzzMB
10,10,20 kg m2

Cross Inertia in (CGMB, xMB, yMB, zMB) IxyMB
, IxzMB

, IyzMB
0,0,0 kg m2

SA Position gravity center in (PSA, xSA, ySA, zSA) CGSA

[
1.5 0 0

]
m

Mass mSA 18.135 kg

Main Inertia in (PSA, xSA, ySA, zSA) IzzSA
55.9163 kg m2

4.2. A practical application: dynamic model of a satellite with deployable solar arrays

Let us consider the spacecraft in Fig. 15 with two symmetric deployable solar arrays (SA). Each SA is composed of three plates

(A, B and C), better represented in Fig. 16. In the same figure the mesh of each plate is shown with the attachment nodes between

two panels: the nodes Pi and Ci (corresponding to the interconnection points) employed for the NINOP synthesis are highlighted.

The Kirchhoff plate elements are used to get the three dynamic direct models of each panel (A
P1C1C2

(s), B
P2C3C4C5

(s) and


C
P3C6

(s)), by considering Pi as clamped nodes and Ci as free nodes. Plates like the one studied in Section 4.1 are used for

modeling the satellite.

The block diagram of an assembled SA is shown in Fig. 17. Note that for the panels B and C the three channels corresponding

to nodes C3 and C6 are inverted in order to consider these nodes as clamped for the assembling operation. Moreover the gains

−1 are due to the action/reaction principle applied to the definition given to the wrench in the corresponding NINOP direct

models. The transfer function between the acceleration vector �̈�P1
at point P1 (the attachment point to the spacecraft) and the

wrench at the same point is thus directly deduced.

Each of the three sub-panels provides a model with 144 flexible modes and the assembled solar array corresponds to a model

with 864 states. There are two ways to model the solar array for control purposes:

1. Model reduction of each singular sub-panels model after inversion of some channels (Fig. 17) and before assembling;

2. Model reduction of the assembled solar array.

Fig. 20. Block diagram of the complete satellite dynamic model.



Fig. 21. Singular values of the dynamic model of a spacecraft with symmetric (satsym
(s)) and asymmetric (satnosym

(s)) solar arrays.

Fig. 22. Bode diagram of the transfer between the external torque acting around satellite x-axis and the angular acceleration provoked around the same axis for a spacecraft

with symmetric (satsym
(s)) and asymmetric (satnosym

(s)) solar arrays.

Since for the present example the computational cost related to the assembling of the three sub-panels is not excessive, the

second solution is retained. In this way no simplification is done until the assembled model is obtained: this operation prevents

any error propagation. A balanced Hankel model reduction (Matlab command balred) brings to a reduced model of only 30

states. The singular value plots of the two models (complete and reduced) of the solar array are shown in Fig. 18. The bode plot

of the transfer between the angular acceleration around SA x-axis of the node P1 and the corresponding reaction torque at the

same point is shown in Fig. 19 as an example. Note that the reduced model allows to accurately take into account the most

important resonant frequencies of the SA until ≈30 Hz.

The entire dynamic model of the spacecraft of Fig. 15 is thus directly deduced. The central body is considered rigid and its

mechanical characteristics are resumed in Table 9. Note that this is an example and all the quantities should not be taken as

reference. Moreover the solar panels are studied as uniform plates. This is a great approximation because in general they are

mainly composed by a honeycomb composite material packed in two thin aluminum layers. This corresponds to anisotropic

mechanical properties. For the present study the orthotropic properties are converted to average laminate properties, which

are then used in the FE isotropic material definition. The result of this approximation corresponds to the values of Table 6. This

approximation is acceptable for a preliminary design.



Another approximation that will be done is that there are only 3 DOFs for the Kirchhoff plate element. For the other ones a

rigid-body-like dynamics is assumed between the solar array and the main body.

The complete block diagram model for the satellite is shown in Fig. 20. The synthesis of this diagram directly follows from

Ref. [27] and will be not detailed. Note that the inverse dynamic model of the main body MB(s) is the inverse matrix of its rigid

mass/inertia matrix, the kinematic blocks 𝝉 allow the kinematic transport of each body to the corresponding interconnection

point and the rotation matrices 𝐓 relate the different reference frames associated with each body. Finally the block diagram

in Fig. 20 provides the transfer function between the external forces/torques 𝐖ext acting at the center of mass (CGsat) of the

entire satellite and its (linear and angular) accelerations �̈�sat. A double integration of this model allows recovery of the linear

displacements and rotations of the spacecraft in the satellite frame.

The great advantage of the model proposed in this paper is that any modification to any parameter (mechanical character-

istics of solar panels or of the main body, position of interconnection points) or any uncertainty (asymmetries in mechanical

properties) can be easily analyzed without huge computational cost. This makes it possible to perform robust structural and

control co-design analysis for the preliminary design of the phases of a mission. If for instance an asymmetry of −20% on the

Young’s Modulus value and +20% on the density of the sub-panels of the South SA is introduced, the resulting singular value

plot is shown in Fig. 21. The transfer between the external torque acting around satellite x-axis and the angular acceleration

provoked around the same axis in Fig. 22 shows how the highest resonant peak in the asymmetric configuration moves back to

a lower frequency as expected.

Another advantage of such a structured model is the possibility to introduce and analyze the effect of local stiffness and

damping corresponding to each deployable mechanism (between points C1 and P2, C2 and C3, C4 and P3, C5 and C6 in Fig. 16).

5. Conclusion

This paper addressed the development of an N-input N-output Port dynamic model, based on Finite Element modal analysis,

for the resolution of multibody problems. A MATLAB toolbox with self-made elements (bending beams and plates) served as

support for testing the TITOP/NINOP approach. An interface with MSC/Nastran normal mode analysis has also been developed

to allow computing NINOP dynamic models from the outputs of such software. This study clearly highlighted the potentialities

of the present approach, by reducing the analysis of complex structures to a simple interconnection of sub-modules in two

steps:

• Extraction of the dynamical content of a body clamped at one node and free at the other ones and extension of the dynamical

model to any kind of boundary conditions thanks to simple operation of channel inversion;

• Final models are obtained in the form of block diagrams with a minimal number of states.

The paper also covers the limits of the channel inversion, when a truncation of the direct dynamical model is performed.

Self-made elements demonstrated their efficiency in simple test cases with symmetric boundary conditions. The use of a

non-consistent mass matrix and truncation in MSC/Nastran models revealed a degree of error in inversion operations, which

decreases with a mesh refinement. On the other hand the toolbox interface with MSC/Nastran guarantees precise TITOP/NINOP

models when only direct interconnections ports are used (no need of inversion): all types of mesh can be treated in the software

developed.

The strength of the TITOP/NINOP approach is the ability to study several configurations in preliminary control/structure

design by interconnections of sub-structures in a simple block diagram. A case study of a spacecraft with two flexible solar

arrays served as representative benchmark for the application of the present approach. It highlighted the great potentiality of

the TITOP/NINOP theory for multibody structures with interconnected repeated modules (i.e. reticulated configurations or a

solar array composed by several panels): only one NINOP model needs to be computed and simple interconnections with the

same block model finally provide the entire structure dynamics.
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