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Abstract Submitted
for the DFD17 Meeting of

The American Physical Society

Pressure drop for inertial flows in elastic porous media1 MAR-
TIN PAUTHENET, Institut de Mécanique des Fluides de Toulouse, ALESSANDRO
BOTTARO, University of Genoa, YOHAN DAVIT, MICHEL QUINTARD, Institut
de Mécanique des Fluides de Toulouse, POROUS MEDIA TEAM — The effect of
the porosity and of the elastic properties of anisotropic solid skeletons saturated by
a fluid is studied for flows displaying unsteady inertial effects. Insight is achieved
by direct numerical simulations of the Navier-Stokes equations for model porous
media, with inclusions which can oscillate with respect to their reference positions
because of the presence of a restoring elastic force modeled by a spring. The nu-
merical technique is based on the immersed boundary method, to easily allow for
the displacement of pores of arbitrary shapes and dimensions. Solid contacts are
anelastic. The parameters examined include the local Reynolds number, Red, based
on the mean velocity through the reference unit cell and the characteristic size of the
inclusions, the direction of the macroscopic forcing pressure gradient, the reduced
frequency, f∗, ratio of the flow frequency to the natural frequency of the spring-mass
system, and the reduced mass, m∗, ratio of the solid to the fluid density. Results
demonstrate the effect of these parameters, and permit to determine the filtration
laws useful for the subsequent macroscopic modeling of these flows through the
volume averaged Navier-Stokes equations.

1IDEX Foundation of the University of Toulouse and HPC resources of the CALMIP
supercomputing center
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Poro-elastic layer

〈vβ〉β free-flow

porous medium
6

?
h

Parameters:

rigidity: restoring force vs hydrodynamic load

form of the fibers

macroscopic Reynolds number: hU
ν

sparsity, dimensions · · ·

Final goal is to capture the large scale turbulence (honami).
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Applications

smooth surface

hairy surface vegetation management

passive flow control
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Representative elementary volume (REV)

`micro � r0 � h

σ phase
β phase
Aβσ

r0

x

yβ
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Volume averaged Navier-Stokes equations

∂ 〈vβ〉β

∂t
+ 〈vβ〉β · ∇ 〈vβ〉β =− 1

ρβ
∇〈pβ〉β +∇ ·

µβ
ρβ

[
∇〈vβ〉β +T ·

]
+

1

ρβ
Dβσ︸︷︷︸

fluid-solid stress

−∇ · 〈ṽβ ṽβ〉β︸ ︷︷ ︸
subgrid scale stresses

,

∇ · 〈vβ〉β =0.

(1)

filtering out small time scales F (t) =
∫ t+

τ0
2

t− τ0
2

f (u)du

Separation of scales

`micro � r0 � h

τmicro � τ0 � Tmacro
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Goals of the present work

Small-scale data

Dβσ from DNS

values of `micro

values of τmicro

Issues

Dβσ � ρβ∇ · 〈ṽβ ṽβ〉β?

`micro � h?

τmicro � Tmacro?

size of a REV?

6 / 12



Process definition and applications Volume averaging Pore scale fluid-structure interaction

Model medium

Case

Periodic domain with mass-spring cylinders

Instantaneous, elastic solid-solid collisions

m∗
d2x′

dt ′2
= f ∗2m∗ (x′0 − x′) + f ′h

Parameters

m∗ = ρσ
ρβ

f ∗ =

√
k/mσ

〈vβ〉βr /d

Rer =
d〈vβ〉β

ν
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Smoothed vs sharp interface Aβσ
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”pseudo” Poisson equation
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∫
Vσ phase fσdV
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∫
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n · sβdS
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Power spectrum of 〈vβ〉β, Rer = 110
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Response surface, Rer = 110, stiff case

2 < f ∗ < 4
1 < m∗ < 4

m∗

f ∗

K
K r
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Response surface, Rer = 110, soft case

0.25 < f ∗ < 1
1 < m∗ < 4

m∗

f ∗

K
K r
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Conclusion

Macroscopic model of a canopy flow

Effect of pore deformation on the permeability

Small scale data from simulations on a periodic domain

Large relaxation time scales

Large length scales and REV size

Choice of the numerical method

High sensitivity to mesh refinement
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