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To Verena, my best friend.

E un adolescente disse: Parlaci

dell'Amicizia. E lui rispose dicendo: Il

vostro amico è il vostro bisogno saziato.
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Abstract

The aim of the present work is the study and the nanofabrication of innovative plasmonic
nanostructured materials to develop label-free optical biosensors. The motivation arises
from the need to identify speci�c biological molecules at very low concentrations (below
the picoMolar level) and with high speci�city. This goal is of paramount importance for
instance in diagnostics and prognostics through the early-stage detection of markers in bi-
ological �uids indicating possible altered biological processes. At the same time a fast and
simple detection scheme is required, without the use of labelling strategies. The innovative
plasmonic properties of noble metals (Au,Ag) nanomaterials have been investigated for
biosensing applications since 1983. These plasmonic properties arise from the interaction
of an electromagnetic wave with nanostructured metals, i.e., metallic structures with size
in the order of or smaller than the incident �eld wavelength in the Vis-NIR range: their
most celebrated e�ect is the onset of the surface plasmon resonances (SPR). Prims-coupled
biosensing devices based on SPR of gold thin �lm (thickness lower than 100 nm) were com-
mercialized since 1990. These systems allow to monitor biomolecular interactions and to
quantify a wide range of chemical and biological species down to nanomolar concentrations.
The scienti�c community is strongly active in the optimization of the performances of the
SPR sensors in terms of sensitivity, speci�city and limit of detection. The present work is
based on the application of the SPR properties of ordered Au/Ag nanoarrays for biological
detection, in order to investigate and optimize their sensing performances. The detection
mechanism is based on the variation of the SPR for refractive index changes, which are
due to analyte molecules immobilized on the nanoarray's surface. We have studied three
classes of nanoarrays based on noble metals: (i) semi-nanoshell array, (ii) nanoprism array
and (iii) nanohole array. Gold and silver are the best plasmonic metals for their intrinsic
properties of interaction with an electromagnetic �eld in the Vis-NIR range. The nanoar-
rays were synthesized by Nanosphere Lithography, and they are based on hexagonal arrays
of nanounits such as nanoprims, semi-nanoshells and nanoholes. The synthesis technique
allows to �nely control the morphology and the dimensions of the nanounits and, as a con-
sequence, their optical properties. The samples based on nanoprims and semi-nanoshells
support high electromagnetic �eld localization on their surface, which is due to the ex-
citation of localized SPR; for this reason these systems could be very interesting sensors
to detect thin analyte molecules layers with low molecular weight. The samples based
on nanoholes arrays are characterized by the Extraordinary Optical Transmission (EOT),
which is controlled by the excitation of extended SPR. The longer decay length of this
kind of plasmons makes EOT particularly useful to detect also bigger molecules such as
viruses or bacteria. All the samples were functionalized with the same protocol based on
the biotin-streptavidin couple as the receptor-ligand scheme. The sensing performances
were investigated by exposing the functionalized samples to di�erent analyte concentra-
tions. Moreover, the local and bulk sensitivity to refractive index changes was measured.
The experimental results were also compared with numerical simulations and we found a



good level of agreement between the experimental and simulated data. Silver nanoprisms
arrays were also studied as Surface Enhancement Raman Spectroscopy (SERS) substrates.
They were oxidized with di�erent treatments to investigate the silver oxide e�ect on the
SERS performances. All the obtained results in the present work indicate performances
of the three investigated nanostructures, which are at the state-of-the-art with respect to
literature data.



Estratto

Il tema centrale del presente lavoro di dottorato è lo studio e la nanofabbricazione di
materiali plasmonici inovativi nanostrutturati per lo sviluppo di biosensori ottici label-
free. La motivazione risiede nell'esigenza di identi�care determinate specie biologiche in
concentrazioni sempre minori (inferiore al picomolare) e con una tecnologia di rilevazione
altamente sensibile e speci�ca, al �ne di rilevare la presenza di processi biologici normali
o alterati. Nello stesso tempo si richiede una rilevazione veloce, semplice e che non ne-
cessiti di un marcatore ottico. Le innovative proprietà plasmoniche che caratterizzano i
nanomateriali costituiti da metalli nobili (Au,Ag) sono state investigate per applicazioni
biosensoristiche �n dal 1983. Queste proprietà plasmoniche derivano dall'interazione di
una radiazione elettromagnetica con i metalli nanostrutturati; i.e. strutture metalliche
con dimensioni dell'ordine o minore della lunghezza d'onda della radiazione incidente nel
range del Vis-NIR, e si basano sulla risonanza plasmonica super�ciale (SPR). Disposi-
tivi biosensoristici basati sulla SPR di �lm sottili di oro (spessore inferiore a 100 nm)
accoppiati con un prisma, sono in commercio dal 1990. Questi sistemi permettono di
monitorare interazioni biomolecolari e di quanti�care una vasta gamma di specie chimiche
e biologiche, �no a concentrazioni dell'ordine del nanomolare. La comunità scienti�ca è
fortemente attiva nel cercare di ottimizzare le prestazioni dei sensori SPR in termini di
sensibilità, speci�cità e limite di rilevazione. Il presente lavoro si basa sull'applicazione
delle proprietà SPR di nanoarray ordinati a base di Au e Ag per la rilevazione di molecole
biologiche, al �ne di investigarne ed ottimizzarne le prestazioni. Il meccanismo di sensing
si basa sulla variazione della SPR per variazioni di indice di rifrazione, che sono dovuti
all'immobilizzazione di molecole analita sulla super�cie dei nanoarray. Sono state studiate
tre classi di nanoarray costituiti da metalli nobili: (i) semi-nanoshell array, (ii) nanoprism
array e (iii) nanohole array. Oro ed Argento sono i migliori candidati per applicazioni
nel campo della plasmonica per le loro proprietà intrinseche di interazione con la radi-
azione elettromagnetica, in particolare nelle frequenze del visibile e del vicino infrarosso. I
nanoarray sono stati sintetizzati mediante la tecnica di Litogra�a a Nanosfere, e sono cos-
tituiti da array esagonali di nanounità, cresciute in forma di nanoprismi, semi-nanoshells
e nanoholes. La tecnica di sintesi utilizzata permette di controllare �nemente la morfolo-
gia e le dimensioni delle nanounità e, di conseguenza, le rispettive proprietà ottiche. I
sistemi costituiti da nanoprismi o semi-nanoshells sono caratterizzati da un'elevata ampli-
�cazione di campo elettromagnetico sulla loro super�cie, la quale è dovuta all'eccitazione
della SPR; per questo motivo questi sistemi potrebbero essere molto interessanti per la
rilevazione di spessori molto piccoli di molecole analita con un basso peso molecolare. I
campioni costituiti da nanoholes array sono caratterizzati dalla trasmissione ottica straor-
dinaria (EOT), la quale è controllata dall'eccitazione di SPR propaganti. La maggiore
lunghezza di decadimento di questo tipo di plasmoni rende la EOT particolarmente utile
anche per la rilevazione di molecole più grandi come virus o batteri. Tutti i campioni



sono stati funzionalizzati con lo stesso protocollo di funzionalizazione basato su una cop-
pia modello di molecole biologiche recettore-analita (biotina-streptavidina). Le proprietà
di sensing sono state investigate esponendo i campioni funzionalizzati con uno speci�co
recettore, a di�erenti concentrazioni della molecola analita. Inoltre è stata misurata la
sensibilità locale e bulk in risposta alle variazioni di indice di rifrazione. I risultati sper-
imentali sono stati anche confrontati con dei modelli teorici ottenendo un buon accordo
tra il dato sperimentale e quello simulato. I nanoprismi di argento sono stati anche stu-
diati come possibili substrati per la spettroscopia SERS. I campioni sono stati ossidati con
diversi trattamenti al �ne di analizzare l'e�etto dell'ossido sul segnale SERS. I risultati
ottenuti nel prente lavoro hanno mostrato come le tre tipologie di nanostrutture studiate
mostrino performance che sono allo stato dell'arte rispetto ai valori di letteratura.
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Introduction

The interest in using the Surface Plasmon Resonance (SPR) of metal structures to realize

sensing devices was started in the �rst years of 1980. [8] The SPR sensors are used in many

�elds including the analysis for the food quality [9], for the environmental monitoring [10]

and for pharmaceutical or medical diagnostics. [11�14]

They are based on the excitation of surface plasmons (SP) at a metal/dielectric interface.

SP can be subdivided in extended SP (E-SP) and localized SP (L-SP). The L-SP, in par-

ticular, are characterized by a strong �eld con�nement, and this property can be exploited

for biosensing. Indeed, in the last twenty years, a very intense research activity has been

focused on the investigation and the use of noble metal nanoparticles with di�erent shapes

to realize devices for biological detection. [15�22] The sub-wavelength �eld localization and

the consequent strong enhancement is used to boost the interaction between the incident

light and the analytes in a limited region around the nanostructures to achieve improved

optical sensing either by measuring the shift in the localized surface plasmon resonance

(LSPR) or by using Surface Enhancement Raman Spectroscopy (SERS) enhanced sig-

nal. The principal aim of those studies was to design innovative nanostructures, whose

plasmonic properties can be exploited to realize optical biosensors for the label-free and

high-speci�city detection of low concentrations (below the pM level) of biomolecules with

low molecular weight. The speci�city of the detection can be obtained by functionalizing

the nanostructures with suitable receptors, which are able to selectively bind the corre-

sponding analyte only. In this way, the desired analyte, and only that one, is con�ned in

the localized �eld region, so that the enhanced interaction with light is experienced only

by the desired analyte. The detection event is characterized by the change in the optical

properties of the nanostructures, which, in turn, is due to the change of the refractive index

around them as the analytes bind to the receptors. Compared to other types of biosensors,

the high sensitivity of L-SP-based con�ned nanostructures allows avoiding the use of an

optical marker, obtaining a label-free detection by measuring the change of the extinction
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spectrum with a simple and inexpensive transmission technique. [14] Another advantage

in the use of these systems is that their size is comparable to that of biological molecules,

such as proteins or nucleic acids. As a consequence, in these cases, they can be exploited

even at the single-molecule detection level. [23]

Generally, the L-SP sensors, are based on nanoparticles bound to a substrate rather than

in solution, to avoid their intrinsic instability and the aggregation as a consequence of

variations of the pH or temperature. [14, 24]. Many kinds of plasmonic nanosystems have

been investigated, such as nano-disks, nano-rings [25], nano-holes [26], nano-prisms [27],

nano-shells [28�30], nano-rods [31], [32], [18], nano-gaps [33], nano-dots [34], nano-crescent

moon structures [20]. One of the most simple, inexpensive and used patterning technique

to obtain nanoparticles organized in two-dimensional ordered arrays with high control on

size, morphology and composition, is the Nanosphere Lithography (NSL). [27] In this thesis

we investigated the use of extended and localized SP excitations of ordered nanoarrays to

develop label-free biological sensors. The samples were based on noble metals (gold and

silver) in mono-elemental form, multilayer or alloy. All the nanoarrays were based on a

hexagonal lattice which was due to the hexagonal lithographic mask used for the synthesis.

In particular, we exploited the extraordinary optical transmission (EOT), supported by ex-

tended SP excitations, of Ag-Au nanoholes arrays (NHA)for molecules detection. EOT and

E-SP excitations are dependent by the refractive index of the medium surrounding NHA.

This property was exploited for the use of NHA as very speci�c and sensitive biosensors. L-

SP-based nanoarrays were also studied. In particular the LSPR properties of Ag NPA and

Au:Ag alloy SNSA, which are expressed by the LSPR peak in the visible-NIR range, were

investigated. The samples were functionalized with a biological couple receptor-analyte

and the variation of the LSPR peak with the refractive index change was monitored. The

present thesis is organized as follows:

Chapter 1 will describe the interaction properties of electromagnetic radiation and mate-

rials, in particular in the case of noble metals.

Chapter 2 will describe the commercial SPR-sensors and the strategies reported in litera-

ture to optimize the performances of biological sensors based on localized and propagating

surface plasmons.

Chapter 3 will describe the techniques used to synthesize ordered nanoarrays, the e�ect

of the synthesis parameters on the morphological properties of the samples and the Van

Duyne's biofunctionalization protocol applied to functionalize the nanoarrays with bio-
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logical molecules.

Chapter 4 will deal with the plasmonic biosensing performances of Semi-NanoShell Array

and the comparison with the NanoPrisms Array.

Chapter 5 will deal with the Extraordinary Optical Transmission of NanoHoles Array and

the investigation of this property for biosensing applications.

Chapter 6 will deal with the SERS performances obtained with NanoPrisms Array in

function of the oxidation of Ag, by comparing experimental and theoretical results.





1 Electromagnetic radiation and

metals: how do they interact?

The "core" of this thesis is the use of the optical properties at nanoscale of innovative

materials to obtain ultra sensitive, label-free biosensors. These plasmonic properties involve

mainly noble metals like gold and silver, and arise from the interaction of an electromagnetic

wave with nanostructured metals, i.e. metallic structures with size in the order of or smaller

than the incident �eld wavelength in the Vis-NIR range. Plasmonics is the part of the

nanophotonics which studies how this con�nement at the metal surfaces leads to a high

local �eld ampli�cation on scale lengths much smaller than the wavelength. In particular,

this local �eld ampli�cation opens the way to a great number of possible applications in the

�eld of photonics. The two main categories describing the plasmonic properties of metals

at the nano-scale are extended surface plasmons (E-SP) and localized surface plasmons (L-

SP). In this thesis Au/Ag nanostructures which support E-SP or L-SP will be investigated

as plasmonic transducers for biosensing.

1.1 Drude Model and its corrections for noble metals

Maxwell's equations are the fundamental theory used to describe the interaction between

electromagnetic �eld and materials. Metals are characterized by di�erent behavior in the

regimes frequency from UV to infrared. For low frequencies (λ up to visible range) the

electromagnetic �eld is strongly re�ected and there is not propagation inside the metals.

For higher frequencies (Near infrared-visible) the penetration of the radiation and, as a

consequence, the dissipation increases. In the UV range metals show a dielectric behavior

and the radiation propagates into them. The electronic band structure of di�erent metals

is responsible for the dielectric behavior leading to di�erent properties; as an example

alkali metals show an ultraviolet transparency while noble metals show an high absorption
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of radiation in UV frequencies. This absorption, which characterize gold and silver in

particular, is due to electrons transitions between electronic bands.

James Clerk Maxwell [1831-1879] uni�ed in a set of 4 equations the interaction between a

material and electric and magnetic �elds, starting from Gauss's, Faraday's and Ampere's

laws. These equations describe the relation between D (the dielectric displacement),B

(the magnetic induction),H (the magnetic �eld) and E (the electric �eld) with ρext (the

external charge density) and Jext (the current density) [1]:

∇ ·D = ρext (1.1)

∇ ·B = 0 (1.2)

∇× E = −∂B
∂t

(1.3)

∇×H =
∂D

∂t
+ Jext (1.4)

The link between the polarization P and the magnetization M and the four macroscopic

�elds, D,B,H, and E is expressed by the following equations:

D = ε0E + P (1.5)

H =
1

µ0

B−M. (1.6)

where ε0 is the electric permittivity in vacuum, ε0 ≈ 8.854 × 10−12 F/m, while µ0 is

the magnetic permeability in vacuum, µ0 ≈ 1.257 × 10−6 H/m. Neglecting the magnetic

response by considering not magnetic media, the e�ect of an electric �eld impinging on

a material can be described by the polarization P, which is the average of microscopic

dipoles orientations whit the incident �eld. P is a material property de�ned as the electric

dipole moment per unit volume. The internal charge density ρint and P are related by

∇ ·P = −ρint. Imposing the charge conservation (∇ · J = −∂ρ
∂t
) we arrive to the equation

between the current densities (J) and the polarization:

J =
∂P

∂t
. (1.7)
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Combining the �rst Maxwell equation with equation 1.5 and taking into account that ρext
+ ρ = ρtot, ∇ · E results:

∇ · E =
ρtot
ε0
. (1.8)

Considering linear, isotropic and non magnetic materials, the constitutive relations between

the four macroscopic �elds and the material properties in terms of ε and µ are:

D = εε0E (1.9)

B = µµ0H. (1.10)

where ε is the relative dielectric constant and µ is the relative permeability (µ = 1 for non

magnetic media).

The material response, described by the polarization P, and the incident �eld E are related

by ε0 and the dielectric susceptibility χ:

P = ε0χE. (1.11)

The important relation we have to consider is between the internal current density J and

the electric �eld E, which are related by the conductivity σ:

J = σE. (1.12)

The most important quantities to describe the material response to an impinging electro-

magnetic �eld are ε and σ. We have to take into account that the response of the material

is strongly dependent by the radiation angular frequency ω and by the wave vector K.

This is expressed by the following equation:

ε(K, ω) = 1 +
iσ(K, ω)

ε0, ω
. (1.13)

ε(K,ω) can be simpli�ed into ε(K=0,ω) and so ε(ω) in the approximation of spatially local

response. This is correct when the λ in the medium is higher with respect to the size of

unit cell or the electrons mean free path, i.e. this is veri�ed in the ultraviolet region. The

main property which describes how a material interacts with an electromagnetic �eld is
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the dielectric function ε(ω), usually de�ned as:

ε(ω) = ε1(ω) + iε2(ω) (1.14)

The dielectric function is related to refractive index (ñ) by these equations:

ñ =
√
ε (1.15)

ε1 = n2 − k2 (1.16)

ε2 = 2nk (1.17)

n2 =
ε1
2

+
1

2

√
(ε1)2 + (ε2)2 (1.18)

k =
ε2
2n

(1.19)

where k is the extinction coe�cient and describes the absorption of the incident �eld by

the medium. It is related to α (the absorption coe�cient) by the Beer's law:

I(x) = I0e
−αx (1.20)

α(ω) =
2k(ω)ω

c
(1.21)

The imaginary part of ε (ε2) describes the radiation absorption by the propagation through

the medium. In a wide range of frequencies of the incident �eld the metal behavior is

approximated to a plasma model, based on a free electron gas. This is also known as

Drude model. The Drude model is based on the following assumptions:

• the free electrons of a metal form a free electrons gas;

• the electrons oscillate in presence of an electromagnetic �eld in a positive ions lattice;

• the electron-electron interactions are neglected;

• the electrons motion is random for the collisions with positive ions;

• the ions are considered immovable for their large mass;

• the details of the positive lattice potential are not included.

The electron-ion collisions occur at frequency γ = 1/τ (where τ is the relaxation time,

(10−13-10−14 s at room T)). If these assumptions are satis�ed, the dielectric function of a free

electron gas can be calculated in an harmonic oscillator approximate model. The equation

of motion for an electron in presence of an external electric �eld E in this approximation



1.1 Drude Model and its corrections for noble metals 9

is:

mẍ +mγẋ = −eE. (1.22)

We consider an harmonic time dependance of the external �eld, E = E0e
−iωt. One solution

of the equation which describe the electron oscillation is x = x0e
−iωt. If we use this solution

in the equation 1.22 we obtain:

x (t) =
e

m (ω2 + iγω)
E (t) . (1.23)

The displaced electrons give a contribution to the polarization in terms of P = −nex.
With the appropriate substitutions in equation 1.5 the relation between the macroscopic

�elds D and E became:

D = ε0

(
1−

ω2
p

ω2 + iγω

)
E, (1.24)

where ωp is the plasma frequency of free electron gas ((ωp)2= ne2/ε0m); m is the e�ective

optical mass of each electron and n is the metal electron density. In this model m can be

determined from bands curvature from the band structure of di�erent metals. The plasma

frequency is an intrinsic property of metals and it is usually in the ultraviolet frequency

range. The dielectric function of a gas of free electrons which satis�es the Drude Model

assumptions is:

ε(ω) = 1− (ωp)
2

ω2 + iγω
(1.25)

ε1(ω) = 1− (ωp)
2τ 2

1 + ω2τ 2
(1.26)

ε2(ω) =
(ωp)

2τ

ω(1 + ω2τ 2)
(1.27)

In the high frequency limit (ω � τ) the dielectric function is essentially real (ε(ω) =

1 − ω2
p/ω

2). This model can be applied in a wide range of frequencies, except for the

region at which the interband transitions occur. In particular, for noble metals, such as

gold and silver, the interband transitions occur in the visible and near Uv range. These

transitions are due to the excitation of electrons from the �lled band below the Fermi

surface to higher energy bands. This phenomena leads to an increase of the imaginary

part of the dielectric function, ε2, and Drude Model can't be applied as is. In the case ω

� τ−1, i.e. in the regime of low frequencies, |ε2| exceeds on |ε1| and metals are very good
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absorber for the radiation. The plasma model in the regime of ω � ωp (ε → 1) can not

be applied in particular for noble metals such as Ag, Au and Cu. For these metals, in the

frequency region ω > ωp, there is another contribution to the polarization. P is not due

only to free s electrons but there is a contribution from the electron in d bands close to

the Fermi surface, and a correction to the model is needed. The correction to P is done

by adding P∞ = ε0 (ε∞ − 1)E to eq. 1.5. P now represents only the polarization due to

free electrons. Using this correction the dielectric function for a free electron gas is:

ε (ω) = ε∞ −
ω2
p

ω2 + iγω
. (1.28)

The dielectric constant of these noble metals was experimental measured by Johnson and

Christy (1972). Using the Drude Model described in equation 1.28, we can see in �gure

1.1 that this model is a good representation of the experimental data only in the region of

energies lower than the band transitions. To introduce the correction to this mismatch we

a) b)

c)                                                                    d)

Figure 1.1: a),b) Real and imaginary part of the dielectric constant of Ag from the literature values of
Johnson and Christy (red dots) and �t with the model described in equation 1.28 (black line);
c),d) The case of gold. [1]

have to consider the bound electrons, which are responsible for the interband transitions.

This is done by adding a term to the equation of motion 1.22 in which ωj is the resonance



1.2 Surface Plasmons (SP) 11

frequency of a bound electron. This correction takes into account the processes due to

bound electrons with an additional Lorentz-oscillator function Fj/(ω2
j -ω

2-iγjω), where Fj
is the oscillator strength of the dipolar transition. The Lorentz-oscillator function in the

�nal dielectric constant is calculated for each transition j from 1 to N. Aj, Bj and Cj are

the corresponding coe�cients.

mẍ +mγẋ +mω2
jx = −eE. (1.29)

ε (ω) = ε∞ +
iσ

ε0ω
+

N∑
j=1

Cj
ω2 + iAjω +Bj

. (1.30)

The �t of the Johnson and Christy data for gold and silver with the equation 1.30 is in a

very good agreement.

1.2 Surface Plasmons (SP)

1.2.1 Extended Surface Plasmons (E-SP)

Extended Surface Plasmons (E-SP) are electromagnetic surface waves which propagate at

a metal/dielectric interface. These electromagnetic excitations are evanescently con�ned

in the perpendicular direction with respect to the interface plane. E-SP arise from the

coupling between the electron plasma of a metal and an incident electromagnetic �eld.

The properties of these excitations can be studied using the Maxwell's equations. They

are solved in the following simple case, taking into account these assumptions:

• there is a planar interface between two media, a metal(ε1) and an insulator(ε2);

• the insulator is a non-absorbing medium with Re[ε2]> 0;

• the metal is described by Re[ε1(ω)] < 0;

• z direction de�nes the perpendicular direction to the interface;

• x,y are the coordinates of the interface plane;

• the direction of the traveling wave is x;

• ε changes only in the z direction (ε = ε (z)).

The initial point is to consider the wave equation:

∇2E− ε

c2
∂2E

∂t2
= 0. (1.31)
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The equation has to be solved for the two media (metal vs insulator). We consider an

electric �eld with a harmonic time dependence described by E (r, t) = E (r) e−iωt, to obtain

the Helmholtz equation:

∇2E + k20εE = 0, (1.32)

where k0= ω/c is the wave vector of the propagating wave in vacuum. The electric �eld

of the traveling wave in x direction is E (x, y, z) = E (z) eiβx. β is called the propagation

constant of the waves and it is the component of the wave vector in the propagation

direction x (β = kx). The important results obtained by solving the equation 1.32 is the

dispersion relation:

β = k0

√
ε1ε2
ε1 + ε2

. (1.33)

This relation is also valid for conducting media with complex dielectric function, and

so a possible attenuation of the �eld is included. The solution of Maxwell's equations

for propagating waves con�ned to the interface (this means an evanescent decay in the

perpendicular direction) with a p polarization requires that Re[ε1] < 0 if Re[ε2] > 0.

Materials with opposite signs of the real part of their dielectric function can support SP,

i.e. a metal vs insulator. The con�nement of the wave can be expressed by ẑ = 1/ |kz|,
where kz is the component of the wave vector perpendicular to the interface. ẑ is the

evanescent decay length of the �elds. As it can be seen in �gure 1.2 a, the E-SP dispersion

curve lies to the right of the light line in air, and direct excitation is thus hindered. To

achieve E-SP excitations alternative phase-matching conditions are required. The most

common techniques to overcome this requirement are based on charged particle impact,

prism coupling (see �gure 1.2 b), grating coupling, highly focused optical beams and near-

�eld excitation.

The use of a periodic structure, such as a grating or a holes array with period a, is very

interesting to overcome the di�erence between the kx (ksinθ) of the incident radiation and

β by this relation:

β = ksinθ ±∆kx (1.34)

β = ksinθ ± ν2π/a (1.35)

where ν is an integer (1,2,3...) and 2π/a is the reciprocal vector of the periodic structure.

The reverse of this phenomena is possible: E-SP on a grating structure can couple to light
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a) b)

Figure 1.2: a) Dispersion relations of E-SP of a Drude metal/air or silica interface. b) Dispersion relations
of E-SP in presence of the prism coupling. [1]

and radiate. The other most common strategy to achieve SP excitation is based on the

prism coupling. This is based on a multilayer system: a thin metal �lm is in the middle of

two insulators with di�erent dielectric function. This is the strategy used in all commercial

SPR sensors. One of the insulator is based on a prism with higher refractive index with

respect to the other dielectric (usually is air ε=1). The impinging radiation is re�ected at

the interface between the prism and the metal (kx = ksinθ√εprism). SP are excited and can

propagate at the metal/air interface, with β is between the light line of air and the prism,

as indicated in �gure 1.2 b. The typical con�gurations of prism coupling are Krestchmann

or Otto. In the �rst one a thin metal layer is deposited on the top surface of a prism, while

in the second there is an air gap between the metal �lm and the prism. These methods

are both based on total internal re�ection. In Krestchmann con�guration the radiation

impinge on the glass prism with an angle higher than the critical angle for total internal

re�ection. The re�ected beam excites E-SP waves at the second metal/air interface. In

the Otto con�guration the total internal re�ection occurs at the prism/air interface, and

by tunneling the E-SP are excited to the metal/air interface.

1.2.2 Localized Surface Plasmons (L-SP)

Localized surface plasmons (L-SP) are con�ned excitations with di�erent properties with

respect to the extended case. These excitations occur at the interface between a sub-

wavelength noble metal particle and a dielectric medium, when interacting with an incident

electromagnetic �eld. It is due to the coupling of the free electron plasma of the metal
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with the �eld. The most simple case to describe this phenomena is a metallic spherical

nanoparticle embedded in a dielectric medium. The incident �eld causes an oscillation

of the free electrons. The curved surface of the particle is the responsible of a restoring

force acting on the electrons. When particular conditions are satis�ed, this phenomena

results in a resonance which ampli�es the �eld inside and in the near-�eld zone outside

the nanoparticle. This resonance is named Localized Surface Plasmon Resonance (LSPR).

The excitation of LSPR can be obtained by direct illumination, and this is an advantage

for optical applications with respect to E-SP. Noble metals such as gold and silver are

the best performer of plasmonic phenomena, for their intrinsic dielectric properties. The

characteristic λ of a LSPR depends on the morphological and compositional properties of

the nanoparticles involved and on the dielectric function of the medium at the interface. In

the case of Ag/Au nanoparticles in a wide range of con�gurations, the LSPR can be excited

by using radiation in the visible-near infrared region. The LSPR theory is fully explained

by Mie Theory for spherical isolated sub-wavelength particles. When the geometry is more

complicated or interaction e�ects between particles occur, numerical simulations based on

the Maxwell's equations can be used to study the system.

Quasi-static approximation

We now consider an isolated spherical particle with diameter d and dielectric function ε(ω),

embedded in a non-absorbing medium with dielectric constant εm . If the wavelength of

the incident beam is much larger than d (d � λ), we can use the quasi-static approxi-

mation. The adjective "static" refers to the phase of the oscillating �eld which can be

considered constant over the volume of the particle. The most simple case is based on

these assumptions (see �gure 1.3) and it is described by Mie Theory:

• the particle shape is a sphere of radius a;

• the sphere is homogeneous and isotropic with dielectric constant ε(ω);

• the dielectric medium at the interface is non-absorbing (ε = εm);

• an uniform and static �eld E illuminates the sphere E = E0ẑ.

In the quasi-static approximation the sphere can be considered an ideal dipole under the

e�ect of a static �eld. E induces a dipole moment p inside the sphere proportional to |E0|,
expressed by this equation:

p = 4πε0εma
3 ε− εm
ε+ 2εm

E0 (1.36)
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Figure 1.3: Homogeneous sphere in an electric media and illuminated with an electrostatic �eld with
lines parallel to z axis.

Using the relation between p and the polarizability α (p=ε0εmαE0) we obtain:

α = 4πε0εma
3 ε− εm
ε+ 2εm

(1.37)

In this way we can note that α has a resonant enhancement for the minimum of |ε+ 2εm|.
If Im[ε] of the metal sphere is negligible the equation can be expressed by the Frölich

condition:

Re [ε(ω)] = −2εm (1.38)

The Frölich condition shows the dependence of the Localized Surface Plasmon Resonance

(LSPR) from the dielectric function of the medium which surrounds the nanoparticle: in

particular for an increase of εm the resonance red-shifts. This is the principal optical feature

of nanoparticles which are exploited as refractive-index sensors for many applications. Also

the E inside and outside the particle is enhanced by this resonance, as reported in these

equations (n is the unit vector):

Ein =
3εm

ε+ 2εm
E0 (1.39a)

Eout = E0 +
3n (n · p)− p

4πr3ε0εm
, (1.39b)

The �eld enhancement of a wide range of nanoparticles which di�ers in morphology, size

and composition is exploited to amplify the detection signal of some techniques, such as

the Surface Enhanced Raman Spectroscopy. Considering the scattering and absorption

properties of nano-particles (with radius R), which are expressed in the respective cross-

sections, we can note that for particles with radius R � λ the absorption prevails on the
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scattering:

σsca =
k4

6π
|α|2 =

8π

3
k4R6

∣∣∣∣ ε− εmε+ 2εm

∣∣∣∣2 (1.40a)

σabs = kIm [α] = 4πkR3Im

[
ε− εm
ε+ 2εm

]
. (1.40b)

Ellipsoidal particles

Bohren and Hu�man in 1983 studied the polarizability of two particular cases of not

spherical particles. These dipolar approximations are valid, as before, for particles smaller

than the wavelength. The �rst case is that of ellipsoidal nanoparticles. For an ellipsoid

with semiaxes a1 ≤ a2 ≤ a3, the polarizability along the three axes αi (i=1,2,3) results:

αi = 4πa1a2a3
ε(ω)− εm

3εm + 3Li(ε(ω))− εm
(1.41)

where Li are geometrical factors. In the case of prolate (a2 = a3) or oblate (a1 = a2)

spheroids, two resonances are observed due to electron plasma oscillations along the minor

or major axis. The resonance originates from the oscillation along the major axis of a

spheroid is red-shifted with respect to a sphere of the same volume. This result shows

that it is possible to control the LSPR frequency for example by changing the particles

aspect-ratio. Another particular case they studied is that of core/shell particles. These

are constituted by a dielectric inner core (ε1(ω)) and a thin metallic concentric coverage

(ε2(ω)). The polarizability α is:

α = 4πa32
(ε2 − εm)(ε1 + 2ε2) + f(ε1 − ε2)(εm + 2ε2)

(ε2 + 2εm)(ε1 + 2εm) + f(2ε2 − 2εm)(ε1 − ε2)
(1.42)

where f = a31/a
3
2 , a1 and a2 are the inner and outer radius respectively, εm is the surrounding

medium.

Energy shift of LSPR for larger particles

If we consider larger particles, the quasi static approximation can not be applied because

there is a phase change of the external �eld across the particle volume. In this case a more

complex electrodynamic approach is used.

For a larger sphere of volume V the polarizability obtained by the Mie Theory is, at the
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second order,

α =
1− 1

10
(ε+ εm)x2 +O (x4)

1
3

+ εm
ε−εm −

1
30

(ε+ 10εm)x2 − i4π2ε
3/2
m

3
V
λ30

+O (x4)
, (1.43)

where:

• x = πR
λ0

is the size parameter ;

• x2 at numerator takes into account the retardation of the �eld over V (resonance is

energy shifted);

• x2 at denominator includes the retardation of the depolarization �eld into the particle

(resonance is energy shifted);

• x2 at denominator also reduces the in�uence of Im[ε(ω)] increasing the polarization;

• the imaginary term at denominator is due to radiation damping (L-SP decay into pho-

tons.)

For larger particles the restoring force is lower because the opposite charges are at higher

distance with respect to very small particles. The energy of the resonance is red-shifted

with the increase of the particle's size. When increasing the size of particles which can not

be treated with the quasi static approximation, the radiative decay into photons and the

radiation absorption take to a damping of the LSPR. In particular for noble metals the

absorption is due to intra/inter band transitions. The �rst occur in the conduction band,

while the second are electron excitations from d to sp band.

Electromagnetic coupling in ordered particles arrays

In general in particles arrays additional shifts are expected for the interaction between the

localized modes. The random or ordered con�guration of the particle's ensemble can a�ect

the type of interaction. In particular, for random structures the coupling e�ects can occur

only for very close particles. In the case of ordered arrays of particles with size a and

interparticle distance d, with a � d, particles can be treated as isolated dipoles. In the

case of very close particles and d � λ, in the space between them there is an high �eld

localization and a scattering suppression. The particles can be seen as interacting dipoles.

This is a near �eld interaction which prevails with a d−3 distance dependence. These regions

of high �eld ampli�cation are called hot spots. The LSPR frequency is di�erent from the

case of isolated particles, and it is red or blue shifted depending by the polarization of the

incident beam. This is due to the di�erence in the charge distribution of the particles, and
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so to the electron plasma restoring force, with the polarization. For higher distance between

the particles the far-�eld interaction dominates with a d−1 dependence. The frequency of

LSPR and the spectral width are a�ected also by the far �eld coupling.



2 SPR-based Biosensors

2.1 Introduction

A sensitive, speci�c and fast detection of biological markers indicating normal or pathogenic

biological processes is a very important purpose in biotechnology. To achieve an e�cient

detection, in particular for medical diagnostics, there is the necessity to detect very low

concentrations (below the picomolar, pM level) of small molecules (with molecular weight,

MW less than 8kDa) in real time and without the use of labelling strategies. Biological

and chemical detection has been strongly improved by innovative optical sensors based on

Surface Plasmon Resonance (SPR). SPR detection can be applied to any kind of biological

or chemical analyte such as proteins, oligonucleotides, virus, bacteria, toxines, DNA chains,

cancer markers, allergy markers, antibodies, drugs and hormones. The �rst experimental

works on the use of SPR for gas and biological sensing are dated 1982. The world's �rst

SPR-based detection device for biological applications was commercialized in the end of

1990, from BIAcorer. Nowadays, SPR biosensors are commercialized by several companies

and they are used to quantify and characterize the interactions between biomolecules in

real time and without labeling. Moreover, there is a very active and intense research

in the academic laboratories and in the research centers of companies to optimize the

performances of SPR sensors in terms of sensitivity, resolution and limit of detection. To

better understand the strategies used to improve the performances of SPR sensors a brief

analysis of the physical mechanism which allows the sensing detection will be presented.

SPR biosensors are a class of optical sensors based on the E-SPR of noble metals (Au,Ag)

at the nanoscale. As explained in chapter 1 these electromagnetic excitations occur at the

interface between two media characterized by the real part of the dielectric function ε(ω)

of opposite sign such as a metal (Re(ε(ω)) < 0) and a dielectric (Re(ε(ω)) > 0)). The

detection mechanism is based on the measure of a refractive index change occurring at

the interface between the metal and the surrounding dielectric medium. The propagation

19
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constant (β) of E-SP at the interface between a semi-in�nite dielectric and a metal is

expressed by [7]:

β = k

√
εmn2

s

εm + n2
s

(2.1)

where k is the free space wave number, εm is the metal dielectric function (εm = εmr +

iεmi), and ns is the dielectric refractive index. Since E-SP occur at the interface between

two media with dielectric function of opposite signs (εmr < - n2
s), β will be always higher

than the propagation constant of electromagnetic (e.m.) wave into the dielectric. This

means that the excitation of E-SPR can not be achieved directly by illuminating a planar

interface metal/dielectric. The momentum of the incident radiation has to be increased

to match that of the E-SP. This additional momentum can be obtained by three main

strategies: (i) the use of attenuated total re�ection (ATR) in prism couplers; (ii) the use of

ATR in optical waveguides; (iii) the use of di�raction at the surface of grating or periodic

structures [35, 36]. All these strategies are sketched in �gure 2.1.

2.2 SPR sensors

Figure 2.1: Basic schemes for SPR sensors with (a) Kretschmann con�guration based coupling; (b) wave-
guide based coupling; (c) and grating coupling; (d) Re�ection ratio of light due to SPR with
angular modulation or wavelength modulation. [2]

Concerning equation 2.1, we can observe that E-SP may be supported by materials which
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satisfy εmr < - n2s. Noble metals like gold and silver are the best materials which ful�ll

this condition in the VIS-NIR range, with reasonably small losses. The more interesting

characteristics of the E-SP which propagate at the interface between a thin metal layer

(Au or Ag) and the water are reported in table 2.1. We can observe that the E-SP

penetration depth is highly asymmetric, by comparing the corresponding values into the

metal and into the dielectric, and that there is a higher con�nement of the wave into the

dielectric. In this feature lies the sensing mechanism of SPR sensors. Silver is the best

plasmonic performer for its higher �eld localization into the dielectric with respect to gold,

in particular for wavelengths in the visible range. Because of this high �eld localization into

the dielectric, β of the E-SP and, as a consequence, the resonance condition, is strongly

sensitive to the properties of the dielectric at the interface with the metal. The thin metal

layer constitutes basically the transducing medium of the SPR sensors. The variations of

the refractive index of the dielectric produce a change of the resonance condition to excite

E-SP: this phenomenon can be detected by analyzing the properties of the excited optical

wave. The detection approach of SPR-based sensors can be subdivided in four categories:

1. angular interrogation: the coupling between the incident monochromatic light and sur-

face plasmon results in a dip in the angular spectrum of the re�ected light (see �gure

2.1 d);

2. wavelength interrogation: the polychromatic light-SPR coupling is observed as a dip in

the wavelength of the re�ected light (see �gure 2.1 d);

3. intensity interrogation: the intensity of the output signal is measured at a single inci-

dence wavelength and angle;

4. phase interrogation: the shift in phase of the detected wave is measured at a single

incidence wavelength and angle.

The main properties that characterize the performances of SPR-based sensors are the

sensitivity and the resolution. The sensitivity is the derivative of the SPR parameter with

respect to the refractive index change. The sensitivity is expressed in deg RIU−1, in nm

RIU−1 or in % RIU−1 for angular, wavelength and intensity interrogation, respectively

(RIU is the refractive index unit). The resolution is de�ned the minimum change in the

monitored parameter to be resolved by the sensor, and it depends on the accuracy of the

SPR parameter's measurements. The resolution is calculated by dividing the accuracy on

the measure by the bulk refractive index sensitivity; it is quanti�ed in Refractive Index
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Metal layer Ag Ag Au Au

λ λ= 630 nm λ= 850nm λ= 630nm λ= 850nm

Propagation length (µm) 19 57 3 24

Penetration depth into metal (nm) 24 23 29 25

Penetration depth into dielectric (nm) 219 443 162 400

Concentration of �eld in dielectric (%) 90 95 85 94

Table 2.1: Characteristics of surface plasmon polaritons waves at the metal-water interface. [7]

Unit (RIU). The transducing medium and the optical system de�ne the sensitivity, the

stability and the resolution of SPR sensor. To obtain an e�cient biological sensing, e.g. in

the �eld of medical diagnostics, the SPR a�nity biosensors were developed; these systems

are able to detect only a speci�c analyte in a solution containing multiple species. In SPR

a�nity biosensors a speci�c target molecule is immobilized on the transducing medium (the

thin metallic �lm) and then the sensor is exposed to a liquid containing the corresponding

ligand and other species. These sensors take advantage of the high a�nity between some

couples of target-ligand molecules. The selectivity of the biorecognition event depends on

the choice of the appropriate target and on the immobilization method; these parameters

have direct impact also on the sensitivity and on the limit of detection (LOD) of the SPR

sensor. [8] The LOD is usually de�ned as the concentration of analyte that produces an

output signal corresponding to 3 standard deviations of the signal measured for a sample

with zero analyte concentration. [8]

2.2.1 Prism-coupled SPR sensors

The most commonly used geometry in SPR sensors is the Krestchmann con�guration (see

�gure 2.1 a): an incident wave passes through a prism with high refractive index and it

is totally re�ected at the interface between the prism and a thin metal layer (thickness

around 50 nm). This phenomenon generates an evanescent wave which penetrates into the

metal. The condition reported in equation 2.1 for the propagating constant of the E-SP

can be ful�lled by controlling the angle of incidence (θ) of the electromagnetic �eld. For
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prism-coupled SPR sensors the matching condition is expressed by:

2π

λ
npsin(θ) = Re {β} (2.2)

where np is the prism's refractive index. The matching of the resonant condition results in

the coupling of the evanescent wave with the surface plasmon polaritons excitations at the

metal/ air interface.

2.2.2 Gratings-coupled SPR sensors

The other common strategy to excite E-SP is the use of a metal grating, as reported in

�gure 2.1 c. An electromagnetic �eld arrives from the dielectric medium and impinges on

the metal grating; the di�racted waves can be coupled to a surface plasmon if their total

component of momentum parallel to the interface is equal to the propagation constant of

the surface plasmon. This matching condition is expressed by:

2π

λ
ndsin(θ) +m

2π

Λ
= ±Re {β} (2.3)

where nd is the refractive index of the dielectric medium, θ is the angle of incidence, m is

an integer which denotes the di�raction order and Λ is the pitch of the grating.

2.2.3 Biological detection by SPR-based sensors

Prism-coupled SPR-sensor and intensity interrogation

Many strategies were used to enhance the sensitivity of SPR sensors based on the inten-

sity modulation. One innovative approach was based on the combination of magneto-

optic activity of magnetic materials with surface plasmon excitations. Using this strategy,

Sepúlveda and co-workers demonstrated an enhanced sensitivity by a factor of 3 with re-

spect to common SPR techniques based on prism-coupler. Using a protein as analyte test

(Bovine Serum Albumine) they obtained a resolution of 5 × 10−6 RIU. [37] One of the most

widely approach used to achieve better performances in terms of sensitivity was based on

SPR imaging, in particular for biological sensing. [38�40] SPR imaging is usually based on

a prism-coupled SPR con�guration. The detection signal is the intensity of the re�ected

light which is correlated to the distribution of the refractive index at the surface of the
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metal thin �lm. Nelson and co-authors [41] used SPR imaging to detect small molecules

such as ologonucleotides. SPR sensors based on nearinfrared SPR imaging were used to

detect (18-base) unlabeled RNA and DNA oligonucleotides at concentrations as low as 10

nM, which corresponds to about 10−5 RIU. [41] SPR imaging technique was also studied

with a controllable angle of incidence system. Protein-DNA interactions were measured

and protein in concentration lower than 1 pg was measured. [42] An innovative approach

based on SPR imaging was reported by Zybin and collaborators. [43] They exploited a

dual-wavelength SPR imaging system and by using a sucrose solutions they attained an

absolute resolution of 5 × 10−6 RIU. [43] They applied this technique to the detection of

biological systems, such as the biotin-streptavidin couple, and they reported that a ∆n =

2 × 10−6 RIU could be measured. Piliarik, Homola and co-authors [44] reported a new

approach of SPR imaging based on polarization contrast and excitation of surface plasmons

on spatially patterned multilayers. They obtained a limit of detection for oligonucleotides

(23-base) lower than 100 pM. [44]

Prism-coupled SPR-sensor and angular or wavelength interrogation

In 1990 a SPR sensor based on angular interrogation was developed and commercialized

by the company Biacore. The resolution of these systems is down 10−7 RIU. Homola and

collaborators exploited many strategies to obtain higher performances by SPR sensors.

[45, 46] They developed a wavelength division multiplexing SPR sensor (WDMSPR). Two

con�gurations of WDMSPR sensors were exploited to obtain multiple plasmon excitations

in di�erent area of the trandsucing medium and, as a consequence, multiple dips of the

signal output. With this strategy they obtained a resolution around 10−6 RIU. [45,46] An

ultra-high sensitive SPR sensor based on excitation of a long range surface plasmon was

developed and reported in the works of Homola and Nenninger. [47] They obtained good

agreement between theoretical and experimental results and a very high sensitivity of the

sensors of 5.7 × 104 nm RIU−1 and a resolution of 2.5 × 10−8 RIU. [48]

2.2.4 SPR-a�nity biosensors and biorecognition elements

SPR a�nity biosensors are devices which are able to detect only a speci�c analyte in a so-

lution of multiple species. To obtain this, a speci�c biorecognition element is immobilized

on the surface of the transducing medium of a SPR sensor. The most widely strategy is
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to use a �ow cell in which the analyte in a liquid solution is in contact with the biorecog-

nition element immobilized on the SPR transducing medium. Many kind of chemical or

biological species can be bound to a gold surface by functionalization strategies. Biacore

company provides a set of functionalized SPR gold surfaces for di�erent kinds of applica-

tions. The ligands usually attached to the sensor surface are able to detect biotinylated

proteins, peptides, nucleic acids, carbohydrates, lipids, lipid vesicles and liposomes. The

performances of SPR sensors (sensitivity, speci�city and LOD) are strongly a�ected by the

choice of the appropriate biorecognition element and the strategy used to bind it on the

surface. Antibodies are the most commonly used biorecognition elements, in particular for

their high a�nity against target molecules. Peptides are an alternative to antibodies for

their easy manipulation, low cost and higher stability; they are used for the detection of

antibodies or heavy metals. Oligonucleotide sequences, DNA or RNA based, are the last

type of biorecognition element exploited to detect targets such as proteins, nucleic acids,

cells and tissues. [49]

Strategy to immobilize the biorecognition elements on SPR surfaces

To obtain an e�cient sensing strategy it is important to immobilize a su�cient num-

ber of biorecognition elements and in the same time to minimize the nonspeci�c binding.

Moreover, the sensing element have to be immobilized on the substrate without altering

its biological property. The strategy commonly used is based on the immobilization of

a carboxymethylated dextran matrix or alkanethiolates self assembled monolayers (SAM)

based on a mix of thiols with di�erent chains (from n = 12 to higher). One of the great

advantages in using SAM is due to the covalent bond between sulphur and gold and, as a

consequence, the high stability of the biorecognition layer on the SPR substrate. Usually,

two di�erent thiols are immobilized, one is the spacer and it is shorter than the other. The

spacer avoids the aspeci�c binding and it is commonly based on a oligo(ethylene glycol)-

terminated alkanethiolate; this kind of molecules constitutes a nonfouling background on

the sensor surface. The other thiol is longer than the spacer and it provides a functional

group to attach the biorecognition element.
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2.3 Biosensing performances of Localized SPR

As explained in chapter 1 surface plasmons can be divided in two categories: extended

and localized. LSPR (localized surface plasmon resonance) is a nonpropagating surface

plasmon excitation, which is supported by noble metals nanoparticles (NPs). This excita-

tion can be observed by direct interaction between an electromagnetic �eld, usually in the

visible-NIR range, ad nanoparticles. LSPR is observed as a peak in the extinction spectrum

and can be measured with a simply, not expensive, fast and miniaturisable transmission

technique. As the extended case, LSPR is very sensitive to refractive index changes at the

interface between the nanoparticles and the dielectric surrounding medium. As previously

described, all the commercialized sensor are based on the E-SP, but there is a great interest

and activity in the scienti�c community in exploiting the L-SP to realize more speci�c and

sensitive LSPR sensors due to the expected better sensitivity of L-SP with respect to E-SP,

to small variations of the refractive index of tiny layers at their surface. This is due to

the shorter decay length of L-SP in the dielectric with respect to E-SP (roughly an order

of magnitude). In the last years, plasmonic biosensors based on LSPR have been demon-

strated to have huge sensitivity to extremely small changes in the refractive index of the

surrounding medium , as well as to very thin layers of biomolecules. [50] Very recently, plas-

monic biosensors based on random distributions of non-interacting triangular nanoprisms

were used for the �rst time for the detection of miRNAs in human plasma from pancreatic

cancer patients, revealing sub-pMolar sensitivity and speci�city, without the need of RNA

extraction. [51] The shape and the position of the extinction spectrum, in particular the

λmax, depends on the particles shape, size, aspect ratio, composition and dielectric envi-

ronment. These characteristics can be easily controlled by the chemical or lithographic

synthesis techniques. NPs can be chemically synthesized and then immobilized on a sub-

strate; this is a common strategy to obtain random distributions of nanoparticles. [51]

Gold nanoparticles were usually bound to silanized silica or glass substrates. Otherwise,

nanoparticles arrangements can be synthesized by lithographic techniques to obtain or-

dered arrays. The most common technique to obtain ordered arrays of nanoparticles is

the Nanosphere Lithography, which will be described in the following chapters. [52] The

transduction mechanism of LSPR sensors is the same used in the case of the extended

SPR-sensors. Nanoparticles can be functionalized with biorecognition elements and then

can be exposed to the analyte solution. The binding between the biorecognition element



2.3 Biosensing performances of Localized SPR 27

and its corresponding target results in a variation of the refractive index at the metallic

nanoparticle/dielectric medium interface. This refractive index variation can be detected

as a red-shift of the LSPR extinction spectrum with a simply transmission technique, in

real time, and without labelling strategies. The λmax variation (∆λmax) of LSPR peak in

response to refractive index changes, can be described by the following equation:

∆λ ≡ m(nadsorbate − nmedium)(1− e(−2d/ld)) (2.4)

where m is the sensitivity factor in nm per RIU, nadsorbate and nmedium in RIU are the

refractive indices of the adsorbed molecules on the NPs's surface and the dielectric sur-

rounding them, d is the thickness of the adsorbed layer in nm and ld is the �eld decay

length in nm. [50] In order to achieve higher sensing performances, the sensitivity factor

has to be maximized and the �eld decay length minimized.

2.3.1 Techniques used to enhance the sensitivity of LSPR sensors

Higher performance of LSPR sensors were obtained by Dahlin and co-authors. [53] They

used an LSPR substrate based on nanoholes arrays to measure biotin-neutravidin binding

with High resolution LSPR spectroscopy (HR-LSPR). [53] With this technique they ob-

tained a detection limit lower than 0.1 ng cm−2. HR-LSPR is based on the collection of

more light by photodiode arrays and on the use of algorithms to calculate the maximum

wavelength of the extinction spectrum in real time. Using a detection based on a large

number of photons, they obtained a precision level comparable to that of commercial SPR

sensors. Better performances in terms of sensitivity can be achieved also acting on the NPs

morphological, compositional and dimensional features. These properties of nanoparticles

a�ect the line width, the extinction intensity and the �eld decay length of LSPR. Increasing

the aspect ratio (width/height) of NPs synthesized by NSL, higher sensitivity factor and

�eld decay length can be obtained. Moreover, increasing the aspect ratio LSPR spectrum

is red-shifted. Nanoparticles with sharp edges or tips are characterized by hot-spots with

a strong electromagnetic �eld localization. The e�ect of these hot-spots is the increase of

the sensitivity to local refractive index variations. A very high sensitivity was obtained

by Hicks and collaborators [54] by using a silver �lm deposited on nanowells array. These

LSPR substrates are characterized by a sensitivity factor of 538 nm RIU−1, and by a plas-

monic peak with a very narrow Full Width Half Maximum (FWHM). The �gure of merit
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(FOM) is calculated by the ratio m/FWHM; for Ag �lm over nanowells array the FOM

is 14.5. [54] This value is much higher than those obtained with typical LSPR platforms:

the silver nanoprisms arrays. This high FOM is due to the very narrow width of the plas-

monic peak. The FWHM of the plasmonic peak is controlled by the imaginary part of the

dielectric function of the noble metal which constitute NPs. Im(ε(ω)) takes into account

the absorption properties of the metals. The FWHM is controlled also by the size and

shape polydispersity of NPs. LSPR samples with a high size dispersion have broader and

less sensitive plasmonic peaks. Nano-lithographic synthesis techniques such as Electron

Beam Lithography (EBL) and Nanosphere Lithography (NSL) allow to overcome this ef-

fect and to obtain better performances of LSPR sensors with respect to those obtained by

wet chemistry. [52, 55] Triangular Ag nanoparticle ordered arrays with in-plane width of

100 nm and out-of-plane height of 50 nm, synthesized by NSL, are characterized by a bulk

refractive index sensitivity of ≈ 200 nm/RIU. [56] The strategic improvement of work-

ing with ordered arrays stems from the possibility to control the lateral electrodynamic

coupling between the plasmonic nanostructures, thus producing intense electromagnetic

hot-spots where �eld ampli�cations of 2-3 orders of magnitude can be attained, with a

consequent increase in sensitivity with respect to the non-interacting case. [57] LSPR sen-

sors are based on a large number of nanoparticles, but each of them can be treated as a

single sensor provided that they are not e.m. coupled. Van Duyne and co-authors reported

single nanoparticle sensing using dark-�eld microscopy. They obtained a red-shift of 40

nm in the LSPR spectrum induced from less than 60.000 small-molecule adsorbates from

a single Ag nanoparticle. [58] Single Ag nanoparticles were also used to detect the protein

Streptavidin; the LSPR red-shift obtained was ≈ 13 nm from the detection of less than

700 streptavidin molecules. All these results suggest that LSPR-based sensors can be ex-

ploited and optimized to achieve high sensitivity and selective detection of small molecules

in extremely dilute conditions, in particular for applications in medical diagnostics.



3 Synthesis of Au/Ag nanoarray and

biofunctionalization strategy

3.1 Synthesis of Au/Ag nanoarray by Nanosphere

Lithography

3.1.1 Nanosphere Lithography (NSL)

The synthesis technique used in this work is based on the Nanosphere Lithography (NSL).

[52] This is one of the most common, fast, simply and not expensive techniques to produce

two-dimensional patterns at the nanoscale and on a large area (of the order of cm2). By

using NSL it is possible to synthesize ordered arrays of nanoparticles of di�erent size, ge-

ometry and composition. The plasmonic properties of the nanoarrays are strongly a�ected

by these structural features. The great advantage of NSL is the possibility to easily con-

trol the morphological and structural properties of the nanoarrays and as a consequence

their optical properties. NSL was born from the concept of Natural Lithography by the

works of Deckman and his collaborators in 1982. [59] They were inspired by the previous

works of Fischer and Zingsheim [60] about the capability of colloidal Polystyrene (PS)

nanoparticles to self-organize on a substrate by solvent evaporation. Following Deckman

and co-workers suggested the idea of using these self-organized structures as lithographic

masks. They investigated many parameters and applications about the self-organization

of particles in a size range from hundreds nanometers up to few microns. [59] The evo-

lution of Natural Lithography into Nanosphere Lithography was done later by the Van

Duyne's group. [61] Van Duyne and co-workers were the �rst to use a monolayer of hexag-

onal close-packed nanospheres to synthesize silver nanoprisms arrays (NPA). [62] NSL can

be considered a nanofabrication technique which is an hybrid between a bottom-up and

top-down approach. It is essentially based on three main steps: (i) the self-assembling of

29
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a two-dimensional monolayer (ML) of nanospheres on a substrate, (ii) the deposition of

the material that constitutes the nanoarray through the nanosphere's interstices; (iii) the

removal of the ML to obtain the nanopattern. This is the most common scheme to obtain

NPA, as sketched in �gure 3.1. The lateral size of nanoprisms a can be obtained by this

equation, where D is the nanospheres diameter [63]:

a =
3

2

(√
3− 1− 1√

3

)
D = 0.466R = 0.233D

The center-to-center interparticle distance between nanoprisms (d) is also dependent on D

as:

d =
1√
3
D

a)                                                        b)

Figure 3.1: a) Representation of an hexagonal monolayer of spheres of radius R; b) Hexagonal array of
prisms with a triangular base.

This is the common strategy to obtain NPA, but starting by a two-dimensional ML it is

possibile to synthesize a wide range of nanoparticles arrays (which have dimensions in the

range 20-1000 nm ) such as opening semi nanoshells [64], nanopillars [65], nanowires [66],

nanoholes [67]. In this thesis we synthesize three di�erent nanoarrays by NSL. All the

samples are based on noble metals, which are in form of mono elemental metal, alloy or

multilayer.

The samples can be subdivided in three categories:

• Au:Ag alloy Semi-NanoShell Array (SNSA);

• Ag NanoPrism Array (NPA);

• Ti-Ag-Au NanoHole Array (NHA).
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In this chapter the synthesis techniques used are brie�y described and in particular the

morphological properties of the samples are discussed.

Characterization techniques

The morphological properties of the samples were investigated with Field-Emission Scan-

ning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM). The FE-SEM

microscope utilized is a Zeiss SIGMA HD that can operate in the 0.2 ÷ 30 kV range, with

a spatial resolution of about 1.2 nm at 30 kV. It is equipped with a detector for energy

dispersive X-ray analysis (EDX by Oxford Instrument) used for compositional analysis.

Measurements were performed at 5 kV for imaging in in-lens mode and at 10 kV for micro-

analysis. AFM measurements were performed using a NT-MDT Solver PRO-M microscope

with a 100 x 100 µm scanner. UV-VIS optical absorption characterizations were done by

a JASCO V670 spectrophotometer in the 300-2500 nm wavelength range.

3.1.2 Self-assembling of Polystyrene nanoparticles

The �rst step of any synthesis process based on Nanosphere Lithography (NSL) is the self-

assembling of monodisperse Polystyrene nanospheres (PS) on a substrate in a close packed

single layer. The nanospheres, with diameter usually ranging from 100 nm up to 1 µm,

are able to auto-organize in an hexagonal close packed symmetry in which each sphere has

six nearest neighbors. Through this colloidal two-dimensional mask it is possible to obtain

many di�erent kind on nanoparticles arrays. The common techniques used to deposit the

monolayer on a substrate are based on drop coating or spin coating [68] processes, starting

from nanoparticles as a 5 or 10 wt.% water solution. The parameters used during the

coating, such as the hydrophilicity and the cleaning of the substrate, the concentration of

the nanoparticle's solution, the presence of surfactants, the temperature and the humidity

can strongly in�uence the quality of the monolayer obtained, which can have structural

defects like dislocations or vacancies. The process used in this thesis is based on a PS self-

assembly at the interface between two liquids phases which allows to produce monolayers

up to few cm2 quite ordered on a solid substrate. [69] This is a modi�ed version of a dip

coater method. The monolayer formation is based on the following steps:

1. 20 µL of a solution PS suspension:isopropyl alcohol (50:50 % in volume) is spread on

a Soda Lime Glass (SLG) substrate 2 x 2 cm2 previously cleaned with an acid piranha
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solution;

2. this substrate, inclined with a certain angle, is immersed into a glass vessel �lled with

Milli-Q water (18.2MΩ/cm resistivity) using a motorized system which assures an uni-

form velocity during the immersion;

3. PS nanoparticles form a monolayer on the water surface thanks to the capillary forces

at the meniscus between the alcoholic suspension and the water;

4. the �rst substrate is automatically moved up outside the vessel and another cleaned sub-

strate is manually immersed into the vessel to collect the resulting compact monolayer

which �oats on the water surface;

5. the samples is dried at room temperature.

In this study we used PS nanoparticles of 248 ± 9 nm (wt. 5%), 315 ± 9 nm (wt. 10%),

470 ± 12 nm (wt. 10%), 522 ± 12 nm (wt. 5%), 1030 ± 30 nm (wt. 10%) purchased from

Microparticles GmbH (Germany). Isopropyl alcohol with purity ≥ 99.7 % was purchased

from Sigma-Aldrich. The monolayers quality was investigated by morphological measure-

ments (AFM and SEM) and by optical transmission spectra. The PS diameter was checked

by FFT analysis on AFM and SEM images of the monolayer deposited on a silicon sub-

strate. By FFT we have obtained a diameter of 241 ± 10 nm for nanospheres with certi�ed

diameter (Dcert.) 248 ± 9 nm and 514 ± 10 nm for Dcert. 522 ± 12 nm. The substrates

used were based on SLG, highly-pure HSQ 300 silica (SiO2) or monocristalline silicon (Si).

PS nanospheres with diameter around 500 nm allow to obtain two-dimensional masks

a) b)

Figure 3.2: a) AFM image 20 x 20 µm2 of a PS monolayer with certi�ed Diameter (D) 522 ± 12 nm. b)
Fast Fourier Transform of the AFM image in �gure a, the white line was used to measure
the distance between 10 spots and to extract the real diameter of the nanospheres.

of high quality, as can be seen in AFM image in �gure 3.2. The hexagonal periodicity of
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Figure 3.3: Photograph of 10 PS monolayers (Dcert. = 522 ± 12 nm) deposited on SLG substrates.

nanospheres with diameter 522 nm arises in a fascinating iridescence of the samples, as

can be seen in �gure 3.3.

3.1.3 Substrate pre-cleaning

Before the synthesis of the monolayer the substrate was cleaned in a piranha solution

(3:1 by volume of 30% H2O2 and 98% H2SO4) for 1 hour at 90 ◦C and then washed

with ultra-pure milli-Q water. Sulfuric Acid and Hydrogen Peroxide were purchased from

Sigma-Aldrich. The cleaning process of the substrates is very important and piranha

solution is the best candidate for two reasons: (i) it is a strong oxidizer mixture and it

e�ciently removes organic matter from the substrates; (ii) the process hydroxylates the

surfaces making them extremely hydrophilic. An hydrophilic substrate is necessary for the

self-assembling process, because the PS nanospheres are in aqueous solution.

3.1.4 Optical characterization of the PS monolayer (ML)

Absorbance spectra of the PS monolayers self-assembled on transparent substrates were

acquired by a Jasco V-670 double-beam spectrophotometer in the wavelength range 300-

1500 nm. In our group we are able to synthesize PS monolayers using nanospheres with

diameter in the range 248-1030 nm. As shown in �gure 3.4 the absorbance peaks appears

at lower wavelengths with the decrease of the nanospheres diameter. The peak width, in

particular for diameter from 522 to 1030 nm, can be associated to the order degree of the

monolayer. A narrow peak indicates an high hexagonal order. The relation between the

maximum of the major peak in the absorbance spectrum and the nanosphere's diameter

is linear, as presented in the graph in �gure 3.5 (a) and in table (b). The error associated

to λmask is the standard deviation of 10 measurements of samples with the same diameter.
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The slope obtained is 1.19 ± 0.02 while the intercept is 20 ± 12 nm. This optical property

is very useful also to characterize the monolayers after reactive ion etching treatment. In

particular we use it to verify the homogeneity of one etching treatment on many samples

which are positioned in di�erent zones of the sample holder.
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Figure 3.4: a) Absorbance spectra of the PS masks obtained with nanospheres of di�erent diameter (D);
b) zoom of graph in �gure a.

200 400 600 800 1000 1200
200

400

600

800

1000

1200

1400

 

 λ
max 

(nm)

 Linear Fit of  λ
max

 

λ m
a

x
 (
n
m

)

Diameter (nm)

(a)

Diameter (D) (nm) λmax (nm) σ (nm)

248 314 5

315 411 5

522 631 5

535 642 5

721 879 5

1030 1250 5

(b)

Figure 3.5: λmax of the absorbance spectra of PS monolayer as a function of the diameter (D). Linear
�t of λmax.

3.1.5 Reactive Ion Etching (RIE) of PS monolayers

When the nanoarray synthesis aims to obtaining structures like SNSA or NHA an additional

step is needed before metal deposition. This is a Reactive Ion Etching (RIE) treatment.

It was used to dry etch the polystyrene before the metal deposition. In this way we

reduced the diameter of the PS nanospheres preserving the hexagonal periodicity of the
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monolayer. [70] By using RIE we have realized nanoarrays di�erent from the standard

NanoPrisms Array (NPA) obtained by NSL. Altering the nanospheres dimensions we

obtained a non-close packed array and starting from it we synthesized Semi-NanoShell

Array (SNSA) or NanoHoles Array (NHA).

3.1.6 RIE technique

An etching process is used to remove matter from a substrate in micro- and nano-fabrication,

and can be divided in two main categories: wet etching and dry etching. The wet etch-

ing uses liquid etchants and it is based on chemical processes, while dry etching uses a

high energy plasma and it is based on a combination of chemical and physical processes.

Chemical etching is more selective and isotropic, while physical etching is less selective

and more anisotropic. We use a Reactive Ion Etching which is a ion-assisted dry etching

based on a combination of chemical and physical processes. The apparatus is usually a

parallel plate system based on a cylindrical vacuum chamber with a wafer platter at the

bottom of it. The chamber is grounded while the wafer platter is electrically isolated. On

the top of the chamber there are small inlets for the gas entering. Volatile by-products

are removed by a vacuum pump. The high-energy ions, which constitute the plasma, are

generated by a radio-frequency electromagnetic �eld, which ionizes the gas molecules. Be-

cause of the large voltage di�erence, positive ions tend to drift toward the wafer platter,

where they collide with the samples to be etched. In our case we used a gas mixture based

Electrode

GroundGas inlet
( Ar, CF4, O2)

Gas outlet,
pump

Matching
network

RF
generator

Plasma

RF power input

Electrode

Plasma
sheaths

Figure 3.6: Representation of the RIE apparatus.
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on Argon (Ar) and Oxygen (O2) to generate the plasma. The chemical etching of PS is

due to oxygen ions, while Ar+ ions remove the polymer transferring part of their kinetic

energy, as a sputtering process. For this reason the etching type and the �nal morphology

of the PS nano-particles depend not only on the gas type, but also on their ratio and on

the total pressure in chamber. So, we have exploited some e�ects of these parameters on

the morphological properties of our samples.

3.1.7 RIE calibration curve

In order to �nely control the morphology and the nanometric dimensions of our samples

we have to investigate in details the e�ects of each process. In the case of RIE we know

that it is strongly a�ected by the gas mixture, the gas �ow, the total pressure in chamber

and the power of the radio frequency electromagnetic �eld. In this work we have used a gas

�ow in the range 1-6.5 sccm for Ar and 1-13 sccm for O2; the base pressure in chamber is

in a range of 4-10 × 10−6 mbar and the radio-frequency �eld is applied at a power of 12-40

W. For a de�ned set of parameters, the etching rate depends also on the initial diameter

of the PS nanospheres. This is partially due to the anisotropy of the RIE process, which

slightly changes the shape of the nanoparticles form spheres to lens-like nanoparticles. So,

we have measured the etching rate for each speci�c D (315, 522, 1030 nm), by changing

only the etching time (tRIE).

The �nal projected diameter of the nanospheres for each tRIE was measured with SEM.

To this aim, the PS monolayers were self-assembled on silicon substrates and not on SLG

or silica, to avoid charge accumulation during SEM analysis. The program used for the

analysis of SEM images is ImageJ.

By increasing the etching time we reduce the PS diameter (see �gure 3.7) and in the same

time we alter the shape and the roughness of the PS particles. The increased roughness is

more evident for tRIE from 12' to 15' in the case of initial diameter 522 nm.. The typical

etching parameters used to etch monolayers of PS 522 nm are reported in table 3.1.

The etching rate can be obtained by the calibration curves, which are represented by ∆D

as a function of tRIE. The error bar reported is the standard deviation obtained from the

measure of 50 �nal diameters. The curve �tting used is a parabolic function y(x) = bx+cx2

and the parameters obtained are presented in table 3.2. The etching rate measured are

used to have a good control on the structural properties of our samples, in order to �nely
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200 nm 200 nm

200 nm 200 nm

a)                                                b)                                                 

c)                                                      d)                                                    

Figure 3.7: SEM analysis at magni�cation 100.00 KX of PS monolayers 522 nm after RIE treatment: a)
6'; b) 9'; c) 12'd) 15'.

D1 (nm) D2 (nm) Flow Ar (sccm) Flow O2 (sccm) P (mbar) Time (min.)

522 417 1.2 3.7 0.009 6

522 349 1.2 3.7 0.009 9

522 252 1.2 3.7 0.009 12

Table 3.1: Parameters used for RIE treatments on PS monolayers of 522 nm.

tune the optical properties in the range vis-NIR.

PS D (nm) b ± σ (nm/min) c ± σ (nm/min2)

315 8.2 ± 1.7 0.8 ± 0.2

522 11.6 ± 1.6 0.9 ± 0.1

1030 22.6 ± 1.4 1.3 ± 0.1

Table 3.2: The parameters obtained from the parabolic �t of ∆D in function of the etching time, for
monolayer with di�erent diameter.
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a)                                                  b)                                                   c) 
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Figure 3.8: Diameter variation (∆D) in function of the etching time (minutes) for monolayers of PS 315
nm (�gure a),PS 522 nm (�gure b) and PS 1030 nm (�gure c) �tted with a parabolic function.

3.1.8 E�ect of the total pressure on the etched PS shape

Dry etching is usually anisotropic with respect to the wet etching. It is preferentially

directed along the normal to the sample's surface; in our case each PS sphere is etched

from the top to the bottom, resulting in a �nal lens-like shape. We have veri�ed that this

e�ect is more pronounced in the case of a total low pressure of Argon and Oxygen (85

× 10−4 mbar). We have exploited for the same etching time and gas ratio, two di�erent

conditions of total pressure, low pressure (85 × 10−4 mbar) and high pressure (3706 ×
10−4 mbar). The results of this test are presented in �gure 3.9, in which we report the

SEM analysis in cross section of a PS monolayer with initial diameter 248 nm, etched for

3 minutes at high pressure 3706×10−4 mbar (�gure a) and low pressure 85×10−4 mbar

(�gure b). For the synthesis of nano-holes arrays the low pressure condition is preferred to

obtain a more de�ned geometry of the nano holes.

a)                                              b)

Low PHigh P

Figure 3.9: SEM image at 500.00 KX in cross-view of etched Polystyrene monolayers deposited on a
silicon substrate (initial diameter 248 nm): a) 3' of etching at high pressure (3706·10−4

mbar) b) 3' of etching at high pressure (85·10−4 mbar).
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3.1.9 Metals deposition: Magnetron Sputtering and Thermal

Evaporation

To synthesize Au/Ag nano arrays we used two di�erent techniques to deposit metal thin

�lms on the etched or not etched PS monolayers. For the synthesis of Au:Ag SNSA and

Ti-Ag-Au NHA we used the magnetron sputtering process, while for the synthesis of Ag

NPA we used thermal evaporation. The magnetron sputtering and thermal evaporation

belong to the family of physical vapor depositions (PVD). These techniques are based on

physical processes which allow to deposit �lms of 10-100 nm with a very �ne control on the

thickness. We can deposit gold, silver, titanium and silica with magnetron sputtering in

multilayer or alloy composition, while with thermal evaporation we deposit gold or silver in

mono-elemental layer. The metal depositions to obtain nanoprisms arrays were performed

by thermal evaporation for the higher collimation of the atoms �ux. This allow to obtain a

well de�ned geometry of the prisms with respect to the magnetron sputtering. In the case of

SNSA and NHA the alloy or multilayer deposition is more di�cult with thermal evaporation

because di�erent materials have di�erent melting temperature and vaporization rates. So,

to synthesize these classes of samples we used the magnetron sputtering. Titanium and

chromium are usually used as adhesion layers because their a�nity for silica and silicon is

higher than that of gold and silver. The presence of titanium is particularly important for

the samples which will be exposed to solution of biological molecules.

3.1.10 Magnetron Sputtering

Sputtering is a physical process in which a plasma of positive ions is used to remove atoms

from a target (a metal or insulator) and deposit them on a substrate. The typical DC

sputtering system is based on a target, which acts as the cathode of a diode while the

substrate acts as the anode. The target and the substrate are in a vacuum chamber, and

a voltage is applied between them. The sputtering chamber, in which there are the target

and the substrate, is in vacuum conditions with a base pressure of 2 × 10−6 mbar. In these

conditions is injected an inert and heavy gas, usually Argon, to reach a pressure of 5 × 10−3

mbar. The gas has to be inert to avoid chemical reactions and sample's contamination. To

create the plasma a voltage is applied between the cathode and anode. Positive ions of the

inert gas (Ar+) are accelerated on the target bombarding it. Atoms from the target are

sputtered o� and deposited on the substrate. The magnetron sputtering was developed
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to increase the e�ciency of the DC sputtering using a series of magnets mounted below

the target. The magnetic �eld increase the plasma density con�ning the electrons in a

region near the target. A representation of the magnetron sputtering process is reported

in graph a in �gure 3.10. To sputter metals like gold, silver ,titanium a DC power source

can be used, while for insulators (e.g. SiO2, Al2O3, ZnO) it is necessary the use of a

radio-frequency (RF) power source.

3.1.11 Thermal Evaporation

Thermal evaporation is based on the heating of a material (target) to be deposited until

its evaporation. The target is in a heated container called crucible and the heating is done

by the �ow of electric current through it by Joule e�ect. Low pressure is necessary because

the atoms mean free path has to be longer than the distance between the target and the

substrate. In our depositions we use a pressure of 5 × 10−5 mbar. When the target reaches

its evaporation temperature the atoms leave the surface and travel until they reach the

substrate. The substrate is at lower temperature and the atoms transfer their energy and

condense on its surface. Metals with low melting temperature can be easily deposited,

such as pure gold (Tfusion 1063◦), pure silver (Tfusion 961◦) or alluminium (Tfusion 660◦).

To measure the deposited metal thickness we use a Quartz Crystal Microbalance (QCM),

previously calibrated. QCM is a piezoelectric device, which has a precise oscillation fre-

quency; as the metal thin layer is deposited on the QCM the mass changes producing a

variation of the oscillation frequency.

a)                                              b)

Figure 3.10: Schematic representation of the metal deposition techniques: a) The magnetron sputtering
process; b) vacuum thermal evaporation apparatus.
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3.1.12 Removal of the PS monolayer

To produce NPA and NHA we �nally need to remove the polystyrene monolayer after the

metals deposition. In the case of Ti-Ag-Au NHA we used a treatment in toluene for 3

minutes in an ultrasound bath, while for Ag NPA, which haven't the adhesion layer, we

used an adhesive tape.

3.2 Au/Ag ordered nanoarrays

The previously described techniques are used for the NSL-based synthesis of the following

nanoarrays:

• Au:Ag alloy Semi-NanoShell Array (SNSA);

• Ag NanoPrism Array (NPA);

• Ti-Ag-Au NanoHole Array (NHA).

3.2.1 Semi-nanoshell array (SNSA)

The synthesis process of SNSA can be summarized in three main steps. A schematic

representation is reported in �gure 3.11.

1. Self-assembling of a PS ML (D = 315 ± 9 nm) on a transparent substrate;

2. Reactive ion etching to reduce the diameter of the PS nanospheres;

3. Magnetron sputtering co-deposition of a thin Au:Ag alloy over the etched nanospheres.

3. Magnetron sputtering 

co-deposition
2. Reactive Ion Etching 

(Ar-O2)
Ag Au

1. Self-assembly of 

nanospheres

Substrate

D

Substrate Substrate

Figure 3.11: Schematic diagram of the synthesis process of Au:Ag SNSs arrays: 1) self-assembly of a PS
nanospheres mask on a soda-lime glass (SLG) substrate, 2) reduction of PS nanospheres
diameter by reactive ion etching, 3) co-deposition of Ag and Au by magnetron co-sputtering.
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SNSA morphology and composition

The �nal structure of the synthesized samples is an hexagonal array of SNS nanounits. Each

nanounit, the semi-nanoshell, is made by a coverage of Au:Ag alloy on top of a RIE-etched

polystyrene nanosphere. For the SNSA synthesis we used commercial PS nanospheres

(micro-Particles GmbH) with diameter D = 315 ± 9 nm, in aqueous solution at 5%. After

the monolayer formation, we used a RIE process to reduce the diameter of the nanospheres

without altering the array periodicity. RIE treatments were done in an Ar-O2 atmosphere

(60 % Ar and 40 % O2) at a total pressure of 4 x 10−2 mbar. The RIE was done for

di�erent time intervals to control the gap size between adjacent SNSs. The RIE process

of PS nanospheres is anisotropic because the etching is directed along the normal to the

nanospheres plane.

Therefore, their �nal shape is not a sphere but is more similar to a lens, as showed in SEM

images in �gure 3.13.

The bimetallic �lm was then deposited on the etched mask by a magnetron co-sputtering.

Au and Ag depositions were performed at the same time by using two sources, with the

same inclination (15 degrees) with respect to normal direction of the samples surface, using

a rotating sample-holder.

A typical morphology of the SNSA is presented before and after the metals deposition in

the SEM analysis in �gure 3.12.

PS 315 nm + RIE PS 315 nm + RIE + Au:Ag

a) b)                                      c)

PS 315 nm + RIE – cross view

Figure 3.12: a)SEM image 250.00 KX of etched PS nanospheres (top view); b) SEM image at 250.00 KX
of etched PS (cross view); c) SEM image 200.00 KX of etched PS nanospheres covered by
an Au:Ag nanometric layer (thickness about 30 nm).

The composition of the metal coverage was checked by EDX spectroscopy, which resulted

in atomic concentrations of 47% of Ag and 53% of Au respectively, as reported in �gure

3.14.
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Figure 3.13: a) SEM image at 750.00 KX magni�cation of etched PS nanoparticles; b) SEM image at
750.00 KX magni�cation of etched PS nanoparticles covered by an Au:Ag nanometric layer
(thickness about 30 nm).

260 nm

Au

Ag

Au
Au Au

a)                                           b)

Figure 3.14: a) SEM image of SNSA (HI-SNSA) b) EDX analysis which refers to a central point of the
SNS (indicated by the cursor "`Spectrum 1"') and shows an atomic concentration of 53 %
of Ag and 47 % of Au.

The EDX analysis con�rmed the homogeneity of the Au:Ag alloy composition on the SNS

surface. The advantage of working with a bimetallic alloy with respect to the monoele-

mental case is due to the better chemical stability of Au and to the enhanced plasmonic

properties of Ag.

3.2.2 Nanoprisms array (NPA)

The synthesis of Ag NPA can be subdivided in the following steps as sketched in �gure

3.15.

1. Self-assembling of a PS ML on a transparent substrate (D 470/496/522 ± 12 nm);

2. Vacuum thermal evaporation of Ag (�lm thickness 50-100 nm);

3. Removal of the PS ML by an adhesive tape.

In this case we used PS nanoparticles from 470 to 522 nm in diameter and we deposited

a silver layer by thermal evaporation on the PS masks. The metal was deposited on the

substrate only in the interstices among the nanospheres; after the removal of the mask the
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Ag NPA was obtained. In this nanoarray the functional nanounit is a silver triangular

nanoprism with a lateral size that depends on the polystyrene diameter (0.233·D). The
height of the nanoprisms is controlled by the height of the deposited metal �lm. The

morphology of a typical Ag NPA is shown in the SEM e AFM images in �gure 3.16. In

this case the lateral size of the nanoprism is 122 ± 5 nm and the height is 50 ± 5 nm.

1. Self-assembly of 

nanospheres

D

2. Ag thermal evaporation 3. Removal of the mask

Substrate Substrate Substrate

Figure 3.15: Schematic diagram of the synthesis process of Ag NPA: 1) self-assembly of a PS nanospheres
mask on a soda-lime glass (SLG) substrate, 2) Ag thermal evaporation; 3) removal of the
PS mask by a tape.
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a)                                      b)                                   c)

Figure 3.16: a) SEM image at 100.00 KX of Ag NPA; b) AFM images 1.3 x 1.3 µm2 of Ag NPA; c)
representation of the typical nanoprism dimensions (D = 522 nm).
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3.2.3 Nanoholes array (NHA)

The synthesis of nanoholes array was based on the following steps:

1. Self-assembling of a PS mask on a transparent substrate (D = 522 ± 12 nm);

2. Reactive Ion Etching to reduce the nanosphere's diameter;

3. Multilayer deposition of Ti, Ag and Au by magnetron sputtering;

4. Removal of the mask by treatment in toluene in ultrasound bath.

1. Self-assembly of 

nanospheres

Substrate

D

2. Reactive Ion 

Etching (Ar-O2)

3. Magnetron 

sputtering (Ti-Ag-Au)

Substrate Substrate

4. Removal of the 

mask

Substrate

Figure 3.17: Schematic diagram of the synthesis process of Ti-Ag-Au NHA: 1) self-assembly of a PS
nanospheres mask on a transparent substrate; 2) reactive ion etching to reduce the PS
diameter; 3) multilayer deposition of Ti, Ag and Au; 4) removal of the PS mask by toluene
in ultrasounds.

Nano-holes arrays were synthesized starting by the self assembling of Polystyrene nanospheres

of 522 ± 12 nm in diameter on a silica (SiO2) substrate, previously cleaned and hydroxy-

lated with a piranha solution. The reactive ion etching treatment in Ar and O2 was done

for 10 minutes with a total pressure of 9×10−3 mbar. The etched masks, with a diameter

of 300 ± 10 nm, were covered by a multilayer of titanium, silver and gold. The multilayer

deposition of titanium (Ti) 5 nm, silver (Ag) 45 nm and gold (Au) 10 nm was performed

with magnetron sputtering, to obtain a total metal thickness of 60 nm. The multilayer

thickness was measured with Atomic Force Microscopy and Scanning Electron Microscopy.

Titanium was used as an adhesion layer, the silver for its intrinsic best plasmonic per-

formances with respect to gold, and gold was used to have a surface structure chemically

more stable. The typical morphology of a Ti-Ag-Au nanoholes array can be seen in SEM

images in �gure3.18, which is reports a side view (�gure a) and a top view (�gure b,c) of

a typical sample.

3.2.4 Nanoarrays: optical properties and applications

Au:Ag SNSA and Ag NPA are characterized by a LSPR peak in the visible-near infrared

region of the electromagnetic spectrum. The plasmonic properties of Ti-Ag-Au NHA are
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Ti-Ag-Au height 63 nm

a) b) c)          

NHA Hole diameter ≈ 300 nm

(1,0)
(1,1)

Figure 3.18: SEM analysis of a NHA with an hole diameter of 300 nm and a total metal height of 63
nm: a) side view; b) top view at 50.00 KX; c) top view at 250.00 KX.

exploited in the Extraordinary Optical Transmission (EOT) peak in the NIR region. The

plasmonic optical properties of these nano arrays will be extensively discussed in the fol-

lowing chapters. SNSA, NPA and NHA were functionalized with biological molecules to

investigate their plasmonic biosensing performances. The samples were functionalized us-

ing the same biofunctionalization strategy in order to compare their sensitivity and to study

the advantages and disadvantages in the use of one system with respect to another, for a

typical couple of receptor-ligand molecules. Ag NPA are also studied as Surface Enhance-

ment Raman Spectroscopy (SERS) substrates in function of Ag oxidation, as discussed in

the last chapter.

3.3 Van Duyne's biofunctionalization protocol

To test the e�ciency of the proposed system as a biosensor, we used an established protocol

for the detection of tiny biomolecules, based on the receptor-ligand approach and using

biotin-streptavidin model system. This couple of biological molecules is composed by

biotin, which is the receptor (or also called the biorecognition element), and streptavidin

(SA) which is the analyte. Biotin and streptavidin are able to bind with a very strong and

speci�c interaction due to their intrinsic structural properties. [71, 72] This feature makes

them the best candidates to study the biomolecular recognition events on the substrates. To

immobilize these molecules on the nanoarrays we have followed the Van Duyne's protocol.

[73] This protocol is based on three main steps: (i) at �rst a Self Assembled Monolayer

(SAM) of two di�erent thiols is immobilized on the sample's surface (one is the spacer, the

other provides the functional group to bind biotin); (ii) then the biotin is bound on this
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SAM by a crosslinking reaction (iii) at last, the sensor is exposed to di�erent streptavidin

concentrations to test the speci�city and the sensitivity of the nanostructures.

This biofunctionalization strategy is sketched in �gure 3.19.

BiotinBiotinBiotinBiotin

StreptavidinStreptavidinStreptavidinStreptavidin

Au/Ag nanostructureAu/Ag nanostructureAu/Ag nanostructureAu/Ag nanostructure

SAMSAMSAMSAM

1111----OctanethiolOctanethiolOctanethiolOctanethiol 11111111----Mercaptoundecanoic acid Mercaptoundecanoic acid Mercaptoundecanoic acid Mercaptoundecanoic acid 

Figure 3.19: Schematic illustration of the Au/Ag nanostructure's bio-functionalization protocol (not to
scale).

3.3.1 Self assembled monolayers of thiols

The most common and successful strategy to immobilize molecules on Au/Ag substrates is

the use of alkanethiols (HS(CH2)nX). The alkanethiols are characterized by an "anchoring

group", the sulphur atom (S), and by a head group, which is indicated in the linear formula

as X. These molecules are able to spontaneously adsorb from solution onto the substrate

by the covalent bond between S-Ag or S-Au. The result of this spontaneous binding is the

formation of a very ordered monolayer in which the "anchoring group" is strongly bound

to the substrate. The -CH2- chains interact by Van der Waals forces, and the head group is

exposed at the interface with the air or with a liquid. The reaction between this functional

group (-X) and other molecules allows to bind them to the metal surface. The rate of

the self assembling process is strongly a�ected by the solvent, the thiol's concentration

and length, the temperature and the presence of impurities onto the substrate. The best

solvent for the thiol's solution is ethanol for its low tendency to be incorporated into the

monolayer. Moreover, it can be bought with high purity and it is not so much expensive.

Following the Van Duyne's protocol the SAM of thiols is formed by 1-Octanethiol (1-OCT)

and 11-Mercaptoundecanoic Acid (11-MUA) in total concentration 1 mM and in a 3:1 ratio

in ethanol solution. [73] These two thiols di�er in the length of the alkyl-chain and for the
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presence of a functional group in 11-MUA. The most concentrated, 1-OCT (linear formula

CH3-(CH2)7-SH), is only a spacer and for this reason it is shorter with respect to 11-MUA.

11-MUA (linear formula HS-(CH2)10-CO2H) has the carboxylic group necessary to bind

the receptor to the nanostructure's surface.

3.3.2 Biotin and Streptavidin

The biotin-streptavidin system is a couple of biological molecules which is characterized by

a very high binding a�nity. This is one of the strongest non covalent interactions found

in nature. The biotin is a small vitamin (vitamin H) presents in all living cells with a

Molecular Weight (MW) of 244,3 g/mol. This molecule can bind to streptavidin, a bacte-

rial tetrameric protein with a MW of about 60.000 g/mol (4 x 15.000 g/mol) isolated from

the actinobacterium Streptomyces avidinii, without altering its biological activity. [74] The

streptavidin (SA) has dimensions of about 4,5 x 4,5 x 5,8 nm and a projected area of 25

nm2. [74,75] Four equivalent sites situated on opposite sides of the SA can bind to biotin,

as sketched in �gure 3.21. The strong a�nity between biotin and streptavidin is expressed

by the value of the a�nity constant Ka which is in solution 1013 M−1 [76]. If the recognition

event happens at a solid/liquid interface the Ka will be di�erent from this value. [75] The

high a�nity is due to hydrogen bonds, van der Waals/hydrofobic forces, and the intrinsic

advantageous conformation of the SA when the biotin binds to its side. [77] There is an-

Figure 3.20: The Biotin molecule, MW 244.3 g/mol [3].

other protein, the avidin, which has the same high binding a�nity for the biotin, but for

its basic isoelectric point 10-10.5 and the presence of carbohydrates in its structure, the

avidin has higher non-speci�c binding properties; this is the advantage in the use of the

streptavidin. [3]

The streptavidin-avidin/biotin bond stands to many conditions of temperature, pH or or-

ganic solvents. [3] This property makes the binding of these molecules very interesting in

biotechnology, such as to study the speci�c biorecognition events on the substrates, in par-
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Figure 3.21: Three-dimensional model of the tetrameric structure of the Streptavidin. Each monomer is
represented by a di�erent color.

ticular to develop speci�c biosensors. E�ectively, for the realization of biosensing devices

it's necessary to study the recognition events between the ligand and the analyte when the

�rst is forced on a substrate, because of the interaction di�ers from that in solution. [75]

In particular, when the ligand is immobilized on a surface its orientation, concentration,

the steric hyndrance of the ligand-analyte couple and the nonspeci�c analyte-analyte or

analyte-substrate interactions can strongly in�uence the binding. [75] In the case of surfaces

covered with the 100 % of biotinylated-molecules the binding e�ciency with SA decreases,

and this is probably due to the exposure of other parts of the biotin which interact non-

speci�cally with SA. [78]

Moreover, the chemical and physical properties of the surface on which the ligand is im-

mobilized can a�ect the interaction.

The principal strategy to immobilize the biotin-SA system on the substrates, is to bind

biotin-alkylthiolate monolayers on gold or silver surfaces exploiting the covalent S-Au or S-

Ag bond. The biotin can be linked to alkylthiolate molecules, Polyethylene Glycol (PEG),

PEG-Amine, proteins, antibodies and other many kind of molecules through its valeric

acid chain which can be derivatized with other groups.

Following the Van Duyne's strategy we use the Amine-PEG2-Biotin, which is a water

soluble amine-derivatized biotin molecule that can react with the carboxyl groups of the

11-MUA by a cross linking agent, the 1-Ethyl-3-[3-Dimethylaminopropyl]Carbodiimide hy-

drochloride (EDC).

The biotin molecules is represented in �gure 3.20, while the Amine-PEG2-Biotin in �gure

3.22.

When the binding is forced on a substrate, only two sites of the protein are available
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Figure 3.22: The Biotin-PEG2-Amine molecule, MW 374.5 g/mol [3].

for the biotin. Many works reported that a complete monolayer of biotin exposed to a

streptavidin solution, it's less able to bind the protein for the steric hindrance, in fact,

the common strategy is to use a monolayer in which the biotin is diluited with smaller

molecules. [76, 79, 80] This is an important aspect because the quantity of the adsorbed

streptavidin is strongly dependent by the biotin concentration.

The Van Duyne's protocol suggests a ratio of 1:3 11-MUA:1-OCT.

3.3.3 EDC and the cross-linking reaction

The binding of the receptor (biotin) to the nanostructure's surface takes place by a cross-

linking reaction between the -COOH group of the 11-MUA and the �NH2 group of the

Biotin-PEG2-Amine as described above. The crosslinking reaction is used to form a co-

valent bond between two or more molecules, by the use of an intermediate agent (the

crosslinker) that reacts with the functional groups of these molecules. To catalyze the

formation of an amide bond between a carboxyl group and a primary amine we used an

heterobifunctional crosslinker called carbodiimide, the EDC. In the �rs step of the re-

action, as represented in �gure 3.24, the activation of the -COOH group by EDC forms

an intermediate molecule, the O-acylisourea. This molecule is displaced by the primary

amino group of the biotin by nucleophilic attack. The biotin is so bound to the 11-MUA

by an amide bond, and the EDC by-product is released as a soluble isourea. The EDC is

a 0Ålength spacer arm and this means that it does not become part of the �nal product.

EDC and the solvent e�ect

The presence of salts and so of the ionic molecules make the complex more stable. [77] The

important thing when using the EDC is the choice of the bu�er. In particular, the suitable

bu�er for EDC cross-linking reactions is the 2-(N-Morpholino)EthaneSulfonic acid sodium

salt (MES) at acid pH 4.5-5. [3] In these conditions the reaction ends in few minutes. If
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primary amines or carboxyls groups are present in the bu�er, the e�ciency of the reaction

will be lower. In this work we used a phosphate bu�er at a neutral pH, as indicated in

the Van Duyne's protocol. This bu�er is recommended only for the use of very high EDC

concentration; in our case we use 10 mM of EDC which is higher with respect to the

concentrations of molecules which have to react. [4] For lower concentration of EDC the

MES is preferred. [4]

Figure 3.23: EDC, MW 191.70 g/mol Spacer arm 0Å.

Figure 3.24: EDC crosslinking reaction scheme. Carboxyl-to-amine crosslinking with the EDC. Molecule
(1) in our case is the 11-MUA and Molecule (2) is the Amine-PEG2-Biotin. [4]





4 Semi-NanoShell Arrays as

biological sensors

4.1 Introduction

The main approach to biosensing using NSL over past years has been based on the fabri-

cation of nanoprism arrays (NPA) as optical transducers. [27] In recent years a new kind

of nano-array based on gold semi-nanoshells (SNS), still obtained using NSL, was investi-

gated as SERS substrate. [28,81]. Calculations have shown that the gaps between SNSs are

very important hot spots of local �eld enhancement. In this work, we present a modi�ed

fabrication method of SNS arrays, in order to obtain nanostructures made by an alloy of

two metals (Au-Ag in the present case). The optical properties of Au:Ag alloy SNS arrays

obtained by NSL are studied and, in particular, the e�ect of the electromagnetic coupling

between them on the LSPR response for proteins detection is investigated. The advantage

of working with a bimetallic alloy with respect to the monoelemental case is twofold: (i) Au

has a better chemical stability; (ii) Ag has better plasmonic properties. [17,82] The attrac-

tive characteristics of the SNS arrays are the high sensitivity to refractive index changes

(in particular, in close proximity of their surface), the possibility to have a good control

on the structure and as a consequence on the LSPR spectral position, which can be tuned

from UV to NIR region, and the stability for device applications.

4.2 Experimental section

4.2.1 Synthesis of Au:Ag SNSA

Au-Ag alloy SNS arrays (SNSA) were synthesized by Nanosphere Lithography (NSL) [27]

as described in chapter 3. The process can be divided into three main steps. In the

53
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�rst step, a mask of polystyrene (PS) nanospheres is self-assembled on a soda-lime glass

substrate. Before the synthesis of the mask, the substrate is cleaned in a piranha solution

(3:1 by volume of 30% H2O2 and 98% H2SO4) for 1 hour at 90 ◦C and then washed

in ultra-pure milliQ water. Commercial polystyrene nanospheres (micro-Particles GmbH)

with diameter D = 315 ± 9 nm were used. The second step is a Reactive Ion Etching (RIE)

process performed to reduce the initial diameter of the nanospheres and thus opening gaps

between them, without altering the array periodicity. RIE treatments were done in an Ar-

O2 atmosphere (60 % Ar and 40 % O2) at a total pressure of 4×10−2 mbar for di�erent time

intervals to control the degree of lateral coupling. In the third step a thin bimetallic layer

(equivalent to a 30 nm-thick �lm) is deposited on the etched nanospheres by magnetron

co-sputtering. This co-deposition results in a homogeneous Au:Ag alloy layer covering the

upper part of the etched PS nanosphere to form the plasmonic SNS, which constitutes the

functional building block of the array, as described in chapter 3. As an example, in �g.4.1

we have reported the Scanning Electron Microscopy (SEM) images of a typical sample

at di�erent magni�cation. This method allows to obtain Au:Ag SNS arrays with a high

degree of order up to 1 cm2 size scale.

200 nm 40 nm

a)                                                                  b)

Figure 4.1: SEM image of a typical Au:Ag SNS arrays at di�erent magni�cation.

Morphology of SNSA

The �nal structure of the synthesized samples is an hexagonal array of SNS nanounits.

Each nanounit, the semi-nanoshell, is made by a coverage of Au:Ag alloy on top of a

RIE-etched polystyrene nanosphere. Structural parameters of the array as shell-thickness,

curvature, spacings between adjacent units and size of units, can be controlled by metal
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deposition and template preparation conditions during RIE (total pressure of gas mixture,

etching time and diameter of PS nanospheres).

A typical morphology of the array is illustrated in Fig. 4.1(b): in this case, SNSA were

obtained with PS nanospheres with D of 315 nm, a RIE etching time of 8 minutes and a

total metal thickness of about 30 nm. The resulting �nal gap between the SNS is about

120 nm. The RIE process of PS nanospheres is anisotropic because the etching is directed

along the normal to the nanospheres plane. Therefore, their �nal shape is not a sphere

but is more similar to a lens. The surface of SNSs presents a very interesting roughness as

shown in FE-SEM image in �g.4.1(a). This morphology can be controlled by varying the

Ar:O2 ratio during the RIE process and it is a combined e�ect of the roughness induced

on the etched nanospheres during the RIE process and of the sputtering deposition of the

metals. The roughness can have bene�cial e�ects on the development of �eld hot spots

and on the local �eld enhancements at the sample surface.

Localized Surface Plasmon Resonance (LSPR) of SNSA

The optical properties of the samples can be easily tuned by changing the RIE etching time,

which control the lateral coupling between the SNSs. An example of this e�ect is shown

in �g. 4.2, which reports the far-�eld absorbance spectrum of the SNSA with a gap of 120

nm (blue line, RIE 8 min) and of 35 nm (black line, RIE 3 min). The wavelength of the

maximum LSPR peak is λ = 1212 nm for the RIE 3' sample (black line, higher-interaction

or HI sample) and it is red-shifted with respect to the one of the RIE 8' sample (λ =

920 nm, blue line, lower-interaction or LI sample), due to larger lateral coupling between

neighboring SNSs. In the gap regions between adjacent nanoparticles there is a high

�eld localization. This is due to the near-�eld coupling which suppresses drastically the

scattering into the far �eld. [1] This near-�eld coupling between neighboring SNSs causes

a red-shift of the LSPR peak. The morphological characterization of lower-interaction and

higher-interaction samples is presented in SEM images in �g. 4.3.
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Figure 4.2: LSPR spectra for low-interaction, LI, and high-interaction, HI, Au-Ag SNS arrays: ab-
sorbance measurements of samples obtained with a RIE etching time of 8 min (blue line,
LI) and 3 minutes (black line, HI),respectively.
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Figure 4.3: a) SEM image of a Au-Ag LI-SNSA (8' RIE); b) SEM image of a Au-Ag HI-SNSA (3' RIE)

4.2.2 Bio-functionalization protocol

As previously discussed in chapter 3 the biofunctionalization protocol was developed by Van

Duyne's group for the functionalization of the NPA. [73] At �rst, the samples are incubated

for 15 h in a thiols solution, 1 mM, of 1-Octanethiol (1-OCT):11-Mercaptoundecanoic acid

(11-MUA) in 3:1 ratio in ethanol. This forms a protective self-assembled monolayer (SAM)

over the SNSs. Then, samples are washed with pure ethanol and dried in vacuum for about

30 minutes. The second step is the coupling of the biomolecular receptor (Biotin-PEO2-

Amine) to the SNSs using a 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride

(EDC) cross-linking agent. The EDC activates the carboxyl groups (-COOH) of 11-MUA

to bind to the NH2 groups of the Biotin-PEO2-Amine, forming an amide bond between the

receptor and the thiols layer. [83] For this functionalization, the samples are incubated in

a solution 1 mM of Biotin-PEO2-Amine with 10 mM of EDC in phosphate-bu�ered saline
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(10 mM phosphate, 150 mM NaCl, pH 7.4 - PBS) for 3 h. Then, they are washed with

PBS 10 mM and ultra-pure water to remove unbound molecules and dried in vacuum.

Finally, for the recognition event between receptor and analyte, the samples are incubated

in a solution of Streptavidin (SA) at di�erent concentrations (10−13 M ≤ [SA] ≤ 10−6 M)

in PBS 10 mM for 5 h to ensure achieving of binding equilibrium, washed with PBS and

pure water and dried in a N2 �ux.

1-Octanethiol, 11-Mercaptoundecanoic acid, ethanol, PBS, EDC, Streptavidin and BSA

(Albumin from bovine serum) were purchased from Sigma Aldrich while, Biotin-PEO2-

Amine, was purchased from Thermo Scienti�c. All reagents were used without further

puri�cation.

4.3 Results and discussion

4.3.1 Bio-functionalization and LSPR response

To study the application of the SNSA as plasmonic biosensors, the samples were function-

alized with a typical receptor-ligand couple of biomolecules such as biotin-streptavidin.

Streptavidin (SA) is a bacterial tetrameric protein from Streptomyces avidinii, with a

molecular weight of 60 kDa. Biotin (vitamin H) is a small water soluble molecule with

a molecular weight of 244.2 Da. The interaction between biotin and streptavidin is char-

acterized in solution by a very high a�nity constant (Ka
∼= 1013 M−1), in particular four

molecules of Biotin can bind to one molecule of streptavidin in equivalent sites, which

are situated on opposite sides of the streptavidin. [71, 72] The high a�nity stems from

hydrophobic interactions, shape complementarity, hydrogen bonds and structural rear-

rangement of the protein. [72] Van Duyne's protocol is characterized by three steps of

functionalization and at each step a di�erent layer of molecules is immobilized on the sur-

face of the samples, as described in chapter 3. The SAM of 1-OCT:11-MUA (in 3:1 ratio)

forms a protective layer from non-speci�c interactions, and it allows to bind biotin on

SNSs by a cross-linking reaction with EDC. The receptor layer is not uniform because the

biotin can bind only to the 11-MUA. This is an important aspect because the interaction

is in�uenced by the steric hindrance and by the concentration of biotinylated molecules.

At each functionalization step, additional layers of molecules are deposited on the surface,
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producing a red-shift of the LSPR peak. Since upon functionalization the modi�cation of

the absorption curve is not simply a rigid shift but involves both a shift and a deformation,

a simple evaluation of the maximum position can be unsatisfactory to follow the dynamic

of the biorecognition. Therefore, for the analysis of the LSPR peak shift we monitored the

evolution of its centroid, performing at each step an averaged weight over the absorbance

of the peak abscissas above a given threshold Ath using the following equation:

λcentroid =

∑
i λi · (Ai − Ath)∑
i(Ai − Ath)

(4.1)

where Ai is the absorbance value at wavelength λi. A schematic representation of this

analysis is reported in �g. 4.4, in which the threshold (dashed horizontal line) is the

FWHM of the peak height. The peak height is calculated as the di�erence in absorbance

at λmax and λmin.
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Figure 4.4: Schematic illustration of the analysis used for LSPR peaks: λcentroid (λc ) is the centroid of
the peak calculated for the part of the spectrum above the threshold Ath, according to Eq.
4.1; a) LSPR peak for low-interaction, LI-SNSA (RIE 8'); b) LSPR peak for high-interaction,
LI-SNSA (RIE 3')

The error on the shifts has been evaluated as 3σ (σ being the standard deviation of the

centroid in a set of repeated measurements), to take into account both the statistical errors

and the errors due to intra-sample inhomogeneities.

The response of the LSPR sensors is controlled by the morphological and compositional

characteristics of the nanoparticles used, as they de�ne the spectral width, the decay

length of the electromagnetic �eld and the intensity extinction of the spectrum. In this

study we have investigated two sets of samples, which di�er in size and gap distance
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between the SNSs therefore providing a di�erent level of interaction: in one case the

SNSs exhibit a larger gap (about 120 nm) with a lower degree of interaction (sample LI):

each SNS can be considered as an individual sensor to a good level of approximation.

[84] In the other case, the SNSs exhibit an average gap of about 35 nm so they can be

considered electromagnetically coupled with a higher degree of interaction (sample HI). The

two sets of samples were functionalized with biological molecules and the LSPR response

was monitored. For each step of bio-molecules incubation an incremental red-shift (∆λc)

of the LSPR peak centroid was observed, as shown in �g. 4.5 for the low-interaction SNSA

(LI-SNSA) and in �g. 4.6 for the high-interaction (HI-SNSA) sample.
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Figure 4.5: a) LSPR spectra for a sample of LI Au-Ag SNS arrays before and after functionalization with
bio-molecules (the λcvalues were calculated choosing a threshold at the value of absorbance
(Ath) at the 50% of the peak height): λc of the sample as deposited (black line) is 923 nm;
λc after functionalization with SAM is 934 nm (green line); λc after functionalization with
Biotin is 939 nm (blue line); λc after exposition of 100 nM of Streptavidin is 950 nm (pink
line). b) Zoom of the LSPR spectra of �gure a.

In the case of LI-SNSA at the �rst step of functionalization, with SAM, samples exhibit

a ∆λc of +11 nm, considering a threshold at 50% of the peak height (see �g. 4.5(b)).

Following the functionalization with biotin, the samples exhibited an additional red-shift

of +5 nm, indicating the successful binding of the receptor. Exposure of the SNSA to

100 nM of streptavidin results in a maximum ∆λc of about +11 nm, corresponding to a

saturation of SA for this density of receptors. In the case of HI-SNSA samples exhibit a

∆λc of +26 nm with SAM, an additional red-shift of +9 nm with Biotin and the exposure

of the HI-SNSA to 100 nM of streptavidin results in a maximum ∆λc of about +38 nm (see

�gure 4.6). All of these LSPR centroid variations were measured considering a threshold

at 50% of the peak height. Fig. 4.7 presents the LSPR spectra of LI-SNSA samples
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Figure 4.6: a) LSPR spectra for a sample of HI Au-Ag SNS arrays before and after functionalization with
bio-molecules (the λcvalues were calculated choosing a threshold at the value of absorbance
(Ath) at the 50% of the peak height): λc of the sample as deposited (black line) is 1204 nm;
λc after functionalization with SAM is 1230nm (green line); λc after functionalization with
Biotin is 1239 nm (blue line); λc after exposition of 100 nM of Streptavidin is 1277 nm (pink
line). b) Zoom of the LSPR spectra of �gure a.
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Figure 4.7: LSPR spectra of LI-SNSA samples after the functionalization with biotin and di�erent con-
centrations of Streptavidin: a) [SA] 10−6M; b) [SA] 10−7M; c) [SA] 10−8M; d) [SA] 10−9M;
e) [SA] 10−10M ; e) [SA]n 10−11M.
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The LSPR response curve, de�ned as ∆λc as a function of the streptavidin concentration,

[SA], was measured in the range 10−13 M ≤ [SA] ≤ 10−6 M and the results are shown in

�g. 4.8. The data have been �tted with the model of Langmuir isotherm [19], according

to Eq. 4.2:

∆λc = ∆λc,sat
Ka,eff · [SA]

1 +Ka,eff · [SA]
(4.2)

where ∆λc,sat is the saturation value of ∆λc and Ka,eff is the �e�ective a�nity constant�

at the interface. The Ka,eff and the limit of detection (LOD) of the system under study

can be measured from the response curve. Van Duyne underlines the relevance of these

aspects to apply the Langmuir Isotherm [73]:

1. the analyte in solution has multiple equivalent sites with the same a�nity for the re-

ceptor immobilized on a surface, but only one receptor molecule binds to the analyte

(1:1 Biotin-Streptavidin binding);

2. the transduction mechanism by the nanostructure is based only on the refractive index

change due to the binding receptor-analyte;

3. the change in the LSPR resonance condition is due only to refractive index and the

thickness of the analyte layer.

The �rst assumption is satis�ed by the use of a ratio 1:3 of 11-MUA:1-OCT, thus the re-

ceptor is very diluted on the nanostructure's surface since it can bind only to the 11-MUA

molecules by a cross linking reaction. The second assumption is satis�ed by the intrin-

sic plasmonic properties of the nanoarray, while the third one, was veri�ed by measur-

ing a biotin functionalized sample exposed to a blank solution without the analyte (only

PBS): no shift of the LSPR peak was measured after the exposure to Phosphate Bu�ered

Saline (PBS). For these reasons the Langmuir Isotherm model can be used to explain the

experimental results. The LOD is estimated as the abscissa of the intersection point be-

tween the con�dence interval associated with the non-response point and the sensing curve,

as shown in Figure 4.8. For the LI-SNSA the experimental results have shown Ka,eff =

(1.0 ± 0.5)×109 M−1, a saturation value ∆λcsat = 10 ± 1 nm and a LOD = 2×10−10 M,

whereas for the interacting case (HI-SNSA) the results are: Ka,eff=(3.3 ± 0.5)×109 M−1,
∆λc,sat = 36 ± 1 nm and a LOD = 3×10−11M.

The similar values ofKa,eff obtained for HI- or LI-SNSA indicate that the biotin-streptavidin

interaction is not largely a�ected by the degree of coupling among SNSs but is almost con-

trolled by the SNS morphology. As expected, the measured Ka,eff. is lower than the Ka
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Figure 4.8: Measured response curves of ∆λc versus [SA] for the binding of SA to a biotinylated SNSs
surface for the LI and HI samples. The solid line is the calculated value of ∆λc using Langmuir
Isotherm described in eq. 4.2. Inset: SEM image of LI- and HI-SNSA samples.

referred to binding events in solution, and this be ascribed to the di�erent constraints

imposed by the solid-liquid interface. In fact, in this con�guration the binding is in�u-

enced by the concentration and orientation of the ligand and by its interaction with the

surface [71]. The LOD obtained with SNSA for Streptavidin is comparable to the value

obtained in other works using Au nanoparticles-enhanced SPR sensors [85], con�rming the

high sensitivity of these systems which can be further improved by optimizing the func-

tionalization protocol and the structural parameters of the nanoarray.

4.3.2 Aspeci�c test

Another important feature investigated for the development of sensing devices is the sen-

sor sensitivity to an aspeci�c signal. In order to study the speci�city of the SNSA's LSPR

response and to con�rm the protective e�ect of the thiols layer and of the PEGylated

biotin, the SNSA were functionalized with SAM and biotin and exposed to a very high

concentration of BSA (albumin from bovine serum). BSA is a protein with a molecular

weight similar to that of streptavidin, and it is usually used to simulate the e�ect of an

interfering species in a biological solution of analyte, such as proteins. [73,86] The typical
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Figure 4.9: LSPR spectra for a sample of HI Au-Ag SNS arrays functionalized with bio-molecules: the
λc at the FWHM of the peak is 1155 nm after functionalization with biotin (blue line); λc at
the FWHM after incubation with BSA (1mg/ml)(red line) is 1159 nm.

concentration of BSA used is 1 mg/ml corresponding to a concentration of 1.5×10−5 M.

In the present case a sample of HI-SNSA was tested and the results obtained are showed

in �g. 4.9. The ∆λc measured is +4 nm (i.e., about 10 % of the ∆λc,sat), using a con-

centration two orders of magnitude higher than the saturation value for streptavidin, and

this shows that there is not a dramatic e�ect of aspeci�c response, in agreement with the

results of BSA exposure in Ag nano-prism arrays [73]. Moreover, the SNS arrays are stable

after all the chemical treatments and this is con�rmed by the morphological analysis of

functionalized samples. The stability of these systems is very important for the realization

of devices, because it is necessary to avoid changes of the LSPR spectra that could be due

to alterations of the structure.

4.3.3 Intensity-interrogation approach

So far, the approach that we used is based on a wavelength-interrogation mode, i.e., we

measured the absorbance at normal incidence by scanning the wavelength of light. We

have explored also the possibility of using SNSA as an intensity-interrogated biosensor.

Therefore, instead of monitoring the LSPR peak centroid shift, we measured the di�erence

in absorbance after exposure to the analyte at a �xed λ. This method is based on the

di�erence between the absorbance values (A) before and after the streptavidin detection,
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Figure 4.10: The normalized ratio ∆A/A in a LI-SNSA versus the streptavidin molar concentration, [SA],
at a �xed wavelength of 1120 nm. The solid line is the calculated value of the normalized
∆A/A using the Langmuir Isotherm. Inset: normalized ∆A/A for the streptavidin detection
at the highest concentration (10−6 M) as a function of the wavelength.

which can be expressed as in Eq.4.3:(
∆A

A

)
=
Aanalyte − Areceptor

Areceptor
(4.3)

The major point here is to select the λ at which the sensor is designed to operate. As a

possible criterion, we used a λ which is about at the maximum point of the ∆A/A for the

highest explored streptavidin concentration (10−6 M), where the curve exhibits also the

largest stability (i.e., smallest local derivative) as it can be seen in the inset of �g. 4.10.

Moreover, this λ corresponds approximately to the in�ection point of the LSPR spectra

after the maximum, which demonstrated to be very sensitive to dielectric environment

changes. For the data in �g. 4.10 (LI-SNSA) the wavelength used is 1120 nm and the

normalized absorbance ratios were calculated for all the analyte concentrations.(
∆A

A

)
norm

=

(
∆A

A

)
norm,sat

Ka,eff · [SA]

1 +Ka,eff · [SA]
(4.4)

where (∆A/A)norm,sat is the saturation value of the (∆A/A)norm. The �t of these data

with the Langmuir Isotherm, described in equation 4.4, results in a Ka,eff=(8 ± 5) × 109

M−1 with a limit of detection of about 1×10−11 M. These results are consistent to those

obtained with the centroid analysis and for the LI-SNSA indicate that an enhanced LOD
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can be attained, showing that the SNSA are promising systems also for a �xed wavelength

detection scheme.

4.3.4 Sensitivity comparison with nano-prism arrays (NPA)

We have compared the LSPR sensing performances of the bimetallic SNSA with the typical

ordered nanostructures that can be synthesized by Nanosphere Lithography, the nano-

prism arrays (NPA) [73]. In this system the functional nanounit is a silver triangular

nanoprism obtained by a NSL patterning followed by thermal evaporation of metal [57,

73, 87]. In our case, the nanoprisms have a lateral size of 116 ± 5 nm and a height of 50

± 5 nm. The typical morphology of Ag NPA obtained by silver thermal evaporation is

shown in �g. 4.11 (a). The LSPR peak is around 700 nm, as showed in Figure 4.11 b. The
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Figure 4.11: a) SEM image at magni�cation 50.00 KX of a Ag NPA; b) LSPR spectrum of the sample.

bio-functionalization strategy is the same as the one used in the case of SNSA.

The bio-sensing performances of Ag NPA were explored only for a high concentration of

streptavidin (10−7 M).

The LSPR peak is red-shifted after each step of the functionalization protocol as a result

of the successful binding of the molecules (see �gure 4.12). The LSPR spectra evolution

after the bio-functionalization of Ag NPA is shown in �g. 4.12 and the λc values obtained

are in table 4.1. Using the centroid method at FWHM, previously described, we have

obtained the λc at each step: after functionalization with SAM λc is shifted of +5 ± 1

nm, after biotin of +8 ± 1 nm and after exposure to 100 nM of streptavidin of +8 ±
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Figure 4.12: LSPR spectra for a sample of Ag triangular nanoprisms arrays (NPA) with lateral size L
= 116 nm, and height h = 50 nm functionalized with bio-molecules: λc of the sample as-
deposited (black line) is 695 nm; λc after functionalization with SAM is 700 nm (green line);
λc after functionalization with Biotin is 708 nm (blue line); λc after exposition of 100 nM
of Streptavidin is 716 nm (red line). Inset: AFM image of a typical sample of Ag triangular
NPA.

AS SAM Biotin [SA] 10−7 M

λc (nm) λc (nm) λc (nm) λc (nm)

695 700 708 716

Table 4.1: λc of LSPR spectrum of Ag NPA after each step of the bio-functionalization.

1nm. LI-SNSA gave comparable results as NPA, even if NPA nanoprisms were made of

Ag whereas SNSA are a Au-Ag alloy. Moreover, HI-SNSA provided better performances

in terms of a higher saturation shift, thus demonstrating that SNSA constitute a very

interesting nanoarchitecture for LSPR-based bio-sensing of thin molecules layers.

4.3.5 Local and bulk sensitivity of NPA and SNSA

We tried to interpret these results by comparing the bulk sensitivity Sbulk = ∂λc/∂n of

SNSA and NPA. To estimate the bulk sensitivity of Ag NPA we exposed the samples to a

solution of pure ethanol with a refractive index of 1.358 at λ of 750 nm. For the symmet-

ric form of the LSPR spectrum we considered the λc at FWHM as a good parameter to

represent also the maximum of the peak. Exposing the samples to ethanol we measured a

red-shift of 77 nm for ∆n=0.358 with respect to air (n=1). The LSPR red-shift of Ag NPA
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can be seen in �gure 4.13, in which we report the measure of a sample in dry condition (air)

and in ethanol solution. The experimental bulk sensitivity of Ag NPA is S(NPA)
bulk = 215±10

nm/RIU which is comparable with the values ranging from 200 nm/RIU to 260 nm/RIU

reported in literature [56, 57]. In the case of SNSA to measure the bulk sensitivity we

used a solution of Norland Optical Adhesive 61 (NOA 61) (n=1.542 at λ 1303 nm) for a

∆n=0.542 RIU with respect to air. The NOA 61 is liquid photopolymer that cures when

exposed to ultraviolet light, so after the exposure to UV the �lm is solidi�ed on SNSA.

In the case of SNSA we have obtained a bulk sensitivity of S(SNSA)
bulk = 405 ± 10 nm/RIU,

as can be seen in �gure 4.14. These performances are a consequence of the higher bulk

sensitivity, with respect to NPA. We have obtained also comparable results from Finite El-

ements Simulations on SNSA and NPA systems. From the simulations, we also calculated

the average e�ective decay length of the �elds λeff , obtaining a value of 55 ± 5 nm for

LI-SNSA and 20 ± 3 nm for HI-SNSA. Using the decay length, it has been possible [57]

to obtain an estimate for the local sensitivity S0 ∼ Sbulk/λeff , which resulted 7 RIU−1 for

LI-SNSA and 20 RIU−1 for HI-SNSA. Using the decay lengths of NPA which are present

in literature [57], the same estimate of local sensitivity for silver NPA is 15 RIU−1. These

�gures demonstrate that the HI-SNSA system can be more sensitive than Ag NPA, even

taking into account the fact that SNSA are not made of pure Ag but of an Au-Ag alloy,

which has enhanced chemical stability with respect to the pure silver case. [88]
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Figure 4.13: LSPR spectra of Ag NPA in air (black curve) and in Ethanol (blue curve)
.
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4.4 Conclusions

We have synthesized ordered arrays of Au:Ag alloy semi-nanoshells (SNS) with tunable

plasmonic properties in the NIR range by combining nanosphere lithography and reactive-

ion etching. By controlling the gap distance between the SNSs, we have compared the

label-free biosensing properties of low-interacting (LI) and highly-interacting (HI) arrays

of SNS using a model system of probe-analyte couple, like biotin-streptavidin. The LOD

obtained for the streptavidin molecule is of the order of 10−11M and 10−10M for the high

interaction and low interaction SNSA, respectively, demonstrating the high sensitivity of

these systems, which could be further improved by increasing the level of SNS interaction.

The SNSA biosensors exhibited a remarkable immunity against aspeci�c interaction upon

exposure to very high concentrations of BSA. An analysis of the performances of the

SNSA also in an intensity-interrogation scheme was demonstrated, indicating that the

LOD obtained with the low interacting SNS can be improved with the alternativ approach

based on the analysis of the absorbance variation measured at a �xed wavelength. Finally,

we have compared the biosensing bulk and surface sensitivity of Au:Ag alloy SNSA and

Ag NPA, which are more commonly used as plasmonic sensors. The saturation response

of the LI-SNSA is comparable with the results obtained with NPA, while the interacting

SNSA showed a higher signal in agreement with their ampli�ed bulk and local sensitivity.

The experimental bulk sensitivity of the Au:Ag SNSA is much higher with respect to

Ag NPA and in a good agreement with FEM calculations. This demonstrates that a label-

free biosensing scheme based on bimetallic SNSA improves under many aspects, and in
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particular in terms of bulk and surface sensing performances, with respect to the currently

established NPA-based techniques.





5 EOT for biosensing applications

5.1 Introduction

In this chapter we will describe a class of biosensors based on E-SPR phenomena and in

particular on the EOT, which occurs for ordered arrays of sub-wavelength holes drilled in

an optically opaque plasmonic �lm.

5.1.1 Extraordinary Optical Transmission of Nanohole Arrays

A NHA is a periodic array of nanometric holes in a metal thin �lm (with typical thickness

of about 100 nm). Usually the hole diameter and the pitch of the lattice are few hundred

nanometers.

EOT is a fascinating optical property of NHA discovered in 1998 by Ebbesen and his

collaborators. [89] They investigated the transmission of light through NHA made of noble

metal thin �lms. Ebbesen and co-workers demonstrated that the light transmitted through

the NHA was higher than the incident one normalized to the total holes area and, for

certain wavelengths, the amount of transmitted light was much higher than estimated

by the classical aperture theory. [90] NHA with sub-wavelength holes of diameter d are

indeed able to overcome the standard di�raction limit and to e�ectively transmit light

with λ > 2d. These properties are due to the coupling between the E-SP and the incident

electromagnetic �eld on the NHA. As explained in chapter 1 and 2 the periodicity of the

lattice gives the extra momentum necessary to excite E-SP. The transmission process for a

single aperture surrounded by periodic grooves was studied by Degiron and Ebbesen. [91]

Their study indicated that the extraordinary transmission is based on three main steps: (i)

the incident light with an appropriate λ excites the E-SPs on the incident surface, (ii) the

excitation is transmitted through the holes and (iii) there is a re-emission of the radiation

from the second surface in terms of transmitted light. [5,91] This theory can also be applied

71
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to the case of sub-wavelength holes arrays. EOT has been demonstrated and interpreted

mainly in NHAs made of Au or Ag. [92] Indeed, to enhance the E-SP and, to reduce the

losses, the metal �lm should have a high absolute value of the real part of the dielectric

constant and a small imaginary part. Therefore, Au and Ag are the best candidates for

their intrinsic properties.

Due to the ordered nature of the array, EOT can occur at di�erent wavelengths, whose

position is related to the periodicity of the lattice. The λEOT of EOT for a sub-wavelength

holes arrays with square symmetry and lattice constant a is expressed by [93]:

λEOT (n,m) =
a√

(n2 +m2)

√
εmεd
εm + εd

. (5.1)

where the integer n andm are the scattering orders of the array and εm, εd are the real part

of the dielectric constant of the metal and the dielectric medium surrounding it. This equa-

tion is valid in the limit of vanishing hole size. The pitch of the lattice a can be controlled

by the synthesis lithographic techniques such as NSL or EBL. [67,94] In this way it is pos-

sible to �nely tune the position of the EOT transmission peaks in the visible-near infrared

region of the electromagnetic spectrum. This property can be used to realize �lters for

speci�c wavelengths by simply changing the pitch of the array. [5] Other features strongly

a�ect the transmission properties, such as the aspect ratio of the holes, the shape, the sym-

metry of the array and the surface roughness. These features a�ect the electromagnetic

surface waves properties and their coupling with the incident light. [5] The thickness of the

metal �lm (or the hole depth) can strongly a�ect the transmission, in particular it should

be several times the penetration depth at which the light intensity is reduced by 1/e. For

instance, in the visible range, the metal penetration depth is about 20 nm; therefore, �lm

thicknesses in the range 60-200 nm are a good compromise to obtain opaque �lms. The

experimental results for sub-wavelength holes arrays show an EOT peak generally slightly

red-shifted with respect to the theoretical prevision by equation 5.1 (see graph a in �gure

5.1). [5,92] This disagreement was studied and interpreted quantum-mechanically with the

model of Fano Resonance by Genet and his collaborators. [6] This red shift is explained

taking into account two interfering contributions to the transmission: one is due to the

direct light transmission through the holes and the other is the transmission mediated by

the surface plasmon polaritons excitations at the two interfaces. The �rst phenomenon is

a non-resonant contribution while the SPP-mediated is a resonant process. The coupling
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between these two transmission processes cause a red-shift of the EOT peak as experimen-

tally observed [6, 92] and a characteristic asymmetrical spectral shape in agreement with

the Fano one in atomic physics. [95] Thus, Fano Resonance analysis demonstrated to be a

good model for representing the optical properties of two dimensional sub-wavelength holes

arrays, as it can be seen in �gure 5.1b. The grating nature of the holes array provide a

a) b)                                                                                                                    

Figure 5.1: a) Transmission spectrum of triangular hole arrays (period 520 nm, hole diameter 170 nm,
225 nm thickness Au Film on a glass substrate see Inset). The transmission is measured at
normal incidence using collimated white light. I/I0 is the absolute transmission of the array
and η is the transmission normalized to the hole's area [5]. b) Experimental transmission
spectrum of the air-metal (1,0) SP resonance, obtained with an Au �lm of thickness 200 nm
with a0 = 700 nm and r = 70 nm. The smooth curve shows the �tted Fano pro�le [6].

di�erent transmission orders; in particular for λ > a (a is the period of the array) only the

0th order is formed as represented by the (1,0) peak in �gure 5.1a. For lower wavelengths

(λ < a) the higher di�raction orders appear, such as the (1,1) peak.

The dielectric medium surrounding the holes arrays a�ects the position of the (1,0) EOT

resonance wavelength, and this property can be exploited for sensing applications, as

demonstrated for label-free optical sensors. [96�100]

5.1.2 EOT-based sensors

As it can be seen in equation 5.1 the resonance wavelength of EOT depends on the di-

electric constant of the medium around the NHA and this property is exploited to realize

sensing devices. The detection of chemical or biological species is based on the variation of
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EOT resonance position after the receptor-analyte binding on or in proximity of the NHA's

surface. [101] NHA belong to a class of plasmonic sensors based on propagating E-SP such

as the typical commercial Surface Plasmon Resonance (SPR) sensors, which are based on

Kreschmann con�guration. However, by using NHA the sensing signal can be measured

with a simple transmission technique at normal incidence, and this is very advantageous

also for miniaturizing the sensing devices like in the new lab-on-a-chip technologies. Square

NHAs (d = 200 nm, a = 510-618 nm, Au �lm thickness = 100 nm) were investigated for

chemical and biological detection and the sensitivity obtained was 400 nm/RIU. [101] In

other works it is reported that the surface sensitivity (which is referred to one monolayer

coverage) of Au NHA synthesized by Electron Beam Lithography (EBL), can be enhanced

by 2.5-3 times with thermal annealing. In that work NHA were fabricated on glass sub-

strates with diameter 150 and 209 nm in a gold �lm of thickness 100 nm and with a period

of 500 nm. Then, they were thermal annealed in argon atmosphere at 600◦C for 1 h. With

the annealing the roughness of the metal �lm decreases for the reduction of small islands

providing a more uniform metal surface, which reduces the surface wave scattering and

propagation losses. [101] The surface sensitivity for a monolayer of 2.2 nm increases from 6

nm/RIU to 16.9 and from 6.7 to 17.9 for holes diameter of 209 and 150 respectively. [102] In

literature random arranged gold nanoholes on a glass slides (d = 60 nm, Au �lm thickness

= 20 nm) were also exploited to realize speci�c SPR-sensors. [93] The detection was based

on the red-shift of the LSPR peak after the biomolecules binding. These systems were

able to detect in a sensing area of 0.1 mm2 analyte molecules such as tumor markers in

concentration less than 1 pg. [93] The measured bulk sensitivity of random gold nanoholes

was 110 nm/RIU [93], suggesting that ordered arrays have to be preferred

The actual synthesis techniques such as Focused Ion Beam, EBL or NSL allow to easily

change the size parameters and the morphology of these systems. [94, 103] This opens the

possibility to investigate and optimize the optical properties of NHA for the development

of EOT sensors characterized by high sensitivity and speci�city.
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5.2 NanoHole Array (NHA) fabrication and

characterization

In the present work, hexagonal NHA with hole diameter in the range d=270-330 nm and

period a=522 nm were synthesized by NSL. The metal �lm was composed by a multilayer

of titanium, gold and silver, 60 nm in thickness. (1,0) EOT peak was measured by a trans-

mittance spectrum in the near-infrared region. The local and bulk EOT sensitivities were

experimentally measured. Then, the biosensing performances were investigated by func-

tionalizing NHA with a typical couple of biological molecules, biotin-streptavidin, based on

a receptor-ligand scheme. These molecules are the same used for the sensing tests of SNSA

and NPA nanostructures. EOT was monitored with a transmission technique before and

after the biorecognition event between the biomolecules. Moreover, numerical simulations

were performed to compare the experimental results with theoretical ones.

5.2.1 Synthesis and characterization of NHA

The synthesis of NHA was based on NSL as described in chapter 3.

The process can be divided in the following steps:

1. Self-assembling of a PS nanospheres monolayer on a transparent substrate

(PS Diameter D= 522 ± 12 nm);

2. reactive ion etching to reduce D;

3. multilayer metal deposition of Ti, Ag and Au by magnetron sputtering technique (total

thickness 60 nm);

4. dissolution of the PS monolayer by a toluene treatment in ultrasonic bath.

The NHA were synthesized on silica substrates previously cleaned with acid piranha so-

lution as described in chapter 3. The silica substrates were cut as rectangles with side 2

cm x 1 cm. The samples were based on holes arrays with period a=522 nm and a hole

diameter in the range 270-330 nm, in a thin opaque multilayer of Ti-Ag-Au with a total

thickness of 60 nm (Ti(5 nm)-Ag(45nm)-Au(10nm)). We used this particular size for the

PS nanosphere of 522 nm to have the (1,0) EOT resonance in the NIR range, i.e., far

enough from the interband absorption thresholds of the deposited metals in order to re-

duce losses and to improve the sharpness of the resonances.
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The multilayer of Ti-Ag-Au was deposited in sequence by magnetron sputtering technique

using two RF and one DC sources. The RF sources were used for titanium and gold, while

the DC for silver. To obtain a multilayer with a �ne control on the thickness of each metal

layer, we performed three di�erent deposition-rate calibrations. Starting from those cali-

brations we calculated the deposition rate in nm/s for Ti, Ag and Au. In our sputtering

machine the three sources were positioned in the same vacuum chamber with an angle of

120◦ among them. The samples could be positioned in front of each source in order to

obtain a good collimation of the atoms �ux and, to deposit three layers in sequence in the

same vacuum conditions (5×10−3 mbar.) This procedure avoided the formation of oxidized

species in the metallic multilayer. The sample holder was set in rotation during each metal

deposition to assure an uniform coverage on the total area occupied by the samples. At

�rst, we deposited 5 nm of titanium on the etched polystyrene masks. Titanium serves

as an adhesion layer because the low a�nity between noble metals and silica or silicon,

therefore making the Ag-Au overlayers more stable on the silica substrate for the func-

tionalization process. A complete morphological characterization of the nanoarrays was

obtained by SEM and AFM. The typical morphology of the NHA is reported in �gure

5.2. The period of the lattice a is controlled by the PS diameter. The hole diameter is

controlled by RIE. The width and wavelength position of EOT depend on the structural,

morphological and compositional parameters of NHA. In particular on:

• period of the array a;

• holes diameter d;

• composition, roughness and height of the metal opaque �lm;

• aspect ratio (d/h);

• area occupied by the holes on the total area σ;

• dielectric medium surrounding the NHA.

The transmission measurements were performed by using a JASCO V-670 spectropho-

tometer in the range 300-2600 nm, at normal incidence and with unpolarized light. EOT

spectrum of a NHA with a= 522 nm, d= 295 nm and a metal height of 60 nm presents the

(1,1) peak at λmax in the visible at 540 nm, while the (1,0) peak at 970 nm, as reported in

�gure 5.3. The Ti-Ag-Au multilayer thickness of 60 nm is su�cient for the approximation

of �lm opacity since the corresponding continuous �lm exhibits a negligible transmission

in the visible-infrared region where EOT is presents (see �gure 5.4a). To verify the ex-
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a)                                                              b)                                                           
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Figure 5.2: NHA of period 522 nm, hole diameter 295 nm and metal height of 60 nm: a) SEM image
at magni�cation 100.00 KX of a typical synthesized NHA (top view); b) SEM image at
magni�cation 516.97 KX in side view.

traordinary property of EOT we calculated the normalized transmittance with as:

T%norm. =
T%

f
(5.2)

where f is the �lling factor of NHA.

f =
AHoles
ANHA

=

(
d

a

)2
π

2
√

3
(5.3)

For our NHA with a= 522 nm and hole diameter d=295 nm the �lling factor is 0.2896. If

we neglect the plasmonic properties of NHA we expect a transmission of about 29%. The

400 600 800 1000 1200 1400
0

10

20

30

40

50

970 nm

(1,0)

 

T
ra

n
s
m

it
ta

n
c
e
 %

 T% 

Wavelength (nm)

(1,1)
540 nm

Figure 5.3: EOT spectrum of NHA a = 522 nm, d = 295 nm and Ti-Ag-Au height = 60 nm.
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Figure 5.4: a)T% of a multilayer of Ti-Ag-Au of 60 nm deposited on a silica substrate; b)T% normalized
(T%/�) of a NHA with a 522 nm, d 295 m and a multilayer of Ti-Ag-Au of 60 nm.

transmittance normalized to the holes area is higher than 100% as it can be seen in �gure

5.4b, con�rming the EOT nature of the transmission peak. In the case of a two-dimensional

triangular array the peak position of transmittance at normal incidence is de�ned by the

equation [5]:

λEOT (n,m) =
a√

4
3
(n2 + n m+m2)

√
εmεd
εm + εd

. (5.4)

where the integer n andm are, as usual, the scattering orders of the array and εm, εd are the

real part of the dielectric constant of the metal and the dielectric medium surrounding it.

Changing the dielectric properties of the medium at the interface with NHA, the resonance

wavelengths of EOT also changes, as expressed by equation 5.4. In this dependence on εd
lies the refractive index sensing behavior of NHA.

5.2.2 EOT refractive index sensing

The sensing properties of NHA were exploited by analyzing the (1,0) EOT peak variation

for refractive index changes. We theoretically expected a red-shift of EOT peak as the

refractive index at metal/dielectric interface increases. We measured the bulk sensitivity

and the local sensitivity of NHA.

The bulk sensitivity is referred to refractive index changes due to a dielectric variation with

thickness much higher with respect to the decay length ld of the electromagnetic �eld. The

typical decay length of propagating surface plasmon polaritons in a dielectric is 100-200

nm. To measure the bulk sensitivity we deposited a polymeric layer (NOA) on the NHA's
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surface with thickness some millimeters and refractive index 1.54.

On the other hand, the local sensitivity refers to dielectric changes of thickness lower than

the decay length of the electromagnetic �eld. The local sensitivity was measured by de-

positing on the NHA a layer of silica (refractive index 1.45) with increasing thickness upto

few tens nanometers. Then, we investigated the NHA label-free sensing performances for

protein detection. NHA were functionalized with a couple of biological molecules receptor-

ligand characterized by a very high a�nity (biotin-streptavidin). EOT response was mea-

sured for di�erent concentrations of the ligand molecule, in order to build a sensitivity

curve EOT shift vs. analyte concentration.

5.2.3 EOT analysis

For the analysis of EOT sensing response we focused our attention only on the (1,0) EOT

peak. To analyze the EOT peak red-shift, we used two di�erent approaches, as described

in �gure 5.5: (i) the centroid method and (ii) the full �t with a Fano-type peak shape.

The �rst is based on the measure of the centroid of the peak above a well de�ned

threshold. The centroid, λc, for transmittance measurements is expressed by:

λc =

∑
i λi(Ti − Tth)∑
i(Ti − Tth)

(5.5)

where Ti is the transmittance at the wavelength λi and Tth is the threshold of transmittance

chosen between the peak minimum and the maximum. Only λi in the region where Ti > Tth

are considered to evaluate λc, as indicated by the gray region of the peak in �gure 5.5a.

The centroid takes into account the potential deformations of the peaks which are not

included with the simply λmax evaluation. The threshold used for the centroid analysis is

the FWHM of the peak, as indicated in �gure 5.5a. The peak parameter we monitored is

named λc−F .

The other method we used is the Fano Resonance model, rewritten in the wavelength

domain (x is a wavelength), which is expressed by the following equation:

y(x) = y0 + A ·

(
q +

(
1
x
− 1

x0

)
· σ
)2

1 +
((

1
x
− 1

x0

)
· σ
)2 (5.6)
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Fitting the experimental EOT with Fano Resonance model we monitored the parameter

x0, which represents the wavelength position of the EOT resonance peak. The Fano �t was

done for the part of the peak above the in�ection point, but this detail will be treated in

the following sections.
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Figure 5.5: a) Representation of the centroid method to evaluate the λc of the (1,0) EOT peak; b) Fano
Resonance Fit (red curve) of the (1,0) EOT peak in the range 830-2600 nm.
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Measure λc−F (nm) x0 (nm)

1 915.1 716.7

2 914.0 717.5

3 913.1 716.7

4 913.6 717.6

5 913.5 718.0

6 914.7 716.3

7 915.4 718.0

8 915.1 718.8

9 913.5 718.2

10 914.1 719.2

Average 914.2 ± 0.8 717.7 ± 0.9
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Figure 5.6: Repeated measurements of EOT spectrum by repositioning each time the NHA on the sample
holder. In the table the λc−F and x0 values of each measurement and their average are
reported. The error associated is the standard deviation.

The optical measurements of NHA before and after refractive index changes were done

positioning the NHA on a sample holder. To take into account the systematic error as-

sociated to the repositioning of the sample, we acquired several EOT spectra of the same
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NHA. For each measurement the sample was repositioned on the sample holder. We did

this procedure ten times and we veri�ed a good reproducibility of the measure as shown

in �gure 5.6. The resulting λc−F and the x0 values are reported in table b. The error

associated to the average was calculated as the standard deviation of the measurements.

The systematic error associated to the λc−F and x0 values can be considered 1 nm.

5.3 Local and bulk sensitivity of NHA

Numerical simulations have been carried out using a commercial software for �nite ele-

ments method (FEM) computations (COMSOL Multiphysics, version 5.2). The geometric

parameters of the NHA were measured by AFM and scanning electron microscopy and

then used to de�ne the model. The material properties were described by their relative

dielectric permittivity functions ε(ω). Numerical simulations were used to evaluate the

order of magnitude of the local and bulk sensitivity of this class of NHA. For the compar-

ison between experimental and theoretical results we have to take into account that the

simulated nano-holes arrays have a perfect geometric structure with respect to the exper-

imental samples. In the model, the holes are represented by perfect cylinders but, in the

real systems, the holes are characterized by rounded edges and a more rounded geometry.

Moreover, the presence of defects in the real samples, which are not considered in the ideal

model, can a�ect the width and the shape of the EOT spectrum. The experimental dielec-

tric functions (ε(ω)) of gold and silver were measured by ellipsometry on thin �lms of the

corresponding metals deposited by magnetron sputtering in the same conditions as for the

NHA. The spectroscopic ellipsometric measurements were performed with a V-VASE el-

lipsometer by the J.A. Woollam Co., Inc. and the data were analyzed with a WVASE32r

software. Nanometric layers of gold or silver (50 nm in thickness) were deposited on silicon

substrates previously cleaned with an acid piranha solution. The thickness of the �lms was

measured by AFM. The ellipsometric measurements were performed in the wavelength

range 300-1700 nm for incidence angles in the range 55◦-75◦ each 5◦. We have obtained

the εAg−exp and εAu−exp of our Au and Ag �lms. We have also measured the εT i−Ag−Au of

a multilayer of Ti(5 nm)-Ag(45 nm)-Au(10 nm). The experimental εT i−exp was obtained

by using εAg−exp and εAu−exp previously measured.
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5.3.1 Local sensitivity: experimental results

The EOT shift (∆λpeak) for a ∆n variation can be expressed by [14,57]:

∆λpeak(da) = λpeak(da)− λpeak(0) = Sbulk∆n

[
1− exp

(
−2da
ld

)]
(5.7)

where ∆λpeak(da) is the red-shift of EOT peak due to the presence of a new dielectric layer

with thickness da. In our case ∆λpeak is expressed by ∆λc−F or ∆x0 if we use the centroid

method or Fano model, respectively. Sbulk is the bulk sensitivity of NHA, ∆n = na − ne
is the refractive index variation (ne is the refractive index of the environment such as air,

na is the analyte's one) and ld is the decay length of the plasmonic �eld. The calculated

decay length ld for our NHA is 106 ± 6 nm in a medium such as silica (n=1.45) and 76

± 4 nm in air. In the case of biosensing applications na can be considered the refractive

index of the analyte molecules to be detected (n = 1.5). In the limit of da � ld we obtain

the equation for the bulk sensitivity (Sbulk).

∆λpeak(∞) = Sbulk∆n. (5.8)

The local sensitivity is de�ned by the following equation:

S0 ≡
1

∆n

∂λpeak
∂da

∣∣∣∣
da=0

(5.9)

This equation may be approximated to �rst-order in the limit of da < ld, such as in the

case of thin dielectric layers, obtaining the following linear function:

λpeak(da) ≈ λpeak(0) + Sbulk∆n

[
1−

(
1− 2da

ld

)]
= λpeak(0) +

(
2Sbulk∆n

ld

)
· da (5.10)

Therefore the link between local and bulk sensitivity can be obtained by applying eq.5.9

to eq.5.10 as:

S0 =
2Sbulk
ld

(5.11)

To evaluate the local sensitivity of Ti-Ag-Au NHA we deposited incremental silica (SiO2)

layers with total thickness 13, 24, 36 nm on the NHA's surface. We used the magnetron

sputtering technique to deposit three nanometric SiO2 layers with a �ne control on the

thickness. The silica refractive index, n has a value of 1.45 in the range of λ = 800-1500
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nm where the (1,0) EOT peak is located. The silica refractive index is very similar to that

of biological molecules (n ∼1.5), so it is very used to simulate the response of nano-sensors

to a functionalization with these molecules.

The NHA have a period of 522 ± 12 nm, a hole diameter of 295 ± 10 nm and a metal

height of 60 ± 3 nm. The substrate is an hyper-pure silica glass HSQ 300 by Haereus.

The silica �lms were also deposited on a silicon substrate to measure by AFM and SEM

their incremental thickness after each deposition, as can be seen in �gure 5.7. EOT spectra

1+2 = 23.8 nm

a) b)

1+2 + 3  = 35.6 nm

Figure 5.7: a)SEM image at 250.00 KX of a silica layer of ≈ 24 nm (layer 1 + layer 2) deposited on a
silicon substrate (cross view); b) SEM image at 200.00 KX after three SiO2 depositions (layer
1 + layer 2 + layer 3); the total thickness is 36 nm (cross view).

were acquired before and after each silica deposition. The spectra were analyzed by using

the centroid method and the model of Fano Resonance. As theoretically predicted, the

refractive index change due to the di�erence between air (n=1) and silica (n=1.45) induced

a red-shift of the transmission peak wavelength position, which can be seen in �gure 5.8.

The centroid values after each silica deposition are reported in �gure 5.9bb. λc−F was

red-shifted of 13 ± 1 nm, 12 ± 1 nm and of 14 ± 1 nm for 13, 24, 36 nm of SiO2 layers,

respectively. Since the silica total thickness is lower than ld (36 nm vs 53 nm) we can use

the approximation expressed in the equation 5.10. The local sensitivity of Ti-Ag-Au NHA

can be obtained using a linear �t of λc−F as a function of the silica thickness with the

equation y = mx+ q. The slope, m, which results from the linear �t is 1.08 ± 0.03, while

the intercept is 1017 ± 1 nm. The local sensitivity S0 can be calculated by dividing m for

the refractive index di�erence nSiO2 - nair (∆n = 0.45):

Scentroid0−exp =
m

nSiO2 − nair
= 2.4± 0.1RIU−1 (5.12)
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Figure 5.8: a) experimental EOT spectra of a Ti-Ag-Au NHA before and after silica layers depositions:
sample without silica (black line), sample covered with 13, 24 and 36 nm of SiO2 is respectively
presented by red, blue and green lines. b) Zoom of graph a. The short dash lines indicates
the λc−F red-shift after each deposition.
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Figure 5.9: The graph a represents the linear �t of λc−F in function of the silica thickness. The table in
b reports the centroid values before and after each silica deposition.

EOT peaks were also analyzed by �tting the curve with the Fano Resonance model de-

scribed in equation 5.6. We restricted the �t to the (1,0) peak so it was necessary to select

one region of the optical transmission starting from a given λ0. Then, Fano Resonance �t

was done from λ0 to the maximum measured value of the peak (2600 nm). The evaluation

of x0 as a function of the λ0 value was done in the wavelength region from 810 to 865 nm

every 5 nm. In the legend of graph a in �gure 5.10 we indicate with di�erent colors the λ0
used for the analysis of the peak: e.g., in the case of λ0 835 nm, we excluded from the �t

the transmission values corresponding to λ < 835 nm, and the �t was done from 835 to

2660 nm. This analysis showed that above the in�ection point of the curve (λ0 higher than

800 nm) the Fano Resonance �t is not perturbed by the choice of λ0. For the transmission
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spectra after the silica depositions we obtained x0 of 921 ± 2.0 nm (13 nm SiO2), 943 ± 2

nm (24 nm SiO2) and 969 ± 2 nm (36 nm SiO2), respectively. The error associated to the

average x0 is the standard deviation of 12 measurements. The x0 of the (1,0) EOT peak

was red-shifted by 19 ± 1 nm, 22 ± 1 nm and 26 ± 1 for incremental silica thickness from

13 to 36 nm. The linear �t of x0 as a function of the silica thickness gives a slope of 1.9 ±
0.1 nm. The local sensitivity with Fano Resonance analysis is therefore:

Sx00−exp =
m

nSiO2 − nair
= 4.2± 0.2RIU−1 (5.13)

The better sensitivity of the Fano analysis with respect to the centroid one stems from

the fact that it is a global �t of the curve and not just a measure of its 'center of mass'

evaluation.
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Figure 5.10: a)EOT spectrum of NHA. Each colored part indicates a di�erent λ0; the Fano Resonance
Fit is calculated from λ0 to the end of the measure (2600 nm).

5.3.2 Local sensitivity: numerical simulations

The sensing properties of NHA were investigated by numerical simulations to compare

the theoretical and experimental results. The EOT properties obtained by simulations are

referred to a NHA with a period a= 522 nm, a hole diameter d=290 nm and a multilayer of

Ti (5 nm), Ag (45 nm) and Au (10 nm). To simulate the presence of a dielectric medium on

the NHA 's surface we used the silica refractive index. We have simulated the presence of

an incremental silica layer with thickness from 13 to 39 nm with a refractive index n=1.45.

The simulated (1,0) EOT spectra before and after the addition of the silica layers are

reported in �gure 5.12. The slope of the linear �t of λc−F in function of the SiO2 thickness
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Figure 5.11: The graph a represents the linear �t of x0 as a function of the silica thickness. The table in
b reports the x0 values before and after each silica deposition.

is m = 0.9 ± 0.1 and q = 824 ± 1 nm. The slope of the linear �t of x0 in function of the

SiO2 thickness is 1.1 ± 0.1 and q is 769 ± 2 nm. The local sensitivity obtained with the

centroid method and the Fano Resonance �t results in:

Scentroid0−theor = 2.0± 0.2RIU−1 (5.14)

Sx00−theor = 2.4± 0.2RIU−1 (5.15)
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Figure 5.12: Simulated (1,0) spectra of the NHA (a=522 nm, d= 290 nm, Ti-Ag-Au (5-45-10) 60 nm)
in air (black line) and covered with increasing layers of silica, 13 nm (green line), 26 nm
(red line) and 39 nm (blue line): a) The dash lines indicate the red-shift of the centroid
with increasing silica thickness; b) The dash lines indicate the red-shift of the x0 parameter
obtained with the Fano Resonance �t with increasing silica thickness.
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Figure 5.13: Graph a represents the linear �t of x0 as a function of the silica thickness. The table in
b reports the x0 values before and after each silica deposition. The graph c represents the
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5.3.3 Bulk sensitivity: experimental vs theoretical results

As already described, we nanofabricated NHA with a multilayered structure, Ti-Ag-Au.

To better understand why we preferred this choice with respect to a simpler monoelemental

(Au or Ag) case, it's useful to compare the simulated bulk sensitivity, Sbulk for an identical

NHA with the multilayered structure and the simple monoelemental one. The results are

reported in Tab.5.1

From this result, the multilayered structure demonstrated the highest sensitivity among

the investigated compositions: we therefore used it as the �nal structure of the experimen-

tally nanofabricated NHAs, also considering its expected better chemical and mechanical

stability in terms of better adhesion and reduction of oxidation processes.

The bulk sensitivity was then experimentally measured by the deposition of a layer of
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NHA Sbulk
composition nm/RIU

Au 290 ± 25
Ag 311 ± 25

Ti-Ag-Au 315 ± 17

Table 5.1: simulated bulk sensitivity, Sbulk, for NHAs with the same geometry (a=522 nm, d=290 nm,
total thickness 60 nm) but di�erent composition: (i) pure Au, (ii) pure Ag, (iii) multilayer Ti
(5 nm) - Ag (45 nm) - Au (10 nm).

Norland Optical Adhesive-61 (NOA-61) on the NHA's surface. NOA-61 is a liquid photo-

polymer that polymerizes under ultraviolet exposure; after 1h of UV treatment, NOA-61

forms a homogeneous solid �lm on the NHA, whose thickness is few millimeters, i.e., much

larger than the decay length ld of the propagating plasmons of NHA (few hundreds nm).

NOA-61 has a refractive index de�ned by:

n(λ) = 1.5375 +
8290.45

λ2
− 2.11 · 108

λ4
(5.16)

The used NHA for this experiment has a period a = 522 ± 12 nm, a hole diameter of d= 320

± 8 nm and the metal multilayer height is 60 ± 3 nm. The EOT spectrum was measured

before and after the NOA-61 deposition. As expected, EOT peak was red-shifted by the

NOA refractive index, as reported in �gure 5.14. The analysis of the EOT was done by

the centroid method. We measured a λc−F variation of 144 nm for a bulk refractive index

change of 0.54. The λc−F of the NHA is 1012 nm and 1156 respectively before and after

the NOA-61 deposition. To simulate the bulk sensitivity air (n=1) at the interface with

the NHA was replaced in the calculations by a medium with a refractive index of n=1.52

(similar the one of NOA). The λc−F of the simulated EOT spectrum is red-shifted of 163

nm as can be seen in graph b in �gure 5.14. The resulting experimental and simulated

bulk sensitivity, Sbulk, resulted:

Scentroidbulk−exp =
∆λcentroid
nNOA − nair

= 267 nm ·RIU−1 (5.17)

Scentroidbulk−theor =
∆λcentroid
n1.52 − nair

= 314 nm ·RIU−1. (5.18)

The analysis of the EOT spectra was also done with the Fano Resonance model. The

Fano parameter x0 of the experimental spectrum is 907 nm before the NOA-61 deposition
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Figure 5.14: a) EOT spectrum of the NHA in air (dark grey line) and covered with NOA-61 (blue
line);b)Simulated EOT spectrum of the NHA in air (black curve) and covered with a dielec-
tric �lm with n=1.52 (blue curve). The dash lines indicates the position of the centroid at
FWHM of each peak.

and, it is 1067 nm after the NOA-61 coverage. The �t was done in the wavelength range

820-2600 nm for the sample in air and in the range 920-2600 nm for the sample in NOA-61.

x0 was red-shifted of 160 nm, as reported in �gure 5.15. In the case of simulated spectra

the x0 was red-shifted from 740 nm (n = 1) to 927 nm (n = 1.52) for a bulk refractive

index variation of 0.52. The bulk sensitivity referred to the Fano parameter (x0) can be

calculated as:

Sx0bulk−exp =
∆x0

nNOA − nair
=

160

0.54
= 296 nm ·RIU−1 (5.19)

Sx0bulk−theor =
∆x0

n1.52 − nair
=

187

0.52
= 360 nm ·RIU−1. (5.20)

5.3.4 Discussion

The experimental and theoretical response of the NHA to refractive index changes was

analyzed by two methods. The very good agreement between the Fano Resonance and the

experimental and simulated EOT spectra indicates that it is an appropriate model to ex-

plain and investigate our results. Moreover, the sensitivity values obtained by monitoring

the Fano parameter x0 are higher with respect to those obtained by the centroid method.

As already observed, this can be explained considering that the Fano Resonance analy-

sis involves a �t of the entire EOT peak whereas the centroid method considers only the
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Figure 5.15: a) Experimental EOT spectrum of the NHA in air (n=1) and covered with NOA-61 (N01.54)
�tted with the Fano Resonance Model (the �t is indicated by red dash lines.) The blue part
of the spectra was not included in the �t calculation.

asymmetry of the curve. These results show that the analysis of x0 is a more sophisticated

and complete way to analyze the EOT response.

In order to evaluate the results obtained we calculated the decay length of the electromag-

netic �eld (ld) along the perpendicular direction to the NHA interface.

ld can be derived by the ratio 2Sbulk/S0 from equation 5.10. We used the experimental

values of Sx00 (4.2 RIU−1) and Sx0bulk (296 nm · RIU−1) and we obtained ane�ective value

of ld = 140 nm, whose order of magnitude is in qualitative agreement with the simulated

value of 106±6 nm. Concerning the comparison between the model and the experimen-

tal case, we think that the di�erences could be due to the presence of defects and to the

smoothed geometry of the holes in the real samples. We underline that the experimental

bulk sensitivity obtained in the present work is in perfect agreement with similar results

on EOT-based sensors found in literature, which reports values of Sbulk of about 300 nm

RIU−1 in the visible-NIR range. [2] We can conclude that a good level of agreement was

found between the local and bulk sensitivity of theoretical model and experimental data

and that, the Fano Resonance model can be considered the best approach to analyze and

discuss our results.

5.4 Biological sensing with NHA

The biosensing response of NHA was investigated by using a couple of biological molecules

based on the receptor-ligand scheme. The molecules are biotin-streptavidin, the same



5.4 Biological sensing with NHA 91

involved in the sensing tests of Au:Ag SNSA and Ag NPA. We applied the same func-

tionalization strategy in order to compare the sensing performances of all the nanoarrays

investigated. The intrinsic properties of the biomolecules involved, the functionalization

and other experimental parameters are known to strongly a�ect the performances of the

SPR-based sensors. [93]

5.4.1 NHA synthesis

The nano-holes arrays for biological tests were synthesized in spots 2 millimeters in diam-

eter, on a silica substrate. To synthesize exactly an area of 3.14 mm2 we used dedicated

home-made masks (see �gure 5.16a). The masks were positioned on the etched PS mono-

layers before the metals deposition. After the multilayer deposition we removed the masks

and we obtained a sample as reported in �gure 5.16b. The metal was deposited on the PS

monolayers only in the circular area exposed to the atoms �ux. The four circular spots are

the PS monolayers covered with the multilayer Ti-Ag-Au while, the iridescence zone, is

only the PS monolayer. Following the metals deposition, the sample was treated in toluene

in ultrasound bath for few minutes to remove the polystyrene monolayer not covered with

the metals, as in �gure 5.16c. The typical morphology before and after the toluene treat-

ment can be seen in the SEM images in cross view in �gure 5.17. Toluene was used to

dissolve the polystyrene nanoparticles and to obtain the ordered nano-holes array. This

procedure allows to obtain Ti-Ag-Au NHA in spots 2 mm in diameter (see �gure 5.16c).

a) b)                                       c)

Figure 5.16: a) Etched PS monolayers covered with a home-made mask (spots diameter 2 mm) after
the Ti-Ag-Au deposition; b) Sample after the removal of the home-made mask (the metal
multilayer was deposited only in the circles); c) NHA samples on a silica substrate after the
dissolution of the PS monolayer in toluene.
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5.4.2 NHA characterization

The synthesized NHA have a period of a=522 nm ± 12 nm, a hole diameter of d=280 ±
10 nm and a total metal height of 60 ± 3 nm. The nanoholes hexagonal periodicity, the

hole diameter and the multilayer morphology can be observed in �gure 5.18.

Etched PS Mask + Ti-Ag-Au Ti-Ag-Au NHA

a) b)

Figure 5.17: a) SEM image in side view at 100.00 KX of the sample before the toluene treatment; b)
SEM image after the polystyrene dissolution in toluene.

Top View

Side View

<d>= 280 ± 10 nm

a) b)                                                    c)

60 ± 3 nm

Figure 5.18: a)SEM image at 50.00 KX of a NHA with period 522 ± 12 nm, hole diameter d 280 nm ±
10 nm in a Ti-Ag-Au �lm with thickness 60 ± 3 nm; b) SEM image at 100.00 KX ; c) Cross
view at 500.00 KX.

The transmission spectra were acquired on the spots by using a dedicated home-made

sample-holder with a circular aperture of 2.3 mm in diameter. EOT spectrum of the NHA

presents the (1,1) peak at λEOT (1, 1) ∼ 560 nm and the (1,0) peak in the NIR region at

λEOT (1, 0) ∼ 970 nm, as reported in �gure 5.19.

5.4.3 Bio-functionalization of NHA

The EOT biosensing performances were investigated by using the biotin-streptavidin cou-

ple. The functionalization strategy is the same used in the case of SNSA and NPA. Biotin
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Figure 5.19: a) EOT spectra of Ti-Ag-Au NHA, the λmax of the peaks are indicated by dot lines; b)
analysis of the (1,0) peak with the Fano Resonance model form 830 to 2600 nm, x0 is at
882 nm.

is the receptor which binds streptavidin, the analyte, in one of the strongest interactions

found in nature. This couple of molecules is the most widely used for biosensing tests. The

protocol details and the biotin and streptavidin characteristics are exhaustively explained

in the chapter 3. The steps of the applied protocol can be summarized as follow:

1. functionalization of NHA with a solution 1 mM 11-MUA:1-OCT (2:3) in ethanol 24

h;

2. washing treatment with ethanol and drying by N2 �ux;

3. functionalization of NHA with 1 mM Biotin-PEG2-NH2 in 10 mM PBS + 10 Mm

EDC 1-2 hours;

4. washing treatment at �rst with 10 mM PBS and then with milli-Q water, drying by N2

�ux;

5. functionalization with 10−15 ≤ [SA] ≤ 10−5 M in 10 mM PBS 1-2 hours;

6. washing treatment at �rst with 10 mM PBS and then with milli-Q water, drying by N2

�ux.

11-MUA, 1-OCT, ethanol, PBS, EDC and Streptavidin were purchased from Sigma-

Aldrich. EZ-Link Biotin-PEG2-NH2 was purchased from Thermo Fisher Scienti�c Inc.

in form of powder. At the third step of the protocol, the NHA functionalized with thiols

and biotin can be nominally considered a speci�c nanosensors for the streptavidin detec-

tion. The NHA sensing behavior was interrogated by measuring the EOT response as a

function of the streptavidin molar concentration, [SA].

The nanoholes arrays expose a Ti-Ag-Au surface area of 3.02· 1012 nm2 in a spot of 2 mm in

diameter. This value was calculated considering the top surface and the inner walls of the
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holes. We have calculated the maximum number of thiol, receptor and analyte molecules

which can bind to the NHA spots. Taking into account the footprint of a single alkylthiol

chain on a �at gold surface (0.214 nm2), the maximum number of thiols which can be

immobilized on one spot is 1.41× 1013 mol/spot.

In the �rst step of the protocol the samples were functionalized with a solution composed

by 11-MUA:1-OCT (at a volume ratio of 2:3) 1mM in ethanol for 24 h. Then, the sam-

ples were washed with some ml of ethanol and dried in N2 �ux. The washing treatment

was important to remove the unbounded molecules present on the NHA's surface. It is

known that thiols spontaneously form a compact monolayer on a gold surface for the high

a�nity between sulphur and gold atoms, which results in a covalent S-Au bond. This

layer has the function to protect the surface from a-speci�c binding and it provides the

-COOH group, which derives from the 11-MUA, necessary to bind the receptor biotin. The

maximum number of 11-MUA is 2/5 of 1.41× 1013 mol/spot, i.e., 5.65× 1012 mol/spot.

For this functionalization we used a macroscopic volume of 3 ml for each sample. The

1 mM thiol solution contains a number of molecules about 5 orders of magnitude higher

with respect to the calculated saturation. To bind the receptor we used EZ-Link Biotin-

PEG2-NH2 containing a polyethylene glycol (PEG) spacer arm and a terminal primary

amine for conjugation via EDC. This biotin compound is water soluble and the solvent

used in this case is a PBS solution 10mM in water. For the functionalization with the

receptor we prepared a solution of Biotin-PEG2-NH2 1mM in PBS 10mM and we added

EDC to obtain a concentration 10 mM. On each spot we deposited 20 µL of this solution

to bind the receptor on the NHA's surface by the formation of an amide bond between

-NH2 and -COOH groups. A drop of 20 µL contains 1.2· 1016 Biotin-PEO2-NH2 molecules,

which can bind only to the 11-MUA by the EDC-mediated cross-linking reaction between

-COOH and -NH2 group. This volume assures a number of receptors about 3 orders of

magnitude higher with respect to the 11-MUA saturation (1.2· 1016 biotin molecules vs

5.65· 1012 11-MUA molecules). After the functionalization with biotin, the samples were

rinsed at �rst with PBS 10 mM to remove unbounded molecules and then with milli-Q

water to remove residual PBS traces.

At this point of the protocol our NHA can be considered a speci�c nanosensor for strep-

tavidin detection. Speci�c sensors are a class of devices which contain a receptor charac-

terized by a very high a�nity for the analyte of interest. We have exposed the nanosensors

to di�erent concentrations of streptavidin in the range 10−15 ≤ [SA] ≤ 10−5 M in PBS 10
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mM. For this functionalization we used drops of 10 µL for each NHA spot. Assuming a

100% e�ciency of the cross-coupling reaction and a binding 1:1 biotin-streptavidin, only

the drops at streptavidin concentration 10−5 and 10−6 M contain a number of molecules

to saturate the receptor sites. The number of molecules for each [SA] is reported in table

5.2.

5.4.4 EOT sensing response

Refractive index of molecules layer

EOT spectra were measured before and after each functionalization step. We expected a

red-shift of the EOT for the refractive index change due to the molecules immobilization.

The refractive index of the molecules layer can be represented by the Cauchy model as [104]:

n(λ) = A+
B

λ2
+
C

λ4
+ . . . (5.21)

The Cauchy equation is an empirical formula that quanti�es the dependence of the refrac-

tive index of a material on the wavelength. Usually the �rst two terms are enough for a

quantitative agreement with experimental values. This model describe materials with a

dielectric behavior that is mainly refractive and negligibly absorptive, such as for small

organic molecules. A layer of molecules has a refractive index of ∼ 1.5.

[SA] M SA molecules/10µL

1 × 10−5 6.022 × 1013

1 × 10−6 6.022 × 1012

1 × 10−7 6.022 × 1011

1 × 10−8 6.022 × 1010

1 × 10−9 6.022 × 1009

1 × 10−10 6.022 × 1008

Table 5.2: Number of Streptavidin molecules for each concentration in a drop of 10 µL.
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5.4.5 EOT analysis before and after the biofunctionalization

For the analysis of the EOT spectra we monitored the evolution of the Fano parameter

x0. As discussed in the previous section, we found that the Fano Resonance �t is the best

method to analyze the EOT variations for refractive index changes. For each step of the

biofunctionalization an incremental ∆x0 was observed, as shown in �gure 5.20. The x0
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Figure 5.20: a) EOT spectra of NHA before functionalization (black curve), after functionalization with
11-MUA:1-OCT (2:3) and Biotin-PEO2-NH2 (blue curve) and after the exposure to Strep-
tavidin 10−6 M (red curve); B) zoom of graph a. The dash lines indicates the x0 red-shift
after each step.

parameter exhibits a red-shift of +15±1 nm after the immobilization of 11-MUA:1-OCT

(2:3) and Biotin-PEO2-NH2. This EOT response indicates the successful binding of the

thiols and the receptor layer. After the exposure to streptavidin 10−6 M, x0 is red-shifted

by a further +15±1 nm. This streptavidin concentration saturates all the available receptor

sites; the red-shift of +16 nm corresponds to the saturation value of the EOT response for

our density of receptors. The Fano Resonance �t was done above the in�ection point of the

Step x0 (nm) ∆x0 (nm)

As dep. 882 -

11-MUA:1-OCT + Biotin 897 + 15

Streptavidin 10−6 M 913 + 16

Table 5.3: x0 parameter of NHA before and after the bio-functionalization.

(1,0) peak, in the λ range 810-850 nm every 5 nm up to 2500 nm. The reported x0 value

is the average of 9 �ts of each curve and the associated error is the standard deviation.
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5.4.6 Measurements of the biomolecules thickness by ellipsometry

To evaluate the expected EOT shift after the molecules immobilization we measured the

thickness of the molecules layers on a planar surface. We deposited a �lm of Ti-Ag-Au

(total thickness 60 nm) on a silicon substrate previously cleaned with an acid piranha

solution. The thickness of Ti-Ag-Au was measured by AFM. We applied the same func-

tionalization strategy and we acquired the ellipsometric measurements after each step of

the protocol. The measured were acquired in the wavelength range of 300-1700 nm every

10 nm, with incidence angles in the range 65-75◦ every 5◦. The data were analyzed by

using the experimental dielectric function of the silicon substrate and the experimental

εT i−Ag−Au, as previously described. The molecules refractive index was approximated by

the Cauchy Model. After the functionalization with 11-MUA:1-OCT 2:3 and biotin we

measured a Cauchy layer of 1.6 nm. Then, after the exposure to streptavidin 10−6 M we

measured a total Cauchy thickness of 3.9 nm. Considering the experimental local sensitiv-

ity obtained with the Fano analysis, reported in eq. 5.13, and a ∆n variation of 0.45, we

expected a x0 red-shift of +3.4 nm after the thiols and biotin immobilization and of +4.8

nm after the exposure to an excess of streptavidin. The EOT red-shift measured is + 15

nm after the thiols and biotin immobilization and + 16 nm after an excess of streptavidin.

This di�erence can be mainly due to the morphology of the surface; the e�ective Cauchy

thickness measured on a planar surface is not the same for a more complex morphology

such as the NHA. However, the ellipsometric measurements were useful to con�rm the

protocol e�ciency.

5.4.7 Discussion of the EOT response vs [SA]

The ∆x0 values as a function of [SA] are reported in table 5.3. We observed that for

very low concentrations of the analyte the ∆x0 values exhibited a small blue-shift. We

have to take into account that in these solutions the streptavidin concentration is very

low with respect to the solvent (10−15<[SA]<10−13 M vs [PBS] ∼ 10−2 M). In these cases

the dominant e�ect on the pre-functionalized nanoarrays seems to come from the solvent.

We suppose that this e�ect is present in all the samples but it is less and less visible as

the analyte concentration increases: in this case, the increasing number of the receptor-

analyte biorecognition events, which cause a red-shift of the peak, compensates, �rst, and

then overcomes the solvent-induced blue-shift. Therefore, the �nal EOT shift is the com-
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[SA] M ∆x0 (nm) ∆x0 - ∆x0,noSA (nm) σ (nm)

10−15 - 10 0 1

10−13 - 10 0 1

10−10 - 4 + 6 1

10−09 - 1 + 9 1

10−08 + 1 + 11 1

10−07 + 4 + 14 1

10−06 + 15 + 25 1

10−05 + 15 + 25 1

Table 5.4: EOT shift for di�erent concentrations of Streptavidin.

bination of these two opposite e�ects. For this reason, to properly quantify the e�ect of

increasing amounts of analyte and normalize for the solvent e�ect, we considered a rea-

sonable approach to subtract the ∆x0,noSA measured with null streptavidin concentration

([SA] < 10−15 M), from the ∆x0 response. Therefore, we de�ne the compensated EOT

response as ∆x0,comp, which is equal to:

∆x0,comp = ∆x0 −∆x0,noSA (5.22)

The values of ∆x0,com are reported in the third column in table 5.3. The EOT response

curve can be de�ned as ∆x0,comp as a function [SA], and the results are shown in �gure

5.21. The model widely used in literature to analyze the sensing response of SPR-based

sensors is the Langmuir Isotherm [73], which is described by:

∆R = ∆Rsat
Ka,eff · [SA]

1 +Ka,eff · [SA]
(5.23)

where ∆Rsat is the saturation value of the SPR response (∆R) and Ka,eff is the "e�ective

a�nity constant" of the receptor-analyte couple at the interface. An adsorption process

can be represented by the Langmuir Isotherm if these hypothesis are satis�ed:

1. all the adsorption sites are energetically equivalents;

2. each site can bind only one molecule;
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3. the bound molecules do not interact among them.

The two last hypothesis are satis�ed by the 11-MUA dilution and, as a consequence, the

receptor dilution on the NHA's surface. We suppose that one streptavidin can bind only

to one biotin. Nevertheless, in our NHA samples, hypothesis 1 for the validity of Langmuir

analysis is not granted since we have two remarkably di�erent surface morphologies: (i)

the �at surface of the NHA and (ii) the more rough surface internal to the nanoholes. Our

experimental data of the sensitivity curve apparently do not exhibit a simple Langmuir

behaviour. Considering the above mentioned two possible surface con�guration, we suppose

that the biotin-streptavidin binding on the NHA's surface follows a kinetic based on two

steps, i.e., the receptor sites on the top surface and those in the inner walls of the nanoholes

can not be considered as sites with the same characteristic energy for the binding. Thus,

we used a modi�ed model of the Langmuir Isotherm described by two processes as a funtion

of [SA], described by:

∆x0,comp = ∆x0,comp,sat1
Ka1,eff · [SA]

1 +Ka1,eff · [SA]
+ ∆x0,comp,sat2

Ka2,eff · [SA]

1 +Ka2,eff · [SA]
(5.24)

The experimental values are better represented by the proposed double Langmuir model, as

can be seen in �gure 5.21. The Ka,eff and the Limit Of Detection (LOD) of the biomolecules

under study can be measured from the response curve. The �rst kinetic process shows a

saturation value ∆x0,comp,sat1 of 10 ± 1 nm and a Ka1,eff of 1.6 ± 0.9 · 1010 M. This process

prevails for concentrations [SA] about 10−9-10−3 times lower than the available receptor

sites. When the analyte in solution is 0.01-10 times the available biotin molecules on the

NHA, ∆x0,comp,sat2 is 17 ± 1 nm and Ka2,eff is 4.8 ± 1.8 · 106 M. The measured Ka,eff.

are lower than the Ka referred to binding events in solution (1015 ≤ Ka ≤ 1013 M). This is

expected for the di�erences of a bio-recognition event in solution with respect to a solid-

liquid interface, in which the receptor is immobilized on a surface. [75] The adsorption

of streptavidin on the biotinylated-NHA can be strongly a�ected by many parameters

such as the biotin concentration, the ratio between the receptor and the spacer, the type

of the spacer, the morphology of the surface and the solution properties (such as pH or

temperature). All of them can in�uence the bio-recognition event.

The LOD can be estimated as the abscissa of the intersection point between the con�dence

interval associated with the null-response point (no streptavidin) and the sensing curve,

as shown in �gure 5.21. The LOD obtained is 10−11 M. This value is comparable to
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that obtained with high interacting SNSA. The saturation response of NHA is lower

with respect to the interacting SNSA,which are described in chapter 4. This is due to

the di�erent properties of the SPP in the propagating (NHA) or localized (SNSA) case.

The electric �eld decay length of the localized SP (ld) is one order of magnitude lower

with respect to ld of the propagating SPP. This means that the local sensitivity (S0 = 2

Sbulk/ld) of SNSA is higher with respect to NHA, in particular in the interacting case for

the coupling e�ects. SNSAs are intrinsically optimized to measure thin layer of molecules,

while NHAs are particularly useful to measure bigger molecules such as viruses or bacteria.

1E-17 1E-15 1E-13 1E-11 1E-9 1E-7 1E-5 1E-3
-5

0

5

10

15

20

25

30

 

∆x
0
,c

o
m

p
 (
n
m

)

[SA] M

 ∆x
0,comp 

 (nm)

 Double Langmuir Isotherm Fit  

L
O

D
 =

 1
0

-1
1

 M

Figure 5.21: Experimental response curves of ∆x0 versus [SA] for the binding of Streptavidin to NHA
pre-functionalized with Biotin. The solid line is the calculated value of ∆x0-∆x0,noSA using
a modi�ed Langmuir Isotherm described in equation 5.24.

5.4.8 Aspeci�c test with Bovine Serum Albumine (BSA)

To investigate the speci�city of our sensors we used another strategy of biofunctionalization.

After the immobilization of thiols and biotin, we exposed the NHA to a solution of BSA

at concentration 1mg/ml, which corresponds to 1.5 × 10−5 M. BSA is a protein with

MW similar to that of the streptavidin, for this reason it is widely used to investigate the

presence of aspeci�c binding on the biotinylated-surfaces. The BSA concentration is very

high; all the biotinylated-NHA were exposed to a protein solution containing a number

of molecules in excess with respect to the maximum number of biotin available on the
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[SA] M ∆x0 (nm) ∆x0 - ∆x0,noSA (nm) σ (nm)

10−15 - 6 0 1

10−13 - 6 0 1

2 × 10−09 + 3 + 9 1

2 × 10−08 + 4 + 10 1

2 × 10−07 + 7 + 13 1

5 × 10−07 + 11 + 18 1

2 × 10−06 + 10 + 16 1

1.67 × 10−05 + 13 + 19 1

Table 5.5: EOT shift for di�erent concentrations of Streptavidin.

NHA. Following the exposure to BSA, the NHA were incubated with streptavidin in the

concentration range 10−15 ≤ [SA] ≤ 10−5 M. The EOT response was analyzed with the

model of the Fano Resonance as for the previous experiment. The results are presented in

table 5.5. The �rst saturation value of ∆x0,comp,sat1 is 9 ± 1 nm and a Ka1,eff of (4 ± 3)
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Figure 5.22: Experimental response curves of ∆x0,comp versus [SA] for the binding of Streptavidin to
NHA pre-functionalized with Biotin and exposed to BSA 1.5 × 10−5 M. The solid line is
the calculated value of ∆x0,noSA by using the modi�ed Langmuir Isotherm described in
equation 5.24.

· 1010 M. ∆x0,comp,sat2 results in 10 ± 1 nm, and Ka2,eff is 5.4 ± 2.3 · 106 M. The LOD

can be estimated as 4 × 10−12 M. The saturation response and the LOD show that the
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sensing performances are reduced by the previous exposure of the nanosensor to the high

concentration of BSA. This is a clear indication that we need to increase the protection of

the NHA's surface from aspeci�c binding. Biotin-poly(ethyleneglycol)namine with higher

n values are the best candidates to overcome this problem. PEG is known as the best

molecule to protect the sensor's surfaces from the common aspeci�c events which can alter

the sensing performances. The PEG2 presents in the molecule we used is apparently not

su�ciently e�cient to protect the surface from BSA binding.

5.4.9 Conclusions

We have synthesized ordered arrays of nanoholes to study their sensing performances to

refractive index changes. The following conclusions can be drawn from the above analysis

on NHA performances:

• The variation of the EOT spectrum was investigated with two di�erent approaches.

• The Fano Resonance Model was found the best method to analyze the EOT variations.

• The experimental and theoretical bulk sensitivity is comparable to the values reported

in literature.

• The comparison between our experimental and simulated sensitivity is in a good level

of agreement, by taking into account the di�erences between the real and ideal samples.

• The label-free biosensing performances were investigated by using the biotin-streptavidin

couple.

• The LOD obtained is comparable to that of interacting SNSA described in the chapter

4.

• The EOT saturation response is lower with respect to the LSPR saturation signal of

interacting SNSA.This is in agreement with the ampli�ed local sensitivity of SNSA.

• Biotinylated-NHA demonstrated a proportional EOT response as a function of the strep-

tavidin concentration but, the following test with BSA indicated that there is the need to

further protect the surface from aspeci�c binding events by including a dedicated PEG

functionalization step.



6 Ag NPA: Ag oxidation e�ects on

SERS response

6.1 Introduction

Surface Enhanced Raman Scattering (SERS) is one of the most widely used plasmon en-

hanced spectroscopies. [105] Due to the very strong ampli�cation of the optical signal

achievable on the surface of nanostructured metal substrates, SERS has been successfully

used as an analytical technique for the identi�cation of chemical and biological species at

trace concentration or even at single molecule level. [106, 107] Moreover, SERS has been

extensively employed to quantify the local electromagnetic �eld enhancement induced by

plasmonic nanostructures [108�111] and, in a limited number of cases, to identify its spec-

tral dependence. [112�115] The most common materials used to fabricate SERS substrates

are noble metals, mainly gold and silver, owing to their optimal plasmonic properties in

the visible and near-infrared (NIR) range. [116] Silver is probably the most e�cient metal

in the visible, but its tendency to oxidation can represent a major drawback in its use as

plasmonic substrate. Physical and chemical modi�cations of the surface of a silver layer

indeed can alter the Raman signal scattered from a molecule lying on it, either by a�ecting

the electromagnetic and chemical contribution to the Raman scattering or by changing the

a�nity with the molecule. To the best of our knowledge, this subject has been only inves-

tigated in few papers [117, 118] and it is still rather unexplored. In Ref. [ [117]], Erol and

co-workers reported that the detection limit of nitro-aromatic compounds can be lowered

by several orders of magnitude if the silver substrate is oxidized under ambient conditions.

In Ref. [ [118]] instead, Han and co-authors showed that that ozone induced oxidation of

silver nanoparticles immobilized on glass leads very quickly to a drastic deterioration of

the SERS response from either trans-1,2-Bis(4-pyridyl)ethylene (BPE) or isothiocyanate.

Aim of the present work is to address the role of oxidation on the SERS response of a

103
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peculiar class of silver substrates constituted by nanoprism arrays (NPA) synthesized by

nanosphere lithography. [52,119] Due to their strong local-�eld enhancement e�ects and the

wide tunability of their plasmonic resonances from the visible to the NIR, these nanosys-

tems represent a very versatile and highly performing kind of nanostructured substrates,

with applications in many di�erent �elds in nanophotonics, non-linear optics and sens-

ing. [57, 120,121]

In the present work a complete characterization of the oxidation e�ects on the SERS prop-

erties of these nanosystems was carried out employing the so-called wavelength-scanned

SERS (ws-SERS) technique [112] in which the SERS enhancement factor (EF) was mea-

sured at several excitation wavelengths tuned around the dipolar surface plasmon resonance

(SPR) peak of the nanoprism arrays. The experimental results were combined to those

obtained by �nite element method (FEM) simulations. With this approach it was possi-

ble to determine the absolute values of the EF factors decoupling the e�ects that control

the maximum EF values from those related to spectral shifts of the �eld enhancement

dispersion.

6.2 Experimental section

6.2.1 Structural and optical characterizations

The synthesized nanoprism arrays were characterized morphologically by scanning electron

microscopy with a Zeiss SIGMA HD �eld-emission scanning electron microscope (FE-SEM)

operated at 2 kV, with secondary electrons detector. Atomic force microscopy (AFM) mea-

surements were performed using a NT-MDT Solver PRO-M AFM microscope with a 100

× 100 µm scanner, operated in semi-contact mode. Optical extinction spectra were col-

lected with a JASCO V670 dual beam spectrophotometer. The Ag dielectric function was

experimentally determined by ellipsometry measurements performed on continuous �lms

evaporated under the same conditions as those used for the NPAs, using a J. Woolham

V-VASE Spectroscopic Ellipsometer.
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6.2.2 Synthesis of nanoprism arrays (NPAs)

2D ordered arrays of silver nanoprisms were synthesized by nanosphere lithography (NSL).

[52,119,120] First, a colloidal monolayer of polystyrene (PS) nanospheres was self-assembled

on the surface of a glass substrate according to the method proposed by Giersig and co-

workers. [69] Commercial PS nanospheres (Microparticles GmbH) with a nominal diameter

D = 470 nm were used. All the substrates were previously cleaned in a �piranha� solution

(H2SO4:H2O2, 3:1) for 1 hour at 90 ◦C, rinsed in ultra-pure deionized water and let dry

in air for half an hour. This procedure yields large areas (of the order of some cm2)

of patterned substrates. The typical area of the ordered domains of the 2D crystalline

monolayer extends up to several hundreds of µm2. After the formation of the colloidal

monolayer, silver was thermally evaporated on the samples in orthogonal geometry to

form the plasmonic nanoprism arrays.

Ag evaporations were performed at a pressure of 5×10−5 mbar with a current of 30 A. The

evaporation time was shorter than 300 s. We checked that such conditions do not induce

overheating of the PS nanospheres.

A calibrated quartz microbalance was used to control the thickness of the evaporated Ag

layer (about 100 nm). After the evaporations, the PS nanospheres were mechanically

removed by stripping with an adhesive tape. The result of this procedure is an ordered

array of triangular nanoprisms (NPA) arranged in a honeycomb lattice on the surface of

the glass substrates, as shown in �g. 6.1(b). The LSPR spectrum of the samples before

any treatment has a maximum around 687 nm, as reported in �gure 6.1(a). The geometric

parameters of the nanoprism array were measured by atomic force microscopy and scanning

electron microscopy, and are: lattice parameter a0 = 470 ± 10 nm, nanoprisms distance

d = 270 ± 6 nm, nanoprisms side length L = 150 ± 3 nm and height h = 98 ± 3 nm.

These parameters were used to de�ne the unit cell for the �nite elements method (FEM)

simulations.

6.2.3 Samples functionalization

Three identical Ag NPAs (in the following named as S1-nOx, S2-mOx and S3-sOx) were

synthesized and functionalized by immersion in a 10 mM solution of benzenethiol (BT)

for 15 hours in environmental conditions. The choice of using a thiol terminated molecule
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Figure 6.1: (a) Extinction spectra of three identical samples of Ag NPA; (b) SEM image of Ag NPA.

was aimed at reproducing a surface-molecule interaction that is very often encountered in

SERS applications, since many analytes are functionalized with a thiol group in order to

improve their a�nity to the plasmonic substrate. In particular, to simulate the e�ect of a

di�erent degree of oxidation, sample S1-nOx was functionalized with BT immediately after

the synthesis of the nanoprism array (not-oxidized sample), sample S2-mOx was exposed

to air at room temperature for a week before functionalization (mildly oxidized sample),

while sample S3-sOx was heated at 70◦C in air for 30 minutes before BT functionalization

(strongly oxidized sample). [122]

6.2.4 FEM simulations

Simulations of the linear optical properties (near-�eld and far-�eld) of the NPAs have been

carried out using a commercial software for �nite elements method (FEM) [123] computa-

tions (COMSOL Multiphysics, version 4.4), as already reported in previous works. [57,121]

The nanoprism array was modeled by considering a rhombic unit cell (containing 2 nanoprisms)

with side a0 and by implementing periodic boundary conditions in the array plane (x̂y).

The incident �eld is described as a plane wave traveling downwards (towards the substrate)

along the ẑ axis, orthogonal to the prism triangular base plane, with polarization along

the nanoprism center-to-center line. In the ẑ direction the substrate is modeled as semi-

in�nite. The nanoprisms are placed directly on the substrate and the interface between

substrate and the environment is at the z = 0 plane. To model the presence of the ben-
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Figure 6.2: (a) SEM image of a silver nanoprisms array (sample S1-nOx). (b, c) Simulated maps of the
local-�eld enhancement factor of sample S1-nOx at the two indicated wavelengths correspond-
ing to the maximum of the simulated absorbance spectra estimated at the laser wavelength
at the Raman wavelength for the 999 cm−1 band of benzenethiol. (d-f) Detail of a SEM
image of the NPA in samples S1-nOx (not-oxidized), S2-mOx (mildly oxidized) and S3-sOx
(strongly oxidized), respectively.

zenethiol monolayer, a conformal layer over the silver nanoprisms (thickness 2 nm, index

of refraction n = 1.59, no absorption) was included in the simulations. Over the NPAs

the environment (air) is semi-in�nite. The semi-in�nite conditions are necessary to hin-

der radiation back-scattering from the external boundaries and are provided by Perfectly

Matched Layer sub-domains.

The electromagnetic simulation is carried out by solving the Helmholtz equation in the fre-

quency domain. The material properties are described by its relative dielectric permittivity

function εr(λ). Magnetic e�ects are not considered, thus the relative magnetic permeabil-

ity is µr = 1. For silver, the experimental dielectric function determined by ellipsometric

measurements was used, while the refractive index n = 1.59 used for benzenethiol was

obtained from the supplier.

To describe the e�ect of oxidation, the model was modi�ed adding a conformal layer (3 nm

thick) of a mixture of silver oxide and benzenethiol on the surface of the silver nanoprisms,

whose metallic volume was consequently reduced. The refractive index of the layer was

set to the average value between the refractive index of silver oxide (n = 2.5 [124], [125])

and that of BT (n = 1.59). The side length of the modeled nanoprisms was also slightly
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reduced to L = 140 nm, to account for the shape modi�cations due to oxidation.

6.2.5 SERS measurements

A home-made macro-Raman setup was used to carry out wavelength-scanned surface en-

hanced Raman spectroscopy measurements (ws-SERS). The system is equipped with a cw

Ti:Sapphire laser tunable in the range 675-1000 nm (Spectra Physics, 3900S) pumped by a

cw optically pumped semiconductor laser (Coherent, Verdi G7) and an Ar+/Kr+ gas laser

(Coherent, Innova 70) providing the lines at 488, 514.5, 530.8, 568 and 647.1 nm.

The laser lines are �ltered through a tunable laser plasma line �lter (Laserspec III, Spec-

trolab) and focused on the sample by a cylindrical lens. The Raman scattering di�used

by the sample is collected by a camera objective (CANON 50 mm f/1.2) and coupled into

the slit of a three stage subtractive spectrograph (Jobin Yvon S3000) by means of a set

of achromatic lenses. The spectrograph is composed of a double monochromator (Jobin

Yvon, DHR 320) working as a tunable �lter rejecting elastic scattering and a spectrograph

(Jobin Yvon, HR 640).

The Raman signal is detected by a liquid nitrogen cooled CCD (Jobin Yvon, Symphony,

1024x256 pixels, front illuminated). A polarization scrambler is mounted right in front of

the spectrograph slit. The system is con�gured in backscattering geometry by placing a

tiny mirror in front of the collection objective to steer the beam from the cylindrical lens to

the sample. The sample is mounted on a translation stage that allows to move it parallel

and perpendicular with respect to the laser propagation direction.

SERS spectra and enhancement factors (EFSERS) were measured in macro-Raman con�g-

uration, with a laser spot size of about 3 mm × 80 µm at the sample position. Such spot

size is much larger than the one typically used in micro-Raman con�guration (which is of

the order of a few microns in diameter). The macro-Raman con�guration was chosen in

order to illuminate an area on the sample similar to the one involved in the measurement

of the extinction spectra. Doing so, in both experiments a very large number of randomly

oriented nanoprisms domains are illuminated and possible polarization e�ects are averaged

out.

SERS enhancement factors were estimated following the standard procedure outlined by
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Le Ru, [108] by making use of the following relation:

EFSERS =
ISERS

IRaman
CV
CS

η

A
, (6.1)

where ISERS is the integrated intensity of the 999 cm−1 band of benzenethiol (βCCC)

absorbed on the metal surface and IRaman is the integrated intensity of the same band

of liquid BT (βCCC). [126] The band assignment is shown in parenthesis: β indicates

the in-plane bending and consequently βCCC corresponds to the so-called benzene ring

breathing mode. CS is the surface packing density of BT on a �at silver surface (CS =

6.80 × 1014 molecules/cm2), CV the number of molecules per unit volume of liquid BT

(CV = 5.88 × 1021 molecules/cm3), η is the axial collection e�ciency of the experimental

set-up (η was determined at every wavelength and was in the range 650-1400 µm) and A

is a geometrical factor that accounts for the fraction of sample area that is covered with

silver and therefore is SERS active (A was set to 0.2 for our samples, on the basis of their

morphological parameters; A = 1 corresponds to a �at silver surface). The parameter η was

determined by recording the Raman signal at 520 cm−1 of a silicon slab at several positions

along the optical axis (ẑ). The trace was normalized to the maximum and �tted with a

Lorentzian pro�le (L (z)) and η is de�ned as η =
∫ +a

−a L (z) dz where 2a is the thickness of

the reference sample (in this case a 10 mm thick vial). For each sample, the Raman signal

was recorded at 10 di�erent points: the EFSERS data and the corresponding error bars

were de�ned as the average value and the standard deviation, respectively.

6.3 Results and discussion

Fig. 6.2a shows a SEM image of the Ag nanoprism array for the not-oxidized sample

(S1-nOx). A detail of the NPA of the samples treated at the di�erent oxidation conditions

(not-oxidized, S1-nOx, mildly oxidized, S2-mOx and strongly oxidized, S3-sOx) is shown

in panels (d-f). From the morphological point of view the images reveal that the oxidation

process does not alter the honeycomb ordered arrangements of the nanoprisms. Only a

slight reshaping of the nanotriangles is produced, which is more pronounced in the strongly

oxidized sample (S3-sOx, �g. 6.2f) as a consequence of the annealing treatment.

In �g. 6.2b (and as inset in �g. 6.2a) and in �g. 6.2c, respectively, we reported the local-

�eld enhancement maps obtained by FEM simulations of sample S1-nOx calculated at the
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Figure 6.3: Extinction spectra of samples S1-nOx (a), S2-mOx (b) and S3-sOx (c) before (dashed lines)
and after (solid lines) functionalization with benzenethiol.

wavelengths corresponding to the maxima of the simulated absorption spectra evaluated

at the incident laser wavelength and at the Raman wavelength for the 999 cm−1 band of

benzenethiol, as further discussed in detail in the text (see �g. 6.5a).

Intense hot-spots of the electromagnetic �eld are formed at the nanoprisms tips, which are

further enhanced by the near-�eld coupling among the nanotriangles, with an enhancement

of the modulus of the local electric �eld (normalized to the incident �eld, E0) up to a factor

1000 estimated at the absorbance peak.

Fig. 6.3 shows the extinction spectra of the di�erently oxidized NPAs recorded before

(dashed lines) and after (solid lines) functionalization with benzenethiol. Panels (a), (b)

and (c) refer to samples S1-nOx, S2-mOx and S3-sOx, respectively. The spectral position

of the extinction maxima measured before and after functionalization, and the correspond-
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Extinction ws-SERS
Before After

Samples λSPRmax λSPRmax ∆λSPR EFSERS λSERSmax ∆λSERS

(nm) (nm) (nm) ×106 (nm) (nm)
S1-nOx 686 723 +37 4.5± 0.9 702 -21
S2-mOx 683 748 +65 1.8± 0.2 723 -25
S3-sOx 629 690 +61 2.1± 0.2 677 -13

Table 6.1: Maxima of extinction spectra before and after functionalization with benzenethiol, and of
the EFSERS pro�les, for the three synthesized samples with di�erent oxidation level (not-
oxidized S1-nOx, mildly oxidized S2-mOx and strongly oxidized S3-sOx). ∆λSPR indicates
the wavelength shift of the extinction maxima observed after functionalization with BT, while
∆λSERS is the spectral di�erence between the maximum in the EFSERS pro�les and the
extinction peak of the functionalized samples.

ing wavelength shifts (∆λSPR), are summarized in Table 6.1. Concerning the samples not

yet functionalized (dashed curves), the data show a blue-shift of about 55 nm of the extinc-

tion peak of sample S3-sOx (strongly oxidized by thermal treatment in air) with respect

to samples S1-nOx and S2-mOx. This behavior can be understood taking into account

that counteracting e�ects may occur in this sample: from one side the formation of an

oxide layer on the surface of the nanoprisms is expected to red-shift the surface plasmon

resonance due to the increase of the dielectric function, but on the other hand the reduced

volume of metallic silver (due to surface oxidation), together with the reshaping of the

nanoprisms due to the annealing treatment (as shown in �g. 6.2f), and in turn the dimin-

ished interaction between the nanoprisms, produce a blue-shift of the SPR peak, which

resulted to be the dominant e�ect in this sample.

After functionalization with benzenethiol all the samples showed red-shifted extinction

spectra (solid curves), and such an e�ect was more pronounced (by about a factor of 2)

on the oxidized samples with respect to the not-oxidized one. These data indicate that

benzenethiol e�ectively binds to the oxidized surface as it does to the metal surface. This

�nding is con�rmed also in several studies in the literature. As an example, in Ref. [ [127]]

Himmelhaus and co-workers investigated by X-Ray Photoelectron Spectroscopy (XPS) the

interaction of aliphatic thiols in ethanol solution with polycrystalline silver substrates pos-

sessing a native layer of oxide. The authors demonstrated that the aliphatic thiols can

reduce the silver oxide leading to the formation of chemisorbed alkanethiolate. By study-

ing the absorption rate as a function of the oxygen coverage on the surface by varying the
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Figure 6.4: (a) Raman spectra of liquid BT (red) and BT absorbed on sample S1-nOx (blue); the spectra
have been recorded with excitation at λexc = 710 nm under the same experimental conditions.
(b), (c), (d) Extinction spectra (blue, red and green lines), experimental SERS enhancement
factors (gray dots) and Lorentzian �t (orange line) of samples S1-nOx, S2-mOx and S3-sOx,
respectively.

exposure time of fresh silver substrates to air prior to functionalization, they concluded

that the higher is the amount of oxygen initially present, the higher is the absorption rate

of thiol.

Furthermore, in Refs. [128, 129] Laibinis and co-authors proved that the immersion of a

silver �lm with a thin layer of oxide in an alkylthiol solution leads to the almost complete

displacement/reduction of oxygen and the formation of a self-assembled monolayer.

Fig. 6.4a shows a comparison between the Raman spectrum of liquid benzenethiol (red

line) and of sample S1-nOx functionalized with BT (blue line). The spectra were recorded

with laser excitation at λL = 710 nm, under the same experimental conditions. In order

to calculate the SERS enhancement factor (EFSERS), we referred to the ∆ω = 999 cm−1

band. In �g. 6.4b-d the ws-SERS data for the three di�erently oxidized samples, S1-nOx,

S2-mOx and S3-sOx, are reported together with the corresponding experimental extinc-

tion spectra: the gray dots are the experimental EFSERS values and the orange line is the

Lorentzian �t to the EFSERS data. The wavelengths at which the maximum EFSERS is
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measured (λSERSmax ) and the corresponding value for the three samples are reported in Table

6.1.

∆λSERS indicates the spectral di�erence between the maximum in the EFSERS pro�les

and the extinction peak of the functionalized samples. The data show a blue-shift of the

EFSERS pro�le with respect to the extinction spectrum for all the three investigated sam-

ples.

This behavior can be understood considering that the SERS enhancement factor is propor-

tional to the product E2 (λL)E2 (λR), where λR = (1/λL −∆ω)−1 is the Raman shifted

emission wavelength, and not merely to E4 (λL). Since λR > λL, the EFSERS peak occurs

at a shorter wavelength if plotted against λL. This e�ect is well known and has been

demonstrated experimentally in Ref. [112,115].

Concerning the role of oxidization, �rst of all by comparing the results of sample S2-mOx

(�g. 6.4c) with those of sample S1-nOx (�g. 6.4b), it emerges that the atmospheric ox-

idation gives rise to a spectral shift of the EFSERS pro�le with respect to the extinction

spectrum as in the not-oxidized sample (S1-nOx), but the maximum SERS enhancement

factor results reduced by a factor of 2.5. Sample S3-sOx instead, with respect to S1-nOx,

exhibits a smaller blue-shift of the EFSERS pro�le, but a similar reduction of about a factor

of 2.5 of the maximum enhancement factor as in sample S2-mOx.

To understand the observed di�erence in the maximum EFSERS between fresh and oxi-

dized samples, the e�ect of the presence of an oxide layer on the following factors has to

be taken into account: (i) In calculating the experimental EFSERS we assumed the same

surface density for BT in all the samples, but the a�nity of benzenethiol to metal and ox-

ide in principle could be di�erent. (ii) The strength of the chemical enhancement critically

depends on the relative energy of the molecular orbitals and the metal (or oxide) bands,

thus making it dependent on the detailed physical-chemical nature of the surface. (iii)

The electromagnetic enhancement decreases steeply with the distance from the plasmonic

material, therefore it can be a�ected by the possible presence of a dielectric layer acting

as a spacer. (iv) The oxidation process slightly modi�es the morphology of the substrates,

as shown in �g. 6.2(d-f), and thus it can alter distribution and intensity of the electric

�eld. Since these factors are not all in the direction of inducing a decrease of the SERS

signal, their overall e�ect may cause no major drops in the enhancement factor but a more

limited reduction, as experimentally observed.

Therefore, in order to completely unveil the role of the di�erent parameters on the SERS
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response, a deep analysis of the electrodynamic e�ects was performed by �nite elements

method (FEM) simulations. FEM simulations were used for the computation of the local-

�eld distributions and the NPA far-�eld properties. It is worth noting that for the geome-

tries obtained from FE-SEM and AFM characterizations, the maximum of the calculated

extinction is coincident with that of the simulated absorption. This con�rms that we can

use the experimentally measured extinction maximum as representative of the experimen-

tal absorption maximum of the samples. The SERS enhancement factor (EFSERS) was

calculated by using the local-�eld distribution inside the volume of the analyte layer (BT)

both for excitation and Raman shifted emission frequencies. A sketch of the local-�eld

distribution at the wavelength of the maximum of the simulated absorbance spectrum and

at the corresponding Raman shifted wavelength (∆ω = 999 cm−1) is given in �g. 6.2(b,c),

respectively. Inside the active layer the local SERS enhancement factor has been computed

as a function of the local electric �eld E (r, ω):

EFSERS (r, ωL,∆ω) =
1

3

|E (r, ωL)|2 · |E (r, ωL −∆ω)|2

|E0|4
, (6.2)

where E0 denotes the amplitude of the incident wave, E is the computed local �eld, ωL
is the excitation (laser) frequency, ∆ω is the Raman shift and the factor 1/3 arise from

the integration over all the mutual orientations between the local electric �eld and the

excited molecule dipole moment. Then, the overall enhancement factor can be computed

by integrating the local factor over the volume of the analyte molecule, V :

EF ave
SERS (ωL,∆ω) =

1

V

∫
V

EFSERS (r, ωL,∆ω) dV. (6.3)

The computed SERS enhancement factor is thus dependent on two parameters: the in-

cident light frequency, ωL, and the Raman shift, ∆ω. The simulations were carried out

considering the experimentally probed Raman shift of benzenethiol, ∆ω = 999 cm−1. In

�g. 6.5a the EFSERS spectrum of sample S1-nOx (not-oxidized) computed using equation

(6.3) is reported (red curve, left-hand scale) and compared to its simulated absorption

spectrum (orange curve, right-hand scale).

Concerning the EFSERS pro�le, as previously discussed the maximum of the SERS en-

hancement curve is expected to be shifted towards higher energies (i.e., shorter wave-

lengths) with respect to the absorbance peak and this is indeed con�rmed by the simula-
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Figure 6.5: Normalized absorption spectrum (orange line, right-hand scale), normalized pro�le of the
square of the local-�eld enhancement factor < (E/E0)2 > averaged over the BT layer (blue
line, right-hand scale) and EFSERS pro�le (red line, left-hand scale) obtained by FEM simu-
lations of (a) sample S1-nOx (not-oxidized) and (b) sample S3-sOx (oxidized) functionalized
with BT. In both panels the red arrows indicate the incident laser wavelength needed to get
the maximum absorption at the Raman shifted wavelength.

tions (red and orange curves in �g. 6.5a). Furthermore, by comparing the results of the

simulations to the experimental ones of sample S1-nOx (�g. 6.4b), the �rst thing to note

is the very good agreement between the measured and calculated values of the maximum

EFSERS, which is close to 5 × 106 in both cases. The spectral position of the simulated

EFSERS peak results instead slightly blue-shifted with respect to the experimental one.

This behavior can be explained taking into account the great inhomogeneity of the electric-

�eld distribution within the NPA surface (�g. 6.2b, c).

In nanostructures like the nanoprisms investigated in the present work, in which there are

small regions with high curvature (i.e., the nanoprism tips), the maximum local electric-

�eld at the tips in general does not occur at the same wavelength as in the whole nanoprism.

Particularly, in the present case, close to the tips the maximum �eld enhancement takes

place at shorter wavelengths. Moreover, from one hand the high-curvature regions produce

the hottest spots in the electric-�eld but, on the other hand, the small extent of these

regions reduces their integrated contribution in the average of the �eld over the total vol-

ume of the nanoprism. Absorption is a linear property and it is sensitive to the average

electric-�eld in the NPAs rather then the hottest spots, whereas the hot-spots dominate in

the average of higher powers of the �eld-enhancement, as it is for the SERS enhancement.

As a consequence, the highest EFSERS occurs where the convolution of the incident and

the Raman shifted curves of the square of the enhancement factor (where the hot-spot



116 6.3 Results and discussion

regions have more weight) averaged over the volume of the BT layer (< (E/E0)2 >) is

maximum rather than where it is maximum the convolution of the absorbance curves.

Since, as shown in �g. 6.5a (blue curve), the simulated spectrum of < (E/E0)2 > is

maximum at shorter wavelengths with respect to the absorbance one, this accounts for

the larger blueshift of the EFSERS maximum resulting from the simulations. As regards

the experimental results, instead, it is important to point out that the possible presence

of defects in the samples may hinder the spectral decoupling of the maximum squared

electric-�eld enhancement from the maximum absorbance and this could be the reason

why the experimental EFSERS peak (702 nm) was found to be red-shifted with respect to

the simulated one (688 nm) and close to the middle of the absorption peaks evaluated at

λL and λR (700 nm). Moreover, another possible e�ect of the presence of defects in the

experimental sample is the larger width of the experimental EFSERS curve with respect to

the simulated one.

FEM simulations were carried out also to describe the e�ect of oxidation. In this case, the

model has been modi�ed assuming a conformal, 3 nm thick, layer representing a mixture

of silver oxide and BT, as foreseen in an interaction scheme where the oxide is permeable

to the binding of BT with metallic silver. The reduced sharpness of the nanoprisms ob-

served in the oxidized sample (�g. 6.2f) was modeled by reducing the prisms side length to

L = 140 nm. The thickness of the oxide/BT layer was �xed at the value that reproduced

in the simulations the spectral shift of the absorbance spectrum observed as a consequence

of the oxidation process. As reported in Tab. 6.1, the e�ect of oxidation of the NPAs

on the SERS response is two-fold: (i) the maximum experimental EFSERS measured in

the oxidized samples is reduced by a factor ∼2.5 with respect to the fresh (not-oxidized)

sample; (ii) in sample S3-sOx (strongly oxidized) the spectral position of the maximum

experimental EFSERS is blue-shifted with respect to the corresponding extinction peak

(∆λSERS) to a lesser extent than for samples S1-nOx and S2-mOx (13 nm for S3-sOx vs 21

nm for S1-nOx). Both these features were recovered by the simulations, as reported in �g.

6.5b. The reduction in the EFSERS is the result of two e�ects. From one side, the presence

of a dielectric layer with higher refractive index (due to the presence of the oxide) helps in

con�ning the �eld close to the nanostructures surface giving rise to an increase of the local

electric �eld due to dielectric coupling. On the other side, the reduced sharpness of the

metallic part of the nanostructure reduces the �eld enhancement in the hot-spot regions,

thus taking to a decrease of the average local electric �eld, and to a more homogeneous
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distribution of it. From the simulations, a decrease of the EFSERS of a factor ∼2.7 is

obtained which is in very good agreement with the factor ∼2.5 observed experimentally

for the oxidized samples (�g. 6.4c, d).

The origin of the reduced blue-shift in the strongly oxidized sample (S3-sOx) is more sub-

tle. As already pointed out for the not-oxidized sample S1-nOx, the blue-shift is caused by

two factors, i.e., (i) the convolution of the resonances evaluated at the incident laser wave-

length (λL) and at the Raman-shifted one (λR) and (ii) the enhanced contribution of the

hot-spot regions due to the strong inhomogeneity in the �eld distribution. In the oxidized

sample, the convolution e�ect is still present and works in the same way. Concerning the

second factor, on the other hand, the simulations proved that the reduced sharpness and

the presence of the oxide layer give rise to a more homogeneous �eld distribution.

An estimate of the inhomogeneity of the �eld can be calculated using the normalized vari-

ance of the electric �eld inside the oxide/BT volume (angle brackets indicate the average

over the oxide/BT layer volume):

σ2 =
〈|E|2〉 − 〈|E|〉2

〈|E|2〉
. (6.4)

Computing the variance at the wavelength where the absorbance is maximum for each sam-

ple, we obtained: σ2
fresh (λmax) = 0.87 > σ2

oxidized (λmax) = 0.76, with a relative di�erence

of about 15%. As a consequence to this, the EFSERS curve is blue-shifted with respect

to the extinction spectrum to a lesser extent in the strongly oxidized sample than in the

not-oxidized one. Particularly, both the simulations and the experiment proved a reduc-

tion of the blue-shift in the oxidized sample of about half the blue-shift of the not-oxidized

one: from the simulations (experiment) we obtained a blue-shift of -19 nm (-13 nm) for

the oxidized sample (S3-sOx), with respect to -37 nm (-21 nm) for the not-oxidized one

(S1-nOx).

Moreover, the width of the EFSERS curve peak results slightly reduced in the simulations

when the oxide is present. This is a further e�ect of the increased homogeneity in the local

electric �eld distribution in this condition. Nonetheless, experimentally this behavior is

not observed. Indeed, the width of the experimental EFSERS pro�le results larger for the

oxidized sample than for the not-oxidized one (�g. 6.4b,d).

This could be explained considering two aspects: on one hand, the presence of defects in

the experimental sample gives rise to a wider absorbance peak than the simulated one,
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which causes an enlargement of the EFSERS pro�le, as already noted for the not-oxidized

sample; besides this, a possible not-uniform distribution of benzenethiol over the surface

of the nanoprisms (which could also vary among the nanoprisms) has to be taken into

account.

Both these e�ects produce an inhomogeneous broadening of the EFSERS pro�le in the ex-

perimental sample, and thus an enlargement of the peak, which is absent in the simulated

(perfect) case.

6.4 Conclusions

Wavelength-scanned SERS measurements were performed on Ag nanoprism arrays with a

di�erent degree of oxidation to determine the SERS enhancement curves as a function of

the incident laser wavelength around the dipolar surface plasmon resonance of the arrays.

The results showed a spectral blue-shift of the SERS enhancement pro�les with respect to

the corresponding absorbance spectra. The extent of the shift was related to the oxidation

process and resulted smaller in the strongly oxidized sample than in the not-oxidized one.

Moreover, a decrease of about a factor of 2.5 of the maximum SERS enhancement factor

was measured for the oxidized samples. The experimental �ndings were compared with

the results of FEM simulations. The e�ect of oxidation was modeled assuming a 3 nm

thick conformal layer of silver oxide and benzenethiol at the surface of the nanoprisms.

The results obtained could be interpreted taking into account the inhomogeneities of the

electromagnetic �eld distribution around the Ag nanostructures.



Conclusions

In this thesis Nanosphere lithography coupled to reactive ion etching has been used to

synthesize hexagonal ordered arrays of Au:Ag bimetallic semi-nanoshells to be used as

plasmonic biosensors. The degree of lateral interaction between adjacent semi-nanoshells

can be controlled by tailoring the reactive ion etching time in order to boost the global

plasmonic properties through the formation of near-�eld hot-spots, which in turns can im-

prove the sensitivity of the biosensors. To test the e�ciency of the proposed system as

a biosensor, we used an established protocol for the detection of tiny biomolecules (local

sensitivity), based on the receptor-ligand approach and using biotin-streptavidin model

system. We also tested the sensitivity to an homogeneous change in the refractive index

of the bu�er over the sensor (bulk sensitivity). Comparing the obtained results to those of

array of nanoprisms, chosen as a benchmark, signi�cantly higher performances both in lo-

cal and in bulk sensitivity have been found, in agreement with electrodynamic simulations

based on �nite-element methods. Thus the proposed method can be considered as a very

promising approach to label-free biosensing of both tiny molecules and larger structures

like viruses or bacteria, for example.

Silver nanostructures are widely employed for Surface Enhanced Raman Scattering (SERS)

characterizations owing to their excellent properties of �eld con�nement in plasmonic reso-

nances. However, the strong tendency to oxidation at room temperature of these substrates

may represent a major limitation to their performances. In this thesis, we investigated in

detail the e�ects of oxidation on the SERS response of Ag nanostructured substrates,

i.e., bi-dimensional ordered arrangements of Ag nanoprisms synthesized by nanosphere

lithography. Particularly, wavelength-scanned SERS measurements were performed on Ag

nanoprism arrays with a di�erent level of oxidation to determine the SERS enhancement

curves as a function of the excitation wavelength around the dipolar plasmonic resonance

of the arrays. The experimental results were compared with those obtained by �nite el-

ements method simulations. With this approach, we were able to decouple the e�ects of

119
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spectral shift and decrease of the maximum value of the SERS enhancement observed for

the di�erent oxidation conditions. An excellent agreement between the experimental and

the simulated data was obtained and the results were interpreted on the basis of the inho-

mogeneities of the electromagnetic �eld distribution around the nanoprisms. The sensing

response of nanoholes arrays to refractive index changes was studied. The EOT spectrum

was analyzed with di�erent approaches based on the centroid method and Fano Resonance.

The analysis of the experimental and simulated data indicated that Fano Resonance model

takes into account the sophisticated variations of the peak due to refractive index changes,

increasing the local and bulk sensitivity. So, this method was used to analyze the EOT

response after the functionalization with biomolecules. The theoretical and experimental

bulk sensitivity of NHA is comparable with the values reported in literature. By function-

alizing NHA with the same molecules used in the case of SNSA, we found that the LOD

is comparable to the value obtained with interacting SNSA but, the saturation response

is lower. This result is in agreement with the higher local sensitivity of interacting SNSA.

EOT response of NHA functionalized with a speci�c biorecognition element for strepta-

vidin demonstrated a proportional variation with the streptavidin concentration but, to

protect the surface form aspeci�c binding we need to use speci�c molecules characterized

by antifouling properties, such as long chains of PEG. All the obtained results in the

present work indicate performances of the three investigated nanostructures, which are at

the state-of-the-art with respect to literature data.



6.4 Conclusions 121





Bibliography

[1] Maier SA, Plasmonics: fundamentals and applications (Springer, 2007), illustrated
edn. (Cited on pages xv, 6, 10, 13, and 55).

[2] Roh S, Chung T and Lee B (2011) Overview of the Characteristics of Micro- and
Nano-Structured Surface Plasmon Resonance Sensors . Sensors, vol. 11, no. 12:pp.
1565�1588. (Cited on pages xv, 20, and 90).

[3] Thermo Scienti�c Avidin-Biotin Technical Handbook (Thermo Fisher Scienti�c Inc,
2009). (Cited on pages xvi, 48, and 50).

[4] Thermo Scienti�c Crosslinkers Technical Handbook (Thermo Fisher Scienti�c Inc,
2009). (Cited on pages xvi and 51).

[5] Genet C and Ebbesen TW (2007) Light in tiny holes . Nature, vol. 445, no. 7123:pp.
39�46. (Cited on pages xviii, 71, 72, 73, and 78).

[6] Genet C, van Exter MP and Woerdman JP (2003) Fano-type interpretation of red
shifts and red tails in hole array transmission spectra. Optics Communications, vol.
225, no. 4:pp. 331�336. (Cited on pages xviii, 72, and 73).

[7] Homola J, Yee SS and Gauglitz G (1999) Surface plasmon resonance sensors: review .
Sensors and Actuators B: Chemical, vol. 54, no. 1:pp. 3�15. (Cited on pages xxi,
20, and 22).

[8] Homola J (2008) Surface Plasmon Resonance Sensors for Detection of Chemical and
Biological Species . Chemical Reviews, vol. 108, no. 2:pp. 462�493. (Cited on pages 1
and 22).

[9] Lazcka O, Campo FJD and Muñoz FX (2007) Pathogen detection: A perspective of
traditional methods and biosensors . Biosensors and Bioelectronics, vol. 22, no. 7:pp.
1205�1217. (Cited on page 1).

[10] Gobi K, Tanaka H, Shoyama Y et al. (2004) Continuous �ow immunosensor for highly
selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using sur-
face plasmon resonance imaging . Biosensors and Bioelectronics, vol. 20, no. 2:pp.
350�357. (Cited on page 1).

123



124 Bibliography

[11] Besselink GA, Kooyman RP, van Os PJ et al. (2004) Signal ampli�cation on planar
and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-
speci�c antigen. Analytical Biochemistry, vol. 333, no. 1:pp. 165�173. (Cited on
page 1).

[12] Dillon PP, Daly SJ, Manning BM et al. (2003) Immunoassay for the determina-
tion of morphine-3-glucuronide using a surface plasmon resonance-based biosensor .
Biosensors and Bioelectronics, vol. 18, no. 2:pp. 217�227. (Cited on page 1).

[13] Oh BK, Kim YK, Lee W et al. (2003) Immunosensor for detection of Legionella pneu-
mophila using surface plasmon resonance. Biosensors and Bioelectronics, vol. 18,
no. 5-6:pp. 605�611. (Cited on page 1).

[14] Anker JN, Hall WP, Lyandres O et al. (2008) Biosensing with plasmonic nanosensors .
Nature materials, vol. 7, no. 6:pp. 442�453. (Cited on pages 1, 2, and 82).

[15] Hall WP, Ngatia SN and Van Duyne RP (2011) LSPR Biosensor Signal Enhancement
Using Nanoparticle-Antibody Conjugates . The Journal of Physical Chemistry C, vol.
115, no. 5:pp. 1410�1414. (Cited on page 1).

[16] Dong P, Lin Y, Deng J et al. (2013) Ultrathin Gold-Shell Coated Silver Nanoparti-
cles onto a Glass Platform for Improvement of Plasmonic Sensors . ACS Applied
Materials & Interfaces, vol. 5, no. 7:pp. 2392�2399. (Cited on page 1).

[17] Wang J, Song D, Wang L et al. (2011) Design and performances of immunoassay
based on SPR biosensor with Au/Ag alloy nanocomposites . Sensors and Actuators
B: Chemical, vol. 157, no. 2:pp. 547�553. (Cited on pages 1 and 53).

[18] Cottat M, Thioune N, Gabudean A et al. (2012) Localized Surface Plasmon Reso-
nance (LSPR) Biosensor for the Protein Detection. Plasmonics, vol. 8, no. 2:pp.
699�704. (Cited on pages 1 and 2).

[19] Haes AJ, Stuart DA, Nie S et al. (2004) Using solution-phase nanoparticles, surface-
con�ned nanoparticle arrays and single nanoparticles as biological sensing platforms .
Journal of �uorescence, vol. 14, no. 4:pp. 355�367. (Cited on pages 1 and 61).

[20] Lu Y, Liu GL, Kim J et al. (2004) Nanophotonic Crescent Moon Structures with
Sharp Edge for Ultrasensitive Biomolecular Detection by Local Electromagnetic Field
Enhancement E�ect . Nano Lett., vol. 5, no. 1:pp. 119�124. (Cited on pages 1
and 2).

[21] Merkoçi A (2010) Nanoparticles-based strategies for DNA, protein and cell sensors .
Biosensors and Bioelectronics, vol. 26, no. 4:pp. 1164�1177. (Cited on page 1).

[22] Howes PD, Chandrawati R and Stevens MM (2014) Colloidal nanoparticles as ad-
vanced biological sensors . Science, vol. 346, no. 6205:pp. 1247390�1247390. (Cited
on page 1).



Bibliography 125

[23] Baaske MD, Foreman MR and Vollmer F (2014) Single-molecule nucleic acid inter-
actions monitored on a label-free microcavity biosensor platform. Nat Nano, vol. 9,
no. 11:pp. 933�939. (Cited on page 2).

[24] Cao X, Ye Y and Liu S (2011) Gold nanoparticle-based signal ampli�cation for
biosensing . Analytical Biochemistry, vol. 417, no. 1:pp. 1�16. (Cited on page 2).

[25] Liu X, Choi B, Gozubenli N et al. (2013) Periodic arrays of metal nanorings and
nanocrescents fabricated by a scalable colloidal templating approach. Journal of Col-
loid and Interface Science, vol. 409:pp. 52�58. (Cited on page 2).

[26] Niu L, Cheng K, Wu Y et al. (2013) Sensitivity improved plasmonic gold nanoholes
array biosensor by coupling quantum-dots for the detection of speci�c biomolecular
interactions . Biosensors and Bioelectronics, vol. 50:pp. 137�142. (Cited on page 2).

[27] Hulteen JC and Van Duyne RP (1995) Nanosphere lithography: A materials general
fabrication process for periodic particle array surfaces . Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films, vol. 13, no. 3:pp. 1553�1558. (Cited
on pages 2 and 53).

[28] Liu G, Li Y, Duan G et al. (2012) Tunable Surface Plasmon Resonance and Strong
SERS Performances of Au Opening-Nanoshell Ordered Arrays . ACS Applied Mate-
rials & Interfaces, vol. 4, no. 1:pp. 1�5. (Cited on pages 2 and 53).

[29] Wang C, Ruan W, Ji N et al. (2010) Preparation of Nanoscale Ag Semishell Array
with Tunable Interparticle Distance and Its Application in Surface-Enhanced Raman
Scattering . The Journal of Physical Chemistry C, vol. 114, no. 7:pp. 2886�2890.
(Cited on page 2).

[30] Wang H, Kundu J and Halas N (2007) Plasmonic Nanoshell Arrays Combine Surface-
Enhanced Vibrational Spectroscopies on a Single Substrate. Angewandte Chemie
International Edition, vol. 46, no. 47:pp. 9040�9044. (Cited on page 2).

[31] Zhang H, Song D, Gao S et al. (2013) Enhanced wavelength modulation SPR biosensor
based on gold nanorods for immunoglobulin detection. Talanta, vol. 115:pp. 857�862.
(Cited on page 2).

[32] Zhang H, Sun Y, Wang J et al. (2012) Preparation and application of novel nanocom-
posites of magnetic-Au nanorod in SPR biosensor . Biosensors and Bioelectronics,
vol. 34, no. 1:pp. 137�143. (Cited on page 2).

[33] Oh Y, Lee W, Kim Y et al. (2014) Self-aligned colocalization of 3D plasmonic nanogap
arrays for ultra-sensitive surface plasmon resonance detection. Biosensors and Bio-
electronics, vol. 51:pp. 401�407. (Cited on page 2).



126 Bibliography

[34] Lee JH, Kim BC, Oh BK et al. (2013) Highly sensitive localized surface plasmon
resonance immunosensor for label-free detection of HIV-1 . Nanomedicine: Nan-
otechnology, Biology and Medicine, vol. 9, no. 7:pp. 1018�1026. (Cited on page 2).

[35] Romanato F, Lee KH, Kang HK et al. (2009) Sensitivity enhancement in grating
coupled surface plasmon resonance by azimuthal control . Opt. Express, vol. 17,
no. 14:pp. 12145�12154. (Cited on page 20).

[36] Sonato A, Ru�ato G, Zacco G et al. (2013) Enhanced sensitivity azimuthally con-
trolled grating-coupled surface plasmon resonance applied to the calibration of thiol-
poly(ethylene oxide) grafting . Sensors and Actuators B: Chemical, vol. 181:pp. 559
� 566. (Cited on page 20).

[37] Sepúlveda B, Calle A, Lechuga LM et al. (2006) Highly sensitive detection of
biomolecules with the magneto-optic surface-plasmon-resonance sensor . Optics let-
ters, vol. 31, no. 8:pp. 1085�1087. (Cited on page 23).

[38] Bombera R, Leroy L, Livache T et al. (2012) DNA-directed capture of primary cells
from a complex mixture and controlled orthogonal release monitored by SPR imaging .
Biosensors and Bioelectronics, vol. 33, no. 1:pp. 10�16. (Cited on page 23).

[39] Jordan CE, Frutos AG, Thiel AJ et al. (1997) Surface plasmon resonance imag-
ing measurements of DNA hybridization adsorption and streptavidin/DNA multi-
layer formation at chemically modi�ed gold surfaces . Analytical Chemistry, vol. 69,
no. 24:pp. 4939�4947. (Cited on page 23).

[40] Shumaker-Parry JS, Aebersold R and Campbell CT (2004) Parallel, Quantitative
Measurement of Protein Binding to a 120-Element Double-Stranded DNA Array in
Real Time Using Surface Plasmon Resonance Microscopy . Analytical Chemistry,
vol. 76, no. 7:pp. 2071�2082. (Cited on page 23).

[41] Nelson BP, Grimsrud TE, Liles MR et al. (2001) Surface Plasmon Resonance Imaging
Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays .
Analytical Chemistry, vol. 73, no. 1:pp. 1�7. (Cited on page 24).

[42] Shumaker-Parry JS, Zareie MH, Aebersold R et al. (2004) Microspotting Streptavidin
and Double-Stranded DNA Arrays on Gold for High-Throughput Studies of Protein-
DNA Interactions by Surface Plasmon Resonance Microscopy . Analytical Chemistry,
vol. 76, no. 4:pp. 918�929. (Cited on page 24).

[43] Zybin A, Grunwald C, Mirsky VM et al. (2005) Double-Wavelength Technique for
Surface Plasmon Resonance Measurements: Basic Concept and Applications for Sin-
gle Sensors and Two-Dimensional Sensor Arrays . Analytical Chemistry, vol. 77,
no. 8:pp. 2393�2399. (Cited on page 24).



Bibliography 127

[44] Piliarik M, Vaisocherova H and Homola J (2007) Towards parallelized surface plasmon
resonance sensor platform for sensitive detection of oligonucleotides . Sensors and
Actuators B: Chemical, vol. 121, no. 1:pp. 187�193. (Cited on page 24).

[45] Homola J, Lu HB, Nenninger GG et al. (2001) A novel multichannel surface plasmon
resonance biosensor . Sensors and Actuators B: Chemical, vol. 76, no. 1�3:pp. 403
� 410. Proceeding of the Eighth International Meeting on Chemical Sensors IMCS-8
- Part 1. (Cited on page 24).

[46] Dostálek J, Vaisocherová H and Homola J (2005) Multichannel surface plasmon res-
onance biosensor with wavelength division multiplexing . Sensors and Actuators B:
Chemical, vol. 108, no. 1-2:pp. 758�764. (Cited on page 24).

[47] Nenninger GG, Tobi²ka P, Homola J et al. (2001) Long-range surface plasmons for
high-resolution surface plasmon resonance sensors . Sensors and actuators B: Chem-
ical, vol. 74, no. 1:pp. 145�151. (Cited on page 24).

[48] Slavík R and Homola J (2007) Ultrahigh resolution long range surface plasmon-based
sensor . Sensors and Actuators B: Chemical, vol. 123, no. 1:pp. 10�12. (Cited on
page 24).

[49] Wang Z, Wilkop T, Xu D et al. (2007) Surface plasmon resonance imaging for a�nity
analysis of aptamer�protein interactions with PDMS micro�uidic chips . Analytical
and Bioanalytical Chemistry, vol. 389, no. 3:pp. 819�825. (Cited on page 25).

[50] Anker JN, Hall WP, Lyandres O et al. (2008) Biosensing with plasmonic nanosensors .
Nature materials, vol. 7, no. 6:pp. 442�453. (Cited on pages 26 and 27).

[51] Joshi GK, Deitz-McElyea S, Johnson M et al. (2014) Highly Speci�c Plasmonic
Biosensors for Ultrasensitive MicroRNA Detection in Plasma from Pancreatic Can-
cer Patients . Nano Letters, vol. 14, no. 12:pp. 6955�6963. (Cited on page 26).

[52] Haynes CL and Van Duyne RP (2001) Nanosphere Lithography: A Versatile Nanofab-
rication Tool for Studies of Size-Dependent Nanoparticle Optics . J. Phys. Chem. B,
vol. 105, no. 24:pp. 5599�5611. (Cited on pages 26, 28, 29, 104, and 105).

[53] Dahlin AB, Tegenfeldt JO and Höök F (2006) Improving the Instrumental Resolution
of Sensors Based on Localized Surface Plasmon Resonance. Analytical Chemistry,
vol. 78, no. 13:pp. 4416�4423. (Cited on page 27).

[54] Hicks EM, Zhang X, Zou S et al. (2005) Plasmonic Properties of Film over Nanowell
Surfaces Fabricated by Nanosphere Lithography . The Journal of Physical Chemistry
B, vol. 109, no. 47:pp. 22351�22358. (Cited on pages 27 and 28).

[55] Barbillon G, Bijeon JL, Plain J et al. (2007) Electron beam lithography designed
chemical nanosensors based on localized surface plasmon resonance. Surface Science,
vol. 601, no. 21:pp. 5057 � 5061. (Cited on page 28).



128 Bibliography

[56] Malinsky MD, Kelly KL, Schatz GC et al. (2001) Chain Length Dependence and
Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanopar-
ticles Chemically Modi�ed with Alkanethiol Self-Assembled Monolayers . Journal of
the American Chemical Society, vol. 123, no. 7:pp. 1471�1482. (Cited on pages 28
and 67).

[57] Michieli N, Kalinic B, Scian C et al. (2015) Optimal geometric parameters of ordered
arrays of nanoprisms for enhanced sensitivity in localized plasmon based sensors .
Biosensors and Bioelectronics, vol. 65:pp. 346�353. (Cited on pages 28, 65, 67, 82,
104, and 106).

[58] Van Duyne RP, Haes AJ and McFarland AD, Nanoparticle optics: sensing with
nanoparticle arrays and single nanoparticles . In Proceedings of SPIE , vol. 5223, (pp.
197�207) (2003). (Cited on page 28).

[59] Deckman HW (1982) Natural lithography . Applied Physics Letters, vol. 41, no. 4:p.
377. (Cited on page 29).

[60] Fischer UC and Zingsheim HP (1981) Submicroscopic pattern replication with visible
light . Journal of Vacuum Science and Technology, vol. 19, no. 4:pp. 881�885. (Cited
on page 29).

[61] Hulteen JC, Treichel DA, Smith MT et al. (1999) Nanosphere Lithography: Size-
Tunable Silver Nanoparticle and Surface Cluster Arrays . The Journal of Physical
Chemistry B, vol. 103, no. 19:pp. 3854�3863. (Cited on page 29).

[62] Jensen TR, Malinsky MD, Haynes CL et al. (2000) Nanosphere Lithography: Tunable
Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles . The Journal
of Physical Chemistry B, vol. 104, no. 45:pp. 10549�10556. (Cited on page 29).

[63] Whitney AV, Myers BD and Van Duyne RP (2004) Sub-100 nm Triangular
Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere Lithog-
raphy and Angle-Resolved Nanosphere Lithography . Nano Letters, vol. 4, no. 8:pp.
1507�1511. (Cited on page 30).

[64] Liu G, Li Y, Duan G et al. (2012) Tunable Surface Plasmon Resonance and Strong
SERS Performances of Au Opening-Nanoshell Ordered Arrays . ACS Applied Mate-
rials & Interfaces, vol. 4, no. 1:pp. 1�5. (Cited on page 30).

[65] Hall AS, Friesen SA and Mallouk TE (2013) Wafer-Scale Fabrication of Plasmonic
Crystals from Patterned Silicon Templates Prepared by Nanosphere Lithography .
Nano Letters, vol. 13, no. 6:pp. 2623�2627. (Cited on page 30).

[66] Madaria AR, Yao M, Chi C et al. (2012) Toward Optimized Light Utilization in
Nanowire Arrays Using Scalable Nanosphere Lithography and Selected Area Growth.
Nano Letters, vol. 12, no. 6:pp. 2839�2845. (Cited on page 30).



Bibliography 129

[67] Purwidyantri A, Chen CH, Hwang BJ et al. (2016) Spin-coated Au-nanohole arrays
engineered by nanosphere lithography for a Staphylococcus aureus 16S rRNA electro-
chemical sensor . Biosensors and Bioelectronics, vol. 77:pp. 1086�1094. (Cited on
pages 30 and 72).

[68] Choi JY, Alford TL and Honsberg CB (2014) Solvent-Controlled Spin-Coating
Method for Large-Scale Area Deposition of Two-Dimensional Silica Nanosphere As-
sembled Layers . Langmuir, vol. 30, no. 20:pp. 5732�5738. (Cited on page 31).

[69] Rybczynski J, Ebels U and Giersig M (2003) Large-scale, 2D arrays of magnetic
nanoparticles . Colloids and Surfaces A: Physicochemical and Engineering Aspects,
vol. 219:pp. 1�6. (Cited on pages 31 and 105).

[70] Tan BJY, Sow CH, Lim KY et al. (2004) Fabrication of a Two-Dimensional Periodic
Non-Close-Packed Array of Polystyrene Particles . The Journal of Physical Chemistry
B, vol. 108, no. 48:pp. 18575�18579. (Cited on page 35).

[71] Pérez-Luna VH, O'Brien MJ, Opperman KA et al. (1999) Molecular Recognition
between Genetically Engineered Streptavidin and Surface-Bound Biotin. Journal of
the American Chemical Society, vol. 121, no. 27:pp. 6469�6478. (Cited on pages 46,
57, and 62).

[72] Jung LS, Nelson KE, Stayton PS et al. (2000) Binding and Dissociation Kinetics
of Wild-Type and Mutant Streptavidins on Mixed Biotin-Containing Alkylthiolate
Monolayers . Langmuir, vol. 16, no. 24:pp. 9421�9432. (Cited on pages 46 and 57).

[73] Haes AJ and Van Duyne RP (2002) A Nanoscale Optical Biosensor: Sensitivity
and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance
Spectroscopy of Triangular Silver Nanoparticles . Journal of the American Chemical
Society, vol. 124, no. 35:pp. 10596�10604. (Cited on pages 46, 47, 56, 61, 62, 63,
65, and 98).

[74] Spinke J, Liley M, Schmitt FJ et al. (1993) Molecular recognition at self-assembled
monolayers: Optimization of surface functionalization. The Journal of Chemical
Physics, vol. 99, no. 9:pp. 7012�7019. (Cited on page 48).
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