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”Considerate la vostra semenza: 
fatti non foste a viver come bruti, 

ma per seguir virtute e canoscenza" 

(Dante Alighieri) 
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Abstract 

Introduction. Congenital heart block (CHB) is a passively acquired autoimmune 

disease associated with transplacental transfer of maternal anti-Ro/SSA and/or 

anti-La/SSB antibodies mediating inflammation and subsequent fibrosis of the 

atrio-ventricular node in the fetal heart. Despite the long-established association of 

maternal antibodies in directly inducing CHB both with in vitro and in vivo studies, 

the pathogenic mechanisms involved remain unclear and identification of cross-

reactive targets of anti-Ro52 antibodies in the fetal heart is matter of debate. CHB 

occurs in 1–2% of anti-Ro/SSA antibody-positive pregnancies and has a 

recurrence rate of 12–20% in a subsequent pregnancy, suggesting that additional 

factors, such as genetic and environmental components may determine the 

outcome in terms of CHB development in autoantibody exposed fetuses. 

Objectives. This thesis is divided into two parts and investigates the pathogenic 

mechanism and the genetic association with CHB. The first study aims to identify 

cross-reactive targets of anti-Ro52/p200 antibodies by screening a library of 

peptides covering the whole human proteome and using monoclonal antibodies 

specific for the Ro52/p200 region and to confirm the reactivity at peptide level and 

on the whole antigen level. The second study aims to identify fetal susceptibility 

genes among the Human Leucocyte Antigen (HLA) locus in anti-Ro/SSA 

autoantibody-mediated CHB from DNA samples collected from a multi-centric 

European cohort of families in which children affected by CHB were born.  

Part I. A whole proteome microarray revealed 17 peptides to be significantly 

cross-reactive with a Ro52/p200 monoclonal antibody (Ab31) and two linear motifs 

(“YSDF” and “YSNF) were shared among these sequences. Among the targets, 

cross-reactivity was studied in detail for TG and GAK, for which reactivity was 
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showed both at the peptide and whole protein level with anti-p200 monoclonal 

antibodies and with sera from mothers whose children have CHB, suggesting that 

reactivity to these protein could represent a risk factor for development of CHB in 

the fetuses in anti-Ro/SSA-positive pregnancies. 

Part II. DNA from 636 individuals of 173 European families in which children 

affected from CHB were born (119 Swedish, 38 Finnish, 2 Norwegian and 14 

Italian families) was genotyped and imputation of HLA class I and HLA class II loci 

was performed. From the analysis, HLA-Cw*06, -DRB1*13, -DQA1*01 and -

DQB1*06 emerged as a protective alleles associated with CHB development, 

while HLA-DQA1*04 transmissions were associated with susceptibility. 

Furthermore, haplotype analysis revealed that the DRB1-DQA1-DQB1 13-01:03-

06:03 haplotype significantly associated with protection from CHB development, 

while DRB1-DQA1-DQB1 08-04:01-04:02 was significantly associated with CHB 

susceptibility. A parent-of-origin effect was seen for the following alleles: a lower 

maternal transmission to affected children was associated with Cw*06, while lower 

paternal transmission was observed for DQB1*06 and DRB1*07. With these 

findings, we propose that HLA typing in anti-Ro52-positive pregnancies might be a 

useful tool to assess the risk of CHB in the fetuses. 
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Riassunto 

Introduzione. Il blocco avtrio-ventricolare (BAV) congenito è una malattia 

autoimmune passiva associata al trasferimento transplacentare di anticorpi 

materni anti-Ro/SSA e/o anti-La/SSB, causando infiammazione e fibrosi del nodo 

atrio-ventricolare con successivo blocco cardiaco nel feto. Nonostante 

l’associazione diretta degli anticorpi materni nell'indurre il BAV sia da lungo nota, i 

meccanismi patogenetici coinvolti rimangono poco chiari e l'identificazione di 

bersagli di cross-reattività degli anticorpi anti-Ro52 nel cuore fetale è oggetto di 

dibattito. In aggiunta, Il BAV si verifica nel 1-2% delle gravidanze in cui sono 

presenti anticorpi anti-Ro/SSA e ha un tasso di ricorrenza del 12-20% nelle una 

successive gravidanze, suggerendo che fattori aggiuntivi, quali genetici e 

ambientali sono coinvolti nello sviluppo del BAV. 

Obiettivi. La prima parte della tesi riguarda uno studio che ha avuto lo scopo di 

identificare i bersagli di cross-reattività degli anticorpi anti-Ro52/p200 attraverso 

uno screening di una libreria peptidica coprente l'intero proteoma umano e 

l'utilizzo di anticorpi monoclonali specifici per la regione p200 della proteina Ro52. 

Ulteriore obiettivo è quello di confermare la reattività a livello di peptide e a quello 

di intero antigene. Il secondo studio ha lo scopo di studiare l’associazione genetica 

del locus “Human Leucocyte Antigen” (HLA) con il BAV in una coorte di famiglie 

europee in cui sono nati bambini con BAV. 

Parte I. Lo screening su base proteomica ha individuato 17 peptidi 

significativamente cross-reattivi con un anticorpo monoclonale specifico per la 

regione p200 (Ab31). Tra le 17 sequenze sono stati trovati due motivi lineari 

condivisi ("YSDF" e "YSNF). Tra i target positivamente legati dall’anticorpo Ab31, 

la cross-reattività è stata ulteriormente studiata per TG e GAK, per i quali la 
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reattività è stata dimostrata sia a livello peptidico, che e a livello di proteina intera, 

usando anticorpi monoclonali anti-p200 e sieri di madri i cui figli hanno il BAV. 

Reattività verso queste proteine potrebbe rappresentare un fattore di rischio 

maggiore per lo sviluppo del BAV nei feti in gravidanze positive per gli anticorpi 

anti-Ro/SSA. 

Parte II. Campioni di DNA provenienti da 636 individui da 173 famiglie europee in 

cui sono nati bambini affetti da BAV (119 svedesi, 38 finlandesi, 2 norvegese e 14 

italiane) è stato genotipizzato ed è stata eseguita l'imputazione dei loci HLA di 

classe I ed HLA di classe II. Dall'analisi è emerso che gli alleli HLA-Cw*06, -

DRB1*13, -DQA1*01 e -DQB1*06 conferiscono protezione dallo sviluppo BAV, 

mentre la trasmissione ai feti di HLA-DQA1*04 conferisce suscettibilità alla 

malattia. Inoltre, l'analisi ha rivelato che l’aplotipo DRB1-DQA1-DQB1 13-01:03-

06:03 è significativamente associato con la protezione dallo sviluppo BAV, mentre 

DRB1-DQA1-DQB1 08-04:01-04:02 è significativamente associato con 

suscettibilità al BAV. Infine, è’ stato osservato anche un effetto di origine parentale 

per questi alleli: -Cw*06 è associato una minore trasmissione materna ai bambini 

affetti, mentre DQB1*06 e DRB1*07 sono associati ad una inferiore trasmissione 

paterna. Con questi risultati, proponiamo che la genotipizzazione di questi alleli in 

gravidanze anti-Ro52-positive potrebbe essere un utile strumento per valutare il 

rischio di sviluppo del BAV nei feti. 
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1. Introduction 

1.1 Congenital heart block 

Congenital heart block (CHB) is a manifestation of neonatal lupus erythematosus 

(NLE), a passively acquired autoimmune condition caused by the transplacental 

transport of maternal autoantibodies (anti-SSA/Ro and anti-SSB/La) into the fetal 

circulation. Mothers usually present with systemic lupus erythematosus (SLE), 

Sjögren syndrome (SS), or undifferentiated connective tissue disease (UCTD), but 

may be also asymptomatic (1). Beside CHB, other manifestations of NLE are skin 

rash, hepatitis and cytopenias (2-5). Skin lesions or CHB occur in about 50% of 

NLE cases, but occurs concomittantly with CHB in only 10% of NLE cases (6). 

While CHB is a permanent condition, skin manifestations are transient and will 

disappear as maternal autoantibodies decrease in the child’s circulation to reach 

undetectable leves 6-8 months after birth (7). NLE occurs in 15-20% of infants 

born of mothers with SLE and anti-Ro/SSA antibodies (2). Liver involvement may 

be the only manifestation of NLE. It occurs in 25% of cases as reported in a 

prospective study (2). Liver involvement is usually transient and resolves within the 

first months of life (3). Cytopenia, as a manifestation of NLE, appears within the 

first week of life and tends to resolve by 2–4 weeks of age. It was found that 

neutropenia was much more commonly seen than thrombocytopenia, and that 

neutropenia occurs in up to 10–15% of children born to mothers with anti-Ro 

antibodies (2, 4).  

CHB, the most severe manifestation of NLE, is characterized by the delay or block 

of electrical conduction at the atrioventricular (AV) node that results in 

atrioventricular block (AVB) (8, 9). It occurs in a structurally normal heart and in 
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association of maternal anti-Ro/SSA and anti-La/SSB antibodies. CHB usually 

develops during the risk period between the 18th and the 24th weeks of pregnancy 

and is diagnosed in utero or within the neonatal period (0-27 days after birth) (10). 

According to the severity of the manifestation, AVB can be classified in three 

degrees. First-degree AVB is characterized by a prolonged interval between atrial 

and ventricular contraction, and can be visualized on an electrocardiogram (ECG) 

by a lengthened PR interval (11). In the second-degree AVB, some of the atrial 

impulses don’t reach the ventricles. Third-degree AVB, the most severe 

manifestation of CHB, is characterized by complete block of conduction of 

impulses through the AV node and dissociation between atrial and ventricular 

contraction, resulting in bradycardia. While I and II degree AVB are reversible, III 

degree AVB is irreversible and can lead to long-life pacemaker implantation or 

even death occurring in utero or perinatally (12, 13) and it is hypothesised that 

development of CHB from first to third degree is a progressive process (14). 

At the cellular and molecular level, CHB is characterized by deposition of immune 

complexes, signs of inflammation, calcification and fibrosis at the AV node in the 

fetal heart (15-17). 
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Figure 1. (A) The normal and the CHB-affected heart conduction system.  Electrical impulses are 

generated in the sino-atrial (SA) node and propagated from the atria to the ventricles via the 

atrioventricular (AV) node, before being conducted through the bundle of His to the bundle 

branches and the Purkinje fibers, and finally through the entire myocardium. (B) Electrocardiogram 

(ECG) showing the P wave and the QRS complex, which correspond to the atrial and ventricular 

depolarization, respectively. The PR interval is measured from the beginning of the P wave to the 

beginning of the QRS complex. (C) ECG showing a normal sinus rhythm, I-, II- and III-degree AV 

block. 

1.1.1 Epidemiology 

Complete CHB is considered a rare disease with a reported incidence of 1:15000 - 

1:20000 newborns in the general population. Recently, a population-based study 

which considered CHB cases in anti-Ro/SSA positive pregnancies and without 

structural heart diseases, reported that CHB II-III degree AVB occurs with an 

incidence of 1:23300. (18). The association of CHB with maternal autoantibodies 

directed to Ro/SSA and/or La/SSB is well verified (19-21). In women carrying anti-

Ro/SSA antibodies during pregnancy, the risk for fetuses to develop CHB is 1-2% 

A B 

C 
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in an anti-Ro/SSA positive pregnancy (22, 23) and the recurrence risk for the 

following pregnancies increases to 12-20% despite the persistence of 

autoantibodies (1, 24-26). The incidence of I and II degree AVB is still a matter of 

debate with contrasting data regarding the incidence of I-degree AVB ranging from 

3-14% in newborns from anti-Ro52 positive pregnancies (27-29), while about one 

third of fetuses of anti-Ro52 positive mothers show typical features of I-degree 

AVB in utero (14). Complete CHB is associated with a mortality rate of 15-20% (1, 

30-33), though a recent single-center prospective study reported a substantially 

lower mortality of CHB in anti-Ro/SSA positive pregnancies at 6% (18).  

 

1.2 Autoantigens and maternal autoantibodies in CHB 

Maternal autoantibodies directed to Ro/SSA and La/SSB antigens have been 

firmly associated with CHB (19-21). In the early ‘80s the presence of anti-Ro/SSA 

antibodies to ribonucleoprotein were demonstrated in sera from mothers who gave 

birth to infants with CHB (34-36). Maternal autoantibodies were also found in post-

mortem hearts of neonates deceased due to CHB (15, 17). Anti-Ro/SSA and anti-

La/SSB antibodies are common in the rheumatic diseases SS and SLE. In 

particular, in anti-Ro/SSA and anti-La/SSB antibodies are found in 40-95% of SS 

patients; while among SLE patients, 20-60% of them have anti-Ro/SSA and 10-

20% have anti-La/SSB in their serum (37). In the late ‘80s and early ‘90s the 

Ro/SSA autoantigen was shown to consist of two unrelated proteins, Ro52 and 

Ro60 (38-41).  
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1.2.1 The Ro/SSA and La/SSB antigens 

Ro52 

Ro52, is a 475 amino acid (aa) residues long protein with a molecular weight of 52 

kDa. It belongs to the tri-parted motif (TRIM) family of proteins (42). It is composed 

of a RING and a B-box motifs, followed by a coiled-coil (CC) domain, which 

contains a leucine zipper motif, and a B30.2 (or PRYSPRY) region in the C-

terminal end (Figure 2) (43). 

Figure 2. The structural domains of Ro52 (Oke et al., Journal of Autoimmunity 2012). The RING, 

B-box and coiled-coil domain constitute the TRIM motif. The coiled-coil domain contains a leucine 

zipper motif and the C-terminal of the protein include a B30.2 (PRYSPRY) domain. 

As a TRIM protein, Ro52 is also denoted TRIM21, and Trim21 is the official name 

of the Ro52 gene (42), which is mapped along 8.8 Kb of chromosome 11 and 

consists of 7 exons. The gene is expressed mainly in immune cells 

(http://biogps.org) (44, 45) 

Many of the proteins in the TRIM family play an important role in innate immunity 

and anti-viral responses (46, 47), but also in regulating immune responses by 

targeting key molecules involved in proliferation, survival or death of cells (48).  

Like several other TRIM proteins, Ro52 has E3 ligase activity and acts in the 

process of ubiquitination (49). Ubiquitination is a process of post-translational 

modification of proteins, conserved in eukaryotic cells and it is used to control 

biological processes such as protein degradation, trafficking and activation (50-



- 16 - 
 

52). The process of ubiquitination is a complex three-step pathway requiring 

energy (ATP). The first step includes binding and activation of the ubiquitin 

molecule by a ubiquitin activating enzyme (E1). The activated ubiquitin molecule is 

then transferred to a ubiquitin conjugating enzyme (E2). In the last step, a ubiquitin 

ligase (E3) mediates the transfer of the ubiquitin to from the E2 to a lysine residue 

of the target protein (Fig. 3) (51, 52). Ubiquitinated proteins are commonly targeted 

to the proteasome, where they are degraded. Proteins can be modified by 

ubiquitination in three different ways: mono-ubiquitination, where a single ubiquitin 

molecule is attached to the target protein; multi-ubiquitination, where several 

single ubiquitin moieties are covalently bound to separate lysine residues on the 

target protein; and poly-ubiquitination, where a chain of ubiquitin molecules is 

added to a single lysine residue on the target.  
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It has been demonstrated that Ro52 may regulate both cytoplasmic and nuclear 

substrates via ubiquitination, interacting either with the E2s UBE2D1 and UBE2E1 

located in the cell cytoplasm and nucleus, respectively (49, 53). Targets of 

ubiquitination mediated by Ro52 include Interferon regulatory transcription factor 

(IRF) 3, IRF5, IRF7 and IRF8 (45, 49, 54-56), diminishing their activity (56). Ro52, 

as all the TRIM family proteins, is a critical regulator of innate immune response 

specifically in antiviral immunity (57, 58). The interferon (IFN) and NF-κB are the 

Figure 3. The process and diverse outcomes of ubiquitination. (A) Crystal structure of Ubiquitin 

showing seven conserved lysine and C-terminal di-glycine motif. (B) Ubiquitination of target protein 

involves the sequential action of three enzymes: E1, E2 and E3. (C) Different forms of protein 

ubiquitination and their fate. Proteins can be mono-ubiquitinated with a single Ub, 

multi-ubiquitinated or poly-ubiquitinated. Poly-ubiquitination can be of different types depending on 

the Ub lysine residue which is targetted for Ub chain elongation. The different fates of the modified 

proteins have been shown in the figure. (figure from Tomar et al., Bio Cell 2015) 
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critical pathways in the regulation of innate immune response during viral infection, 

regulating the expression of various cytokines and other immunity-related genes 

(52, 59). The stimulation of cells with IFN leads to the accumulation of Ro52 in the 

nucleus (60) which ubiquitinates IRF8 and enhances cytokine expression, 

specifically type I IFN (61, 62). It was also shown that Ro52 is involved in 

regulation of NF-κB, inducing mono-ubiquitination and subsequent autophagic 

degradation of IKKβ, a positive regulator of NF-κB (63). Hence, degradation of 

IKKβ suppresses NF-κB activity. 

Ro52 function has been studied also in Ro52-deficient mice (45). A distinct role for 

Ro52 in Th17-related autoimmunity was demonstrated with enhanced production 

of proinflammatory cytokines that are regulated by the IRF transcription factors, 

including cytokines involved in the Th17 pathway (IL-6, IL-12/IL-23p40, and IL-17). 

Disruption of the IL-23/Th17 pathway in the Ro52-deficient mice by deletion of 

p19, a subcomponent of the heterodimeric IL-23 cytokine, provided complete 

protection from the skin inflammation and systemic autoimmunity, revealing the 

importance of Ro52 as a negative regulator of proinflammatory cytokine 

production (45).  

Ro52 is involved also in the regulation of the cell cycle and apoptotic process but 

discordant findings have been present. Overexpression of Ro52 in stably 

transfected B cells leads to decreased proliferation and increased sensitivity to 

CD40-mediated cell death, (49). In contrast to these findings, it was described that 

knock-down of Ro52 leads to impaired progression of the cell cycle caused by 

accumulated p27 and inability of cell to enter S-phase (64). These observations, 

though, are all made in in vitro systems using different cells and experimental 
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conditions. More investigations are thus needed to allow a better understanding of 

the role for Ro52 in the regulation of the cell cycle and apoptotic process. 

Ro60 

60 kDa-Ro60 is an RNA-binding protein (65) encoded by the gene TROVE2 in 

humans. The protein is conserved from Caenorhabditis. elegans to all vertebrates 

and found also in the green algae Chlamydomonas, several eubacteria and one 

mycobacteriophage (66). It is ubiquitously expressed and shaped like a doughnut 

with an inner hole. In vertebrate cells, Ro60 is normally complexed with small 

noncoding RNAs, known as YRNAs. It has been shown that the protein also binds 

misfolded, non-coding RNAs that are eventually degraded (67-69) and likely 

functions in a quality control pathway by which incorrectly folded or defective non-

coding RNAs are targeted for degradation (65, 66). In addition, studies of Ro60 in 

both mammalian cells and bacteria have revealed that the protein is important for 

cell survival after ultraviolet irradiation (69, 70). Recently it was shown that Ro60 

also binds repetitive transposons called Alu retroelements, leading to an aberrant 

Toll-like receptor (TLR) signalling which is TLR7- and TLR8-dependent (71, 72). 

Moreover, Alu transcripts were induced by type I IFN and stimulated 

proinflammatory cytokine secretion by human peripheral blood cells and Ro60 

deletion resulted in enhanced expression of Alu RNAs and IFN-regulated genes.  

La 

The SSB/La antigen is a single 48 kDa nuclear phosphoprotein encoded by SSB 

gene in humans. Expressed ubiquitously in eukariotic cells (73, 74), the La protein 

associates with the 3’ of many newly sinthesized RNA plymerase III transcripts, 

including pre-tRNA and pre-5S rRNA and other small RNA. This binding prevents 

this RNA precursor from digestion by exonucleases and it is important for their 
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maturation (74-77). Moreover it has been observed that in adenovirus- or Epstein-

Barr-infected cells, La can bind viral-encoded RNAs and therefore may be 

involved in virus replication (76, 78, 79).  

1.2.2 Anti-SSA/Ro and anti-SSB/La antibodies 

CHB appears to be more specifically linked to the presence of maternal anti-

Ro/SSA and anti-La/SSB antibodies rather than to maternal diagnosis, as the 

mother of an affected child may be also asymptomatic (13, 30, 80).  

Regarding the Ro/SSA autoantigen, older studies did not distinguished between 

Ro52- and Ro60-specific antibodies (38, 40, 41). Subsequent studies regarding 

the association of maternal antibodies with CHB tried to determine the serum 

profile of mothers of affected children in relation to the three components Ro52, 

Ro60 and La and are described below.  

Anti-Ro52/p200 antibodies 

Anti-Ro52 antibodies are the most common specificity in primary SS where can be 

found in 66.7% of the patients (81). Co-uccurrence of these antibodies with anti-

Ro60 is observed in 52.1% of patients with primary SS, while anti-Ro52 together 

with anti-La are are present at the same time in 49% of these patients. In SLE, as 

well as systemic sclerosis and autoimmune myositis patients, anti-Ro52 antibodies 

are detected in one third of patients (62, 81). In CHB, instead, most studies aiming 

to screen for a specific maternal antibody profile have found an almost universal 

presence of antibodies targeting the Ro52 protein (12, 20-22, 82-89). More 

recently this finding was confirmed in a Swedish cohort of 193 mothers of children 

with CHB, where 95% of cases of antibody-related CHB were positive for anti-

Ro52 (90).  
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Systematic analyses have been undertaken to identify the subpopulation and 

specificity of anti-Ro52 antibodies that correlate with congenital heart block and it 

was revealed that a major antigenic part resides in the central part of Ro52, inside 

the leucine zipper structure in the coiled-coil domain (Figure 1) (21, 91-95). 

Epitope mapping using overlapping peptides covering this domain revealed a 

significant association of autoantibodies against amino acid sequence 200-239 

(p200) of the Ro52 protein with a higher risk of developing CHB (21, 87, 89, 96). 

Another study based on structurally derived mutations in different p200 syntetic 

peptides and circular dichroism allowed a better definition of the borders of the 

antigenic p200 region and revealed that binding of human monoclonal anti-Ro52 

antibodies to p200 is dependent on a partly α-helical fold within the leucine zipper 

of p200 (96). 

In a prospective study of 25 anti-Ro52-positive pregnant women, maternal 

antibodies anti-p200 were found to correlate to longer AV time intervals in fetuses 

(87). In addition, in a retrospectively collected Swedish cohort of mothers of 

children with CHB, 60% of anti-Ro52-positive sera also bound p200 (90). The 

association of anti-p200 antibodies with CHB outcome was also re-confirmed 

recently by an Italian multi-center study (97). In particular anti-p200 antibodies 

were significantly more frequently positive in mothers of children with CHB child 

than in women with healthy children (81.0% vs 59.1%, respectevely). Given the 

low risk of developing CHB in anti-Ro/SSA positive women, it has been suggested 

that also the levels of maternal anti-Ro52 antibodies are important in prediction of 

the pregnancy outcome (21). This hypothesis was corroborated also by an another 

group, which found that cardiac complication is associated with moderate or high 
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levels of maternal anti-Ro/SSA, but not with low levels in a group of children born 

by anti-Ro-positive mothers (98).  

Also the specific interaction between anti-Ro52 antibodies and the corresponding 

antigen has been investigated (99). It was found that anti-Ro52-positive patient 

sera inhibited the E3 activity of Ro52 in ubiquitination assays and that anti-Ro52 

autoantibodies inhibited the E3 ligase activity of Ro52 by sterically blocking the 

E2/E3 interaction between Ro52 and UBE2E1 (99).  

Anti-Ro60 

Anti-Ro60 antibodies are mostly present together with anti-Ro52 antibodies and 

many studies still rely on clinical assays which don’t distinguish between Ro52 and 

Ro60 to investigate the presence of anti-Ro antibodies in maternal sera. It is, 

therefore, difficult to assess the individual clinical value of anti-Ro60 in the 

development of CHB. However, in a study by Salomonsson and colleagues, anti-

Ro60 antibodies were found in 63% of antibodies-positive CHB pregnancy (90), 

but this antibody occurred in anti-Ro52-negative mothers only in 3% of cases. 

Anti-Ro60 antibodies have been suggested to have a minor role in predicting the 

fetal clinical outcome in anti-Ro and anti-La antibody–positive mothers (21, 85, 

100), although an association also between these autoantibodies and the 

incidence of CHB has been demonstrated (85, 101). 

Anti-La antibodies 

The association of anti-La antibodies to CHB is still matter of discussion. The level 

of antibodies to the La protein has been found to be higher in mothers of children 

developing cutaneous lupus rather than heart block (3, 85, 98). However, another 

study suggested that the presence of anti-La antibodies increases the risk of CHB 

(101). As for anti-Ro60 antibodies, also anti-La antibodies have been considered 
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less associated to CHB than anti-Ro52 (50, 55, 56). Anti-La antibodies were found 

in 59% of antibody-positive women with a CHB baby (90). The current general 

opinion is that although CHB may develop independently of maternal antibodies 

against Ro60 and La, their presence might be able to amplify the immunological 

response that leads to the AV block (102). 

1.2.3 Other autoantibodies 

In addition to antibodies directed to the Ro and La proteins, several other targets 

have been investigated for being associated with development of CHB. Antibodies 

to calreticulin, a protein involved in calcium storage in myocytes, have been found 

more frequently in sera from mothers of children with CHB than in sera of mothers 

of healthy children (103). Antibodies recognizing the neonatal heart muscarinic 

acetylcholine receptor (mAChR) have been thought to have a functional role in the 

disease supported by binding, and biological effects in in vitro studies (104, 105). 

Antibodies to a cleavage product of α-fodrin has been suggested as an additional 

serologic marker for CHB, in addition to being commonly found in patients with SS 

(106). Another suggested antibody specificity associated with congenital heart 

block is antibodies to p57, which was identified in a child with the disease (86, 

107). All these studies, however, were not able to provide a strong association of 

the proposed antibodies with the involvement in development of CHB (80). 
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1.3 Pathogenesis of CHB 

1.3.1 Evidence of a pathogenic role of maternal anti-Ro/SSA and 

anti-La/SSB antibodies 

Several experimental studies, both in vitro and in vivo, have provided direct 

evidence for a pathogenic role of maternal anti-Ro/SSA and anti-La/SSB and 

especially anti-Ro52 antibodies in the development of CHB. The first 

demonstration of this link was provided in the ‘80s by several groups which 

showed the presence of anti-Ro/SSA antibodies in the cardiac tissue of fetuses 

with CHB, together with deposition of complement, fibrosis and calcification (15-

17, 108, 109). Later, in in vitro studies, perfusion of rat or human hearts with the 

Langendorff technique with maternal IgG containing anti-Ro/SSA and anti-La/SSB 

antibodies was shown to induce bradycardia and complete AVB (110, 111). The 

same effect was gained using affinity-purified anti-Ro52 antibodies, showing a 

direct pathogenic role of maternal autoantibodies specific for the Ro52 antigen.  

In vivo studies provided more evidence of the pathogenic role of anti-Ro/SSA and 

anti-La/SSB antibodies based on models of active immunization of rats, mice or 

rabbits females before gestation or passive transfer of antibodies in pregnant 

animals. 

Among immunization studies, immunizing BALB/c mice with Ro60 or La, led to 

development of I-degree AVB in 19% and 7% of the offspring, respectively (112) 

and similar results were observed in C3H/HEJ mice (113). Instead, in two different 

studies immunization of the same model of BALB/c mice with human Ro52 led to 

I-degree AVB and to II/III-degree AVB in 9-25% and in 3.5-10% of offspring, 

respectively (110, 112). In rats, immunization with human Ro52 induced I-degree 

AVB in 10-45% of pups, depending on the strain (114). A pathogenic role of 
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antibodies specific for the p200 peptide has also been shown. After immunization 

of Dark Agouti (DA) rats with p200 peptide 19% of offspring developed I-degree 

AVB (87). 

Immunization-based experiments present an intrinsic variability that rely on the 

immune response of each immunized animal, dependent also on factors like 

genetic background, age and immunization process. In the context of CHB it was 

shown that induction of the disease depends on the antibody response initiated in 

the mother and that maternal major histocompatibility complex (MHC) is crucial in 

the generation of pathogenic antibodies in CHB (114). Injecting antibodies directly 

into the females during gestation, instead, allows to overcome these problems and 

provided advantages in knowing the specificity and the amount of antibodies 

transferred in the animals. It was shown that transfer of affinity-purified anti-

Ro/SSA and anti-La/SSB antibodies from mothers of children with CHB into 

pregnant females BALB/c mice induced I-degree AVB in 47-90% of the offspring, 

depending on the day of gestation at which the injection was performed (115). 

Instead, transfer of monoclonal antibodies specific for the p200 region of Ro52 in 

rats induced AV block in 100% of offspring but injection of antibodies targeting 

other domains of Ro52 did not (116). In addition, anti-p200 antibodies were shown 

to disturb calcium homeostasis in cultured neonatal cardiomyocytes, supporting a 

pathogenic role for anti-p200 antibodies in CHB (116). 

1.3.2 Pathogenic mechanism 

Despite the big achievement in showing that anti-Ro/SSA and anti-La/SSB have a 

direct pathogenic role in CHB, the mechanism by which they induce the disease is 

still not known. The intracellular localization of Ro52, Ro60 and La proteins and 

the lack of evidence that maternal antibodies can cross the sarcolemma of a 
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normal cardiomyocyte and bind to the specific antigens are the biggest obstacle in 

elucidating the molecular mechanism of CHB induction. Based on this fact two 

hypotheses of the pathogenic mechanisms, not mutually exclusive and each 

supported with experimental data, have been proposed: the “apoptosis 

hypothesis” and the “cross-reactivity hypothesis”.  

The apoptosis hypothesis  

According to the apoptosis hypothesis, the maternal autoantibodies gain access to 

their target antigens when they are exposed on the surface of apoptotic cells. 

Supporting this idea were the observations that Ro60 was found to be displaced to 

the surface blebs in apoptotic keratinocytes (117) and, then, that Ro60 was also 

present on the surface of early apoptotic cardiomyocytes (102, 118), and therefore 

exposed to binding by anti-Ro60 antibodies. Conversely, Ro52 was found to be 

exposed only after plasma membrane breaking in necrotic cells (102) and was 

bound by anti-Ro52 monoclonal antibodies to a lesser extent than anti-Ro60 and 

anti-La did (119). This discovery and the observation of exaggerated apoptosis 

and infiltrating macrophages in the heart of fetuses dying of CHB (109) supported 

the hypothesis that maternal anti-Ro60 may bind to apoptotic cardiac cells during 

apoptosis normally occurring in developing fetal hearts and so deviate the removal 

of apoptotic debris from a non-inflammatory pathway to their ingulfment by 

macrophages by opsonization. Subsequent activation of the phagocytic cells may 

lead to production of pro-inflammatory and pro-fibrotic cytokines, recruitment of 

leukocytes and complement components, and establishment of an inflammatory 

reaction that will eventually irreversibly damage the targeted tissue (109, 120). 

Subsequent in vitro studies showed that opsonized cardiomyocytes can activate 

phagocytic cells to produce pro-inflammatory and pro-fibrotic cytokines (120-122). 
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It is of note, though, that these experiments were performed in ventricular 

myocytes, not in conduction system myocytes such as AV node myocytes, and the 

correlation of these findings with the AV conduction abnormalities seen in CHB is 

not straightforward. According to these in vitro studies anti-Ro60 would first bind to 

apoptotic cells and later anti-Ro52 to necrotic cells, leading to establishment of 

inflammation and fibrosis in the fetal heart. These findings are, however, not in 

accordance with the in vitro and in vivo observation that anti-Ro52 are the most 

common in mothers of children with CHB (12, 20, 90) and that they have been 

shown to induce AVB in several animal models of CHB (110, 112, 114, 116). 

The cross-reactivity hypothesis  

Several studies have shown arrythmogenic effects of anti-Ro52 antibodies either 

with Langendorff-perfused hearts (110, 111) and with transfer of monoclonal 

antibodies anti-p200 in pregnant rats (116). Calcium homeostasis disturbance was 

also shown in cultured neonatal cardiomyocytes after adding anti-p200 antibodies 

(116). These data, together with the intracellular localization of Ro52 in live cells 

and the fact that Ro52 is predominantly expressed in immune cells (44, 45) and 

functions as a ubiquitin E3 ligase (49), support the idea that anti-Ro52 antibodies 

may mediate their pathogenic effect on the fetal hearts by cross-reacting with 

another targets available in the extracellular space. This targeted molecules might 

be involved in the control of electric signal or conduction and cross-reactivity might 

interfere with normal cardiac function. 

Several targets have been proposed as cross-reactive targets and a list of studies 

is reported below (Table 1). The 5-HT4 serotoninergic receptor (5-HT4R) was 

suggested by Eftekhari and colleagues (123) as a putative cross-reactive target. In 

this study they found that antibodies specific for peptide 365-382 of Ro52 
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recognized residues 165-185 of the cardiac 5-HT4R (123) and that affinity-purified 

5-HT4R antibodies could antagonize the serotonin-induced calcium channel 

activation in atrial cells (124). However, mouse pups born to females immunized 

with Ro52 peptides cross-reacting with anti-5-HT4R antibodies did not develop 

any sign of AVB or any other cardiac dysfunction (124). Additionally, others 

couldn’t reproduce this data and were not able to confirm the reactivity to the 

specific epitope of 5-HT4R in any of 116 sera from mothers with affected children 

(125), leading to discordant results about this putative target (126).  

Other than 5-HT4R, L- and T-type calcium channels were suggested as potential 

cross-reactive targets, supported by the observation that inhibition or blockade of 

this channel lead to AV block similar to conduction abnormalities seen in CHB. 

Specifically, the L-Type calcium channels subunits Cav1.2 (α1C) and Cav1.3 

(α1D) are essential for AV node electro genesis and cardiac excitation-contraction 

coupling, with Cav1.2 crucial for cardiac contractility and Cav1.3 more important 

for atrial sinus pacemaker activity and signal conduction (127-129). Cav1.3, 

moreover, was also was shown to be expressed in human fetal heart (130).  

 In vitro experiments have shown that IgG purified from mothers with CHB-positive 

pregnancy could inhibit L-Type calcium currents in ventricular myocytes, sino-atrial 

and AV node cells as well as in exogenous expression systems (111, 130-134). 

Cross-reactivity of anti-Ro/SSA and anti-La/SSB antibodies with the Cav1.2 and 

Cav1.3 calcium channels has been proved (130, 133). Maternal antibodies have 

been proposed to induce, after cross-reactivity, calcium channel internalization 

and degradation with subsequent inefficient signal conduction, insufficient 

excitation-contraction coupling and reduction of cardiac contractile function (132). 

Supporting this hypothesis, mouse pups transgenic for Cav1.2 developed AV 
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block and sinus bradycardia at a lower frequency than non-transgenic littermates 

after in utero exposure to anti-Ro/SSA and anti-La/SSB antibodies in an 

immunization model (135). In addition, mouse pups in which the Cav1.3 subunit of 

the L-type calcium channel has been genetically knocked out exhibit first-degree 

AV block, albeit at a low frequency, and the occurrence of AV block is increased 

following immunization of females with the Ro and La protein before gestation 

(135). This study, however, doesn’t show the specific interaction of maternal 

autoantibodies with the calcium channels. More recently, Strandberg and 

colleagues (136) found that sera from mothers with CHB affected children were 

able to bind the T-Type calcium channel subunit Cav3.1 (α1G) and to a lesser 

extent with Cav3.2 (α1H) and decrease of T-type calcium channel currents was 

seen in mouse sino-atrial node cells.  

Cross-reactivity to α-Enolase, a glycolytic enzyme expressed on the membranes 

of several hematopoietic, epithelial, and endothelial cells, has been proposed as 

the target of anti-p200 monoclonal antibodies after a screening of a neonatal rat 

heart expression library (137). However, only a small proportion of anti-Ro52 

positive sera from women with CHB pregnancy were also positive for this target, 

indicating that these antibodies may represent only a subset of mothers at risk 

(138). In conclusion, so far, none of the suggested cross-reactivity targets has 

been confirmed convincingly and showed to be a major target of cross-reaction. 

Moreover, even if previous studies showed that autoantibodies specific for p200 

region interact with cardiomyocytes and disturb calcium homeostasis (87, 116), 

their cross-reactivity has not been investigate thoroughly.  
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 Taking together the results of these studies, an attempt of merging together 

the apoptosis and cross-reactivity hypotheses has been made in order to better 

explain the molecular mechanism leading to CHB (139). The current opinion 

proposes a scenario in which, after crossing placenta, anti-Ro52 antibodies may 

cross-react with one or several molecules such as calcium channels on the 

surface of fetal cardiac cells, inducing disturbancies in calcium homeostasis. 

Prolonged exposure to maternal autoantibodies may then lead to increased 

cardiomyocytes apoptosis, followed by exposure of Ro52, Ro60 and La antigens. 

The consequent autoantibodies binding allows establishment and amplification of 

inflammatory reaction as described for the apoptosis hypothesis with eventual 

fibrosis and calcification in the AV nodes and establishment of complete CHB, as 

depicted in Figure 4. 

 

Figure 4. Schematic representation of events in the pathogenesis of congenital heart block. 

(Image from: (Ambrosi et al., Exp Cell Res. 2014;325:2-9) 
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Cross-reactivity 
target 

Antibodies/method Major finding Reference 

5-HT4R 
Sera from SLE patients anti-Ro52- 

positive  

cross-reaction with second extracellular 

loop of  5-HT4R 

Eftekhari et 

al., 2000 
(123) 

5-HT4R 
Immunization of mice with 5-HT4R 

peptides (a); or Ro52 (b) 

Mice developed bradycardia, AVB I- and 

II-degree (a); not developed any 
symptomps of CHB (b) 

Eftekhari et 

al., 2001 
(124) 

5-HT4R 
Sera from mothers with CHB 

pregnancy 
None cross-reacted with 5-HT4R 

Buyon et al., 

2002 (125) 

5-HT4R 
Sera anti-Ro/La positive from 

mothers with/without CHB children 

and healty controls 

Reactivity to 5-HT4R was found in 16% 
of mothers with CHB 

Kamel et al., 
2005 (126) 

L-Type calcium 
channels 

Perfusion of rat hearts with  IgG from 
anti-Ro/SSA-positive sera 

Inhibition of whole cell L-Type calcium 
current I(Ca) 

Boutjdir et 

al., 1998 

(111) 

L-Type calcium 
channels  subunit 
α1D 

Effect of  IgG containing anti-Ro/La 

on I(Ca) in heterologous expression 

systems  

IgG binds directly to α1D Ca channel 
protein and inhibited I(Ca) 

Qu et al., 
2005 (130) 

L-Type calcium 
channels  subunit 
α1C 

Effect of  IgG containing anti-Ro/La 

on I(Ca) in heterologous expression 

system 

IgG binds directly to α1C Ca channel 
protein and inhibited I(Ca) 

Xiao et al., 
2001 (131) 

L-Type calcium 
channels 

Immunization of pregnant rabbits 

with Ro52 

Conduction defects and down-regulation 
of L-Type calcium channels in newborns. 

Inhibition of I(Ca) through IgG from 

immunized animals 

Xiao et al., 

2001 (132) 

L-Type calcium 
channels  subunit 
α1C 

Effect of  IgG containing anti-Ro/La 

on I(Ca) in human fetal Purkinje 

myocytes and in heterologous 
expression system 

IgG bound α1C and inhibites I(Ca) in 

both systems 

Qu et al., 

2001 (133) 

L-Type calcium 
channels  subunit 
α1D 

Sera anti-Ro/La positive from 

mothers with/without CHB children 
and healty controls. Effect of  IgG on 

I(Ca) in heterologous expression 

system 

14% sera from mothers with CHB bound 
extracellular loop of domain I S5-S6 

region of α1D and  reduction of I(Ca)  

Karnabi et 

al., 2010 

(134) 

L-Type calcium 
channels 

Overexpression of L-Type calcium 
channels in Ro/La-immunized 

pregnant mice 

Rescueing of AVB inMice pups with 

overexpressed L-Type calcium channels. 

interaction of maternal autoantibodies 
with the target not shown 

Karnabi et 

al., 2011 

(135) 

T-Type calcium 
channel subunit 
α1G and α1H 

Sera from mothers with CHB baby 

Binding to α1G and to a lesser extent to 

α1H.  Decreased I(Ca) in mouse sino-
atrial node 

Strandberg 

et al., 2013 
(136) 



- 32 - 
 

α-Enolase Anti-p200 monoclonal antibodies 
Reactivity shown in ELISA and 

westernblot 

Ambrosi et 

al., 2007 

(137) 

α-Enolase 
anti-Ro52 positive sera from women 

with CHB pregnancy 

7% of sera positive for α-Enolase 
reactivity. Preincubation with Ro52 did 

not inhibit anti-α-enolase reactivity. 

Llanos et al., 

2009 (138) 

 

 

 

1.4 Risk factors for CHB development  

As the risk for CHB in anti-Ro/SSA- and/ anti-La/SSB-positive women is only 1-2% 

(22, 23) and the recurrence rate in the following pregnancies is 12-20%, despite 

the persistence of maternal autoantibodies (1, 24-26), it is clear that the sole 

presence of these antibodies is not sufficient to provoke CHB. This fact indicates 

that additional factors, maternal and fetal, genetic and enviromental, may be 

necessary for development of CHB in an autoantibody exposed fetus (Figure 5). 

1.4.1 Genetic risk factors 

Completion of the sequencing of the human genome in the early 2000s and a big 

improvement in the technology of genotyping and statistical analysis was the basis 

for researchers to discover that autoimmune diseases have a consistent genetic 

component, with the Human Leucocyte Antigen locus (HLA) being the most 

significantly associated with rheumatic disorders (140, 141). Regarding CHB, 

maternal and fetal genetic susceptibility has been investigated firstly by a Finnish 

group (142-145), which suggested that the disease-associated HLA alleles were 

potentially linked, in mothers, with the specificity and/or the levels of 

autoantibodies, as well as with the competence of immune system to fight 

infections and, in children, with the specificity of antigen presentation. These 

Table 1. Summary of papers published so far with aim of investigating possible cross-reaction 

targets of anti-Ro/SSA and anti-La/SSB antibodies. 
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evidence prompted researchers in finding fetal susceptibility and protective genes 

that could explain the low recurrence rate of CHB (Table 2). A candidate-gene 

approach was applied by Clancy and colleagues (146) to investigate the fetal 

susceptibility to CHB of two known single-nucleotide polymorphisms (SNPs) in 

genes encoding the pro-inflammatory and pro-fibrotic cytokines TGFβ and TNFα. 

The authors revealed that the SNP in TGFβ was significantly more frequent in the 

40 children with CHB than in their 31 unaffected siblings, whereas the TNFα SNP 

was found at an increased frequency in both affected and non-affected children in 

comparison with healthy controls. However, these findings have not been 

replicated yet in a larger cohort of CHB patients.  

Several studies with different approaches found that the HLA region is a dominant 

genetic contributor to CHB development. In particular, a Genome-Wide 

Association Study (GWAS) of 116 Caucasian children with cardiac manifestations 

of NLS and of 3,351 healthy controls showed that the most significant associations 

with cardiac neonatal lupus were found in the HLA region and at location 21q22 

(147). However, comparing CHB cases with healthy controls, CHB-specific traits in 

the MHC region were not distinguished from the maternal ones, who may have 

SLE, SS and, even if asymptomatic, are genetically and immunologically different 

from the general population. Thus, the association revealed may represent the 

genetic bias present in mothers, rather than the true fetal CHB-specific 

association. Fetal HLA alleles appeared to be determinants in CHB susceptibility 

also in an in vivo study by Strandberg and colleagues (114). Using different 

congenic rat strains and a Ro52 immunization model of heart block, it was shown 

that the generation of pathogenic anti-Ro52 antibodies is restricted by maternal 

MHC, whereas susceptibility to CHB development and fetal disease outcome in 
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anti-Ro52-positive pregnancies is regulated by fetal MHC. Other evidence in favor 

to the role of HLA region in CHB were provided in a recent genetic association 

study by Meisgen and colleagues (148). In a cohort of 86 Swedish families where 

CHB pregnancies occurred, it was reported that HLA-Cw*06 and HLA-DRB1*13 

are protective alleles associated with CHB in children born to anti-Ro/SSA positive 

mothers, while HLA-DRB1*04 was found to confer susceptibility for the disease. 

Finally, a recent study reported that also non-HLA regions may confer 

susceptibility to CHB. In particular, through a GWAS of >500,000 SNPs in a 

population-based cohort of families with CHB children, it was found that Auxilin, 

the putative tyrosine-protein phosphatase encoded by DNAJC6 is a novel fetal 

susceptibility gene of CHB, with a decreased cardiac expression in presence of 

the disease risk genotype (149).  

HLA-related studies 

Associated HLA 
alleles/variants 

Method Population Reference 

B8, DR3, DQ2 associated 
to mothers with CHB 
children 

Susceptibility alleles in mothers. 
Serological typing of HLA-A, -B, -C, -

DR and -DQ  

31 mothers with CHB children, 45 

with SLE and 21 with primary SS and 

healthy children and 900 healthy 
controls 

Julkunen et 

al., 1995 

(142) 

DQB1*03/04 more 
frequent in affected 
children 

Susceptibility alleles in siblings. 

Serological typing of HLA-A, -B, -C; 

DNA-based typing of DRB1, DQA1, 
DQB1, DPB1 

6 CHB children and their 10 healthy 

siblings in 4 Finnish families 

Siren et al., 

1997 (143) 

A1, Cw7, B8 and without 
B15 associated to high 
risk of CHB 

Susceptibility alleles in  mothers. 

Serological typing of HLA-A, -B, -C; 
DNA-typing of DRB1, DQA1 and DQB1 

45 mothers with CHB children  and 32 

mothers with healthy children 

Siren et al., 

1999 (145) 

DQ1 alleles, Cw3 
associated to CHB 

Susceptibility alleles in  children. 

Serological typing of HLA-A, B and C; 

DNA-typing of DRB1, DQA1 and DQB1 

24 children with CHB and 10,000 

healthy controls (serological typing); 
91 organ donors for DNA-based 

typing 

Siren et al., 
1999 (144) 
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HLA region and 21q22 
GWAS based on genotyping of 370,000 
SNPs 

116 caucasian children with CHB and 
3351 healthy controls 

Clancy et al., 
2010 (147) 

Production of anti-Ro52 
and fetal disease 
outcome regulated by 
MHC 

Ro52-immunization in female rats with 

different MHC haplotypes 
Four MHC congenic rat strains 

Strandberg 
et al., 2010 

(114) 

Susceptibility role for   
-DRB1*04 and -Cw*05. 
Protective role for -
DRB1*13 and -Cw*06  

Low-resolution HLA-A, -Cw and –DRB1 

allele typing and family-based analysis 
86 families where CHB occured 

Meisgen et 

al., 2014 

(148) 

Non-HLA-related studies 

Associated gene/allele Method Population Reference 

None 
Susceptibility alleles in siblings. DNA-

based typing of TNF and HSP70-HOM 

6 CHB children and their 10 healthy 

siblings in 4 Finnish families 

Siren et al., 

1997 (143) 

p.Leu10Pro  in TGFβ 
more frequent in CHB 
children  

Candidate-gene approach on two 

known SNPs: c.-308G>A in TNFα and 
p.Leu10Pro in TGFβ 

88 children (40 with CHB), 74 

mothers and 102 healthy controls 

Clancy et al., 

2003 (146) 

DNAJC6  
GWAS and cardiac tissue-eQTL 
analysis on >500,000 SNPs  

Population-based cohort of families: 
92 CHB children and 256 relatives 

Meisgen et al., 
2015 (149) 

 

1.4.2 Environmental risk factors 

Several enviromental factors have been suggested to contribute to the 

development of CHB. Although neither fetal gender nor maternal disease severity 

has been associated with the disease (12, 25), it has been proposed that maternal 

age may have an influence over the outcome in anti-Ro52-positive pregnancies 

with an increased risk for CHB with increasing maternal age (150). Also in a later 

study by Ambrosi and colleagues (8), it was found that the risk for CHB outcome 

increased with maternal age in a population-based study. In the same study an 

association between the development of CHB with the season of bitrh was been 

described. Infact, there was an increased proportion of affected pregnancies in 

Table 2. Summary of papers published so far with aim of investigating genetic susceptibility of CHB 
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which the gestational susceptibility weeks 18–24 occurred during the months from 

January to March. These months are also associated to lower levels of vitamin D 

in a sample of Swedish women, suggesting a correlation between CHB and winter 

season, reduced sun exposure and vitamin D levels. However, other events linked 

to the winter season, like viral infection in the woman during pregnancy, may be 

addressed to the onset of CHB. Indeed, in a report by Tsang and colleagues 

(151), cell surface exposure of the Ro antigen in fetal cardiomyocytes following 

cytomegalovirus infection has been described. 

Another potential risk factor that has been reported in relation to CHB 

development include hypothyroidism in the mother. In particular, in a group of 87 

anti-Ro/SSA-positive women, CHB occurred in 55% of hypothyroid group and in 

13% of the normal thyroid function group. The risk for delivering a child with CHB 

in women with anti-Ro/SSA antibodies and hypothyroidism was found to be 9-fold 

higher than the risk associated to women with antibodies alone, irrespective of 

maternal condition (152). An association between hypothyroidism and CHB was 

also suggested by Askanase and colleagues (153) who found that anti-

Thyroglobulin (anti-TG) antibodies were significantly more prevalent in mothers 

with children with CHB than in women with primary SS. It may also be speculated 

that environmental and lifestyle factors such as smoking could be potential risk 

factors, but studies of such a relation to CHB are currently lacking.  
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Figure 5. Schematic representation of risk factors in congenital heart block. (Image from: Ambrosi 

and Wahren-Herlenius Arthritis Research & Therapy 2012, 14:208). 
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2. Aim of the thesis 

Part I: Identification of cross-reactive targets of anti-Ro52 

antibodies 

The aim of this study is to investigate the cross-reactivity target of anti- Ro52/p200 

antibodies in the pathogenesis of CHB, and to identify cross-reactive proteins. This 

was performed by screening a library of peptides covering the whole human 

proteome and using monoclonal antibodies specific for the Ro52/p200 region. The 

putative cross-reactive targets are studied at a peptide level, in order to 

characterize the specific epitope, and on the whole antigen level, in order to 

determine the accessibility of the epitope to the antibodies. 

 

Part II: Family-based study on HLA associations with CHB 

The aim of this multi-center study is the identification of fetal susceptibility genes 

among the Human Leucocyte Antigen (HLA) locus in anti-Ro/SSA autoantibody-

mediated CHB. DNA samples were collected from Swedish, Finnish, Norwegian 

and Italian families in which children affected from CHB were born. SNPs within 

the HLA region, the locus most significantly associated with rheumatic disorders, 

were genotyped and the transmission disequilibrium test was performed in order to 

identify unexpected parental HLA allele transmission to affected children not 

following the Mendelian rules.  
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PART I 
 

 

IDENTIFICATION OF CROSS-REACTIVE 

TARGETS OF ANTI-RO52 ANTIBODIES 
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3. Materials and methods 

3.1 Study population 

Anti-SSA/Ro and/or anti-SSB/La-positive sera from 49 mothers of fetuses with 

CHB were selected from a population-based cohort of families with at least one 

individual affected by complete third-degree CHB (90). As control population, anti-

SSA/Ro and anti-SSB/La-negative sera from 40 women without diagnosis of any 

rheumatic diseases were selected. Antibodies against Ro52, Ro60 and La were 

detected through a commercial line blot analysis (Inno-LiaTM ANA Update, 

Innogenetics, Cambereley, United Kingdom), according to the manufacturer’s 

instructions. Anti-Ro52-positive sera were later analysed for reactivity to the p200 

epitope of Ro52, using the Wieslab® SS-A p200 ELISA kit (Eurodiagnostica, 

Malmö, Sweden) according to the manufacturer’s instructions. All analyses were 

performed at the Clinical Immunology Unit, Karolinska Institutet. The sera were 

stored at -80°C. 

 

3.2 Generation of monoclonal antibodies  

In this study several monoclonal antibodies specific for different regions of the 

Ro52 protein were used. As described by Strandberg and colleagues (60), these 

antibodies have been previously produced in mouse immunized with recombinant 

human Ro52 full length protein and with the hybridoma technique. 

In particular, two antibodies specific for the p200 region, 7.2H4 (Ab11) and 

7.8C7.F10 (Ab31), and monoclonal binding Ro52 but not specific for p200, 7.2F4 

(Ab8), were used for this study (Figure 6). 
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3.3 Whole proteome microarray 

The identification of cross-reactive targets of anti-Ro52/p200 antibodies was 

performed through screening a whole proteome microarray in collaboration with 

SciLifeLab, KTH, Stockholm, Sweden (154). This technique is based on an in situ 

peptide array synthesis and subsequent antibody binding analysis (Figure 7). The 

whole human proteome array was designed based on the human Consensus CDS 

(version 37.1) protein set provided by the National Center for Biotechnology 

Information (NCBI) (155). To cover the proteome, 2.1 million 12-mer peptides 

overlapping by six amino acids were randomly distributed on the array.  

The peptide library synthesis was accomplished by means of light-directed array 

synthesis in a Roche-Nimblegen Maskless Array Synthesizer using an amino- 

Figure 6. Schematic drawing summarizing the Ro52 binding specificity of the 3 mouse monoclonal 

antibodies used in this study. 



- 45 - 
 

functionalized microscope slide as a substrate coupled with six-amino hexanoic 

acid as a spacer and amino acid derivatives carrying a photosensitive 2-(2-

nitrophenyl)propyl-oxycarbonyl group at the α-amino function. Coupling of amino 

acids to the spacer was done with pre-activation in 30 mM amino acid, 30 mM 

activator (HOBt/HBTU), and 60 mM ethyldiisopropylamine in N,N-

dimethylformamide. Washings were done with 1-methyl-2-pyrrolidinone, and site-

specific cleavage of the photosensitive protector group was accomplished by 

irradiation of an image created by a Digital Micromirror Device (Texas Instruments 

Inc., Dallas, TX), projecting light with a 365-nm wavelength. Final treatment of the 

slide with TFA/water/triisopropylsilane for 30 min cleaved off the side-chain 

protection of the amino acids. Repeated cycles of selective activation, addition of 

amino acids, and removal of excess amino acids enables parallel synthesis of 

peptides with unique sequences. 

After peptides synthesis, the slides were washed twice with TBSTT (20 mM Tris, 

0.9% NaCl, pH 7.4, 0.1% Tween 20, 0.4% Triton X-100) for 2 min, twice in TBS 

(20 mM Tris, 0.9% NaCl, pH 7.4) for 2 min, rinsed quickly three times with de-

ionized water, and dried. Primary antibody specific for p200 region of Ro52 (Ab31) 

diluted in binding buffer (10 mM Tris, 0.45% NaCl, pH 7.4, alkali soluble casein 

0.5% (Novagen, EMD Chemicals, San Diego, CA)) was injected to the array. The 

slides were incubated overnight in a NimbleGen Hybridization Station (Roche 

NimbleGen Inc.). After the primary incubation, the slide was washed twice with 

TBSTT and twice with TBS as described above. Secondary Cy3-conjugated anti-

mouse antibodies (Jackson ImmunoResearch, West Grove, PA) were diluted to 

0.15 μg/ml in binding buffer and incubated to the slide for 3 h on a shaking table. 

The slide was washed twice with TBSTT and twice with TBS as described above, 
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quickly rinsed three times in de-ionized water, and dried. The slide was 

subsequently scanned at 2-μm resolution using a NimbleGen MS200 scanner 

(Roche NimbleGen Inc.). 

The scan images were aligned and peptide feature mean fluorescence values 

were exported using the NimbleScan2 software (Roche NimbleGen Inc.). Before 

further analysis, confirmed false-positive signals caused by dirt on the arrays were 

removed. 

 

 

 

 

 

 

 

 

Figure 7. Schematic representation of the whole-proteome microarray that was performed for the 

identification of cross-reactive targets of anti-p200 antibodies. (A) Depiction of peptide library 

synthesis by means of selective activation of square features on the array through light reflected 

by digital micromirrors. (B) Schematic picture of incubation of the peptide array with the primary 

antibody and fluorophore-labeled secondary antibody. (C) A scan image of a part of the peptide 

array in which the bright spots correspond to peptide features bound by antibodies (Image from:  

Forsström B et al., Mol Cell Proteomics. 2014;13:1585-97) 
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3.4 Synthetic peptides and proteins 

Five different synthetic peptides were used in this study and their sequences are 

illustrated below: 

 p200:  LEKDEREQLRILGEKEAKLAQQSQALQELISELDRRCHSS 

 pGAK: PEIIDLYSNFPI 

 pTG:  SQYPGSYSDFST 

 biotinylated pGAK biotin-aminohexanoic acid-YRTPEIIDLYSNFPI 

 biotinylated pTG biotin-aminohexanoic acid-GQLSQYPGSYSDFST 

Briefly, human p200 peptide corresponding to amino acid 200-239 of the human 

Ro52 protein and containing the main CHB related epitope was included and was 

purchased from Thermo BioSciences, Ulm, Germany. PGAK and pTG have the 

same protein sequence of the peptides used in the whole proteome microarray. 

Biotinylated pGAK and biotinylated pTG contain the same protein sequence of 

pGAK and pTG, respectively, and are conjugated to a biotin molecule through a 

linker aminohexanoic acid at the N-terminal molecule. These peptides were 

purchased from TAG Copenhagen A/S (Frederiksberg, Denmark). Purity was 

confirmed to be >90% by high-performance liquid chromatography and mass 

spectrometry. 

 

3.5 Confirmation of cross-reactivity to peptides 

3.5.1 Competitive ELISA 

Competitive ELISA with a pre-incubation step was performed to investigate the 

cross-reactivity of anti-Ro52 monoclonal antibodies to the selected peptides. High-

binding 96-well plates (Nunc, Odense, Denmark) were coated with 1 μg per well of 
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recombinant full-length Ro52, p200 or maltose binding protein (MaBP) and diluted 

in carbonate buffer, pH 9.6. When Ro52 or MaBP were the antigens, plates were 

coated overnight at +4°C; when p200, coating was performed overnight at room 

temperature and for at least 24 hours at 4°C before use. Plates were blocked with 

phosphate buffered saline (PBS)/0.05% Tween/5% milk powder for 1 hour. 

Monoclonal antibodies (mAbs) and sera were tested at a dilution of 0.1µg/ml and 

1:1,000, respectively, in PBS/0.05% Tween/1% milk powder. Bound antibodies 

were detected by affinity-purified, alkaline phosphatase (AP)-conjugated anti-

mouse or anti-human IgG antibodies (Dakopatts, Glostrup, Denmark). 

Phosphatase substrate tablets (Sigma) dissolved in diethanolamine buffer, pH 9.8, 

were used as substrate and incubated for 30 minutes for detection of IgG. The 

absorbance was measured at 405 nm. Between each step, plates were washed 

four times with wash buffer (0.25M NaCl, 0.05% Tween/1 liter of de-ionized water). 

All steps were performed at room temperature except coating, which was 

performed at 4°C. Sera from healthy subjects lacking anti-Ro52 antibodies and 

mAb8, not specific for p200 region, were used as controls, and showed an optical 

density (OD) of <0.1 in all readouts. All mAbs and sera were tested for antibodies 

to the MaBP fusion partner of the recombinant Ro52, showing OD values <0.1 in 

all cases. All mAbs and sera were run in duplicate. 

Cross-reactivity of mAbs and sera to the peptides was analysed in anti-p200 and 

anti-Ro52 competitive ELISA with a pre-incubation step. In this phase diluted 

mAbs or sera were incubated with serial dilution of p200, pGAK, pTG, and MaBP 

in concentrations ranging from 0.025-0.1 mg/ml for 1h at room temperature prior to 

analysis in ELISA as described above. Incubation with only PBS/0.05% Tween/1% 

milk powder was also performed.  
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3.5.2 Biotinylated-peptides ELISA 

Pierce™ Streptavidin Coated High Capacity 96-wells plates (Thermo Fisher 

Scientific, Waltham, Massachusetts, United States) were coated overnight at room 

temperature with 1µg per well of biotinylated peptides diluted in Tris-buffered 

saline (25mM Tris, 150mM NaCl; pH 7.2)/0.05% Tween/0.1% BSA. Monoclonal 

antibodies (mAbs) and sera were tested at a dilution of 5µg/ml and 1:300, 

respectively, in Tris-buffered saline/0.05% Tween/0.1% BSA and plates were 

incubated at room temperature for 2h. The experiment, then, proceeded as 

described above for anti-p200 and anti-Ro52 ELISA. 

3.5.3 Anti-Thyroglobulin ELISA 

The DIASTAT anti-Thyroglobulin (Tg) ELISA kit (Eurodiagnostica, Malmö, 

Sweden) was used to analyse the cross-reactivity to Tg of mAbs and sera 

according to the manufacturer’s instructions with slight modifications. Monoclonal 

antibodies (mAbs) and sera were tested at a dilution of 5µg/ml and 1:100, 

respectively, in diluent buffer and plates were incubated for 1h at room 

temperature. Unbound antibodies were washed away with wash buffer (5 times). 

The experiment was then performed as described above for anti-p200 and anti-

Ro52 ELISA  

Cross-reactivity of mAbs and sera to the peptides were analysed in anti-Tg 

competitive ELISA with a pre-incubation step. In this step diluted mAbs or sera 

were incubated with serial dilution of p200, pTG, Tg and MaBP in concentrations 

ranging from 0.1-0.2 mg/ml for 1h at room temperature prior to analysis in ELISA 

as described above. Incubation with only diluent buffer was also performed. 
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3.6 Study of cross-reactivity to Cyclin G-associated 

kinase (GAK)  

3.6.1 Transfection 

HEK293T cells were cultured in 75cm2 flask (Sarstedt AG & Co, Nümbrecht, 

Germany) with Dulbecco’s Modified Eagle Medium (DMEM, Sigma), 

supplemented with 5% Fetal calf serum (FCS), 2mM L-glutamine, 500U/ml 

penicillin, 0.01mg/ml streptomycin, 1mM Hepes (Sigma) and 10mM Sodium 

Pyruvate (Sigma). Sixteen hours before transfection, 4 x 106 cells were seeded per 

well in 6-wells plates (Sarstedt). Transfection was performed in duplicates with the 

following plasmids: pGAK-tGFP containing human GAK (Origene Technologies©, 

Rockville, Maryland, United States), pGFP-Ro52 with Ro52, pGFP-DNAJC6 

containing DNAJC6 (NM_001256864). All the genes represented human isoforms 

with full-length, recombinant sequence tagged with GFP at the N-terminal, except 

GAK, which was fused with the isoform turboGFP (tGFP) at the C-terminal. Cells 

were transfected with also plasmid containing only GFP (pGFP). One µg of 

plasmids was transfected 100µl of pure DMEM and 3µl X-tremeGENE™ 9 DNA 

transfection reagent per each well. Negative control transfection was also 

performed by adding the transfection mix without DNA. Twenty-four hours after 

transfection, fluorescence emission was checked with a fluorescence microscope 

to check the efficacy of transfection. Cells were, then, washed with PBS and 

brought in suspension, centrifuged for 5’ at 500 x g at room temperature to pellet 

them.  
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3.6.2 Protein sample preparation 

After centrifugation, pellets containing cells were lysed with 100µl of lysis buffer 

constituted by Cell lytic M cell Lysis reagent (Sigma) and 1% of Halt Protease and 

Phosphatase inhibitor cocktail 100x (Thermo Fisher). The mixture was kept for 15’ 

in agitation and then centrifuged for 15’ at 15 x 103 rpm to pellet cellular debris. All 

these steps were performed at +4°C. Supernatant containing protein was saved 

and protein concentration was measured using DC protein Assay (Bio-Rad 

Laboratories AB, Hercules, California, U.S.A.) following the manufacture’s 

recommendations and using a standard curve composed of 6 serial dilutions in 

PBS of BSA in known concentration ranging from 2mg/ml to 0.125mg/ml. Briefly, 

25µl of activated reagent A and 200µl of reagent B were added to 5µl of 1:10 pre-

diluted samples or standards or PBS only in duplicate to 96-well plates. 

Absorbance was read at 650nm after 15’ of incubation. Proteins were, then, 

denaturated by boiling for 5’ in 5% sodium dodecyl sulfate (SDS) sample buffer. 

3.6.3 SDS-page and Western-blot 

Twenty µg of proteins from each transfection experiment lysate were loaded on 

4%-12% SDS-polyacrylamide gel electrophoresis (PAGE) gels. Proteins were 

transferred by electrophoresis onto nitrocellulose membranes and blocked for 1 

hour with PBS/0.05% Tween/5% milk powder at room temperature and in 

agitation. Thereafter, filters were incubated overnight at +4°C with Ab31, patient 

sera, diluted to 1µg/ml or 1:500, respectively, in PBS/0.05% Tween/1% milk 

powder. Mouse monoclonal anti-tGFP (Origene) and rabbit anti-GFP (Life 

Technologies) diluted to 1µg/ml and to 2µg/ml respectively, were used to detected 

the fusion protein GFP. To detect bound antibodies, membranes were incubated 

for 1 hour at room temperature with anti-human, anti-mouse or anti-rabbit IgG 
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antibodies HRP-conjuated (Dakopatts), diluted 1:2,000 in PBS/Tween/1% milk 

powder. As loading control detection of the housekeeping protein β-actin was 

revealed with a mouse anti-β-actin HRP-conjugated antibody diluted 1:20,000 in 

PBS/Tween/1% milk powder. Amersham ECL Western Blotting Detection Reagent 

(GE Healthcare, Little Chalfont, United Kingdom) was used as substrate to reveal 

bands in correspondence of bound antibodies. Membranes were washed in 

PBS/0.05% Tween between each step and all incubations were done in agitation. 

3.7 Statistical analysis 

Comparison of antibodies values between anti-Ro52-positive and anti-Ro52-

negative population was performed with the non-parametric Mann-Whitney U-test. 

Fisher’s exact test was used to compare the frequency of antibody positivities 

between the two groups. All the analysis were done using GraphPad Prism V.5.01 

(GraphPad Software, San Diego California, USA). A p-value <0.05 was considered 

significant. 

3.8 Bioinformatic tools 

Clustal Omega (University College of Dublin, Dublin, Ireland, 

http://www.ebi.ac.uk/Tools/msa/clustalo/,) is a multiple sequence alignment 

program that uses seeded guide trees and HMM profile-profile techniques to 

generate alignments between three or more sequences. This tool was used to 

align the sequence of the cross-reactive peptides. 

The Basic Local Alignment Search Tool (BLAST), (National Center for 

Biotechnology Information, U.S. National Library of Medicine, Bethesda MD, USA, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi) is an algorithm that finds regions of local 

similarity between sequences. The program compares nucleotide or protein 
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sequences to sequence databases and calculates the statistical significance of 

matches. BLAST can be used to infer functional and evolutionary relationships 

between sequences as well as help identify members of gene families. 

Specifically, BLASTp, was used in this study to analyze the sequence similarity 

between two proteins. 

The Protein Data Bank (PDB; http://www.rcsb.org/pdb/home/home.do) is a 

crystallographic database for the three-dimensional structural data of large 

biological molecules, such as proteins and nucleic acids. The data, typically 

obtained by X-ray crystallography, NMR spectroscopy, are freely accessible on the 

Internet (156). This tool was used to get the protein structure of GAK (PDB ID: 

4C57) and to check where the epitope sequence is localized. 
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4. Results 

4.1 Cross-reactive peptides revealed by the whole 

proteome microarray 

To identify cross-reactive targets of anti-Ro52/p200 antibodies a screening on 2.1 

million 12-mer peptides covering the human proteome using the monoclonal 

antibody Ab31 was undertaken. In the whole proteome microarray, anti-p200 

monoclonal antibodies bound significantly to 17 peptides. The sequence of each 

peptide with the corresponding bar of intensity of cross-reactivity of Ab31 is 

depicted in Figure 8.  

Figure 8. Graph representing the intensity of binding of monoclonal Ab31 to the 12-mer peptides. 

Purple bars correspond to pairs of six amino acid-overlapped peptides. Green bars correspond to 

sequences that are solely bound. 
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Aligning the amino acid sequence of the cross-reactive peptides to the human 

protein databases with blastp it emerged that they were contained in 12 different 

proteins. In particular, 7 peptide sequences were found uniquely in 7 proteins, 

while the remaining 10 ones were mapped in 5 proteins, as the monoclonal Ab31 

bound pairs of adjacent and overlapped by 6 amino acids peptides (Table 3). Each 

pair of overlapped cross-reactive peptides allowed identification of a cluster of 

minimal epitopes of cross-reactivity shown by Ab31 binding these amino acid 

sequences:  

  “SCYSDF”: “Ser-Cys-Tyr-Ser-Asp-Phe” 

 “DSYSNF”: “Asp-Ser-Tyr-Ser-Asn-Phe” 

 “ENYSNF”: “Glu-Asn-Tyr-Ser-Asn-Phe” 

 “YSDFST”: “Tyr-Ser-Asp-Phe-Ser-Thr” 

Table 3. Table showing the protein sequence of the cross-reactive peptides and in which protein 

they are included. The first 10 sequences correspond to paired overlapped peptides that share a 

minimal epitope.   

PROBE_SEQUENCE Minimal epitope Gene
NSCKEMSCYSDF SCYSDF FMO1
SCYSDFPFPEDY SCYSDF FMO1
NVCKEMSCYSDF SCYSDF FMO4
SCYSDFPFHEDY SCYSDF FMO4
SNSTEQDSYSNF DSYSNF C3orf63
DSYSNFQVYHSQ DSYSNF C3orf63

YRDVMWENYSNF ENYSNF ZFP14
ENYSNFISLGPS ENYSNF ZFP14
SQYPGSYSDFST YSDFST TG
YSDFSTPLAHFD YSDFST TG
ITPVFSDFPVHG NPC1
LYPFSLPYSDFP MRPL4

MMEVESSYSDFI PKIG
SDFPCSDTFSNF LPIN1
PEIIDLYSNFPI GAK

VLDSVNATYSDF CDC20B
THDQDYSNFSSS SLC39A12

Protein  
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In an attempt to investigate if the cross-reactive sequences had a conserved motif 

and to refine the cross-reactive epitope, multiple alignment of the 17 sequences 

was performed with Clustal Omega. The alignment revealed that all these peptides 

shared the “YSDF” (Tyr-Ser-Asp-Phe) or “YSNF” (Tyr-Ser-Asn-Phe) amino acidic 

sequences (Figure 9).  

 

4.2 Cross-reactivity to Thyroglobulin 

Among the cross-reactive peptides, the one generating the strongest positive 

signal of binding by Ab31 was contained within Thyroglobulin (Tg). Notably, 

hypothyroidism has been associated with CHB (152). In order to investigate and 

confirm cross-reactivity to this target, ELISA coated with a biotinylated Tg peptide 

(pTG) was performed. When running monoclonal antibodies towards different 

regions of Ro52, it was found that Ab11 and Ab31, specific for the p200 region, 

Figure 9. Representation of the multiple alignment of the cross-reactive peptides. Encircled in red 

are the two epitope sequences “YSNF” and “YSDF” shared by all the peptides. 
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bound biotinylated pTG 3.1 - 2.7-fold stronger than Ab8, not p200 specific (Figure 

10).  

After monoclonal antibodies, cross-reactivity to pTG was investigated also in sera 

from mothers who gave birth to babies with CHB. A cut-off value for a positive 

signal in the assay for binding to biotinylated pTG was established as the 95° 

percentile in sera from 40 anti-SSA/Ro and anti-SSB/La-negative women without 

any diagnosis of rheumatic disease. According to this, 24.4% of sera of mothers 

with CHB children were positive for binding to pTG, while only 5% of controls 

were, revealing a significant difference of frequency of positivities (p=0.017) and 

median (0.064 vs 0.023, p<0.0001) between the two populations (Figure 11 A and 

B).  

  

 

 

Figure 10. Graph illustrating the binding of monoclonal antibodies anti-Ro52 Ab8, Ab31 and Ab11 

to biotinylated pTG. 
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After confirming the binding to pTG at a peptide level, we wanted to investigate if 

anti-p200 can bind also to the whole TG antigen. In order to do this, monoclonal 

anti-Ro52 antibodies and anti-p200-positive sera were analysed in anti-TG ELISA. 

The monoclonals Ab31 and Ab11, specific for the p200 region, bound TG and did 

so a 3.7 and 10-fold stronger than Ab8, which is not p200 specific. In contrast, 

monoclonal antibodies towards the intracellular antigens IRF-1 and IRF-5 were 

used as controls and did not bind TG (Figure 12 A). Five anti-p200 positive sera 

from mothers with CHB children which exhibited the highest cross-reactivity to 

biotinylated pTG, showed different reactivity to TG: from low (sera number 1, 3, 4), 

to high binding to TG (sera 2, 5) (Figure 12 B), indicating that the binding to the 

pTG epitope is not merely a reflection of TG autoantibodies. 

 

Figure 11. A: graph illustrating the distribution of value of cross-reactivity to pTG of the two 

population. B: representation of distribution of value of cross-reactivity to pTG with division of 

patients positive and negative for cross-reactivity to pTG. 
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To further investigate the specificity of cross-reactivity of anti-p200 antibodies to 

pTG, we performed competition experiments based on pre-incubation of 

monoclonal antibodies with pTG followed by testing their binding to TG and p200 

in ELISA. For this experiment, Ab11 was chosen as it was the one showing 

highest reactivity to biotinylated pTG (Figure 10). Incubation of Ab11 with pTG 

decreased the binding to TG by up to 53.5% in a concentration-dependent 

manner, compared with the pre-incubation with buffer only. Incubating Ab11 with 

the specific 0.1mg/ml and 0.2mg/ml of p200 instead reduced the binding to 10% 

and 0.5%, respectively (Figure 13). Incubation of Ab11 with pTG also decreased 

the binding to p200 with up to 14% in a concentration-dependent manner, 

compared to the pre-incubation with only buffer (Figure 13). In all the experiments, 

incubation with MaBP, used as a negative control, did not inhibit the binding of 

antibodies to the target in ELISA. 

 

 

 

Figure 12. Graphs illustrating the binding of monoclonal antibodies (A) and sera (B) to TG. 

A B 
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In order to assess if reactivity to TG shown by anti-p200-positive sera (Figure 12B) 

was due to presence of anti-TG antibodies and to investigate the specificity of 

cross-reactivity to TG, competition experiments with a pre-incubation step, as for 

monoclonal antibodies, were performed. Pre-incubation of sera with pTG reduced 

the binding to TG up to 30% in a concentration-dependent manner (Figure 15 A). 

Specificity of cross-reactivity to TG by anti-p200 antibodies was revealed when 

sera, incubated with p200, showed a decreased binding to TG up to 47% in a 

Figure 14. Graphs illustrating the binding of Ab11 to p200 after incubation with different 

concentration of p200, pTG and MaBP. 

Figure 13. Graphs illustrating the binding of Ab11 to TG after incubation with different concentration 

of p200, pTG and MaBP. 
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concentration-dependent manner (Figure 15 B). These data, together, indicate that 

reactivity to TG was due partly to the presence of anti-TG antibodies, but also to 

cross-reactivity of anti-p200 antibodies. 

 

 

 

 

4.2.1 Reactivity to Thyroglobulin at peptide level 

The cross-reactivity of anti-Ro52 monoclonal antibodies and sera from mothers of  

 

 

4.3 Cross-reactivity to GAK 

4.3.1 Analysis at peptide level 

Among the peptides bound by the monoclonal Ab31 in the whole proteome 

microarray, we wanted to investigate the cross-reactivity to the peptide included in 

GAK/Auxilin2 (Cyclin G Associated Kinase). In fact, this gene shares highly 

similarity to DNAJC6/Auxilin (DnaJ heat shock protein family (Hsp40) member 

C6), which has been recently indicated as a novel fetal susceptibility gene for CHB 

as well as functionally associated to CHB (149). In an attempt to confirm cross-

reactivity to the peptide GAK (pGAK), ELISA coated with biotinylated pGAK was 

performed. When running monoclonal antibodies towards different regions of 

Ro52, it was found that Ab31 and Ab11, specific for p200 region, bound 

Figure 15. Graphs illustrating the binding of sera to TG after incubation with different concentration 

of, pTG (A) and p200 (B). 
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biotinylated pGAK 7.3 – 7 fold stronger than Ab8, which is not p200 specific 

(Figure 16). 

 

As for pTG, cross-reactivity to pGAK was investigated also in sera. The cut-off of 

reactivity to pGAK was found to be 0.132 O.D. According to this, 22.4% of sera of 

mothers with CHB children were positive for cross-reactivity to pGAK, while only 

5% of controls were, revealing a significant difference of frequency of positivities 

(p=0.032) and median (0.081 vs 0.038, p=0.0014) between the two populations 

(Figure 17 A and B). 

 

 

 

 

 

Figure 16. Graph illustrating the binding of monoclonal antibodies anti-Ro52 Ab8, Ab31 and Ab11 

to biotinylated pGAK. 
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To further investigate the specificity of cross-reactivity of anti-p200 antibodies to 

pGAK, competition experiments based on pre-incubation of monoclonal antibodies 

with pGAK followed by testing their binding to p200 and to Ro52 in ELISA were 

performed. For this experiment, Ab31 was chosen as it was the one showing the 

highest reactivity to biotinylated pGAK (Figure 16). Incubation of Ab31 with pGAK 

decreased the binding to p200 up to 21% in a concentration-dependent manner, 

compared to the pre-incubation with only buffer (Figure 18). Incubating Ab31 with 

pGAK reduced the binding to Ro52 up to 43%, compared to the pre-incubation 

with only buffer (Figure 19). In all the experiments, incubation with MaBP, 

considered as negative control, did not inhibit the binding of antibodies to the 

target in ELISA. 
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Figure 17. A: graph illustrating the distribution of value of cross-reactivity to pGAK of the two 

population. B: representation of distribution of value of cross-reactivity to pGAK with division of CHB 

mothers into two sub-population, according to positive and negative reactivity to pGAK. 
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Incubation of anti-p200-positive sera from mothers with CHB children with pGAK, 

instead, did not affect the binding to p200 in ELISA. However, incubation of the 

same sera with p200 as positive control, reduced the reactivity to p200 in ELISA 

only to 30% - 50%, indicating that the amount of antibodies present in the sera 

was still too high to be inhibited by pGAK. 

 

Figure 18. Graphs illustrating the binding of Ab31 to p200 after incubation with different 

concentration of p200, pGAK and MaBP. 

Figure 19. Graphs illustrating the binding of Ab31 to p200 after incubation with different 

concentration of p200, pGAK and MaBP. 
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4.3.2 Cross-reactivity at whole antigen level 

After confirming the cross-reactivity to GAK at the peptide level, we wanted to 

examine if anti-p200 antibodies can also bind detectably to the whole GAK 

antigen, or rather if the specific epitope of cross-reactivity is exposed for binding of 

antibodies. First, analysis of the cross-reactive “YSNF” epitope was performed on 

the published 3D structure of the GAK protein based on the X-ray cristallography 

structure (157). This analysis revealed that the cross-reactive epitope is located in 

a flexible activation segment in the external side of the protein (Figure 20). 

 In order to study if anti-p200 antibodies can cross-react to the whole GAK protein, 

overexpression of a cloned plasmid encoding recombinant tGFP-tagged GAK  in 

HEK293T cells with following  Western blot of protein lysates was performed. On 

blotted membranes, Ab31 bound to recombinant GAK, revealing a band at 

169KDa, at the same level of the band recognized by anti-tGFP antibodies, 

directed to the fusion protein tGFP. This band appeared only in cells transfected 

with GAK, and not in non-transfected cells or control vector tranfected cells. Ab11, 

on the other hand, did not bind GAK in GAK-transfected cells, but rather revealed 

Figure 20. Three-dimensional structure of GAK, with representation of the cross-reactive epitope 

“YSNF” in circles. 
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unspecific bands at 150-160KDa in transfected and untransfected cells. As 

positive controls, Ab11 and Ab31 bound to the recombinant eGFP-Ro52 (81KDa) 

(Figure 21).  

 In order to study the specificity of cross-reactivity of Ab31 to GAK, two Western 

blot membranes with GAK overexpressed lysates, previously incubated with Ab31 

and anti-tGFP (Figure 22 A), were stripped of bound antibodies (Figure 22 B), and 

then incubated with the reciprocal antibodies (Figure 22 C). In this way it was seen 

that Ab31 and tGFP bound to recombinant GAK-GFP at the same molecular 

weight (169kDa). 

 

 

Figure 21. Western Blots to study cross-reactivity of Ab11 and Ab31 to recombinant GAK. On the 

left ladder with correspondent molecular weight; Braces indicates with which antibody and relative 

concentration the membranes were incubated. On the top of membranes loading order of cell 

lysates, with the correspondent overexpressed gene is reported.  
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Other than monoclonal antibodies p200-specific, binding to the whole GAK protein 

was also analyzed in 5 sera that showed the highest reactivity to pGAK in ELISA. 

After exposure three out of five sera bound to GAK with different strenght, 

revealing a band at the same level as the one revealed by the anti-tGFP antibody 

(Figure 23). 

 

Figure 22. Western Blots to study specificity of cross-reactivity of Ab31 to recombinant GAK. On 

the left ladder with correspondent molecular weight of the bands. A: membrane 1 was incubated 

with anti-tGFP and membrane 2 with Ab31. B: bound antibodies were removed from membranes. 

C: Membrane 1 was incubated with Ab31 and membrane 2 with anti-tGFP. 

Figure 23. Western Blots to study specificity of cross-reactivity of sera to recombinant GAK.  
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4.3.3 Differential cross-reactivity to GAK and Auxilin 

 After confirming that the whole GAK antigen can be bound both by p200-specific 

monoclonal antibodies and by anti-p200-positive sera, we focused on the similarity 

of GAK with Auxilin. In particular we wanted to investigate if the cross-reactive 

epitope is present also in Auxilin and if the protein can be bound by anti-p200 

antibodies. Aligning the two protein sequences it was observed that the two 

proteins have 58% of sequence homology but that the “YSNF” epitope is present 

only in GAK, in a protein kinase domain that is missing in Auxilin (Figure 24). 

According to the result of the protein alignment, the monoclonal antibody Ab31 did 

only bind to GAK in Western blot and not to Auxilin, indicating a specific cross-

reactivity towards this protein (Figure 25). 

Figure 24. Representation of domain structure of GAK and Auxilin with focus on position of the 

cross reactive epitope, underlined in yellow. 

Figure 25. Western Blots to study the possible cross-reactivity to Auxilin.  
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5. Discussion 

Association of anti-Ro/SSA and anti-La/SSB antibodies with CHB is well 

established (19-21), but the pathogenic mechanism of this disease is far from 

being completely elucidated (139). The intracellular localization of Ro52, Ro60 and 

La proteins and the lack of evidence that maternal antibodies can cross the 

sarcolemma of a normal cardiomyocyte and bind to the specific antigens are the 

biggest obstacle in understanding the molecular mechanism leading to CHB. 

Based on these fact, it has been proposed that anti-Ro52 antibodies may mediate 

their pathogenic effect on fetal hearts by cross-reacting with other target/targets 

available in the extracellular space. So far, several cross-reactive targets have 

been proposed, from the cardiac 5-HT4 serotoninergic receptor to L-Type and T-

Type calcium channels and α-Enolase (123, 124, 130-133, 136). Even though 

each of the suggested cross-reactive target is supported by experimental findings, 

contradictory data from other studies have also emerged with regard to the same 

proteins (125, 126, 135, 138). Notably, none of them was confirmed to be a main 

cross-reactive target recognized by most of the sera analyzed from mothers with 

CHB-children. Furthermore, cross-reactivity of the subset of anti-Ro52 antibodies 

specific for p200 region, the major antigenic part of Ro52 molecule, has not been 

deeply investigated yet. 

In this context a screening based on 12-mer peptides covering the whole 

proteome was undertaken using a monoclonal antibody specific for p200 (Ab31). 

Basing the screening on 12-mer peptides enabled antibodies to recognize only 

linear epitopes, that depend only on the primary sequence and are not based on 

the tertiary structure of the proteins. Including an overlap in the peptides by 6 
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amino acids also increased the chance for the antibodies to bind the targets and 

reduced the risk of the loss of epitopes at the extremities of one sequence. With 

this array, 17 peptides were found to be cross-reactive with Ab31. Interestingly, 2 

repeated linear motifs were shared among these peptides, suggestive of 

consituting the epitope of cross-reactivity recognized by anti-p200 antibodies. The 

amino acid sequence of the two epitopes is similar between each other, “YSDF” (N 

term-Tyr-Ser-Asp-Phe-C term) and “YSNF” (N term-Tyr-Ser-Asn-Phe-C term). The 

only difference in the motif is the presence in the third position of an acid aspartic 

(Asp, D) or an asparagine (Asn, N), which diverge only by the presence of an 

amine group in the latter amino acid (Figure 26). 

Among the cross-reactive targets, thyroglobulin was thought to be interesting from 

the pathogenic point of view, considering that hypothyroidism was previously 

revealed to be a risk factor for CHB development in anti-Ro/SSA-positive 

pregnancies (152) and anti-TG antibodies were found in 33% of mothers with CHB 

children (153). In the current study, reactivity to pTG was confirmed for the 

monoclonal antibodies to p200 (Ab11 and Ab31), and found to be positive in 

24.4% of anti-p200-positive sera from mothers having children with CHB. In 

addition to reactivity at the peptide level, reactivity was also seen to the whole TG 

protein with Ab11 and in sera. Finally, competition experiments based on pre-

YSDF sequence YSNF sequence 

Figure 26. Primary protein structure of the two cross-reactive epitopes. 
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incubation of sera with pTG or p200 followed by testing their binding to TG in 

ELISA showed that reactivity to TG was due to both presence of anti-TG 

antibodies and specific cross-reactivity of anti-p200 to pTG. According to the 

previous findings where anti-TG antibodies were significantly more prevalent in 

CHB mothers than in women with primary SS (152), we here found significantly 

higher prevalence of reactivity to pTG in CHB mothers compared to the control 

group. As the p200 antibodies were able to bind the whole TG protein, it is likely 

that the cross-reactive epitope is located on the exterior of the molecule. 

Unfortunately, the three-dimensional structure of this protein is not known and we 

cannot confirm the exact spatial location of the epitope.  

TG is a glycoprotein synthesized in thyrocytes (158) and plays an important role in 

the synthesis of thyroid hormones T3 and T4 (159). After synthesis, TG is 

transported and stored in the follicular lumen of the thyrocyte (160), where the 

tyrosine residues of TG undergo iodination to produce mono- (MIT) and di-

iodotyrosines (DIT) catalyzed by thyroid peroxidase (161) and hydrogen peroxide 

(162). Subsequent coupling of these iodotyrosines produces T3 and T4 (163, 164). 

TG is pinocytosed into the thyroid cell (165) and undergoes proteolysis by 

lysosomes to release T3 and T4 (166), which are then secreted into the 

bloodstream (167). TG was also reported to be expressed in Follicular Dendritic 

Cells in the context of Thyroid Mucosa-Associated Lymphoid Tissue (MALT) 

lymphoma (168). Immunogenicity of TG is long known (169-171), and indeed it is 

the major autoantigen in both Hashimoto’s and Grave’s diseases (172). In this 

context, it would be interesting to find the connection between the higher 

prevalence of anti-TG antibodies in women with CHB pregnancy and cross-

reactivity to TG of anti-p200 antibodies. Considering the limited expression of TG 
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to thyroid gland and to MALT lymphoma and that the etiology of anti-TG antibodies 

is not known, more studies are needed to unravel their biological involvement in 

the pathogenesis of CHB. 

Other than TG, among the cross-reactive targets of the whole proteome 

microarray, cross-reactivity of anti-p200 antibodies was further investigated for the 

peptide included in GAK. The interest for this target arose because GAK shares 

58% of sequence homology with Auxilin, recently reported as a novel fetal 

susceptibility gene genetically and functionally associated to CHB (149). In this 

study, binding to pGAK was confirmed with monoclonal antibodies binding p200 

(Ab11 and Ab31) and found to be positive in 22.4% of anti-p200-positive sera from 

mothers having children with CHB. Analysis of the three-dimensional protein 

structure revealed that the cross-reactive epitope was located on the external side 

of the molecule and, hence, most likely accessible to be bound by antibodies. This 

was confirmed with western blot demonstrating that the monoclonal antibody Ab31 

and sera from mothers with children affected from CHB bound to the whole GAK 

protein, but not Ab11. Further experiments would be needed to test if the reactivity 

to GAK seen in sera is generated by anti-p200 antibodies or by the presence of 

antibodies primarily specific for GAK. A possible approach would be the 

purification of anti-p200 antibodies from sera and analysis of their binding to GAK 

and/or the binding to p200 of the purified immunoglobulins after incubation with 

pGAK. Despite the high similarity between GAK and Auxilin, binding of anti-p200 

antibodies was specific for GAK. This is not surprising as the cross-reactive 

epitope is not present in the latter. Cyclin G associated kinase (GAK) was first 

identified in experiments investigating proteins associated with cyclin G, a protein 

involved in cell cycle regulation (173). GAK (also known as Auxillin 2) is a 169 kDa 
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serine/threonine protein kinase that belongs to the numb-associated kinase (NAK) 

family. GAK is a key regulator of clathrin-mediated trafficking in both the endocytic 

and secretory pathways. It recruits clathrin and clathrin adaptor protein complex 2 

(AP-2) to the plasma membrane (174) and stimulates its binding to cargo proteins 

and enhances cargo recruitment, vesicle assembly, and efficient internalization 

(174-177). Moreover, GAK regulates endocytosis of receptors mediated by 

alternate clathrin adaptors (174) and is implicated in later steps of endocytosis, 

including regulation of clathrin-coated vesicles uncoating, which enables recycling 

of clathrin back to the cell surface (174, 176). GAK also plays an important role in 

regulating clathrin-mediated sorting events in the trans-Golgi network (174, 176). 

GAK is an important regulator of epidermal growth factor receptor (EGFR); it is 

known to promote EGF uptake (174) and may also function in receptor signaling 

(178). GAK has a central role in development, as GAK-/- mice died early in 

gestation, and also in adult viability, as conditional knock out of the gene in adult 

mice caused death of these animals (179). GAK is expressed ubiquitously with 

peaks of expression in testis, heart and skeletal muscle (180) and bears a strong 

homology (58%) to the protein Auxilin, but it has an additional serine/threonine 

kinase domain at the N-terminal, where the cross-reactive epitope is located. 

Auxilin is a brain- and heart-specific cofactor of heat shock cognate 70 (Hsc70) 

and plays a role in uncoating clathrin-coated vesicles by Hsc70 (181-183). 

Meisgen and colleagues have recently found that Auxilin is a novel fetal 

susceptibility gene for CHB (149). In particular, the risk genotype is associated to a 

lowered expression of Auxilin in the fetal heart and deletion of the gene in mice 

caused calcium disturbance in cardiomyocytes and disregulation of calcium 

channel expression on the surface of the cells. 
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It is to note, though, that GAK is an intracellular protein, with localization to the 

nuclear membrane, to the filamentous network of the endoplasmic reticulum and 

associated to focal adhesion, (180, 184). The relevance of reactivity to GAK would 

need to be further investigated. It might be speculated that, in fetuses with the risk 

genotype for Auxilin, a prolonged calcium disturbance and an impaired clathrin-

dependent traffic of vesicles might lead to exposure of GAK to the surface, where 

it would be available for binding by the maternal anti-Ro52 antibodies. 

Since GAK and Auxilin are involved in the same cellular pathway of clathrin-

mediated trafficking and Auxilin has already been functionally associated to CHB, 

it would be interesting to further investigate their simultaneous effect in the 

development of CHB. Correlation of the profile of reactivity to GAK in sera with the 

corresponding genotype of Auxilin could be done in anti-p200-positive women with 

CHB children. If a positive binding to GAK corresponds to the presence of the risk 

genotype for Auxilin in the same patients, this would support the association of an 

impaired clathrin-dependent traffic of vesicles with the development of the disease. 

It is worth to note that the two targets analysed in this study, TG and GAK, were 

recognized differently by the two monoclonal anti p200 antibodies used. At peptide 

level, both antibodies Ab11 and Ab31 cross-reacted similarly. At the whole antigen 

level however, Ab11 bound TG more than 2-fold stronger than Ab31 did (Figure 

12A), while only Ab31 was able to bind GAK. This difference can be due to the 

different techniques used to determine the binding to the two proteins, ELISA for 

TG and Western blot for GAK. However, it might be that the differential behaviour 

of the two monoclonal antibodies is target-specific. If this is confirmed, we can 

suggest that anti-p200 antibodies might have different targets of cross-reactivity, 

depending on which part of the p200 region they are specific for. If this concept is 
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extended to the whole specificities of anti-Ro52, anti-Ro60 and anti-La antibodies, 

we can speculate that several cross-reactive targets could exist and vary among 

each patients sera. According to this hypothesis, each cross-reactive target could 

account for a subset of patients. Consistently, in our study, positive reactivity to 

pTG and to pGAK was seen, respectively, for 24.4 and 22.4% of sera and also in 

the previous studies the putative cross-reactive targets haven’t been recognized 

by 100% of sera analysed, leading to an intriguing scenario of several cross-

reactive targets involved in the pathogenesis of the CHB. The recently developed 

platforms for profiling of autoantibody repertoires based on high-density protein 

microarray of recombinant proteins fragments (185, 186) could be an useful tool 

for determination of cross-reactivity profiles of different sera in order to identify 

common cross-reactivity targets or pathways involved in the pathogenesis of CHB. 

In conclusion, in this study with a whole proteomic microarray 17 peptides were 

found to be significantly cross-reactive with a monoclonal antibody p200-specific 

(Ab31) and two linear motifs were shared (“YSDF” and “YSNF). Among the 

targets, cross-reactivity was further studied for TG and GAK, for which reactivity 

was shown either at peptide and at the whole protein level with anti-p200 

monoclonal antibodies and with sera from mothers whose children have CHB. We 

propose that identification of reactivity to GAK or TG in sera of women with anti-

p200 antibodies may represent a subset of patients at risk to have a fetus 

developing CHB during pregnancy. Additional studies are needed to confirm the 

functional relevance of cross-reactivity to these proteins with the development of 

CHB and to better assess their association with the clinical outcome and severity 

of the disease. 
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6. Materials and methods 

6.1 Study population 

Patients and their unaffected first-degree relatives were selected from the Swedish 

cohort (90) and from collaborating European study sites in Finland, Norway 

(Bergen) and Italy (Padua and Rome). All patients included in the study were 

diagnosed with third-degree CHB. In total 119 Swedish, 38 Finnish, 2 Norwegian 

and 14 Italian families, comprising 636 individuals (160 mothers, 136 fathers, 173 

cases and 167 unaffected siblings) were included. Detailed composition of families 

per Country is outlined in Table 4. For all families, maternal serum was available 

and was tested positive for anti-Ro52 antibodies (n=160). Further autoantibody 

profiling revealed n=127 (79.4%) mothers with anti-Ro60 and n=79 (49.4%) with 

anti-La antibodies. Amongst the 160 mothers 72 had a rheumatic diagnosis (24 

with SLE, 37 with Sjögren’s syndrome, 9 with undifferentiated connective tissue 

disease and 2 with other rheumatic disease), whereas for 88 there were no 

information available or no diagnosis of autoimmune disease. 

The study was approved by the Regional Ethical Committees in Stockholm, 

Helsinki, Bergen, Padua and Rome. Informed consent was given from all 

individuals (or their parents if individuals were <18 years) enrolled in the study. 

 
 Cohort 

n Swedish Norwegian Finnish Italian Total 
n Families 119 2 38 14 173 

n Cases 119 2 38 14 173 
n Fathers 91 1 31 13 136 
n Mothers 109 1 37 13 160 

n Unaffected 
Siblings 128 4 29 6 167 

Total 447 8 135 46 636 

Table 4. Description of composition and Country of origin of the families under investigation. 
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6.2 DNA preparation  

Erythrocytes were lysed in EDTA blood samples by adding Red Blood Cell Lysis 

Buffer (160 mmol/L NH4Cl, 10 mmol/L KHCO3, 50 mmol/L EDTA), and leucocytes 

collected by centrifugation at 1200 x g for 20 min at +4°C. Leucocytes were 

solubilized with 0.75% (w/v) SDS/ddH2O, and proteolytic digestion performed by 

adding 10 mg/mL Proteinase K (Invitrogen, Stockholm, Sweden) followed by 

overnight incubation at 37°C. Saturated NaCl (6M at a 1:3 ratio) was added, and 

precipitated proteins and lipid fractions spun down at 6000 x g for 10 min at room 

temperature. DNA was precipitated with 99% ethanol and dissolved in 1 x Tris-

EDTA buffer at 37°C. Photometric analysis of DNA concentration and purity was 

performed. DNA working solutions were diluted to a final concentration of 50 

µg/mL and stored at -80°C. 

6.3 HLA Imputation 

Low-resolution genotyping of DNA samples of the studied population was 

performed using the Illumina Human OmniExpress 950K chip. Briefly, after 

amplification of the whole genome, specific allele detection was performed in two 

steps, in which, BeadChip probes hybridized with single strand DNA in 

correspondence of a particular SNP and polymerase-dependent single base 

extension with labeled nucleotide gave specificity of the allele of the SNP (Figure 

27).  
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 HLA-A, -B, -Cw, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4 and -

DRB5 genotyping was performed by imputation based on 5,636 tag SNPs from the 

chromosome 6 using the HLA*IMP:02 software 

(https://oxfordhla.well.ox.ac.uk/hla/), and an updated software version including 

Swedish reference genotypes. After quality control, alleles with >0.98 imputation 

quality measures were included in the analysis. Unaffected siblings' genotypes 

were used to infer parental alleles when such information was missing. High-

resolution genotyping of the HLA alleles significantly associated to CHB was, then, 

performed by DNA sequencing in order to identify specific sub-allele variants. 

 

6.4 Statistical analysis 

Statistical analyses in families were performed with the pedigree disequilibrium 

test (PDT) using Unphased (Version 3.0.13.) (187) selecting the "Full model" and 

"Test individual haplotypes" options for calculating transmission disequilibrium to 

cases, odds ratios (OR) and 95% confidence intervals (CI). P-values <0.05 were 

Figure 27. Workflow of the DNA genotyping performed with Illumina Human OmniExpress 950K 

chip. 
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considered significant and were further tested for statistical significance using 

Bonferroni correction. P-values denote deviation from 50% Mendelian 

transmission, whilst OR and CI calculations are based on risk allele frequencies in 

relation to all other allele frequencies as a reference and rely on the Unphased 

output of ratio between the estimated counts of a particular allele transmitted to 

cases and estimated number of the other alleles of the same gene transmitted to 

affected individuals. In particular, an OR>1 confers to a certain allele susceptibility 

to the disease outcome, whereas, if the OR<1 the allele is protective. 

Parental transmission frequency calculations were carried out using the parent-of-

origin tool in PLINK v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/). 
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7. Results 

7.1 Low resolution typed-HLA alleles associated with 

CHB 

In the HLA class I region, genetic analyses with Unphased and PLINK identified 

HLA-Cw*06 as a protective allele associated with CHB (p=0.003, OR=0.22, 95% 

CI 0.07 to 0.67, table 5). Notably, maternal HLA-Cw*06 alleles were significantly 

less transmitted to affected children (p=0.006) compared to paternal alleles (non-

significant), indicating that maternal regulatory effects in addition to the Cw*06 

allele transmission may contribute to the observed association. As for the HLA-B 

gene locus, it was found that HLA-B*50 significantly associated with CHB 

(p=0.046, table 5), however this finding was not verified after Bonferroni correction. 

Regarding HLA class II, HLA-DRB1*13 was associated with protection from CHB 

(p=0.007, OR=0.47 95% CI 0.24 to 0.91, table 6). Interestingly, HLA-DRB1*13 

parental transmissions were skewed with significantly fewer paternal transmission 

of the alleles to index cases (p=0.009). 

For the HLA-DQ genes, associations with CHB were found for both gene loci, 

namely HLA-DQA1 and DQB1. HLA-DQA1*01 and HLA-DQB1*06 were found to 

have a protective effect for CHB development (p=0.0016, OR=0.52, 95% CI 0.28 

to 0.95 and p=0.0036, OR=0.48, 95% CI 0.28 to 0.81, respectively, table 6), while 

HLA-DQA1*04 transmissions were associated with susceptibility (p=0.025, 

OR=1.25, 95% CI 0.56 to 2.79, table 6). Of note, paternal HLA-DQB1*06 allele 

transmissions were increased (p=0.038) while maternal transmissions did not 

deviate from the expected 0.5 transmission frequency, therefore suggesting an 

additional paternal influence in the reported protective effect. 
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None of the HLA-A, -DPA1, -DPB1, -DRB3, -DRB4, or -DRB5 alleles were 

significantly associated with CHB development (Supplementary Table 1).  

Gene*allele P-value 
Transmission 

frequency to cases OR 95% CI 
HLA-B     

*07 0.362 0.44   
*08 0.849 0.52   
*13 0.414 0.43   
*14 0.257 0.29   
*15 0.547 0.53   
*18 0.819 0.43   
*27 0.655 0.43   
*35 0.106 0.63   
*39 1 0.45   
*40 0.317 0.58   
*44 0.090 0.61   
*50 0.046 0 0 0 
*51 0.549 0.46   
*55 0.739 0.56   
*57 0.059 0.17   

Remaining alleles § 0.131 0.34   
HLA-Cw 

    *01 1 0.53 
*02 0.655 0.43 
*03 0.323 0.56 
*04 0.052 0.63 
*05 0.056 0.61 
*06 0.003 0.22 0.22 (0.07-0.67) 
*07 0.369 0.48 
*08 0.096 0.22 
*12 0.366 0.67 
*14 1 0.56 
*15 0.617 0.44 
*16 0.564 0.46 
*17 0.655 0.60 
*18 0.317 0 

 

 

 

 

Table 5. HLA-B and HLA-Cw allele association to CHB with corresponding p-value and parental 

transmission frequency to cases. OR and 95% CI are reported only for alleles with p-value<0.05. 

§ Alleles *37, *38, *41, *42, *45, *47, *48, *49, *52, *56 and *58 displayed low individual 

prevalence and were clustered together 
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Gene*allele P-value Transmission 
frequency to cases OR 95% CI 

HLA-DQA1          
*01 0.016 0.42 0.52 (0.28-0.95) 
*02 0.058 0.41   
*03 0.074 0.64   
*04 0.025 0.63 1.25 (0.56-2.79) 
*05 0.237 0.56   
*06 0.157 0     

HLA-DQB1          
*02 1 0.50   
*03 0.108 0.59   
*04 0.058 0.60   
*05 0.786 0.52   
*06 0.004 0.39 0.48 (0.28-0.81) 

HLA-DRB1          
*01 0.578 0.52   
*03 0.472 0.52   
*04 0.248 0.58 1.25 (0.66-2.37) 
*07 0.037 0.39 0.55 (0.27-1.14) 
*08 0.077 0.60   
*09 0.103 0.83   
*10 1 1   
*11 0.450 0.64   
*12 0.366 0.58   
*13 0.007 0.29 0.47 (0.24-0.91) 
*14 0.478 0.63   
*15 0.251 0.44   
*16 0.480 0.38     

 
 

 

 

 

 

Table 6. HLA-DQA1, -DQB1 and -DRB1 allele association to CHB with corresponding p-value and 

parental transmission frequency to cases. OR and 95% CI are reported only for alleles with p-

value<0.05. 



- 88 - 
 

7.2 High resolution typed-HLA allele variants 

associated with CHB  

To further investigate if particular HLA class II sub-alleles are associated with 

CHB, high resolution HLA-typing using the imputation method was performed. For 

the HLA-DQA1*01, we found DQA1*01:02 and DQA1*01:03 sub alleles 

protectively associated (p=0.043, OR=0.67, 95% CI 0.43 to 1.04 and p=0.019, 

OR=0.37, 95% CI 0.15 to 0.91, respectively, table 7) while HLA-DQA1*04:01 

associated with susceptibility for CHB (p=0.025, OR=1.60, 95% CI 0.82 to 3.10, 

table 7).  

As for the HLA-DQB1*06 allele, we found variants DQB1*06:03 and DQB1*06:04 

associated with CHB in a protective manner (p=0.033, OR=0.41, 95% CI 0.15 to 

1.09 and p=0.033, OR=0.43, 95% CI 0.16 to 1.14, table 7).  

Variant HLA-DRB1*13:01 was protectively associated with CHB development 

(p=0.0495, OR=0.45, 95% CI 0.17 to 1.23, table 7), while HLA-DRB1*13:02 and 

HLA-DRB1*13:03 became not significant (table 7). However, such analysis could 

not be performed for the rest of the significantly associated alleles since only HLA-

DRB1*07:01 and HLA-Cw*06:02 variants were found within the study population.  
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Gene*allele P-value Transmission 
Frequency to cases OR 95% CI 

HLA-DQA1          
*01:01 0.537 

  
  

*01:02 0.043 0.41 0.67 (0.43-1.04) 
*01:03 0.019 0.28 0.37 (0.15-0.91) 

*02 0.058 
  

  
*03 0.074 

  
  

*04:01 0.025 0.63 1.60 (0.82-3.1) 
*05 0.237 

  
  

*06 0.157       
HLA-DQB1          

*02 1 
  

  
*03:01 0.276 

  
  

*03:02 0.182 
  

  
*03:03 0.808 

  
  

*04:02 0.058 
  

  
*05 0.786 

  
  

*06:02 0.192 
  

  
*06:03 0.033 0.27 0.41 (0.15-1.09) 
*06:04 0.033 0.28 0.43 (0.16-1.14) 

*06:rest 0.655       
HLA-DRB1          

*01 0.578 
  

  
*03 0.473 

  
  

*04 0.248 
  

  
*07:01 0.037 0.39 0.55 (0.27-1.14) 

*08 0.077 
  

  
*09 0.102 

  
  

*10 1 
  

  
*11 0.450 

  
  

*12 0.366 
  

  
*13:01 0.0495 0.30 0.45 (0.17-1.23) 
*13:02 0.117 0.31 0.53 (0.22-1.25) 
*13:03 0.317 0.25 0.23 (0.02-2.44) 

*14 0.480 
  

  
*15 0.251 

  
  

*16 0.480       
 

 

 

Table 7. HLA-DQA1, -DQB1 and -DRB1 sub-allele variants association to CHB with 

corresponding p-value and parental transmission frequency to cases. OR and 95% CI are reported 

only for alleles with p-value<0.05. 
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7.3 Analysis of DRB1-DQA1-DQB1 haplotype in 

association with CHB  

Exploring the relationship of specific DRB1-DQA1-DQB1 haplotypes with the CHB 

family cohort under investigation, we performed a DRB1-DQA1-DQB1 haplotype 

association analysis with CHB development. In line with the single allele 

associations, we found the DRB1-DQA1-DQB1 13-01:03-06:03 haplotype 

significantly associated with protection from CHB development (p=0.025, 

OR=0.38, 95% CI 0.11 to 1.30, Supplementary Table 2). Moreover, haplotype 

DRB1-DQA1-DQB1 08-04:01-04:02 is significantly associated with CHB 

susceptibility (p=0.022, OR=1.55, 95% CI 0.58 to 4.20, Supplementary Table 2).  
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8. Discussion 

Transplacental transport of maternal anti-Ro52 autoantibodies is critical for CHB 

development. However, the low recurrence rate of CHB in subsequent gestations 

despite persistent maternal autoantibodies has turned researchers towards 

investigating the contribution of fetal factors in disease outcome. The strong link 

between the MHC locus and autoantibody mediated diseases provided the 

conceptual basis for a series of studies attempting to find genetic associations 

between CHB and specific alleles in the fetal MHC locus (143, 188). Emerging 

GWAS data (147) identified several polymorphisms within the MHC locus of 

children with cardiac manifestations of neonatal lupus associated with CHB 

development, substantiating influence of the fetal MHC locus in disease outcome. 

Additional in vivo findings further supported this notion by demonstrating that fetal 

MHC genetic constitution was a determining factor of CHB in a rat model (114). 

Meisgen et al recently identified novel susceptibility and protection conferring fetal 

alleles in the context of a transmission disequilibrium study in families with 3rd 

degree CHB cases (148). 

Herein, replication of these findings was sought in a cohort encompassing the 86 

Swedish families participating in the study by Meisgen et al. with the addition of 33 

Swedish, 2 Norwegian, 38 Finnish and 14 Italian families. Enrollment of families 

from different European countries would also help overcome limitations associated 

with regional effects (eg. environmental factors, population stratification) that could 

stochastically be mirrored in the calculated transmission frequencies and ensure 

that our findings reflect true genetic associations rather than casual findings 
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biased by regional confounders. Furthermore, additional associations with CHB 

outcome in the extended MHC locus complex were explored. 

In the genetic analyses, we corroborated previous findings that HLA-A allele 

transmission does not seem to play any significant role in disease outcome. In 

concordance with studies documenting a dominant effect of the HLA-Cw locus in 

CHB occurrence (144, 148), the HLA-Cw*06 allele was found to have a 

pronounced protective effect on disease outcome since allele transmission to 

affected children is significantly reduced. This finding appears in line with reports 

of the previous study. Notably, inclusion of more families added power to that 

finding as indicated by an even lower p-value in the present study (0.003 versus 

0.022 in the previous one).  

Numerous reports have linked specific HLA-DRB1 alleles with a variety of 

autoantibody induced diseases. Accordingly, we confirmed the strong protective 

effect conferred by DRB1*13 transmission. In line with this, decreased prevalence 

of DRB1*13 has been described in the context of several autoimmune diseases 

including anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic 

vasculitis (189) and a subtype of myasthenia gravis (190), as well as part of a 

protective haplotype for type 1 diabetes in an Iranian population (191). High 

resolution typing revealed that the variant conferring protection for CHB outcome 

was DRB1*13:01, whilst subtypes DRB1*13:02 and*13:03 were below the level of 

significance. On the contrary, HLA-DRB1*04 association with CHB was not 

confirmed in the expanded European cohort. This is potentially due to the fact that 

the addition of families with a different ancestry eliminated a population 

stratification effect that yielded the observed statistical significance in our previous 

study. 
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The present study further revealed a panel of novel genetic associations between 

HLA alleles and fetal susceptibility to CHB. Among them, HLA-B*50 allele 

transmission was observed to convey protection, however, low number of 

informative pedigrees for this specific allele (5 unaffected individuals, 0 cases) in 

conjunction with a marginally significant p-value decreased the power of this 

observation and does not allow for safe conclusions. Of note, HLA-B*50 has been 

additionally reported as a protection-conferring allele for Henoch-Schonlein 

purpura which is a common form of childhood vasculitis (192). 

Analysis of the MHC class II genetic region provided additional CHB associated 

alleles. HLA-DQA1*01 allele transmission was significantly decreased in children 

with CHB. High resolution typing singled out variants DQA1*01:02 and *01:03 

contributing to the observed protective effect. Only a few genetic analyses have 

associated these variants with autoimmune disease outcome so far. Interestingly, 

DQA1*01:02 was also under-represented in celiac disease children (193), 

suggesting a protective function of the variant in autoimmunity. Contrarly, allele 

DQA1*04:01 was more frequently transmitted to CHB affected fetuses. The only 

association observed within the DQB1 gene locus is the joint protection conferring 

effect of DQB1*06:03 and *06:04 allele variants. It is noteworthy that a similar 

protective effect is conveyed by these two allele variants also in type I diabetes 

mellitus in Arab populations (194). Similarly, HLA-DRB1*07 transmission 

frequency was also found to be significantly decreased in affected children (HLA-

DRB1*07:01 was the only observed variant in our cohort). Consistent with this 

observation HLA-DRB1*07 has also been reported to be significantly less frequent 

in patients with Grave’s disease (195) and multiple sclerosis in a meta-analysis 

study (196). 
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The association of specific DRB1-DQA1-DQB1 haplotypes with NLE (197) and 

several other autoimmune diseases (198-202) are long reported in the literature. 

This haplotype transmission was also investigated in this study and two DRB1-

DQA1-DQB1 haplotypes were identified to be significantly associated with CHB 

development. In particular, transmission of the haplotype DRB1*08-DQA1*04:01-

DQB1*04:02 was markedly increased in CHB patients predominantly reflecting the 

strong susceptibility conferring influence of DQA1*04:01 allele variant. On the 

contrary, DRB1*13-DQA1*01:03-DQB1*06:03 haplotype transmission was 

significantly decreased in CHB patients. Intriguingly, this haplotype was also 

demonstrated to convey protection in the context of Hashimoto thyroiditis (203). 

Coherently, all three alleles of this particular haplotype were found to confer 

protection in this study.  

Finally, our analysis revealed a parent-of-origin effect on transmission of CHB 

associated alleles. More specifically, maternal Cw*06 alleles were transmitted less 

frequently to affected children. Inversely, DQB1*06 and DRB1*07 displayed a 

markedly lower paternal transmission percentage than the respective maternal. 

Parent-of-origin influence has been suggested in the context of type 1 diabetes 

(204) and, more recently, for CHB, both in the human disease and in an animal 

model of the condition (114, 148). Such phenomena are considered to add an 

additional layer of epigenetic regulation in disease development. 

According to this findings, it would be tempting to envision a condition whereby 

MHC molecules encoded by these genes bind and present specific epitopes that 

promote the resolution of inflammatory phenomena in utero that would otherwise 

lead to irreversible 3rd degree block, as reviewed by Ambrosi et al. (139). We can 

alternatively hypothesize that the products of such protective alleles essentially 
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present antigenic epitopes that are not recognized by maternal pathogenic 

autoantibodies. Consistent with this hypothesis is the observation that haplotype 

DRB1*13-DQA1*01:03-DQB1*06:03 comprises genes encoding both α and β DQ 

polypeptidic chains, thereby influencing both subunits responsible for HLA-DQ 

molecules. However, in order to strengthen such claims the molecular pathways of 

specific antigen presentation need to be further elucidated. 

Taking into consideration that CHB can develop as fast as a single week following 

a normal echocardiographic examination, parental and/or fetal genotyping in anti-

Ro52-positive pregancies might be a useful tool to assess the risk of CHB in the 

fetuses in order to plan a proper management of the pregnancy, especially 

between the susceptible weeks 18th to 24th of gestation.  
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9. Supplementary data 

Gene*allele  P-value Transmission 
Frequency to cases OR 95% CI 

HLA-A          
*01 1 0.48 1 (1.00-1.00) 
*02 1 0.53 1.05 (0.64-1.73) 
*03 0.816 0.45 0.965 (0.54-1.74) 
*11 0.480 0.58 1.3 (0.59-2.86) 
*23 0.083 0.75 1.071e+008 (1.071e+008-1.071e+008) 
*24 0.480 0.25 0.814 (0.37-1.78) 
*25 0.564 0.75 1.88 (0.16-21.82) 
*26 0.467 0.42 0.811 (0.28-2.31) 
*29 0.317 0.33 0.502 (0.12-2.08) 
*30 1 0.56 1.077 (0.25-4.67) 
*31 0.564 0.42 0.733 (0.22-2.44) 
*32 0.439 0.60 1.513 (0.51-4.50) 
*33 1 0.25 0.878 (0.05-15.51) 
*68 0.602 0.53 1.234 (0.56-2.72) 

HLA-DPA1          
*01 0.906 

 
1 (1.00-1.00) 

*02 0.906   1.03 (0.65-1.64) 
HLA-DPB1          

*01 0.208 
 

1 (1-1) 
*02 0.777 

 
1.21 (0.55-2.65) 

*03 0.800 
 

1.24 (0.59-2.59) 
*04 0.652 

 
1.35 (0.74-2.46) 

*05 0.170 
 

2.76 (0.76-9.93) 
*09 0.157 

 
0 0 

*10 0.178  5.00 (0.53-47.33) 
*11 0.564 

 
3.10 (0.20-47.07) 

*13 0.655 
 

1.58 (0.20-12.65) 
*14 0.706 

 
1.04 (0.21-5.11) 

*15 0.564 
 

2.36 (0.21-27.18) 
*16 0.564 

 
3.25 (0.22-48.78) 

*17 0.564 
 

2.45 (0.21-28.15) 
*19 1 

 
1.35 (0.08-23.02) 

*21 & *26 0.157   0 0 
HLA-DRB3          

*01 0.710 
 

1 (1-1) 
*02 0.345 

 
1.33 (0.73-2.41) 

*03 0.239 
 

0.67 (0.29-1.54) 
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N/A ¥ 0.801   1.08 (0.74-1.58) 
HLA-DRB4          

*01 1 
 

1 (1-1) 

N/A ¥ 1   1 (0.66-1.53) 
HLA-DRB5          

*01 0.210 
 

1 (1-1) 
*02 0.157 

 
0.42 (0.08-2.16) 

N/A ¥ 0.096   1.37 (0.87-2.17) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 1. HLA-A, DPA1, -DPB1, -DRB3, -DRB4 and –DRB5 allele association to 

CHB with corresponding p-value, parental transmission frequency to cases, OR and 95% CI. To 

note, none of these alleles are reached significance. 
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DRB1-DQA1-DQB1 
Haplotype P-value OR 95% CI 

01-01:01-05 0.578     
03-04-04:02 0.317 

 
  

03-05-02 0.531 
 

  
04-03-03:01 0.439 

 
  

04-03-03:02 0.237 
 

  
04-03-04:02 0.157 

 
  

07-02-02 0.131 
 

  
07-02-03:02 1 

 
  

07-02-03:03 0.058 
 

  
08-04:01-04:02 0.022 1.55 (0.58-4.20) 

08-06-03:01 0.317 
 

  
08-06-04:02 0.317 

 
  

09-03-03:03 0.103 
 

  
10-01:01-05 1 

 
  

11-01:03-03:01 0.317 
 

  
11-05-03:01 0.336 

 
  

12-05-03:01 0.366 
 

  
13-01:02-06:03 0.317 

 
  

13-01:02-06:04 0.074 
 

  
13-01:02-06:rest 0.564 

 
  

13-01:03-06:02 1 
 

  
13-01:03-06:03 0.025 0.38 (0.11-1.3) 
13-01:03-06:04 0.157 

 
  

13-05-03:01 0.564 
 

  
14-01:01-05 0.480 

 
  

15-01:02-05 0.564 
 

  
15-01:02-06:02 0.232 

 
  

15-01:02-06:03 0.317 
 

  
15-01:03-03:02 0.317 

 
  

15-01:03-06:rest 1 
 

  
15-03-05 0.317 

 
  

16-01:02-05 0.480     
 

 

 

 

Supplementary Table 2. DRB1-DQA1-DQB1 haplotype association analysis with CHB 

development. Each combination of alleles analyzed is reported with the correspondent p-value and 

OR and 95% CI if the haplotype reached significance. 
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10. Conclusions 

The molecular mechanisms underlying CHB are yet unclear. Several genetic and 

enviromental risk factors are emerging as associated with the disease, making it 

difficult to generate an overall picture considering the complexity of this 

autoimmune disease. With the current thesis, we focused, firstly, on understanding 

more about the pathogenic mechanism leading to CHB by the identification of 

cross-reactive targets of anti-Ro52 antibodies. Secondly, we investigated genetic 

associations in the MHC locus to CHB in an European cohort of families in which 

children with CHB were born.  

In the first part of the thesis, we found two linear epitopes shared by 17 cross-

reactive peptides, and we confirmed cross-reactivity of anti-Ro52/p200 antibodies 

to GAK and TG. Notably, hypotyroidism in anti-Ro52-positive women has been 

associated with the development of CHB (152). Our findings suggest that there is 

a link between reactivity to TG in anti-p200-positive sera and hypotyroidism with 

CHB. In order to understand this connection clearly, more studies are necessary. 

Secondly, GAK, the second cross-reactive target, shares high homology with 

DNAJC6/Auxilin, which has recently been indicated as a novel fetal susceptibility 

gene for CHB as well as being functionally associated with CHB (149). Both these 

two proteins are involved in the clathrin-dependent trafficing of vesicles in the cell, 

revealing that this pathway might be involved in the development of the disease.  

In the second part of the thesis, our genetic analysis identified HLA-Cw*06,            

-DRB1*13, -DQA1*01 and -DQB1*06 as protective alleles for CHB, while HLA-

DQA1*04 transmission was associated with susceptibility to the disease. These 

alleles encode specific isoforms of the MHC receptors expressed intracellularily    
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(-Cw*06), or on the surface of dendritic cells, macrophages as well as B- and T-

lymphocytes (-DRB1*13, -DQA1*01, -DQB1*06 and -DQA1*04), which are 

responsible for presenting specific epitopes for activation or resolution of an 

immune response.  

Taking the findings of both studies into consideration, one may visualize a 

situation where the fetal HLA genes modulate the inflammatory response following 

the exposure to anti-Ro/SSA antibodies. In particular, MHC molecules encoded by 

the protective alleles could bind and present specific epitopes that promote the 

resolution of inflammation that would otherwise lead to irreversible atrioventricular 

block, as reviewed by Ambrosi et al. (139). Alternatively, the products of such 

protective alleles could present antigenic epitopes that are not recognized by 

maternal pathogenic autoantibodies. Fetal MHC proteins that confer susceptibility, 

on the other hand, could have a specific conformation of the epitope recognition 

site that enables the binding of sequences that are cross-reactive with maternal 

anti-Ro52 antibodies, allowing the initiation of an immune response which may 

lead to CHB. According to this hypothesis, cross-reactivity of maternal anti-Ro52 

antibodies would be correlated with the fetal MHC protective or susceptibility-

conferring allele repertoire. A recent study provided molecular evidence of cross-

reactivity of anti-citrullinated antibody (ACPA) to citrullinated vinculin epitopes 

presented by the predisposing HLA-DQ5, -DQ7.3 and -DQ8 haplotypes in RA 

(205), showing an interplay between HLA haplotype and a cross-reactive 

autoimmune response.  

In conclusion, CHB is emerging as a complex autoimmune disease where 

maternal anti-Ro/SSA and/or anti-La/SSB antibodies are necessary but not 

sufficient for the onset of the disease. CHB may develop in fetuses with a specific 
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MHC genetic background, potenitally favorable for the production and exposition 

of epitopes that are cross-reactive with anti-Ro52 antibodies. Enviromental and 

maternal factors, like age, hypothyroidism, low vitamin D levels, gestational 

susceptibility weeks occurring during the winter season as well as infections during 

pregnancy may interplay in the development of the condition and affect the clinical 

outcome and the severity of the disease in the fetus (Figure 28). 

 

 

  

Figure 28. Schematic pictures of the factors involved in the development of CHB. 
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Gennaio – Marzo 2014 Corso di Inglese Accademico (30 ore) di livello B2/C1 per dottorandi presso l’Università degli Studi di 
Padova, Padova. 

Ottobre – Dicembre 2013 STEPS 2013 Seminars Towards Enterprise for PhD Students organizzato dalla Confindustria di 
Padova 

9 – 10 Dicembre 2013 Partecipazione al IV Symposium Autoinflammatory Days, Palazzo Bo e Aula Morgagni, Università 
degli Studi di Padova, Padova 

27 – 30 Novembre 2013 Partecipazione con contributo scientifico (poster) al 50° Congresso Nazionale della Società Italiana di 
Reumatologia. Napoli 

23 – 27 Settembre 2013 Partecipazione alla Summer School delle Scuole di Dottorato dell’Area Medica dell’Università degli 
Studi di Padova 

16 – 18 Maggio 2013 Partecipazione con contributo scientifico (poster) al 9th Meeting of the European Forum on 
Antiphospholipid Antibodies. Cracovia, Polonia 

  

Collaborazioni con altri 
gruppi di ricerca 

- Medicina di Laboratorio dell’Azienda Ospedaliera di Padova (prof. M. Plebani) 
- Laboratorio di Coagulazione dell’Azienda Ospedaliera di Padova (prof. P. Simioni) 
- Laboratorio di Patologia Cardiovascolare dell’Università di Padova (prof. V. Pengo) 

Competenze 
comunicative 

Buona competenza comunicativa posseduta, anche in inglese 
Possiedo buone competenze comunicative acquisite durante le comunicazioni orali nei congressi e 
durante il periodo di ricerca presso il Karolinska Institutet in cui ho dovuto partecipare attivamente 
con presentazioni a frequenti lab meeting e Journal club. 
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Competenze 
organizzative e 

gestionali 

Indipendente nel portare avanti il mio progetto 
Flessibile, responsabile e sistematico 
Capace di lavorare in gruppo  
Capace di lavorare sotto condizioni di stress 
Strutturato, organizzato ed ordinato nel mio lavoro 
Preciso e meticoloso, attento al dettaglio 

Madre lingua Italiano 
Autovalutazione  Comprensione Parlato Scritto 

Livello europeo (*)  Ascolto Lettura Interazione orale Produzione 
orale 

 

Inglese  C1 C1 C2 C1 C1 

Spagnolo  B1 A2 A2 A1 A1 

Svedese  A1 A1 A1 A1 A1 
 (*)  Quadro comune europeo di riferimento per le lingue  

Patente automobilistica (Patente B) 
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14. Attivita' svolte nel triennio di dottorato 

I anno 
Durante il primo anno di dottorato la mia attività di ricerca è cominciata con una 

collaborazione con la mia collega dott.ssa Elena Mattia nel progetto di confronto tra le 

performance di un saggio immunoenzimatico basato sulla chemiluminescenza (CLIA) e 
quella di un ELISA home made per la determinazione degli anticorpi anticardiolipina (aCL) 

IgG/IgM e anti-β2 Glicoproteina I (anti-β2GPI) IgG/IgM in una coorte di pazienti affetti da 

APS primaria ed in un gruppo di pazienti sieronegativi per valutarne il valore diagnostico. 

Concomitantemente a tale attività, d’accordo con la mia tutor, prof.ssa Amelia Ruffatti, 

sono stati presi contatti con la prof.ssa Marie Wahren-Herlenius del Karolinska Institutet 

(KI, Stoccolma, Svezia) per un mio soggiorno presso il suo laboratorio da effettuare nella 

seconda metà del dottorato per lavorare su un progetto di ricerca riguardante la 
suscettibilità genetica associata al congenital heart block. (CHB). Per tale collaborazione 

ho individuato le famiglie in cui si sono nati bambini con CHB. Dopo l’arruolamento, 

campioni di siero e di DNA, inseme alle informazioni cliniche, sono stati inviati al 

laboratorio della prof.ssa Wahren-Herlenius. 

Nell’arco di quest’anno ho partecipato ai “Meetings di Reumatologia 2013. XXXVII 

edizione” organizzati dal coordinatore di indirizzo; al “9th Meeting of the European Forum 

on Antiphospholipid Antibodies” a Cracovia (Polonia) con contributo scientifico (poster), 

alla “Summer school” scuole/corsi di dottorato di ricerca dell’area medica, allo STEPS 

2013 Seminars Towards Enterprise for PhD Students organizzato dalla Confindustria di 

Padova, al 50° Congresso Nazionale SIR con contributo scientifico a Napoli (poster) e al 

4th Symposium “Autoinflammatory day”. 

 
II anno 
Nel corso del secondo anno, ho continuato raccolta di campioni di siero e di DNA dalle 

famiglie con figli affetti da CHB. Il 2 Giugno 2014 ho iniziato la mia attività di ricerca 

presso il KI. Qui, ho iniziato un progetto rivolto all’identificazione di target di cross-

reattività degli anticorpi anti-Ro52/p200 associati al CHB attraverso uno screening su 

base proteomica attraverso un anticorpo monoclonale specifico per la regione p200. Una 

volta identificati gli epitopi di cross-reattività, ulteriori esperimenti hanno confermato cross-

reattività con anticorpi monoclonali e con sieri di pazienti verso le proteine Tiroglobulina e 

GAK (Cyclin G-Associated Kinase). Nell’arco di quest’anno ho partecipato ad un corso di 

Inglese Accademico di 30 ore di livello B2-C1 per dottorandi presso l’Università degli Studi 

di Padova. Ho partecipato, inoltre, ai “Meetings di Reumatologia 2014. XXXVIII edizione” 
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organizzati dal coordinatore di indirizzo; al Convegno “Joint Meeting Padova – 

Strasburgo”, Palazzo Bo al “9th International Congress on Autoimmunity” a Nizza 

(Francia) con contributo scientifico (comunicazione orale), al 51° Congresso Nazionale 

SIR con contributo scientifico a Rimini (poster e comunicazione orale). In Svezia ho 

partecipato all’Inflammation Day 2014” e al Nobel Symposium “Renaissance in diagnosis 

of monogenic diseases” presso il KI a Stoccolma (Svezia). Ho partecipato inoltre alla 

Nobel lecture dei vincitori del premio Nobel per la Medicina e Fisiologia presso il 

Karolinska Institutet a Stoccolma (Svezia).  

 
III anno 
Nel corso di quest’anno ho continuato la permanenza presso il KI, portando avanti la 

ricerca riguardante l’identificazione dei target di cross-reattività degli anticorpi anti-

Ro52/p200. Contemporaneamente, ho iniziato un secondo progetto multi-centrico volto a 
studiare l’associazione genetica del locus Human Leucocyte Antigen (HLA) con il CHB. 

L’analisi genetica è stata condotta in una coorte di famiglie Europee in cui sono nati 

bambini con CHB con lo scopo di identificare quali alleli del locus HLA sono trasmessi dai 

genitori ai figli con CHB con una frequenza che si discosta significativamente dalla 

frequenza del 50% in accordo alle leggi di Mendel sulla segregazione indipendente dei 

caratteri. Oltre a tale progetto, ho partecipando, collaborando ad uno studio di 

caratterizzazione funzionale di una famiglia genica associata geneticamente alla 

Sindrome di Sjogren. In particolare, mi sono occupato dello studio di espressione genica 
di tali geni in un set di 14 organi provenienti da 10 topi wildtype. Tale lavoro, però, non è 

parte della mia tesi. 

Nel corso di quest’anno ho partecipato al “KiiM (Karolinska Inflammation and Immunology 

network) retreat”, Stoccolma (Svezia) con contributo scientifico (poster).  

Il 18 Dicembre 2015 ho concluso il mio soggiorno di ricerca presso il KI e sono tornato a 

Padova. 

 


