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Abstract 
C7H4O2

+ and C7H5O2
+ ions and the respective neutrals have been investigated by absorption 

spectroscopy in neon matrices following mass-selection of ions produced from salicylic acid. 

Three electronic transitions starting at 649.6, 431.0 and 372.0 nm are detected for C7H4O2
+ 

and assigned on the basis of CASPT2 energies and Franck-Condon simulations as the 

excitations from the X 2A'' to the 1 2A'', 2 2A'' and 3 2A'' electronic states of 

6-(oxomethylene)-2,4-cyclohexadien-1-one ion (A+). Absorptions commencing at 366.4 nm 

are observed for C7H5O2
+ and assigned to the 1 2A'← X 2A' electronic transition of 

(2-hydroxyphenyl)methanone ion (J+). Neutralization of J+ leads to the appearance of four 

absorption systems  attributed to the 4 2A'', 3 2A'', 2 2A'' , 1 2A'' ← X 2A'' transitions of J with 

origin bands 291.3, 361.2, 393.8, and 461.2 nm. 
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Introduction 

Partially oxygenated hydrocarbons are pollutants of Earth’s atmosphere, emitted for 

example by traffic and biomass burning. Another source of these species are volatile 

hydrocarbons of biogenic and anthropogenic origin, which are oxidized or photo-oxidized by 

NOx, O3 and OH in the atmosphere.1-3 The oxygenation products, being less volatile than the 

hydrocarbon precursors, contribute to the formation of secondary organic aerosols (SOA).4-7 

SOA may affect human health and the climate. As was demonstrated for several 

hydrocarbons8-11 (toluene, xylenes, ethyl-benzenes constituting a major fraction of 

hydrocarbons emitted in urban air)  and  natural terpenes12 a complex chemistry takes place 

during formation of SOA leading to cyclic and open chain ketones, aldehydes, alcohols and 

carboxylic acids. 

To model oxidation of hydrocarbons in the atmosphere or combustion a knowledge of 

the structure and energetics of the intermediates is needed. The phenoxy and benzoyl radicals 

are just two model compounds, which have been the topic of studies in the past decades. 

Photolysis of phenol or anisole is a popular way for production of C6H5O
•. The mechanism of 

photo-dissociation of phenol has been studied theoretically13 and by photo-fragment 

translational spectroscopy.14-15 C6H5O
• has been characterized by electron spin resonance, 

infrared, resonance-enhanced Raman and UV/Vis spectroscopies, which have been 

reviewed.16, 17  

Benzoyl radical (C6H5CO•) is an important intermediate in combustion and 

atmosphere. Burning of light aromatic hydrocarbons under oxygen deficient conditions leads 

to formation of the phenyl radical and CO, the association of which produces C6H5CO•. 

Kinetics of this reaction were studied18 and of the reverse process thirty years earlier.19 

Benzaldehyde is the source of C6H5CO• in the atmosphere; it readily loses a hydrogen atom in 

the reaction with OH or NOx.
20  Benzoyl radical once formed reacts fast with molecular 
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oxygen.21,22 In the laboratory, benzoyl is most frequently produced by the UV induced 

α−cleavage of aromatic carbonyls and can be tracked by the strongest IR band at ~1840 

cm-1,23-25 as the UV transition  around 310  nm is weak.26 

Phenoxy and benzoyl ions, closed – shell electronic systems, have been less explored 

than the respective neutrals. C6H5O
+ was generated in non-aqueous solutions by multiphoton 

ionization of phenol and transient absorptions in the UV were measured.27 Phenoxide anion 

was studied by photodetachment spectroscopy.16 Infrared28 and electronic spectra of benzoyl 

cation produced in a superacidic environment29,30 and gas-phase30 have been reported. 

C6H5CO+ was also detected in the infrared following the associative recombination of phenyl 

cation with CO in an argon matrix.31 The benzoyl cation,32 and its weakly – bound clusters 

with argon and H2O,33 have been investigated in the gas phase via infrared spectroscopy. 

In this contribution the electronic absorption spectra of C7H4O2
+, C7H5O2

+,  and their 

neutrals measured in 6 K neon matrices following mass – selective deposition are reported. 

The ions possess two functional groups: oxo-, characteristic for the phenoxy cation, and =CO, 

occurring in the benzoyl cation linking these two intermediates. The here presented results 

provide a good starting point for gas phase investigations of such species, which are likely 

important intermediates produced in ionizing fragmentation of hydroxycarboxylic acids; the 

components of SOA.  

 

Methods 

Experimental 

A mixture of  C7H4O2
+,  C7H5O2

+ and other ions was produced from the vapor of 

salicylic acid premixed with helium in a hot - cathode ion source. Ions were extracted and 

guided through an electrostatic bender, to rid of neutrals, into a quadrupole mass filter (QMF). 

After passing the QMF the ion beam  17 nA of C7H4O2
+,  or  13 nA of C7H5O2

+ was co-
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deposited with neon contaminated with CH3Cl in the ratio 20000:1 onto a sapphire substrate 

coated with rhodium held at 6 K. CH3Cl acts as an electron scavenger which improves the 

collection efficiency of ions. A 150 µm thick matrix was grown during 4 hours for C7H4O2
+  

and 3.5 hours in the case of C7H5O2
+ resulting in accumulation of 220 and 170 µC of ions, 

respectively. After the matrix growth is completed, absorption spectra of trapped species are 

measured using a halogen or xenon lamp, a 0.3 m spectrometer and a CCD camera. 

Broad-band light passed through the  thin side of solid neon parallel to the substrate, was 

collected and  guided via a bundle of quartz fibers to the spectrograph. The spectra were 

collected in several overlapping sections of ~70 nm. To distinguish absorptions of ions from 

those of neutrals the matrix was exposed for 30 min to λ  > 260 nm photons. The photons 

liberate electrons from Cl¯, themselves formed from CH3Cl and recombine with cations 

forming the neutrals. In the spectrum measured under such conditions the bands originating 

from cations diminish and the ones which grow in  intensity belong to neutrals. 

Computational 

Several isomers of C7H4O2
+ (Chart 1) and C7H5O2

+ (Chart 2) were chosen for 

computational studies according to their stability. Calculations have been carried out with the 

density functional method (DFT)  using the M06-2X functional34 and cc-pVTZ basis set35 

supplemented in the Gaussian 09 software.36 Harmonic vibrational frequencies have been 

computed to test whether the obtained structures possess real minima. Vertical excitation 

energies and oscillator strengths for ions and respective neutrals have been computed using 

the time dependent (TD) DFT and multistate, multi-configurational second order perturbation 

(MS-CASPT2)37 methods at the coordinates obtained from M06-2X/cc-pVTZ. For the latter 

the Molcas 8 program package38 was exploited. An active space in the CASPT2 calculation 

was built of eleven electrons distributed on twelve orbitals for C7H4O2
+ and 12/12 for 

C7H5O2
+. Vibrational frequencies, needed for Franck-Condon simulations of the electronic 
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spectra, have been computed at a smaller active space (seven electrons on 8 orbitals for 

C7H4O2
+) or at lower level of theory: multiconfigurational complete active space  (CAS) for 

C7H5O2
+ or TD DFT for its neutral. This was dictated by difficulties in geometry optimization 

in the excited electronic state of the ion, or much larger computational costs for a given 

species at lower symmetry.  

 

Results and discussion 

C7H4O2
+ 

C7H4O2
+ is the dominant ion in the mass spectrum of salicylic acid (Figure 1SI). 

Deposition of m/z  120 ions into neon results in strong absorptions in the visible and UV (blue 

trace Figure 1). Three electronic systems starting around 650, 431 and 372 nm diminished 

with UV (λ > 260 nm) irradiation of the matrix (red trace) pointing to cationic origin of these 

absorptions; namely  C7H4O2
+. Only one moderately intense band at 453 nm gained intensity 

and therefore  corresponds to neutral C7H4O2.  

To infer the structure of the C7H4O2
+ ion, the carrier of the three absorption systems, 

calculations of the ground state energies of several isomers were carried out at the  

M06-2X/cc-pVTZ level and the results are given in Chart 1. The most stable is 

6-(oxomethylene)-2,4-cyclohexadien-1-one ion (structure A+). Isomer C+ with the 

oxomethylene group in the  para position is ~33 kJ/mol less stable. Three isomers of C7H4O2
+:  

F
+, G+ and H+ contain a pyrane or furan  ring and thus differ significantly from the structure 

of the precursor used. G+ and H+ are the parent  ions of stable molecules. D+ and E+ can be 

formed in the ion source by a ring opening of the precursor. 

All isomers (Chart 1) except the two highest – energy ones with a furanyl group: G+ 

and H+, were chosen for excitation energies calculations. These were carried out with 

MS(6)-CASPT2 (11,12) using coordinates from M06-2X/cc-pVTZ computations and 
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cc-pVTZ basis set for all atoms. The results are given in Table 1SI. Two ions A+ and F+ 

possess electronic transitions with energies close to the absorption systems at 650 (1.91 eV) , 

431 (2.88 eV)  and 372 (3.33 eV) nm.  The f value of the second transition of F+ is however 

smaller than the first one, in contrast to the observation. In the case of A+, not only the 

energies, but also the oscillator strength (f) of the first three electronic transitions match well 

the spectrum of C7H4O2
+. 

C7H4O2
+ is produced in the ion source by elimination of water from o-hydroxybenzoic 

acid ion (Figure 1SI). A+ and B+ have a similar arrangement of atoms to salicylic acid. A+ is 

formed by recombination of OH from  a carboxylic group with hydrogen atom adjacent to it, 

whereas in case of B+ hydrogen comes from the benzene ring. B+ can be excluded as the 

carrier of new cationic absorptions shown in the blue trace of Figure 1, because the calculated 

excitation energies (Table 1SI) do not match. Taking into account the similarity of structure 

A
+
 and salicylic acid, the fact that A+ is the lowest energy isomer of C7H4O2

+, and the energy 

and intensity agreement of the computed (Table 1SI) with the  experimental spectrum,  the 

absorptions starting at 650, 431 and 372 nm are assigned to the 1 2A'' ← X 2A'', 

2 2A'' ← X 2A'' and  3 2A'' ← X 2A''  transitions of this C7H4O2
+ isomer.  

The observed electronic transitions of A+ result from the excitations of electrons 

residing on π orbitals of  a'' symmetry (Figure 3SI). The main electronic configuration of the 

ground state, with the reference weight (r.w.) 0.82, is: …1a''
22a''

23a''
226a'

24a''
25a''

1.  

Promotion of an electron from the 4a'' to 5a'' orbital  is responsible for the absorptions starting 

at 650 nm. The next electronic transition to the 2 2A'' is due to the 3a'' to 5a'' excitation. The 

3 2A'' electronic state has the main 1a''
22a''

23a''
24a''

25a''
06a''

1 configuration with r.w. 0.56 (see 

comments to Fig. 3SI). 
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The calculated excitation energies of A+ are compared in Table 1 with the 

experimental data. These overestimate the energies by ~ 0.3 eV. The adiabatic energies 

should match the observations better. To test this MS(4)-CASPT2 calculations of vertical 

excitation energies at a smaller active space (seven electrons distributed on eight orbitals) and 

a smaller basis set (cc-pVDZ) were carried out using the coordinates from the 

M06-2X/cc-pVTZ computations. The three lowest energy transitions are predicted at 2.33, 

3.25 and 3.70 eV with f values 0.023, 0.1 and 0.15. The computed electronic spectrum does 

not differ much from that obtained with the higher level calculations (Table 1SI). The 

coordinates of C7H4O2
+ in the ground and 1 2A'', 2 2A''  and 3 2A'' electronic states have been 

optimized at the MS(4)-CASPT2(7/8)/cc-pVDZ level and the resulting adiabatic energies are 

2.02, 2.91 and 3.44 eV. These are lower by ~ 0.3 eV from the vertical ones and close to the 

observations (Table 1). 

The frequencies of 23 totally symmetric vibrations have been computed with 

MS(4)-CASPT2(7/8)/cc-pVDZ using the equilibrium coordinates of A+ in the X 2A'', 1 2A'', 

2 2A'' and 3 2A'' states and are given in Table 2SI. These are compared there with the 

M06-2X/cc-pVTZ computations and are close to each other. The CASPT2 frequencies, the 

equilibrium coordinates and L-matrices in the ground and three excited electronic states of A+ 

were used for the Franck-Condon (F-C) simulation of the matrix spectrum of C7H4O2
+ with 

the Pgopher program.39 The stick and the broader (200 cm-1) Gaussian profiles  spectra of A+ 

are compared in Figure 2 with the experiment. The theoretical spectra of A+ mimic to some 

extent  the experiment and strengthen the assignment. The wavelengths of the absorption 

bands of 6-(oxomethylene)-2,4-cyclohexadien-1-one ion (A+) with the assignment based on 

the calculated electronic excitation energies, CASPT2 vibrational frequencies and F-C 

simulations are given in Table 2.  
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A broad absorption at 453 nm (2.74 eV) seen in Figure 1, which grows after 

irradiation of the matrix with UV photons (λ > 260 nm), belongs to neutral A. Calculations at 

the MS(5)-CASPT2(12/12)/cc-pVTZ level predict a strong 1 1A' ← X 1A' electronic transition 

at 3.55 eV. Next transition lies at 5.0 eV. Though the calculated vertical excitation energy 

overestimates the observation by ~0.8 eV, the 453 nm band is assigned to the 

1 1A' ← X 1A' electronic transition of A, because A+ is present in the matrix and A is the 

neutralization product. 

C7H5O2
+ 
and C7H5O2 

A weak peak of m/z  121 is apparent in the mass spectrum of o-hydroxybenzoic acid 

(Figure 1SI). C7H5O2
+ is produced in the ion source by elimination of OH from the parent ion. 

On the other hand the m/z  121 ion dominates mass spectra of meta- and para-hydroxybenzoic 

acids,40 whereas m/z 120 is absent (Figure 1SI). The [M - OH]+ ions are  prevalent in mass-

spectra of benzoic (Figure 1SI) and other carboxylic acids. 

Though the intensity of the m/z 121 ion in the mass spectrum of o-hydroxybenzoic 

acid is about eight times lower than  the ‘120’  ion nevertheless this precursor was used for 

generation of the ‘121’ ions. After optimization of the production conditions it was possible to 

attain an average current of 13 nA for m/z  121, and 17 nA for m/z  120.  

The spectrum measured after accumulation ~170 µC  of the ‘121’ ions  in neon is 

shown as the  blue trace in Figure 3 and the one recorded after 30 min irradiation of the matrix 

with λ  > 260 nm photons in the red trace. The absorptions commencing at 366 nm, which 

vanish after the UV irradiation are cationic in nature and correspond to C7H5O2
+, whereas the 

new ones which appeared belong to the neutral counterpart. 

To deduce the arrangement of the atoms in this C7H5O2
+ isomer responsible for the 

366 nm electronic system, five plausible structures (J+ - N+) were chosen for quantum 
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calculations (Chart 2). All considered ions, except M+, possess the same skeleton as A, and 

differ in the protonation site. Calculations with M06-2X/cc-pVTZ reveal that J+ with 

hydrogen attached to the oxygen atom is the global minimum and the next in energy ion, K+, 

protonated at the benzene ring in the position adjacent to carbonyl group, lies ~84 kJ/mol 

above it. 

C7H5O2
+ ions are closed shell species with a singlet ground state and therefore the time 

dependent (TD) DFT method could be used for computation of the vertical excitation 

energies, Table 3SI. According to the DFT calculations only J+ and K+ possess a strong 

electronic transition at 4.0 or 3.9 eV, close to the origin of the 366 nm (3.38 eV) system. To 

confirm this, calculations with MS(4)-CASPT2(12/12)/cc-pVTZ were carried out for J+ and 

K
+ and the results are compared with the DFT ones in Table 3SI. The CASPT2 excitation 

energy to the first excited 1A' electronic state is 3.87 and 3.69 eV for J+ and K+, respectively, 

close to the DFT prediction. According to the calculations, a stronger transition is expected  to 

the second 1A' electronic state for both ions, which lies  5 eV above the X state and out of the 

range of the detection system. 

To determine which ion is the carrier of the absorptions commencing at 366 nm, F-C 

simulations of the vibrational pattern in the 1 1A' ← X 1A'  transition of both ions were carried 

out. For this purpose vibrational frequencies of 25 totally symmetric normal modes were 

computed at the MS(4)-CAS(8/8)/cc-pVDZ level using the equilibrium coordinates calculated 

at the same level. The ground state frequencies of J+ obtained are compared with the 

M06-2X/cc-pVTZ and MS(4)-CASPT2(8/8)/cc-pVDZ ones in Table 4SI. The DFT and 

CASPT2 frequencies agree well, but those obtained with the CAS method are systematically 

higher for all vibrational modes. A linear dependence of the CAS versus CASPT2 frequencies 

is observed with the slope 1.05. Vibrational frequencies in the 1 1A'  electronic state of J+ 
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from the CASPT2 method could not be obtained due to convergence problems during 

geometry optimization. 

The CAS frequencies scaled by 0.95 (1/1.05) result in a better agreement with the 

values obtained from the two other methods (Table 4SI). These frequencies in the X 1A' and 

1 1A' electronic states were then used for the simulation of the electronic spectra of J+ and K+. 

The stick and Gaussian (200 cm-1) profile spectra are compared in Figure 4 with the matrix 

spectrum of C7H5O2
+. The theoretical spectrum of J+ resembles the 366 nm electronic system, 

whereas that one of K+ differs. Therefore the new absorptions with the origin at 366 nm are 

assigned to the 1 1A' ← X 1A' electronic transition of J+. Scaling of the CAS frequencies has 

no effect on the appearance of the theoretical spectrum of J+ as one can see in Figure 2SI. In 

the ground 1A' state all (1-26) a' orbitals and all π orbitals (1-5) of a'' symmetry are doubly 

occupied (Fig. 4SI). The 1 1A' state results from the two major electronic configurations: 

…(3a'')2(4a'')2(5a'')1(6a'')1 and …(3a'')2(4a'')1(5a'')2(6a'')1  with the reference weight 0.36   and 

0.33, respectively (Fig. 4SI). 

The F-C simulation guided the assignment of the bands in the electronic spectrum of 

J
+. The frequencies derived  and listed in Table 2 do not correspond to an individual vibration 

but are the average of several due to broadening and congestion (Figure 4). The F-C 

simulations suggest which vibrational modes are the main contributors to a given absorption 

band. 

Two weak absorptions (blue trace in Figure 3) starting at ~ 435 nm (2.85eV) and 320 

nm (3.87 eV) belong likely to a minor isomer of C7H5O2
+. The best candidate for the carrier 

of these bands is isomer N+ possessing two relatively strong 1 3A' ← X 3A' and 1 3A' ← X 3A' 

electronic transitions close to these energies (3,17 and 4.22 eV, Table 3SI). 

Four band systems appeared after neutralization of J+ with λ > 260 nm photons (red 

trace in Figure 3). These are: weak absorptions starting at 461 nm, two moderately intense 
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ones with onsets at 394 and 361 nm and the strong system with origin at 291 nm. The 

structureless short-wavelength tail below 250 nm is likely artificial and may result from the 

enhanced light scattering in this region and lack of background correction. The four 

absorption systems belong to J because they appeared after neutralization of J+. 

To confirm this interpretation  vertical excitation energies  and oscillator strengths of J 

have been calculated at the MS(8)-CASPT2(9/9)/cc-pVDZ level, Table 5SI. The calculations 

predict three moderately intense transitions at 2.48, 3.38 and 3.83 eV and a strong one at 4.99 

eV. The results are compared with the observations in Table 1. The energy of the 461 nm 

(2.69 eV) system is underestimated by ~ 0.2 eV, whereas the three other at 394 nm (3.15 eV), 

361 nm (3.43 eV) and 291 nm (4.26 eV) are overestimated by 0.2 - 0.7 eV. Computation of 

the adiabatic energies of  J was not successful due to problems with geometry optimization at 

the CASPT2 level. The OH group of molecule tends to move out of plane and calculations at 

the C1 symmetry are time consuming. 

Instead of CASPT2, TD DFT calculations were carried out. Vertical excitation 

energies and the f values obtained are compared with the CASPT2 ones in Table 5SI. The 

TD DFT energies are ~ 0.2 eV larger. Both methods predict similar oscillator strengths. The 

adiabatic energies of J at the M06-2X/TDDFT/cc-pVTZ level are given in Table 5SI. These 

are lower by 0.3-0.6 eV than the vertical ones. The adiabatic energy of the 4 2A'' state could 

not be computed due to convergence problems. Besides the adiabatic energies the calculations  

provide frequencies of normal modes in the ground and excited electronic states of J, Table 

6SI. 

Based on the theoretical calculations the four electronic systems of J at: 461, 394, 361 

and 291 nm are assigned to the 1 2A'' ← X 2A'', 2 2A'' ← X 2A'', 3 2A'' ← X 2A'', 

4 2A'' ← X 2A'' electronic transitions.  In the CASPT2 calculations the active space  was built 

only  of π orbitals, and these are shown in Figure 6SI. The main electronic configurations of 
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the ground and the 1-4 2A” excited electronic states are also discussed in the SI. The 

assignment of the vibrational bands in the spectrum of J (Table 2) is assisted with frequencies 

computed with the TD DFT method (Table 6SI) except the 4 2A'' ← X 2A'' electronic 

transition for which F-C simulations have been carried out (Figure 6SI) using the CASSCF 

equilibrium gemoetries, L-matrices and frequencies. 

Conclusions 

The structure, symmetry and energetics of the ground and excited electronic states of 

the C7H4O2
+ and C7H5O2

+ fragment ions  produced from salicylic acid have been studied by 

electronic spectroscopy of mass selected ions trapped in solid neon and by theoretical 

methods. Three electronic absorption systems are observed for C7H4O2
+.  These are identified 

on  the basis of  CASPT2 energies and the F-C vibrational profiles as the electronic 

excitations from the X 2A'' state to the 1 2A'', 2 2A'', 3 2A'' electronic states of the 

6-(oxomethylene)-2,4-cyclohexadien-1-one ion (A+).  

Deposition into  neon of o-hydroxy-benzoic acid m/z  121  ion resulted in strong 

absorptions of C7H5O2
+ in the UV region. On the basis of calculated excitation energies and 

F-C simulations, it is shown that the new absorption system originates from the 1 1A' ← X 1A' 

electronic transition of (2-hydroxyphenyl)methanone ion (J+). Four electronic transitions have 

been observed in a neon matrix for J• following neutralization of C7H5O2
+ and identified as 

the excitations from the X 2A'' state to the 1 2A'', 2 2A'', 3 2A'', 4 2A'' electronic states. 

The arrangement of atoms in A+ and J+ explains the different fragmentation of 

o-hydroxybenzoic acid ion in comparison to the meta- and para- isomers. In the former  two 

fragmentation channels are open: elimination of  OH or H2O where the second one prevails, 

whereas for the meta- and para- only the first pathway is accessible. 
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The reported spectroscopic data on C7H4O2
+, C7H5O2

+, C7H4O2 and C7H5O2 can be 

used  as a starting point for gas-phase studies of these species, ionic fragments of aromatic 

hydroxycarboxylic acids which are important constituents of secondary organic aerosols.  
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Chart 1. Structures  and ground state energies (kJ/mol) of the  most stable isomers of C7H4O2
+ calculated at the 

M06-2X/cc-pVTZ level. 
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Chart 2. Structures  and ground state energies (kJ/mol) of the C7H5O2
+ isomers calculated at the 

M06-2X/cc-pVTZ level. 
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Figure 1. Absorption spectra measured after deposition of C7H4O2
+ ions (m/z 120) in solid 

neon - blue trace, and after 30 min irradiation of the matrix with λ > 260 nm photons  red 

trace. 
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Figure 2. Electronic absorption spectrum of C7H4O2
+ measured in a 6 K neon matrix 

compared with a Franck-Condon simulation for the transition from the ground X 2A'' to the 

1 2A'', 2 2A'' and 3 2A'' states. Red traces are  obtained using 150, 200 and 750 cm-1 widths of 

individual vibronic bands. 
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Figure 3. Electronic absorption spectrum of C7H5O2
+  measured after deposition of m/z 121  

ions in a 6 K neon matrix- blue trace, and the spectrum of  neutral C7H5O2  recorded after 

neutralization of the cations with λ > 260 nm photons  - red trace. 
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Figure 4. The neon matrix absorption spectrum of 2-hydroxybenzoyl cation – blue trace,  

compared with a Franck-Condon simulation of the transition for  isomer J+ (middle panel): 

stick and Gaussian profiles of a 200 cm-1 width  and for isomer  isomer K+ - bottom panel. 
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Table 1.   Comparison of the CASPT2 vertical excitation energies (eV)  of the  C7H4O2
+ (A+) and C7H5O2

+ (J+)  

ions and the respective neutrals with the energies derived from the spectra in a neon matrix. 

Species Transitions Calc. Exp.  

    A+ 1 2A''  ← X 2A'' 
2 2A''  ←           
3 2A''  ←           

2.27 
3.10 
3.61 

1.91 
2.88 
3.33 

    A 1 1A' ←  X 1A'   3.55 2.74 

    J+ 1 1A' ←  X 1A'   3.87 3.38 

    J 1 2A''  ←  X 2A'' 
2 2A''  ←   
3 2A''  ←   
4 2A''  ←   

2.48 
3.38 
3.83 
4.99 

2.69 
3.15 
3.43 
4.26 
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    Table 2. Observed band maxima (nm) of the cations and neutrals of C7H4O2 and C7H5O2  in 6 K neon matrices 

and assignment based on CASPT2 excitation energies and F-C simulations of vibrational profiles.   

Species λ/nm ν̃cm-1 ∆ν̃/cm-1 Assignment 

C7H4O2
+ 649.6 

632.5 
626.7 
622.6 
611.6 
606.4 
601.4 
596.8 
588.7 
574.8 
566.2 

431.0 

419.3 
415.4 
407.7 
403.7 
393.6 
384.0 

372.0 

15394 

15810 
15957 
16062 
16351 
16491 
16628 
16756 
16987 
17397 
17662 

23202 

23849 
24073 
24528 
24771 
25407 
26042 

26882 

0 

416 
563 
668 
957 
1097 
1234 
1362 
1593 
2003 
2268 

0 

647 
871 
1326 
1569 
2205 
2840 

0 

0
00 1 2A'' ← X 2A''  

ν21 
ν19 
ν18 
ν16 
2ν19 
ν19 + ν18 
ν11 
ν7 
ν7 + ν21 
ν7 + ν18 

0
00 2 2A'' ← X 2A''  

ν19 
ν17 
ν11 
ν8 
ν5 
ν5 + ν19 

0
00 3 2A'' ← X 2A''  

C7H4O2 453.0 22075 0 0
00   1 1A' ← X 1A' 

C7H5O2
+ 366.4 

360.8 
355.5 
350.0 
344.9 
339.0 
333.4 

27293 

27716 
28129 
28571 
28994 
29499 
29994 

0 

423  
836 
1278 
1701 
2206 
2701 

0
00 1 1A' ← X 1A' 

ν24 and ν23 
ν19 , ν24 + ν23 

ν15 
ν8,  ν24 + ν19 
ν7 
 

C7H5O2 461.2 

449.9 
438.5 

393.8 

380.4 

361.2 

355.5 

291.3 

290.4 
284.9 
283.1 
279.3 

21683 

22227 
22805 

25394 

26288 

27685 

28129 

34329 

34435 
35096 
35323 
35804 

0 

544 
1122 

0 

894 

0 

444 

0 

106 
767 
994 
1475 

0
00  12A'' ← X 2A''  

ν22 
2ν22 

0
00 2 2A'' ← X 2A''  

ν18 
0
00 3 2A'' ← X 2A''  

ν23 
0
00 4 2A'' ← X 2A''  

ν 25  
ν20   
ν18   
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