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We present a method to certify the presence of Bell correlations in experimentally observed statistics,
and to obtain new Bell inequalities. Our approach is based on relaxing the conditions defining the set
of correlations obeying a local hidden variable model, yielding a convergent hierarchy of semidefinite
programs (SDP’s). Because the size of these SDP’s is independent of the number of parties involved, this
technique allows us to characterize correlations in many-body systems. As an example, we illustrate our
method with the experimental data presented in Science 352, 441 (2016).
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Introduction.—Local measurements on quantum sys-
tems can display correlations that may not be explained
by any local hidden variable model (LHVM) [1] or, in other
words, that cannot be reproduced by local deterministic
strategies (LDS), even if assisted by shared randomness [2].
Bell inequalities bound the space of LHVM or “classical”
correlations, and correlations that violate a Bell inequality
are termed nonlocal. Besides their fundamental interest,
nonlocal correlations are a key resource enabling novel
quantum information processing tasks [3].
Finding all Bell inequalities is an extremely demanding

problem [4], which is NP complete even in the bipartite
scenario [5]. For this reason, complete lists of Bell inequal-
ities exist only for the simplest scenarios, e.g., not beyond
three parties [6–10].
In the multipartite case one needs to relax the condition

of membership in the LHVM set, for example, by looking
for Bell inequalities of a particular form. A natural choice is
to exploit the symmetries of the physical system of interest
[e.g., permutational invariance (PI) [11] or translational
invariance (TI) [12]]. Moreover, to make them experimen-
tally practical, it is desirable to ask for additional features
such as being composed of low-order correlators only (see
Refs. [13,14] and [12,15–17], for the PI and TI cases,
respectively). In the PI case, this approach has recently
allowed for the detection of Bell correlations in a Bose-
Einstein condensate of 480 atoms [18] and in a thermal
ensemble of 5 × 105 atoms [19].
The usual technique to find Bell inequalities is via the

characterization of the set of LHVM correlations. From a
geometrical point of view this set is a polytope, i.e., a
bounded convex set that can be described by a finite number
of vertices, or, equivalently, by the intersection of a finite
number of half-spaces. The vertices of the LHVM polytope
can be listed, as they correspond to LDS, and from them the
Bell inequalities defining the half-spaces can be computed.
Unfortunately, going from one description to the other is
extremely inefficient, due to the (double) exponential scaling

of its complexity in the number of parties [20]. Restricting the
search to Bell inequalities of a particular form results in (i) a
better scaling [12,14] and (ii) Bell inequalities that can be
tested experimentally via collective observables, such as total
spin components [13,18,19]. However, this approach of
characterizing the LHVM polytope is still prohibitive when
the number of parties is large, e.g., because a complete list
of the vertices is inaccessible and because one has to infer
classes of inequalities from a small number of parties
[12–15], leaving potentially useful ones undiscovered.
In this work, we present a technique to approximate the

set of LHVM correlations from the outside. Our technique
can be seen as checking all Bell inequalities of a specific
form with a single test. It is based on a hierarchy of
semidefinite programs (SDP’s) aproximating convex hulls
of semialgebraic sets [21–24]. One key advantage of our
method is that, contrary to other existing SDP’s hierarchies
[25,26], the number of parties enters as a parameter in the
SDP’s, without affecting their size. Moreover, in all cases
we considered, our hierarchy shows convergence to a
relaxation of the LHVM set already at its lowest level.
In summary, the method we propose provides an efficient
sufficient condition for a set of correlations to be nonlocal,
and it yields a certificate of nonlocality by providing the
Bell inequality that is violated.
Overview of the method.—We consider the Bell scenario

in which each of N observers performs one of d possible
measurements on their share of the system. For simplicity,
we are going to assume that every measurement yields
outcomes�1, keeping the generalization to more outcomes

for later. Let MðiÞ
k be the kth measurement of the ith party.

We are interested in Bell correlations that can be revealed
by PI Bell inequalities composed of at most K-body
correlators, i.e., inequalities of the form

X
k≤K

X
j1≤…≤jk

αj1…jkSj1…jk þ βC ≥ 0; ð1Þ
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where αj1…jk ∈ R, βC ∈ R is the so-called classical bound,
and Sj1…jk are the PI correlators defined as

Sj1…jk ¼
XN

i1 ;…;ik¼1

alli’s different

hMði1Þ
j1

…MðikÞ
jk

i: ð2Þ

Our task is to certify that given experimental data S⃗�
K ¼

ðS�
0;S

�
1;…Þ cannot be described by LHVM, or, in other

words, we want to construct a Bell inequality of the form of

Eq. (1) that is violated for S⃗�
K, thus confirming the presence

of Bell correlations. In order to achieve this, we perform
two mild relaxations of the membership conditions to the
LHVM set, which we show to become negligible as N
increases. This yields a hierarchy of SDP’s of the form

max
yj∈R

1

s:t: ~Γðy⃗Þ ≽ 0

y0 ¼ 1

yj ¼ ðS⃗�
KÞj;

ð3Þ

where y0 and the yj corresponding to S⃗�
K are fixed, while

the remaining yj are free real parameters that can be varied
until the moment matrix ~Γ (that we are going to show how
to construct) is positive semidefinite. If the SDP (3) is
infeasible, its dual yields the coefficients αj1…jk and a
(relaxed) classical bound βC of a Bell inequality of the form

of Eq. (1) that certifies that S⃗�
K is nonlocal. Note the crucial

fact that the number of parties N enters as a parameter in ~Γ,
therefore, not affecting the size of the SDP. Our method can
be seen as a way to check infinitely many Bell inequalities
of the form of Eq. (1) at once. We now illustrate our method
in more detail.
Details of the method.—If the observed statistics S⃗�

K
satisfy a LHVM, they belong to the LHVM polytope
(projected) in the space of K-body symmetric correlators,
PS
K . Its vertices correspond to LDS, satisfying

hMði1Þ
j1

…MðikÞ
jk

i ¼ hMði1Þ
j1

i � � � hMðikÞ
jk

i ðlocalÞ; ð4Þ

hMðiÞ
j i ¼ �1 ∀ i; j ðdeterministicÞ: ð5Þ

Fortunately, the PI condition reduces the number of vertices
from exponential to polynomial in N, because only the
amount of parties following the same LDS is relevant
[13,14]. For this reason, it is natural to introduce m ¼ 2d

variables x⃗ ¼ ðx1;…; xmÞ, where xi counts how many
parties follow the ith LDS. Note that the xi satisfy

Xm
i¼1

xi ¼ N; xi ∈ Z≥0: ð6Þ

Using this parametrization, at every vertex Eq. (2) can be
written as a polynomial of degree k in m variables with real
coefficients, i.e., Sj1…jk ∈ R½x⃗�k (see Ref. [13] and the

example). Denoting with S⃗K the vector of such correlations
up to degree K, we express PS

K as the convex hull (CH)

of S⃗K evaluated on the parameter region defined by Eq. (6):

PS
K ¼ CH

�
S⃗Kðx⃗Þ s:t:

X
i

xi ¼ N; xi ∈ Z≥0

�
: ð7Þ

First relaxation.—According to Eq. (7), PS
K is defined

as the convex hull of a finite set of points, therefore, not
exploiting the inherent algebraic structure present in the

polynomials S⃗Kðx⃗Þ. The first relaxation we introduce
consists of dropping the condition xi ∈ Z≥0, and consid-
ering instead xi ∈ R≥0, which gives rise to the set

fPS
K ¼ CH

�
S⃗Kðx⃗Þ s:t:

X
i

xi ¼ N; xi ∈ R≥0

�
: ð8Þ

Note that S⃗Kðx⃗Þ with x⃗ ∈ Rm interpolates the vertices of

PS
K , implying PS

K ⊆ fPS
K . As a consequence, if a set of

correlations lies outside fPS
K , it also lies outside PS

K, and
therefore it is nonlocal.
The correlators S⃗Kðx⃗Þ can be expressed as a set of

equations fiðS⃗KÞ ¼ 0, and similarly the non-negativity
constraints xj ≥ 0 can be expressed as a set of constraints

in S⃗K , by a set of inequalities gjðS⃗KÞ ≥ 0 (see the example).
In what follows, we refer to the set of solutions of a system

of polynomial equations fiðS⃗KÞ ¼ 0 as an algebraic set.
Moreover, if an algebraic set is further restricted by

polynomial non-negativity constraints gjðS⃗KÞ ≥ 0, as is

the case for fPS
K in Eq. (8), we shall call such a set

semialgebraic.
Second relaxation.—Deciding membership in the CH of

a (semi)algebraic set V is NP hard [23]. However, there
exist efficient approximations for CHðVÞ from the outside
[21–24]. The idea behind these methods is to reduce the
membership problem in CHðVÞ to that of a multivariate
polynomial being non-negative, which can be relaxed to
determining whether such polynomial can be expressed as
a sum of squares (s.o.s.) [27]. While the first condition is
NP hard, the second can be efficiently checked using a
SDP, as we are going to show.
Following this approach, the main idea behind our method

is to construct linear polynomials lðS⃗KÞ ∈ R½S⃗K�1 satisfying
lðS⃗KÞ ≥ 0 for all S⃗K ∈ V, i.e., validBell inequalities defining
half-spaces containing CHðVÞ.
Starting from the observation that every polynomial of

the form pþP
ifipi, with p; pi ∈ R½S⃗K�, takes the same

PRL 119, 230402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

8 DECEMBER 2017

230402-2



values when evaluated in V [because fiðS⃗KÞ ¼ 0 for all

S⃗K ∈ V], we define the ideal I generated by fi as the set

I ¼
�X

i

fipi s:t: pi ∈ R½S⃗K�
�

⊆ R½S⃗K�; ð9Þ

such that every polynomial in pþ I ¼ fpþ q; q ∈ Ig is
equivalent when evaluated in V. Moreover, the ideal I

defines the set of equivalence classes R½S⃗K�=I, where

p; q ∈ R½S⃗K� are in the same class if they are equivalent
modulo I, i.e., p≡ q mod I, meaning that p − q ∈ I.
To express lðS⃗KÞ we consider the following ansatz:

lðS⃗KÞ ¼
Xm
i¼0

giðS⃗KÞσiðS⃗KÞ mod I; ð10Þ

where g0ðS⃗KÞ ¼ 1, and σiðS⃗KÞ are s.o.s. polynomials
modulo I [i.e., there exists a s.o.s. polynomial in

σiðS⃗KÞ þ I]. For compactness, let us use the shorthand
notation gi and σi. Note that since all gi ≥ 0 in V by
definition, and s.o.s. are non-negative, the form of Eq. (10)

ensures the non-negativity of lðS⃗KÞ in V [28].

Now, given a point S⃗�
K , our goal is to prove that lðS⃗�

KÞ<0
for some set of σi. If we succeed in this proof, then we have

to conclude that S⃗�
K ∉ CHðVÞ ⊇ PS

K , i.e., that the statistics

in S⃗�
K come from nonlocal correlations.

For computational reasons, we need to bound the
maximum degree of the s.o.s. decomposition allowed in

σi þ I. The higher the degree, the larger the family of lðS⃗KÞ
that can be accessed through Eq. (10), but the more
computationally expensive to produce such s.o.s. repre-
sentation will be. This naturally yields a hierarchy of outer
approximations to CHðVÞ by increasing the degree of the
s.o.s. decomposition of σi. To simplify our exposition, we
consider here the special case where all σi ¼ σ.
To express all σ that are s.o.s. of degree 2μ, modulo I,

we adopt the following procedure. First, we select (via a
Gröbner basis [29]) a linearly independent set of repre-

sentatives of R½S⃗K�=I, and we order them in the vector
b⃗ ¼ ð1;S0;S1;…ÞT . Denoting by b⃗μ the vector of elements

of b⃗ of degree at most μ, we write σ ¼ P
js

2
j mod I, where

sj are linear combinations of the elements of b⃗μ; i.e.,

sj ¼ b⃗Tμ a⃗j, with a⃗j real vectors. At this point, by defining
the matrix G ¼ P

ja⃗ja⃗
T
j , which is positive semidefinite by

construction (G ≽ 0), and the moment matrix Γi ¼ gib⃗μb⃗
T
μ

mod I, we write

giσ ¼ Γi ·G mod I; G ≽ 0: ð11Þ

Here, X · Y ¼ P
abXabYab.

When the elements of Γi corresponding to S⃗K are

replaced by S⃗�
K, only some of its entries are constrained.

If the remaining free parameters can be tuned to make

Γi ≽ 0, Eq. (11) ensures that giσ ≥ 0 in S⃗�
K for all σ (that

are s.o.s. of degree 2μ, modulo I). On the other hand, when
Γi ⋡ 0 for any choice of the free parameters, there exists at

least one σ such that giσ < 0 in S⃗�
K [30].

Recall here that our final goal is to prove that there exists

a σ such that Eq. (10) gives lðS⃗�
KÞ < 0. To this end, we

write Eq. (10) as lðS⃗KÞ ¼ ~Γ · ~G mod I, where ~Γ ¼ ⨁
m

i¼0

Γi,

and similarly for ~G. As for Eq. (11), we ask whether ~Γ can

be made positive semidefinite at the point S⃗�
K . To perform

this check with a SDP, we first reduce ~Γmodulo I, and then
linearize it as

~Γ ¼
X
j

yj ~Γj; ð12Þ

where yj indexes the jth element of b⃗, and ~Γj are constant
real matrices embodying the constraints among the entries

of ~Γ. Now, for the point S⃗�
K, we execute SDP (3) to check

the presence of nonlocal correlations.
If SDP (3) is infeasible, ~Γ ⋡ 0 independently on the free

yj, which proves that there exist a σ such that lðS⃗�
KÞ < 0,

while lðS⃗KÞ ≥ 0 for all S⃗K ∈ PS
K. Therefore, the infea-

sibility of SDP (3) certifies that S⃗�
K ∉ CHðVÞ ⊇ PS

K , i.e., its
nonlocal nature (see the example and Fig. 2).
While the output of SDP (3) is the answer feasible or

infeasible, we can also write a SDP to maximize λ subject

to y0 ¼ 1 and yj ¼ λðS⃗�
KÞj. The dual formulation of this

modified SDP results in the dual variables αj1…jk associated
to y1…yi, and βC associated to y0, defining a Bell inequal-

ity (1) that provides a certificate for the nonlocality of S⃗�
K

[31] (see the example and Fig. 2). In addition, maximizing λ

along different directions S⃗�
K results in the points λmaxS⃗

�
K

that can be used to approximate the boundary of PS
K ,

(see Fig. 1).
On the other hand, if SDP (3) is feasible it means that it

does not exist a σ that is s.o.s. of degree 2μ, modulo I, such

that lðS⃗�
KÞ < 0. In this case, we could access a higher level

of our hierarchy by increasing μ, which enlarges the class of

lðS⃗KÞ that can be represented [32].
An additional result in Refs. [21,22] ensures that, since

the set V we want to approximate is compact, our hierarchy

converges at least asymptotically to CHðVÞ≡ fPS
K .

Actually, in all examples we studied, we observed numeri-
cally that convergence at μ ¼ 1 was already present.
Example.—In the spirit of Refs. [13,18], we consider

d ¼ K ¼ 2, giving rise to the set of correlators
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S⃗2 ¼ ðS0;S1;S00;S01;S11Þ ∈ R5, and N parties. In this
scenario, there are four LDS parametrized by xi ≥ 0 and

satisfying
P

4
i¼1 xi ¼ N. By expressing the correlators S⃗2

evaluated on a LDS in terms of x⃗, we obtain [13]0
BBB@

N

S1

S0

Z

1
CCCA ¼

0
BBB@

x1 þ x2 þ x3 þ x4
x1 þ x2 − x3 − x4
x1 − x2 þ x3 − x4
x1 − x2 − x3 þ x4

1
CCCA; ð13Þ

0
B@

S00

S01

S11

1
CA ¼

0
B@

S2
0 − N

S0S1 − Z

S2
1 − N

1
CA: ð14Þ

When N is fixed Eqs. (13) are three free parameters, while
Eqs. (14) define the ideal I, whose generators ff1ðS⃗2Þ;
f2ðS⃗2Þg ¼ fS00 − S2

0 þ N;S11 − S2
1 þ Ng form also a

Gröbner basis for I [29]. Inverting Eq. (13) we obtain four
polynomials in S⃗2 that allow us to express the constraints
xi ¼ giðS⃗2Þ ≥ 0, for instance,

g1ðS⃗2Þ ¼ ½S0 þ S1 þ ðS0S1 − S01Þ þ ðS2
0 − S00Þ�=4 ≥ 0:

At the first level of our hierarchy, μ ¼ 1, the vector b⃗T1 ¼
ð1;S0;…;S11Þ generates the five 6 × 6 moment matrices
Γi. Combined together, the Γi give a 30 × 30 block-
diagonal moment matrix ~Γ, in which N appears as a
parameter, and thus not affecting its size.
Considering the experimental data presented in

Ref. [18], we can conclude that the measured statistics

ðS�
0;S

�
00 þ 2S�

01 þ S�
11Þ ¼ ð367.6;−525.4Þ contain Bell

correlations because the following SDP gives λ < 1:

max
yj∈R

λ

s:t: ~Γ ≽ 0

y0 ¼ 1

ðy1; y3 þ 2y4 þ y5Þ ¼ λðS�
0;S

�
00 þ 2S�

01 þ S�
11Þ:

ð15Þ

The dual of SDP (15) gives as a result the dual variables
associated to y0, y1, and y3 þ 2y4 þ y5, which correspond,
respectively, to the coefficients of the Bell inequality
βC þ α1S0 þ α2ðS00 þ 2S01 þ S11Þ ≥ 0 (see Fig. 2).
Comment on more outcomes.—It is possible to consider

the case where measurements have more outcomes by

defining the expectation values as, e.g., hMðiÞ
j iðaÞ ¼

2PiðajjÞ − 1, where PiðajjÞ is the probability that meas-
urement j on party i gives as outcome a, and the

symmetrized correlators as, e.g., SðaÞ
j ¼ P

N
i¼1hMðiÞ

j iðaÞ.
Conclusions.—We introduced a method to bound the set

of LHVM correlations. Its main advantage, with respect to
other techniques, is that there is no scaling with the number
of parties, making it particularly suited for the study of
nonlocal correlations in many-body systems. Our approach
has several applications, some ofwhichwere presented here,
such as the characterization of experimentally observed
correlations or the derivation of new Bell inequalities.
Furthermore, it can be easily generalized to scenarios with
more measurements settings and outcomes, potentially

FIG. 2. Plane generated by fS0; ðS00 þ 2S01 þ S11Þg. Black
circled dot, point ð367.6;−525.4Þ measured experimentally in
[18] for N ¼ 476. Blue points, projected vertices of PS

2 . Blue line,
bound given by the Bell inequality −2S0þðS00þ2S01þS11Þ=
2þ2N≥0, from Refs. [13,18]. This inequality is tight, meaning
that it is also a facet of the projected polytope. Pink region, points
where SDP (15) gives λ ≥ 1. Orange dashed line, Bell inequality
obtained numerically by solving the dual of SDP (15). The
distance between the blue and the orange lines is 1.000 002,
meaning that the error of our method compared to the tight
classical bound scales as 1=N, and it is imputable mainly to the
first relaxation.

FIG. 1. For N ¼ 10 and K ¼ 2, the plane of the symmetric

correlations of the form αS⃗ð1Þ
2 þ βS⃗ð2Þ

2 , with S⃗ð1Þ
2 ¼

ð1;−1; 0;−1; 1ÞT= ffiffiffi
4

p
and S⃗ð2Þ

2 ¼ ð0;−1;−1; 1; 0ÞT= ffiffiffi
3

p
. In blue,

the intersection of PS
2 with the plane, computed with a linear

program. In red, the boundary of the feasible set of SDP (3) for
μ ¼ 1. The gap between the two objects is imputable mainly to
the first relaxation, and the small N was chosen also to appreciate
its size, which remains of the same order while PS

2 increases with
N (see also Fig. 2).

PRL 119, 230402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

8 DECEMBER 2017

230402-4



enlarging the class of systems, and states, where nonlocal
correlations could be experimentally detected.
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