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Accessing intrinsic properties of a graphene device can be hindered by the influence of contact
electrodes. Here, we capacitively couple graphene devices to superconducting resonant circuits and observe
clear changes in the resonance frequency and widths originating from the internal charge dynamics of
graphene. This allows us to extract the density of states and charge relaxation resistance in graphene p-n
junctions without the need for electrical contacts. The presented characterization paves a fast, sensitive, and
noninvasive measurement of graphene nanocircuits.
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I. INTRODUCTION

In the past decade, extensive studies on graphene have
unfolded interesting physics of Dirac particles on chip [1–4].
Up to now the main technique to study the electronic
properties of graphene has been a low-frequency lock-in
technique where electrical contacts are needed for conduct-
ance measurements. The key drawbacks of contact electro-
des are highly doped regions in the vicinity of the contacts
resulting in unwanted p-n junctions [5] and scattering [6]
of charge carriers. In addition, added resist residues
from lithography can degrade the metal-graphene interfacial
properties [7] or even the overall device quality. An important
example of this is graphene spintronics [8], where device
performance is often limited by the contacts, which cause spin
relaxation and decrease of the spin lifetime [9–12]. Therefore,
contactless characterization such as microwave absorption
[13] andmicrowave-impedancemicroscopy [14] can open up
new ways to probe inherent properties of the studied system.
In the past, other contactless schemes such as terahertz
spectroscopy [15,16] and dielectric force microscopy [17]
have been employed to study the carrier dynamics in
graphene. In contrast to the former, microwave response
utilized in this work precludes any interband or intraband
transitions allowing studies of carriers at the Fermi level.
More importantly, our devices and readout circuits, stub
tuners [18], can be easily integrated on chip and the resonant
response can be exploited to extract both the quantum
capacitance and the charge relaxation resistance with a single
measurement even in the absence of electrical contacts.
We have used high-mobility graphene encapsulated in

hexagonal boron nitride [19,20], which separates the gra-
phene from external perturbations and allows local gating of
the graphene flake. By forming a p-n junction the internal
charge dynamics of the graphene circuit can be probed and

by analyzing the microwave response of the circuit the
charge relaxation resistance as well as the quantum capaci-
tance can be inferred. Our measurements allow us to study
p-n junctions in a contactless way, which are potential
building blocks of electron optical devices [21–27].

II. DEVICE LAYOUT

Figure 1 shows the layout of a typical device. The stub-
tuner circuit is based on two transmission lines TL1 and
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FIG. 1. Sample layout. (a) An optical picture of the stub tuner
with arm lengths l and d. Central conductor and gap widths of the
transmission lines are 15 and 6 μm, respectively. Light areas
show the Nb film and darker areas are exposed SiO2 substrate
after Nb is etched away. (b) An SEM image near the l end
showing a narrow slit between the signal line and the ground
plane. (c) An SEM image of a h-BN=graphene=h-BN stack for
device B placed over the slit. Areas A1 and A2 correspond to
two parts of graphene lying on the signal line and the ground
plane. (d) A cross section schematic of the device near the
slit. (e) An equivalent circuit with lumped capacitance and
resistance elements.
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TL2 of lengths l and d, respectively, each close to λ=4 [18].
The operation of the circuit can be understood in a simple
analogy to optics. TheT junction near the launcher acts like a
beam splitter. The incident wave splits into the two arms of
the circuit and gets reflected at the open end and the device
end, and then interferes back at the junction providing
the resonance condition. The circuit is patterned using a
100-nm-thick niobium film by e-beam lithography and
subsequent dry etching with Ar=Cl2. To minimize micro-
wave losses, high resistive silicon substrates (with 170 nmof
SiO2 on top) are used. The signal line of TL1 features a slit of
width ∼450 nm near the end before terminating in the
ground plane, as shown in Figs. 1(b) and 1(c). We place the
graphene stack, encapsulated in hexagonal boron nitride
(h-BN), over the slit. The h-BN=graphene=h-BN stack is
prepared using the dry transfer method described in
Refs. [19,28], and positioned in the middle of the slit such
that parts of the flake lie on the signal line and parts on the
ground plane. We then etch the stack with SF6 in a reactive
ion etcher to create a well-defined rectangular geometry.
Some bubbles resulting from the transfer can also be seen in
Fig. 1(c). Raman spectroscopy [29] is used to verify the
single-layer nature of the graphene used in this study (see
Supplemental Material [30]).
Since there are no evaporated contacts on graphene, the

same circuit can be employed for different stack geometries.
We first fabricate a device with stack dimensions W × L of
6.5 μm× 13 μm (device A), where W and L, respectively,
denote the width and length of the rectangular graphene.
After measurements on deviceA, the stack is etched into new
dimensions of 6.5μm×7.2μm (device B). For both devices,
a graphene area of 6.5 μm × 3.4 μm stays on the signal
(gate) line, see Fig. 1(c). The graphene sections lying above
the ground plane had areas of 6.5 μm × 9.6 μm for deviceA,
and 6.5 μm× 3.8 μm for device B. Device A is hence
asymmetric while device B is quasisymmetric around the
slit. More importantly, two devices on the same circuit with
the same graphene flake but different geometry provide
consistency checks. A third symmetric device C of dimen-
sions 5 μm× 12 μm with a separate resonator circuit and a
different graphene stack is also measured.

III. MEASUREMENT PRINCIPLE

We extract the graphene properties by measuring the
complex reflection coefficient of the stub tuner, which
depends on the rf admittance of a load [31]. The reflected
part of the rf (radio frequency) probe signal fed into the
launcher port of the circuit is measured using a vector
network analyzer. To tune the Fermi level of the graphene a
dc voltage VG is also applied to the launcher port with the
help of a bias tee, as shown in Fig. 1(a). The gate voltage
changes (locally) the carrier density and hence the quantum
capacitance. By analyzing the response of the circuit,
changes in differential capacitance, related to the quantum
capacitance CQ and in dissipation, related to charge

relaxation resistance R can be extracted. All reflectance
measurements are performed at an input power of
−110 dBm and at a temperature of 20 mK. The latter is
chosen only to have a good quality factor of the resonance
response of the superconducting niobium circuits.
To understand the effect of gating, we divide the graphene

into two areas denoted by A1 and A2 in Fig. 1(c). A gate
voltage on the signal line induces charges on the part of the
graphene flake above it. Since the total number of charges in
graphene in the absence of a contact cannot change, charges
on one part must be taken from the other. For a pristine
graphene with the Fermi level at the charge neutrality point
(CNP) without gating, this results in the formation of a p-n
junction near the slit at each gate voltage. However, when a
finite offset doping is present, an offset voltage has to be
applied and the charge neutrality is reached at two different
gate voltages, once for each part of graphene. At voltages
higher than these offset voltages (in absolute value) a p-n
junction is present in the graphene. The charge carrier density
changes rapidly close to the slit, but it is constant further away
from the slit. Because of different areasA1 andA2, the applied
gate voltage results into different charge densities, but equal
and opposite total charge on the two sides.
In the transmission line geometry, the rf electric field

emerges from the signal plane and terminates on the ground
plane. While the field lines are quasiperpendicular to the
graphene surface further away from the slit, they become
parallel and relatively stronger in magnitude near the slit.
The field distribution hence probes both the properties of
the bulk graphene (homogeneous charge distribution)
and the junction graphene (inhomogeneous charge distri-
bution). For simplicity, we model the graphene as lumped
one-dimensional elements of capacitance and resistance as
shown in Fig. 1(e). The graphene impedance is then simply
given as ZG ∼ Rþ 1=ðjωCÞ with the total series capaci-
tance C and resistance R as

1

C
¼ 1

CG1
þ 1

CQ1

þ 1

CG2
þ 1

CQ2

; ð1Þ

R ¼ R1 þ R12 þ R2; ð2Þ
where ω ¼ 2πf the angular frequency. Thus, CQ ¼
CQ1CQ2=ðCQ1 þ CQ2Þ and CG ¼ CG1CG2=ðCG1 þ CG2Þ
are the total quantum and geometric capacitances of the
graphene device. We have assumed that the junction
capacitance C12 is relatively small so that the junction
resistance R12 ≪ 1=ðωC12Þ. Moreover, we ignore the
parallel slit capacitance Cslit which is small and gate
independent. Together with the load ZG, the reflectance
response Γ of the stub tuner can now be described by
½ðZin − Z0Þ=ðZin þ Z0Þ�2 where the input impedance Zin is
given as [32]

Zin ¼ Z0

�
tanhðγdÞ þ Z0 þ ZG tanhðγlÞ

ZG þ Z0 tanhðγlÞ
�

−1
; ð3Þ
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with Z0 ∼ 50 Ω the characteristic impedance of the trans-
mission line, γ ¼ αþ iβ the propagation constant, α the
attenuation constant, β ¼ ffiffiffiffiffiffiffi

ϵeff
p

ω=c the phase constant, ϵeff
the effective dielectric constant, and c the speed of light.

IV. EXPERIMENTAL RESULTS

Figure 2(a) shows a color map of frequency and gate
voltage response of the reflected signal for device B. Large
frequency shifts at two gate voltages can be observed near
VG ¼ 0. These can be identified as points where either part
of the graphene flake is driven charge neutral. At higher
gate voltages, p-n junctions are formed in between the
unipolar regimes. This behavior is observed in all our
devices, suggesting the presence of a finite offset doping in
the system. From the vertical cuts of the map shown in
Fig. 2(b), changes in the resonance depth, resonance width,
and resonance frequency are apparent. Naively, a pure

capacitive load should shift the resonance frequency, while
a pure resistive load changes dissipation of the system.
To quantitatively extract ZG, we first need to extract

the parameters l, d, α, and ϵeff from the reflectance
measurements of the same circuit without any graphene
stack. To this end, we simply ash the graphene stack away
using Ar=O2 plasma. The frequency response of the open
circuit is shown in the inset of Fig. 2(b) together with a fit to
Eq. (3) with ZG ¼ ∞. We extract l ≈ 10.57 mm and
d ≈ 10.39 mm, α ≈ 0.0025 m−1 and the effective dielectric
constant ϵeff ≈ 6.1. The loss constant corresponds to an
internal quality factor of 25 000 which is readily achieved
with superconducting Nb circuits. The extracted lengths are
within 1% of the designed geometric lengths. Moreover,
the resonance frequency of the open stub tuner (2.886 GHz)
is larger than the values observed in Fig. 2(a), confirming
the capacitive load of our devices. We now fix the extracted
parameters from open circuit, and fit the resonance spectra
to deduce R and C. As shown in Fig. 2(b), the fitting to
Eq. (3) yields R ¼ 118 Ω, C ¼ 18.2 fF for VG ¼ −2 V
and R ¼ 328 Ω and C ¼ 17.2 fF for VG ¼ 1 V. Similar
fitting is performed at all gate voltages and deduced C and
R are plotted in Figs. 3 and 4.
As shown in Fig. 3, we observe for both devices a double

dip feature in the extracted capacitance near VG ¼ 0 V
and its saturation at higher voltages. While the dips have
similar widths for device B, these are quite different for
device A. This again results from the asymmetric gating of
the two areas of graphene. To understand the general
dependence, we look back at the individual capacitance
contributions in Eq. (1). Geometric capacitance CGi with
i ¼ 1, 2 is simply given by CGi ¼ Aiϵ0ϵBN=d, where ϵ0 is
the vacuum permittivity, ϵBN the dielectric constant, and
d ¼ 21.5 nm the thickness of the bottom h-BN estimated
from AFM measurements. Additionally, the quantum
capacitance can be derived from the density of states
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FIG. 2. Reflectance response of the stub tuner. (a) A color
map of the measured reflectance power near the resonance
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(DOS) as CQ=A ¼ e2DOS. The resulting dependence of
CQ in graphene with gate voltage V is then explicitly given
as [33–36]

CQiðVÞ ¼ Ai
4e2

hvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
niðVÞπ

p
; ð4Þ

with i ¼ 1, 2 and vF the Fermi velocity and h the
Planck constant. The gate induced carrier density is
niðVÞ ¼ ðVi − V0

i ÞCGi=ðAieÞ, where V0
i accounts for the

offset in CNP from zero. Using Eqs. (1) and (4), it can be
seen that the C is dominated by the CG at large gate
voltages causing the saturation of the extracted capacitance.
The saturation values are different for the two devices
because different flake areas yield different CG. In contrast,
near charge neutrality CQ ≲ CG, the quantum capacitance
starts to dominate. The fact that C does not approach zero
can be attributed to the impurity-induced doping hn2imp;ii,
with i ¼ 1, 2, resulting from charge puddles [37]. To this
end, we replace niðVÞ with a total carrier density including

this factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2i ðVÞ þ n2imp;i

q
. The knowledge of most of the

relevant parameters allows us to fit the capacitance curves
with ϵBN, nimp, and vF as fitting parameters. This is shown
by solid curves in Fig. 3. The excellent fits to Eq. (1)
capture both the depth and width near the charge neutrality
points and justify the series model of the graphene
impedance with C arising from the total graphene area.
For device AðBÞ we extract ϵBN ≈ 4ð4Þ, vF ≈ 1.05ð0.95Þ ×
106 m=s and nimp;1 ≈ 5ð7Þ × 1010 cm−2 and nimp;2≈
1ð6Þ × 1010 cm−2. The low impurity carrier concentration
is consistent with transport measurements in graphene
encapsulated with h-BN [37]. In another symmetric device
C (see Fig. S2 in the Supplemental Material [30]) with a
different circuit and a different stack, the nimp is found to be
even lower ≈4 × 109cm−2 and extracted Fermi velocity
higher ≈1.54 × 106 m=s. Such renormalization of vF due
to electron-electron interactions at low doping has been

observed both in capacitance [36] and transport measure-
ments [38–40] in homogeneously doped graphene.
We now discuss the real part of the graphene impedance

which relates to the dissipation of the microwave reso-
nance. The extracted R for two devices fabricated from the
same h-BN/graphene/h-BN stack (devices A and B) is
plotted in Fig. 4(a). Two peaks are visible in the extracted
resistances, which are similar to the charge neutrality points
in transport measurements. The positions of the peaks
correspond to the minima of the extracted capacitance. At
large gate voltages where residual impurities play a
negligible role, the resistances start to saturate around
similar values despite the fact that device A is twice as
long as device B. In the absence of contacts, this points to
the direction that the resistance is dominated by the p-n
junction at high doping. A similar behavior of R is seen in
the device C (see Fig. S2(c) in the Supplemental Material
[30]). Close to CNPs, the respective bulk graphene areas
also contribute significantly to the resistance. These fea-
tures are in agreement with the density dependence of the
conductivity in the bulk and in the p-n junction. While the
conductivity for the p-n junction [41] is proportional to
n1=4, it scales as n or n1=2 for bulk graphene depending on
the relevant scattering mechanisms [42].
The bulk carrier transport in graphene can be charac-

terized by the diffusion constantD. By knowing both R and
CQ, D can be calculated from the Einstein relation

D ¼ ðLÞ2=ðRCQÞ: ð5Þ
A complication in our devices arises due to the presence of
a p-n junction which is almost always present. We can,
therefore, only get an estimate of D by considering R and
CQ, that are largely arising from only one graphene area A1

or A2. For higher gate voltages, the p-n junction resistance
plays a role, whereas close to the CNPs, both areas
contribute to the resistance and the capacitance signifi-
cantly. The inverse of the quantum capacitance, obtained by
subtracting the total geometric contribution CG from the
total extracted C, is now plotted against the simultaneously
measured resistance R in Fig. 4(b). We have taken the data
points that are strictly on the left (negative VG) or the right
side of CNPs (positive VG). We extract D at a modest
doping marked by the dashed line in Fig. 4(b). Since one
cannot separate the contribution of p-n resistance, by using
the total R in Eq. (5), bulk graphene resistance is over-
estimated and therefore D is underestimated. In graphene
areas A1 lying on signal plane (not changed after etching),
we get D ¼ 0.19 ð0.21Þ × 104 cm2=s for device A (B). In
contrast, for area A2 lying on the ground plane, we get
1.2 ð0.32Þ × 104 cm2=s. The large differences in D for area
A2 between two devices is consistent with variations in the
impurity concentration extracted from the fitting of the
capacitance, and could result from the additional etching
step of the stack for device B. We, furthermore, estimate an
average mean free path of two areas lm ¼ 2hDi=vF to yield
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1.4 ð0.5Þ μm for device A (B), which are in reasonable
agreement with values reported in transport measurements.

V. DISCUSSIONS

In summary, we have capacitively coupled encapsulated
graphene devices to high quality microwave resonators and
observed clear changes in the resonance linewidth and
frequency as a response to changes in the gate voltage. We
are able to reliably extract geometrical and quantum
capacitance in good agreement with the density of states
of graphene and simple capacitance models, respectively.
Moreover, the charge relaxation resistance can be simulta-
neously inferred and the diffusion constant can be esti-
mated. The results highlight a fast characterization of
graphene without requiring any contacts that could com-
promise the device quality.
An uncertainty of the given measurements lies in the

extracted R due to the loss constant α of the circuit which
can vary from one cool down of the device to the next (see
Fig. S4 in the Supplemental Material [30]). The α could be,
however, accurately determined, without the need for
graphene removal and separate cooldown, in the quantum
Hall regime where the conductance of the device is
known. For this purpose, due to the large magnetic fields,
copper resonators [43] have to be fabricated which will also
enable measurements at elevated temperatures.
The ability of our circuit to measure quantum capaci-

tance and resistance in a contactless way can, for example,
be useful to study band modifications of graphene due to
proximity spin orbit effects [44] or due to moiré super-
lattices [45]. The method can also be useful for other 2D
materials, on which an ohmic contact is challenging to
obtain and can be easily extended to semiconducting
transition metal dichalcogenides and perovskites [3].
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