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We develop and analyse two population-based models of the transmission dynamics of the worm para-
site Opisthorchis viverrini. The life cycle of O. viverrini includes humans, cats and dogs as definitive hosts;
and snails and fish as intermediate hosts. The first model has only one definitive host (humans) while
the second model has two additional hosts: the reservoir hosts, cats and dogs. We define reproduction
numbers and endemic equilibrium points for the two models. We use prevalence data for the five hosts
from two islands in Lao People’s Democratic Republic to estimate distributions of parameter values. We
use these distributions to compute the sensitivity index and the partial rank correlation coefficient of the
basic reproduction number and the endemic equilibrium point to the parameters. We calculate distri-
butions of the host-specific type-reproduction number to show that humans are necessary to maintain
transmission and can sustain transmission without additional reservoir hosts. Therefore interventions tar-
geting humans could be sufficient to interrupt transmission of O. viverrini.

Simulation
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1. Introduction

Food-borne trematodiases are some of the most neglected of
the so-called neglected tropical diseases. They are caused by di-
genetic trematodes, which live in the biliary duct of their host
animal (Kaewkes, 2003). The disease opisthorchiasis is caused by
the worm parasites Opisthorchis viverrini, O. felineus and Clonorchis
sinensis. The liver fluke O. viverrini is endemic in Asia, mainly in
Thailand, Lao People’s Democratic Republic (Lao PDR) and Cambo-
dia (Sithithaworn and Haswell-Elkins, 2003). Worldwide 9-10 mil-
lion people are infected with this liver fluke (Keiser and Utzinger,
2009; Sithithaworn and Haswell-Elkins, 2003) and 67.3 million are
at risk of infection. Transmission is found in areas where hu-
mans have the habit of eating raw, pickled or undercooked fish
(First et al.,, 2012a).

Fig. 1 shows the life cycle of O. viverrini (and correspond-
ingly of O. felineus and C. sinensis). The first intermediate hosts
of O. viverrini are snails of the genus Bithynia (Forrer et al.,
2012). Freshwater snails ingest eggs, where they hatch to become
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miracidia. After approximately two months, infected snails release
cercariae. The free-swimming cercariae penetrate through the skin
of the second intermediate hosts, Cyprinidae fish (Upatham and
Viyanant, 2003), and become fully infective metacercariae after 21
days (Kaewkes, 2003).

The definitive hosts of O. viverrini, humans and other mam-
mals like cats and dogs, get infected through the consumption
of undercooked fish infected with metacercariae. A dish with
raw fish can contain hundreds of viable O. viverrini metacercariae
Phongluxa et al. (2015). The immature worm of O. viverrini mi-
grates from the duodenum into the biliary tract. After one month
the worm matures into an adult worm and mates within the lu-
men of the bile ducts and gall bladder. The eggs of the worm travel
through the bile ducts, enter the lumen and pass out with the fae-
ces (Brindley et al., 2015). The daily output of infected humans
ranges between 3000 and 36,000 eggs per gram of stool. The life
span of the worms in humans is around ten years. The whole life
cycle of O. viverrini has a duration of four months (Sithithaworn
and Haswell-Elkins, 2003; Upatham and Viyanant, 2003).

Infection with worms leads to many liver diseases including
cholangitis, obstructive jaundice, hepatomegaly, biliary periductal
fibrosis, cholecystitis, and cholelithiasis. Treatment of worms
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Fig. 1. Schematic of the life cycle of O. viverrini.

usually consists of three doses of praziquantel, which is cheap,
safe and effective in killing worms. However, treatment of any
subsequent liver disease is expensive and difficult. Chronic in-
fection with O. viverrini can also lead to the bile duct cancer,
cholangiocarcinoma (Brindley et al., 2015). This kind of cancer is
rare but with a poor prognosis (Sayasone et al., 2012).

There are no published papers in mathematical modelling of
0. viverrini, but there is one on modelling the related parasite C.
sinensis. Song et al. developed a catalytic model to estimate equi-
librium transmission rates (Won et al., 1979). However, catalytic
models are based on linear ordinary differential equations (ODEs)
with constant coefficients, so they cannot capture the nonlinear
dynamics of transmission.

There are also many publications on modelling schistoso-
miasis, a similar disease with only one intermediate host, the
snail. Schistosome parasites infect the human as cercariae in
the free-swimming stage, whereas O. viverrini cercariae infect
fish (Ndsell and Hirsch, 1973). The first model of schistosomi-
asis was by Hairston in 1965. He used life-tables to calculate
the net reproductive rate of the parasite, modelling female
and male worms separately (Hairston, 1965). In the same year,
Macdonald developed a dynamic model with the probabil-
ity of pairing worms and the proportion of hosts with paired
worms (Macdonald, 1965). Goffmann and Warren adopted the
Kermack-McKendrick susceptible-infectious-recovered (SIR) model
to humans and snails, including the free swimming miracidia and
cercariae Goffman and Warren (1970). Nasell and Hirsch devel-
oped a stochastic model of the intensity of infection (Nasell and
Hirsch, 1973). Anderson and May developed an ODE model with
the mean worm burden in the human host. They split the snails
into three groups: susceptible, latent and shedding (Anderson and
May, 1985). Habbema simulated a stochastic model of the intensity
and prevalence in individual humans (Habbema et al., 1996). We
base our model on Anderson and May by tracking the mean worm
burden instead of the prevalence of infection in humans, because
infectivity to snails and human morbidity depend on the intensity
of infection. Similar to previous schistosomiasis models for snails,
we use susceptible-infectious models for snails and fish.

To create a basis for the mathematical modelling of food-borne
trematodes with population-based models, we develop two differ-
ent models. We first develop a simple model that only includes
infection in fish, snails and humans. We then develop a second

model that also includes infection in cats and dogs. These models
allow us to better understand the role of domestic pets in the
transmission dynamics of O. viverrini.

For these models, we define the equilibrium points, the ba-
sic reproduction number and the host-specific type-reproduction
numbers. We derive these definitions by explicit calculations using
Mathematica 10.0.2. We then use data from Lao People’s Demo-
cratic Republic to estimate reasonable distributions for the param-
eter values of the models. We conduct sensitivity analysis using
these distributions on the equilibrium points and the reproduction
numbers for both models to determine weak points in the para-
site’s life cycle and the role of each mammalian host in maintain-
ing transmission. We perform all the numerical computations in
Matlab R2017a.

2. Basic transmission model

In the basic transmission model we assume that only fish,
snails and humans are involved in the life cycle of O. viverrini,
ignoring the reservoir hosts: cats and dogs. We model the mean
worm burden in human and the prevalences of infected snails and
fish. The deterministic population-based ordinary differential equa-
tion (ODE) model represents the base transmission dynamics of
0. viverrini. It is given by

CIW/1

ar = BugNyis — LpnWh, (1a)
di . .
a s BsnNpwn (1 — is) — fsis, (1b)
di ) . )
ditf = BrsNsis (1 — i) — pyiy, (1c)

with the state variables shown in Table 1 and the parameters
shown in Table 2.

The mean worm burden per human host wy, increases with the
consumption of infected fish. This includes the number of fish, the
proportion of infectious fish and the transmission rate of parasites
to humans per fish, BN, and decreases with the death of para-
sites, fLpWy. The proportion of infectious snails is, depends on the
total adult worm population and the eggs they produce that enter
the aquatic environment, Bg,N,wy, (1 —is). Snails are infected un-
til they die at a total rate, usis. The proportion of infectious fish
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Table 1

State variables of the opisthrochiasis models.
Variable Description
Wy Mean worm burden per human host
Wy Mean worm burden per dog host
We Mean worm burden per cat host
is Proportion of infectious snails
is Proportion of infectious fish

has similar dynamics. Their rate of infection depends on the num-
ber of infectious snails and the snails’ rate of releasing cercariae,
ﬂfstis(l - if). The fish remain infected until they die at a total
rate, fgif.

This model ignores the intensity of infection in fish, as well as
the distribution of intensity in humans. We assume that all hu-
mans are the same and are equally likely to be infected by the
parasite, and that all infected fish and snails are equal with re-
gards to within- and between-species transmission, so we assume
no assortative mixing. We also ignore density-dependent effects in
hosts such as acquired immunity and Allee effects.

2.1. Existence and uniqueness of the solution

The ODE system (1) is well-posed and epidemiologically rele-
vant in the strip S ¢ R3. The strip S is defined by the boundaries
of the solutions of the system (wy, is, i),

S= [o, mef] x [0, 1%
I’Lph

The right hand side of the ODE system (1) is continuous with con-

tinuous partial derivatives in S. We assume that an initial condition

exists in the strip S. We can then show that a solution of the sys-

tem cannot leave this strip S:

(i) If w, =0, then

and, if i = 1, then

di

dits = BspNywy -0 — s - 1 < 0.
(iii) If iy = O, then

di .

(th:ﬁfstzsn —Ji5s-0>0,

and, if if=1, then

di .

Tg:ﬁfsNS’S'O_“fS'OSO'

It finally follows with the Picard-Lindelo6f theorem that a
unique solution exists for the ODE system (1) in the strip S.

2.2. Equilibrium points

Definition 1 (Disease free equilibrium point). The disease free
equilibrium, also called trivial equilibrium point, is the steady state
solution with no disease in the population.

Definition 2 (Endemic equilibrium point). The endemic equilib-
rium point is the steady state solution with all state variables pos-
itive, where the disease persists in the population.

Setting the derivatives equal to zero, the equilibrium points are
given as the solution of

0= ,Bthfl‘} — MphW;,

0 = BauNywp (1 — i) — s,

0 = ByNsiz (1 - i}) - ,ufi”}.

The system has two solutions, the disease free and the endemic
equilibrium point. The disease free equilibrium point is charac-
terized by EZM = (W}, iz.15) = (0,0,0). The endemic equilibrium
point EZM = (wj, iz, i) corresponds to

dwy _ BusNyis — ppn - 0> 0, o _ BurBsnBrsNsNaNp — fph s/t g
de wp, = , (2a)
Nog BsnNnttpn (BysNs + ke g)
and, if w, = =, then
ph i BngBsnBrsNsNyN¢ — o st ¢ (2b)
dw, _ . Ny By S BrsNs(BrsBsnNulNy + thpnits)
—— = BngNyiy — Hpn - <0
dt P Mph
.. . . ,Bhf,Bsh,stNsNth — MphMsh g
(ii) If is = 0, then Iy = (2¢)
BrgBshNuNg (BrsNs + a5)
diy 0-0 e
€T BsuNpwy -1 — s -0 = 0, which is in the interior of S if BB BsNsNyNp> fhpnidsits.
Table 2
Parameters of the opisthorchiasis model.
Parameter  Description Dimension
Ny Population size of humans Animals
Ny Population size of dogs Animals
N Population size of cats Animals
Ns Population size of snails Animals
L\ Population size of fish Animals
Mph Per capita death rate of adult parasites in humans (includes additional mortality due to death of humans)  1/Time
Mpd Per capita death rate of adult parasites in dogs (includes additional mortality due to death of dogs) 1/Time
Ipc Per capita death rate of adult parasites in cats (includes additional mortality due to death of cats) 1/Time
s Per capita death rate of snails 1/Time
I Per capita death rate of fish including mortality through fishing by humans 1/Time
Brs Transmission rate from infectious fish to humans per person per fish 1/(Time x Animals)
Bar Transmission rate from infectious fish to dogs per dog per fish 1/(Time x Animals)
B Transmission rate from infectious fish to cats per cat per fish 1/(Time x Animals)
Bsa Infection rate of snails per parasite in a dog host 1/(Time x Animals)
Bse Infection rate of snails per parasite in a cat host 1/(Time x Animals)
Bsh Infection rate of snails per parasite in a human host 1/(Time x Animals)
Brs Infection rate of fish per snail 1/(Time x Animals)




184 C. Biirli et al./Journal of Theoretical Biology 439 (2018) 181-194

2.3. Basic reproduction number

Definition 3 (Basic reproduction number). The basic reproduction
number Rq is the average number of new cases of an infection
(or number of parasite offspring) caused by one typical infected
individual (or one parasite), from one generation to the next, in a
population with no pre-existing infections.

To determine Ry, we define the next-generation matrix (NGM)
K. This matrix relates the numbers of newly infected individuals or
number of adult parasites in consecutive generations. Rq is then
defined as the dominant eigenvalue of K.

The linearised infection subsystem describes the production of
newly infected individuals and changes in the states of already in-
fected individuals. To derive the next-generation matrix K, we de-
compose the matrix, which describes the linearised model, into
two matrices, T and X. T describes transmission: the production
of new infections; and X describes transition: the changes in state.
K is defined as the product of —T and X~! and Ry is the spectral
radius, p, of K. Therefore, Rg = p(-TX"1).

The interpretation of the (i, j)th entry of X~ is the expected
time that an individual, who presently has the infected state j, will
spend in the infected state i. The (i, j)th entry of T is the rate at
which an individual in the infected state j produces individuals
with the infected state i. Therefore, the (i, j)th entry of the NGM
K is the expected number of the infected offspring with the state
i who are infected by an individual currently in infected state j
(Diekmann et al., 2010).

The transmission matrix is

0 0 BngN¢
T= lgshNh 0 0 s
0 BuNs 0

and the transition matrix is

—Mph 0 0
Y= 0 — s 0 |.

0 0 —,LLf
The next-generation matrix of the basic model is therefore

N
0 o Pl

M

K= 15" = | Bl 0 0

/’Lph
0 ﬂfst 0
Ms

The eigenvalues of the next-generation matrix K are

= o/ BrgBsiBssNuNsN¢
Mpntbsply

o/ BrgBsn BrsNuNsNy

Ay =—(-1)3 :
Mph st ¢
B = (1)} BrgBsnBrsNnNsN¢
Mpnibsply

All eigenvalues have the same modulus, so the (not strictly) dom-
inant eigenvalue is Aq, the only real and positive eigenvalue of K.
Hence, it follows that

5/ BugBsuBrsNnNsNg

Mpnisiy
The ecological definition of the basic reproduction number is
the number of offspring adult worms produced by a single adult
worm in its life time, in the absence of density-dependence. This
number corresponds to the cube of Ry defined in (3) to include all
life stages of the parasite.

Ro (3)

2.4. Stability of the equilibrium points

The basic reproduction number provides a threshold condition
for the stability of the disease free equilibrium point. If Ry < 1,
then the disease free equilibrium point is locally asymptotically
stable, and if Ry > 1 it is unstable. We conjecture that the disease
free equilibrium point is globally asymptotically stable if Ry <1
because we do not expect any non-equilibrium asymptotic dynam-
ics but we do not have a proof for this.

The endemic equilibrium exists if and only if
BhriBsnBsNuNsNp > ppniaspty, that is Ro > 1. To investigate the
local stability of the endemic equilibrium point, we use the
Routh-Horwitz Criterion (Proposition 1 in the Appendix) to deter-
mine the signs of the real parts of the eigenvalues of the Jacobian
matrix.

The Jacobian matrix of the basic model at the endemic equilib-
rium point is

_/’Lph 0 ,Bthf
J=| BaNo (1 =i5) = (BsuNpws; 4 1) 0
0 :stI\JS(‘l - l?) _(ﬂfsti;k + ,bCf)

—.]'1,1 0 J1.3
R P B 0 ,
0 J3.2 —J33

for wy, iy and i}, defined in (2). The eigenvalues of the Jaco-
bian matrix are calculated by setting the characteristic polynomial
p(A) = det(J — AE) to zero. This leads to the equation

A+ A2 (Jra + Jaz + J33) + AUradza + 11033 + J22J3.3)
+jiid22d33 — j13j21J32 = 0.

We can determine the a; of the Routh-Horwitz criterion in

Proposition 1 for i =0, 1, 2, 3:

ap =1,

a1 = ji1+j22+J33

ay = ji.1j22 +j11J33 + J2.2J3.3

a3 = j1.1J2.20j33 — J13J2.1J3.2-

With all the g;’s at hand, we can calculate the T;’s for k=0,1,2
and see if they are positive or negative:

To:ﬂo=1>0,

T1 = a > 0,
a a
T, = det [a; a‘z’] >0 & BupPsnBrsNulNsNy > phpnfhsity
=4 Ro > 1.

From the Routh-Hurwitz criterion it follows that the roots of
the characteristic polynomial p(A) have negative real parts and
thus the eigenvalues of J. This means that the endemic equilibrium
is locally asymptotically stable whenever Ry > 1.

3. Model with reservoir hosts

In the second transmission model we add cats and dogs as
reservoir hosts to the basic transmission model. We extend the
basic model (1) by including two additional variables: the mean
number of adult parasites per hosts in dogs (wy) and cats (w).
This leads to

dw, .
dith = BnsNyif — pphWp, (4a)
dw, .
ditd = BarNysif — UpaWy. (4b)
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dw .

a0 = BerNyis = ppewe, (40)
di . .
a - (BsiNuwp + BsaNgwy + BscNewe) (1 — is) — fsis, (4d)
di . . .
d—tf = ,stNsls(l — lf) — /,Lflf. (46)

The additional state variables are given in Table 1 and the ad-
ditional parameters are given in Table 2.

3.1. Existence and uniqueness of the solution

The existence and the uniqueness of the solution (wj, wy,
W, is, i) of the ODE system (4) follows in complete analogy to
Section 2.1 in the strip S c R” given by

N N N
p—|o NP |, o NiPu| 1o NPu x [0, 1]~
Heph Mpd Mpc

3.2. Equilibrium points

For the model with reservoir hosts (4) we solve the following
system

0 = BnsNrit — UpnWp,

0 = BuarN¢it — Upawg.

0 = BepNyif — ppeW;,

0 = (BsuNaw}, + BsaNawy + BseNewy) (1 — i) — pusis,

0= ﬂfsti;‘(l - l’}) — ,ufi},

to determine the equilibrium points. We see that EfM =

(w;,w;,wé,i;*,i*j;) =(0,0,0,0,0) is the disease free equilibrium

point and show the existence of at most one endemic equilibrium
point. We calculated an analytic expression for this endemic equi-
librium but do not present it here because of its length.

3.3. Basic reproduction number

To define the reproduction number of the model with reservoir
hosts (4), we use the same method as for the basic model before.
Hence, we obtain the transmission matrix

0 0 0 0 BNy
0 0 0 0 BarN¢
T= 0 0 0 0 BepNy
IBShNh ﬂstd /35ch 0 0
0 0 0 BrsNs 0
and the transition matrix
— M ph 0 0 0 0
0 —Mpd 0 0 0
Y= 0 0 —MUpc 0 0
0 0 0 —Us 0
0 0 0 0 —l
The next-generation matrix is thus defined as
B BrgNy 7]
0 0 0 0 i
0 0 0 o
Iy
K=-TX'=| o 0 0 0 %
f
ﬁSIN'I ﬁS N ﬂsCNC
Tom e e 00

The eigenvalues of the next-generation matrix K are the roots of
the characteristic polynomial:
det(K— AE) =

5y y2 PrsNe (BepNp BcNe . BoaNa ParNy . BusNy BsnlNa\ 1
s Ky Mpc Hpa Mg Kf  Hpn

Straightforward calculation yields:
A=A =0,
hs = \3/ PrsNs o BesNy BocNe - BsaNa ParNy PNy By
s g Mpe Mpa  HKf Kp  Mpn
= (D) \3/ BrsNs o BerNy BscNe  BsaNa BarNr . BurNy By
s Ky Hpe Hpd [y Ky Mph

_ 2 3/ BsgNs o BegNr BseNe  BarNy BsaNa  BrgNs BsuNi
As = (=1)3 + + .
s MKy Hpe Mg Hpd Kr o Hph

Since A4 and A5 are complex numbers, A3 is the dominant real
eigenvalue of K, and the reproduction number is

_ s Brsls o[ BepNp BscNe . BoaNa PNy BurNy PinN

Ro
Hs Kyg Mpc Hpa  Mf K Hpn

The endemic equilibrium point exists if and only if Ry > 1. We
expect that is locally asymptotically stable for Rg > 1 but did not
prove this.

3.4. Type reproduction numbers

To determine the role of cats and dogs in maintaining trans-
mission, we analyse host-specific type-reproduction numbers. They
are given by the spectral radii of the next-generation matrices
with leaving out one or more host types (Roberts and Heester-
beek, 2003). U; is the host-specific and Q; is the host excluded re-
production number, which are defined as

Ui = p(Kp),
Qj = p(I-K)),

where K; is the next-generation matrix of only including host i.
In this multi-host population with n types of hosts, the reservoir
community is defined as the minimum set of hosts with U> 1.
A maintenance host is the minimum of m (m <n) different hosts
which satisfy U>1 and Q <1 (Nishiura et al., 2009). With the type
reproduction number, we can define the reservoir community and
subdivide the hosts into maintenance and non-maintenance hosts
(Fig. 2). Transmission is not possible without snails and fish, so we
always include them in the model while determining the role of
the three mammalian hosts, that means i< {humans(h), dogs(d),
cats(c)}.

The different next-generation matrices and their spectral radii
are given by

o 0 0 o B&
0 0 0 O 0
Un(=Qqc) = p(Kp) = p 0 0 0 O 0
Bale 9 0 0 0
Mpn
o o o Z% 9

_ N¢NpNs BB Brs
Vo Wptpris
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Non-Maintenance host

Maintenance host (U > 1 and Q < 1)

Reservoir community (U > 1)

Population with an endemic infectious disease: Ry > 1

Fig. 2. Definition of reservoir, maintenance, and non-maintenance hosts in a population with an endemic infectious disease, figure based on (Nishiura et al., 2009, Fig. 3).

Table 3

Total number tested and positive hosts from two islands in Lao PDR

(Vonghachack et al., 2017).

Variable Description Value
np number of tested humans 994
Ph number of positive tested humans 603
ng number of tested dogs 68
Pd number of positive tested dogs 17
ne number of tested cats 64
Pe number of positive tested cats 34
ns number of tested snails 3102
Ds number of positive tested snails 9
ny number of tested fish 628
pr number of positive tested fish 169
0 0 0 0 0
o o o o B
Ky
Ug(=Que) = p(Kg) =p] | O ON 0 0 0
0 &N o 0
//vpd ﬁ N
fsi\s
o o o £&
5/ NyNsNaBag Bys Bsa
M f - pd s '
0 O 0 0 0
0 O 0 0 0
00 0 o B
Ue(=Qua) = p(Ke) = p N g
0 0 L% o 0
,stNs
oo o B2 o
5/ NyNsNeBesBrsBse
Krbpetls
0 0 0 0 0
0 0 0 o fuu
M
BerNy
Q(=Uae) = p(Kd,c) =p 0 0 0 0 Iy
.Bstd ,Bsch
O Mopd Mpe ON O
0 0 o BN

_ NsBys ( NeNgBasBsa N N¢NeBesBse
s I f M p Mrbpe )’

o o o o fu
24
0 o o o Py
Ky
Qc(=Upa) = p(Kpg) = p 0 0 0 O 0
:BS N /35 N
Bl Bafe 9 0
o o o Zr o
_ s/ NsBss ( NeNoBrsBon N N¢NgBas Bsa
s I fHph Milpa )
and
0 0 o0 o Puls
Ky
0 0 0 0 0
ﬁC N
ch(= Uh,c) = IO(Kh,c) =p 0 0 0 0 #
ﬁS N ﬁSCNC
G 0 e 00
o o o oo
_ s NsBys ( NeNpBhyBsn . N¢NcBepBse
s W ph Mg Mpe ‘

4. Sensitivity analysis

Sensitivity analysis describes what happens to some dependent
variables when one or more independent parameters are changed
(Caswell, 2001). Thus, we can see the influence of the different pa-
rameter to the basic reproduction number, the host-specific type-
reproduction number and the endemic equilibrium point.

4.1. Data and parameter values

Data on prevalence of infection in cats, dogs, snails, and fish;
and on intensity of infection in humans was collected from two
islands Don Khon and Don Som, Champasack province, Lao Peo-
ple’s Democratic Republic (Lao PDR), from October 2011 to Au-
gust 2012. The data was collected in a cross-sectional study for
a pilot community experiment of an integrated intervention pack-
age to control schistosomiasis. In the absence of time-series lon-
gitudinal data, we assume that this data represents an equilib-
rium solution, which we use to estimate the unknown parame-
ters. The number of hosts tested and found positive is shown in
Table 3 (Vonghachack et al., 2017). Additional data on the number
of worm eggs per gram of human stool is not shown here.

We assume triangular distributions as prior distributions for the
model parameters and estimate ranges and modes from the data in
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Table 4
Parameter values and ranges of the basic model (1) .

Variable  Value Range Unit

B 4898 x 10> [4.898 x 10-5,9.795 x 10-5] 1/(Animal x Day)
B 9.160 x 10-"  [9.160 x 10-'2,1.832 x 10-°]  1/(Animal x Day)
Bs 3.477 x 1075 [3.477 x 10-%,6.954 x 10-5] 1/(Animal x Day)
N 14,542 [1454.2, 29, 084] Animals
N 20,000 [2000, 40, 000] Animals
Ny 8000 [800, 16, 000] Animals
Hph 0365 [ 20365+ 765 ] 1/Days
s e [ﬁ ﬁ] 1/Days
Hf T5e%5 [ 5855 > TIHRTES ] 1/Days

Table 5

Parameter values and ranges of the model with reservoir hosts (4).
Variable  Value Range Unit
Brs 4898 x 1075 [4.898x106,9795x10%]  1/(Animal x Day)
Bar 4110 x 10 [4.110 x 10-7,8.220 x 10-5] 1/(Animal x Day)
B 4414 x 1075 [4.414 x 10°5,8.829 x 10-7] 1/(Animal x Day)
Bsn 3.053 x 10-" [3.053 x 10-'2,6.107 x 10-""]  1/(Animal x Day)
Bsd 3.053x 10-1 [3.053 x 10-12,6.107 x 10-""]  1/(Animal x Day)
Bsc 3.053x 10" [3.053 x 10-'2,6.107 x 10-""]  1/(Animal x Day)
Bs 3.477 x 107> [3.477 x 1075,6.954 x 10-%] 1/(Animal x Day)
N 14,542 [7271, 21, 813] Animals
Ny 7271 [3635.5, 10906.5] Animals
N, 4847 [2423.5, 7270.5] Animals
Ny 20,000 [2000, 40, 000] Animals
Ny 8000 [800, 16, 000] Animals
Hph 03355 [ sv385  755 ) 1/Days
Mpd 5 [8x1365 , 0.4x365] 1/Days
Mpc P ] [8x1365 ) 0.4:365] 1/Days
s 565 [2x1365 ; 0.1x365] 1/Days
Mg 5 [5:30 0,25x355] 1/Days

Table 3, literature, and expert opinions, as shown in Tables 4 and 5.
We assume that the mean life span of parasite in humans () is
10 years, mean life span of a snail (us) is 1 year and of a fish (uy)
is 2.5 years (Brockelman et al., 1986). We assume that parasites
in cats (upc) and dogs (u,q) die after 4 years, which is the aver-
age life span of cats and dogs in the area. We use the population
sizes of humans from the study in Lao PDR (Vonghachack et al.,
2017). From discussions with local village chiefs, we assume that
there are half as many dogs as humans and a third as many cats
as humans. We further expect that there are a lot more snails than
fish. We calculate the modes of the transmission parameters (8)
by assuming By, = Bsq = Bsc and solving the ODE system (4) of
the endemic equilibrium point for the data given in Table 3 (af-
ter converting the mean worm burden in humans, cats, and dogs
to prevalence as described in Section 4.2. For the basic model (1),
we multiply B, from the reservoir model by three to account for
increased transmission from humans in the absence of reservoir
hosts. We estimate wide ranges for the transmission parameters
and the population sizes of snails and fish because we have little
data on these values.

4.2. Sample construction and maximum likelihood estimation

We use a Bayesian sampling resampling approach to better esti-
mate parameter distributions. We first draw 100,000 sample sets of
parameter values, for both the basic and the reservoir hosts mod-
els, from the prior triangular distributions with modes and ranges
described in Tables 4 and 5. We filter out samples that correspond
to values of Rg < 1. In the basic model 92,758 (93%) parameter

sets correspond to Rg > 1 and in the reservoir hosts model 84,548
(85%) correspond to Rg > 1.

For the resampling, we calculate probabilities from the likeli-
hood that the solution of the equations is at the equilibrium point
corresponding to the data in Table 5 (and the eggs per gram in
each human tested). We define the likelihood function L of the
model with reservoir hosts (4) as

L =LyLyLcLsLy,

and of the basic model (1) as

L =Ly,
where

e #iph)!(iﬁ)p"(l grymep,
ta= #ipd)!(i?&)pd(l iy b,
- #il,c)!(i:)l’f(l i) epe),
b= ﬁips)!(iﬁ)ps(l )b,
= Wfipf)!(i’})pf(l — i) P,

assuming that the equilibrium prevalence i}, i, i, if, and i; are
binomially distributed. For the three mammalian hosts we need to
convert the mean worm burden at the endemic equilibrium into
prevalence of infection. For humans we have data on both preva-
lence and intensity of infection (eggs per gram in stool for each
human). We use the pre-calculated relationship from literature,
y =x% 4 2x to convert the eggs per gram in stool, y, into mean
worm burden, x (Elkins et al., 1991). We assume a negative bino-
mial distribution for the number of worms per person, leading to
the relation between mean number of eggs per person (M) and the
prevalence (P) (Guyatt et al., 1994),

P=1- (1+%)4€. (5)

We assume that cats and dogs have the same relationship between
mean worm burden and eggs per gram in stool and the same
distribution for the number of worms per host as humans. The
prevalence of infection in humans is P = 0.6066 (calculated from
Table 3) and the mean number of eggs per person is M = 1108.2,
so from equation (5), k =0.10020566. It follows that the preva-
lence in cats and dogs are

a2\ K
i;=1<1+(”’,§)) ,

2 —k
in=1- 1+(le)

We resample 2000 sets of parameter values with probability pro-
portional to the likelihood function with replacement! (Smith and
Gelfand, 1992; Stone and Chitnis, 2015).

To optimize all the infection rates (), we maximize? the loga-
rithm of the likelihood function starting from the resampled pa-
rameter set with the highest likelihood (Myung, 2003; Ziegler,
2011). The maximum likelihood estimates are shown in Table 6.

1 MatlabR2017a: bootstrp.
2 MatlabR2017a: fminsearch.
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Table 6

Maximum likelihood estimation (MLE) and the corresponding basic reproduction
number (Ro).

Basic model Model with reservoir hosts
Parameter MLE MLE
,B,,f 3.4891 x 105 1.6850 x 10~
,Bdf - 1.2733 x 106
By - 1.1851 x 10-5
Bsn 5.6002 x 10~ 3.3575 x 1011
B - 5.2889 x 10-11
Bse - 7.5833 x 1012
Brs 4.1682 x 10> 2.5073 x 10—
Np 12,231 15,143
Ny - 6,236
N¢ - 6,220
Ng 18,862 6,261
Ny 6,969 6,824
1 1
Hph 1.3526 x 365 2.8603 x 365
1
Hpa . 0.7424 = 365
1
Hoe - 1.6392 x 365
1 1
Hs 0.3580 x 365 04600 x 365
1 1
My 0.4479 x 365 2.2044 x 365
Reproduction number
Ro 11112 11112

4.3. Threshold conditions

The basic reproduction number R calculated for each of these
2000 samples is shown in Fig. 3. Note that values of Ry <1 are
excluded because we assume the existence of the endemic equilib-
rium point. For this equilibrium point, we numerically show that
all eigenvalues of the Jacobian matrix have negative real parts so it
is locally asymptotically stable.

We calculate the distributions of the type reproduction num-
bers from the resampled distributions of the parameter values
(Fig. 4). Humans, snails, and fish belong to the reservoir commu-
nity because their host-specific type-reproduction number is likely
bigger than 1 (U>1) and their host excluded type-reproduction
number is likely smaller than 1 (Q <1). Humans, snails, and fish
are also maintenance-hosts, because they are the minimum set
which satisfies U> 1. The host specific type-reproduction number

of cats and dogs is smaller than 1 (U, Us<1), so they are non-
maintenance hosts.

The host-specific type-reproduction numbers, calculated with
the parameter values in Table 6 from the maximum likelihood
estimation, are

Uy = 1.0935, Q, = 0.4016,
Uy = 0.2548, Q, = 1.1067,
Ue = 0.3640, Q.= 1.0981.

4.4. Local sensitivity analysis

The local sensitivity index is the ratio of the relative change in
the variable and the relative change in the variable. Hence, we de-
fine the normalized forward sensitivity index of a variable u and
the parameter p as, see Chitnis et al. (2008),
du p
T = — x —. 6

We first use the formula in (6) to calculate the sensitivity index
of Rg in the basic model (1) with respect to By

ro _ AR

= X @ — 3 ﬁShﬂfsNthNf o
Buy dBrs ~ Ro rRTTS

3/ By BsnBrsNaNsNy

2
3 3
’Bhf Wophsits

1

§.
The calculation is similar for the sensitivity indices of Ry with re-
spect to Bg, Bg, Ny, Ns and Ny For the sensitivity indices of R
with respect to upp, (s and py we have, for example,

TRo _ dRo XM:— B ﬂhf,Bsh,stNthNf »
e Ro Hshg [rcPab e
M ph s[4 ¢
_ 1
=-3

Therefore if, for example, B increases by 100%, then Rq in-
creases by 33%. If up, increases by 100%, then Ry decreases by
33%. Since the sensitivity index of R is independent of any other
parameters, it is valid locally and globally. Due to the same abso-
lute value of the sensitivity index, all parameters are equally im-
portant for Rg.
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Fig. 5. Local sensitivity indices and partial rank correlation coefficients (PRCC) of the basic reproduction number Ry for the basic model (1) and the model with reservoir

hosts (4).

The sensitivity index of the state variables at the endemic equi-
librium of the basic model is for example

dWZ « & _ ﬂshﬂfsNthNs
dIBhf WZ ﬂshNh,uph (ﬂfst + Mf)
« IBhf ,BshNhMph (IstNs +1y)
BrgBsnBrsNaNgNs — [Lpnfbsid ¢
BnrBsnBrsNuNNs

= BurBsnBrsNaNeNs — tpnitsiis

Fig. 6(a) shows the sensitivity index of wj for the parameter val-
ues from Table 4. The local sensitivity analysis for the model with
reservoirs host (4) is performed as described in formula (6). The
results for Rq are shown in Fig. 5(b) and the results for wj are
shown in Fig. 6(b).

4.5. Global sensitivity analysis and numerical simulation

We use partial rank correlation coefficients (PRCC) to analyse
the sensitivity globally and to compare the influence of the pa-
rameters on Ry and on the endemic equilibrium point. To calculate
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Fig. 6. Local sensitivity indices and partial rank correlation coefficients (PRCC) of mean worm burden in humans at the endemic equilibrium point w} of the basic model (1)

and the model with reservoir hosts (4).

the PRCC, we used the Matlab implementation of the PRCC func-
tion developed in Marino et al. (2008)3. The function was run on

the 2000 samples from Section 4.2.

3 http://malthus.micro.med.umich.edu/lab/usanalysis.html (24.10.2016).

Figs. 5(c) and (d) show, from the top to the bottom, the influ-
ence of the change in the parameter on Ry and Figs. 6(c) and (d)
show the influence on w} in the basic model (1) and in the model
with reservoir hosts (4). The closer the absolute value is to one,
the more influence the parameter has on the output.


http://malthus.micro.med.umich.edu/lab/usanalysis.html
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Fig. 7. Basic reproduction number Rq for the basic model (1) and the model with reservoir hosts (4) varying population sizes of two hosts with all other parameters as in

Table 6.

In the basic model (1), the death rate of snails (us) has the
most global influence on Ry, followed by the death rate of par-
asites in humans (up,) and the death rate of fish (uys). However
there is little difference between the parameter values, so the basic
model is not able to differentiate between the sensitivity of the pa-
rameters on Rg. For the model with reservoir hosts (4), the death
rates of snails and fish (us, uy), followed by death rate of parasites
in humans (up,) have the most global influence on Rg.

The death rate of parasites in humans (u,;,) has the most global
influence on the mean worm burden of humans at the endemic
equilibrium point w; in both models, followed by the fish to hu-
man transmission rate (8ps) and the number of fish (Ny).

In Fig. 7 we show two dimensional sensitivity analysis of Rg
(of both models) to the population sizes of the five hosts with all
other parameters as in Table 6. Fig. 7(a) shows the dependence of
Ro of the basic model (1) when the numbers of snails (Ns) and
fish (Nf) are varied. Ry depends more strongly on the population
size of snails than of fish. The sensitivity of Ry for the model with
reservoir hosts (4) is presented in Figs. 7 (b)-(d). Fig. 7(b) shows
the variation of Ry to the number of snails (Ns) and fish (Ny). Sim-
ilar to the basic model, Rq increases faster with more snails faster
than with more fish. In Fig. 7(c), we see that Ry increases faster
with the number of dogs (N;) than with the number of cats (N¢).
Fig. 7(d) shows that when the numbers of humans (N;) and cats
(N¢) are varied, R increases more rapidly with the number of cats.

We show numerical simulations of the basic model (1) and
of the model with reservoir hosts (4) in Fig. 8. For both models
the parameter values are given in Table 6 and the initial condi-
tions are w, =1, wy=1, we=1, is=0 and i; =0. We use the

Dormand-Prince method* to integrate over the time interval [0,
70000], which corresponds to a time period of 190 years.

5. Discussion

We analysed two population-based models of transmission dy-
namics of the O. viverrini. The basic model (1) includes the in-
termediate hosts snails and fish, and humans as definitive hosts.
We extended this model to a model with reservoir hosts (4) by
including cats and dogs as additional definitive hosts. We proved
that the models are mathematically and epidemiologically well-
posed. We obtained an explicit expression for the basic reproduc-
tion number Ry. We defined the disease-free and the endemic
equilibrium points, showed the criterion for the existence of these
points points, and investigated their stability with respect to Rg.
We used Bayesian sampling-resampling with data from two islands
in Lao PDR to construct distributions for the parameter values. We
finally simulated the mean worm burden in the definitive hosts
and the prevalence in the intermediate hosts over time.

The host-specific type-reproduction number defines the num-
ber of new infection from one infected individual when certain
types of hosts are excluded from the model. It helps to identify
the reservoir community and their maintenance hosts. We showed
that humans, snails, and fish are maintenance-hosts because they
can sustain transmission on their own. Furthermore, transmission
is not possible if any of these species is removed from the cycle,
so they are also reservoir hosts. This implies that it is possible to

4 MatlabR2017a: ode45.
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Fig. 8. Numerical simulations of the opisthorchiasis models (1) and (4) with the Dormand-Prince method over a time line of 70,000 days. The initial values are 1 for the

worm burdens and 0 for the prevalence. The parameter values are in Table 6.

interrupt transmission with interventions that only target humans
and ignore cats and dogs. For example, improving sanitation to
an high enough level would be sufficient to eliminate opisthorchis
transmission in Lao PDR.

The basic model could not differentiate between the sensitivity
of the parameters on the basic reproduction number, Rg. Sensi-
tivity analysis of the model with reservoir hosts showed that Rg
depends mostly on the death rate of parasites in humans (upy),
of snails (us), and of fish (uy), and the population sizes of snails
(Ns) and fish (Ny). Increasing the death rate of parasites in hu-
mans (fipy) is possible through regular treatment of humans with
praziquantel. Increasing the death rates of snails (us) and fish (if)
is more difficult, but reducing the number of snails is possible
through snail control. Improved sanitation (which lowers Bg,) and
safe fish production (which lowers Bjs) have a moderate effect on
reducing Rg.

There are some differences in the sensitivity indices of the equi-
librium mean worm burden in humans (w} ) between the basic and
the model with reservoir hosts and between the local and global
analysis (Fig. 6). However, the death rate of parasites in humans
(tpr), the transmission rate from fish to humans (Bg) and the
number of fish (Ny) most often have a high sensitivity index. This
suggests that regular treatment of humans and safe fish production
are the most effective intervention in reducing the parasite burden
in humans. Sensitivity analysis of the model with reservoir hosts
(4) showed that the cats have more influence on the worm burden
in humans than dogs.

In both models, we ignored seasonality, the age of humans, the
dynamics of infection in fish and the latent period in snails and
fish. Transmission of O. viverrini follows a seasonal pattern because
of increases in the number of snails and fish in the rainy season.
This implies that interventions could be more effective if targeted
in the right season. Additionally it may also be possible that in the
rainy season, cats or dogs could sustain transmission.

The results of the sensitivity analysis depend on the data we
used to fit the models. This data was collected in 2011-2012 from
a cross-sectional survey in two islands so, in the absence of any
time-series data, we made the parsimonious assumption that the
system was at an endemic equilibrium and that the coverage of
any interventions (such as improved sanitation) was constant, with
their effects included in the model parameters. Although there
may have been intermittent mass drug administration campaigns
in the past, a consistent nationwide schistosomiasis elimination
program, with annual mass drug administration (with praziquan-
tel which also kills O. viverrini worms) combined with improved
access to sanitation and safe water, was only started later in 2015.

In the models, we assumed all humans are the same and ig-
nored the fact that babies are born without infection and chil-
dren have a lower worm burden than adults. Since humans accu-
mulate parasites over their life times, heterogeneity in the distri-
bution of worms in humans may lead to sustained transmission
even at lower mean worm burdens. At high parasite density there
are likely to be effects of density-dependence such as competition
and immune regulation, but we ignore these effects in our sim-
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ple model. A more complete analysis of heterogeneity in human
exposure, density-dependent effects at high parasite densities, and
the impact of high density infections on morbidity and mortality
would likely require an individual-based model, that includes the
intensity of infection in each human. Additionally, detailed data on
the densities of worms in humans would be necessary to parame-
terise such a model.

0. viverrini is a hermaphrodite — it has both male and female
reproductive organs — so any two worms in one definitive host
can reproduce and Allee effects at low worm densities are less rel-
evant for this species (Fiirst et al., 2012b) (although they could also
be included in an individual-based model). Assortative mixing be-
tween species is unlikely because cats and dogs are domestic pets
so all definitive hosts live in the same households, eat the same
fish, and are likely the infect the same fish.

The infection rate from fish to the definitive hosts (B Bgs Ber)
depends on the intensity of infection in fish. We ignore the inten-
sity of infection in fish, but model the prevalence of infected fish.
Similar to the heterogeneity in humans, the heterogeneity of inten-
sity of infection in fish could lead to higher transmission. Infected
snails and fish are not infectious immediately but need some time
for the parasite to develop. This latent period could lead to a lower
prevalence of infectious snails and fish, because infected snails and
fish can die before becoming infectious. We plan to investigate the
implication of these assumptions in future work.

This work suggests that including cats and dogs in a model of
opisthorchis allows us to better differentiate the most important
parameters for maintaining transmission and reducing worm bur-
den in humans. However cats and dogs are not necessary to main-
tain transmission so it would be possible to eliminate O. viverrini
by only targeting humans with effective interventions such as reg-
ular treatment, safe fish production and improved sanitation.
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Appendix A.

Proposition 1 (Routh-Horwitz criterion, see Korn and

Korn (2000)). For a polynomial
f(x) = apx® + a1x*> + axx+az =0 (A1)

with a; e R for i =0,1, 2,3, the number of roots with positive real
parts is equal to the number of sign changes in either one of the se-
quences
T

To. Ty, =

0, Ih T,

or

To.T. i T,

where

To=ay>0, T =a, Tzzdet[al “0}
a a

Given ag > 0, all roots have negative real parts if and only if Ty, Ty
and T, are all positive.
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