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a b s t r a c t 

We develop and analyse two population-based models of the transmission dynamics of the worm para- 

site Opisthorchis viverrini . The life cycle of O. viverrini includes humans, cats and dogs as definitive hosts; 

and snails and fish as intermediate hosts. The first model has only one definitive host (humans) while 

the second model has two additional hosts: the reservoir hosts, cats and dogs. We define reproduction 

numbers and endemic equilibrium points for the two models. We use prevalence data for the five hosts 

from two islands in Lao People’s Democratic Republic to estimate distributions of parameter values. We 

use these distributions to compute the sensitivity index and the partial rank correlation coefficient of the 

basic reproduction number and the endemic equilibrium point to the parameters. We calculate distri- 

butions of the host-specific type-reproduction number to show that humans are necessary to maintain 

transmission and can sustain transmission without additional reservoir hosts. Therefore interventions tar- 

geting humans could be sufficient to interrupt transmission of O. viverrini . 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Food-borne trematodiases are some of the most neglected of

he so-called neglected tropical diseases. They are caused by di-

enetic trematodes, which live in the biliary duct of their host

nimal ( Kaewkes, 2003 ). The disease opisthorchiasis is caused by

he worm parasites Opisthorchis viverrini, O. felineus and Clonorchis

inensis . The liver fluke O. viverrini is endemic in Asia, mainly in

hailand, Lao People’s Democratic Republic (Lao PDR) and Cambo-

ia ( Sithithaworn and Haswell-Elkins, 2003 ). Worldwide 9–10 mil-

ion people are infected with this liver fluke ( Keiser and Utzinger,

009; Sithithaworn and Haswell-Elkins, 2003 ) and 67.3 million are

t risk of infection. Transmission is found in areas where hu-

ans have the habit of eating raw, pickled or undercooked fish

 Fürst et al., 2012a ). 

Fig. 1 shows the life cycle of O. viverrini (and correspond-

ngly of O. felineus and C. sinensis ). The first intermediate hosts

f O. viverrini are snails of the genus Bithynia ( Forrer et al.,

012 ). Freshwater snails ingest eggs, where they hatch to become
∗ Corresponding author. 
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iracidia. After approximately two months, infected snails release

ercariae. The free-swimming cercariae penetrate through the skin

f the second intermediate hosts, Cyprinidae fish ( Upatham and

iyanant, 2003 ), and become fully infective metacercariae after 21

ays ( Kaewkes, 2003 ). 

The definitive hosts of O. viverrini , humans and other mam-

als like cats and dogs, get infected through the consumption

f undercooked fish infected with metacercariae. A dish with

aw fish can contain hundreds of viable O. viverrini metacercariae

hongluxa et al. (2015) . The immature worm of O. viverrini mi-

rates from the duodenum into the biliary tract. After one month

he worm matures into an adult worm and mates within the lu-

en of the bile ducts and gall bladder. The eggs of the worm travel

hrough the bile ducts, enter the lumen and pass out with the fae-

es ( Brindley et al., 2015 ). The daily output of infected humans

anges between 30 0 0 and 36,0 0 0 eggs per gram of stool. The life

pan of the worms in humans is around ten years. The whole life

ycle of O. viverrini has a duration of four months ( Sithithaworn

nd Haswell-Elkins, 2003; Upatham and Viyanant, 2003 ). 

Infection with worms leads to many liver diseases including

holangitis, obstructive jaundice, hepatomegaly, biliary periductal

brosis, cholecystitis, and cholelithiasis. Treatment of worms
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic of the life cycle of O. viverrini . 
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usually consists of three doses of praziquantel, which is cheap,

safe and effective in killing worms. However, treatment of any

subsequent liver disease is expensive and difficult. Chronic in-

fection with O. viverrini can also lead to the bile duct cancer,

cholangiocarcinoma ( Brindley et al., 2015 ). This kind of cancer is

rare but with a poor prognosis ( Sayasone et al., 2012 ). 

There are no published papers in mathematical modelling of

O. viverrini , but there is one on modelling the related parasite C.

sinensis . Song et al. developed a catalytic model to estimate equi-

librium transmission rates ( Won et al., 1979 ). However, catalytic

models are based on linear ordinary differential equations (ODEs)

with constant coefficients, so they cannot capture the nonlinear

dynamics of transmission. 

There are also many publications on modelling schistoso-

miasis, a similar disease with only one intermediate host, the

snail. Schistosome parasites infect the human as cercariae in

the free-swimming stage, whereas O. viverrini cercariae infect

fish ( Nåsell and Hirsch, 1973 ). The first model of schistosomi-

asis was by Hairston in 1965. He used life-tables to calculate

the net reproductive rate of the parasite, modelling female

and male worms separately ( Hairston, 1965 ). In the same year,

Macdonald developed a dynamic model with the probabil-

ity of pairing worms and the proportion of hosts with paired

worms ( Macdonald, 1965 ). Goffmann and Warren adopted the

Kermack–McKendrick susceptible-infectious-recovered (SIR) model

to humans and snails, including the free swimming miracidia and

cercariae Goffman and Warren (1970) . Nåsell and Hirsch devel-

oped a stochastic model of the intensity of infection ( Nåsell and

Hirsch, 1973 ). Anderson and May developed an ODE model with

the mean worm burden in the human host. They split the snails

into three groups: susceptible, latent and shedding ( Anderson and

May, 1985 ). Habbema simulated a stochastic model of the intensity

and prevalence in individual humans ( Habbema et al., 1996 ). We

base our model on Anderson and May by tracking the mean worm

burden instead of the prevalence of infection in humans, because

infectivity to snails and human morbidity depend on the intensity

of infection. Similar to previous schistosomiasis models for snails,

we use susceptible-infectious models for snails and fish. 

To create a basis for the mathematical modelling of food-borne

trematodes with population-based models, we develop two differ-

ent models. We first develop a simple model that only includes

infection in fish, snails and humans. We then develop a second
odel that also includes infection in cats and dogs. These models

llow us to better understand the role of domestic pets in the

ransmission dynamics of O. viverrini . 

For these models, we define the equilibrium points, the ba-

ic reproduction number and the host-specific type-reproduction

umbers. We derive these definitions by explicit calculations using

athematica 10.0.2. We then use data from Lao People’s Demo-

ratic Republic to estimate reasonable distributions for the param-

ter values of the models. We conduct sensitivity analysis using

hese distributions on the equilibrium points and the reproduction

umbers for both models to determine weak points in the para-

ite’s life cycle and the role of each mammalian host in maintain-

ng transmission. We perform all the numerical computations in

atlab R2017a. 

. Basic transmission model 

In the basic transmission model we assume that only fish,

nails and humans are involved in the life cycle of O. viverrini ,

gnoring the reservoir hosts: cats and dogs. We model the mean

orm burden in human and the prevalences of infected snails and

sh. The deterministic population-based ordinary differential equa-

ion (ODE) model represents the base transmission dynamics of

. viverrini . It is given by 

d w h 

d t 
= βh f N f i f − μph w h , (1a)

d i s 

d t 
= βsh N h w h (1 − i s ) − μs i s , (1b)

d i f 

d t 
= β f s N s i s (1 − i f ) − μ f i f , (1c)

ith the state variables shown in Table 1 and the parameters

hown in Table 2 . 

The mean worm burden per human host w h increases with the

onsumption of infected fish. This includes the number of fish, the

roportion of infectious fish and the transmission rate of parasites

o humans per fish, βhf N f i f , and decreases with the death of para-

ites, μph w h . The proportion of infectious snails i s , depends on the

otal adult worm population and the eggs they produce that enter

he aquatic environment, βsh N h w h (1 − i s ) . Snails are infected un-

il they die at a total rate, μs i s . The proportion of infectious fish
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Table 1 

State variables of the opisthrochiasis models. 

Variable Description 

w h Mean worm burden per human host 

w d Mean worm burden per dog host 

w c Mean worm burden per cat host 

i s Proportion of infectious snails 

i f Proportion of infectious fish 
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as similar dynamics. Their rate of infection depends on the num-

er of infectious snails and the snails’ rate of releasing cercariae,

f s N s i s (1 − i f ) . The fish remain infected until they die at a total

ate, μf i f . 

This model ignores the intensity of infection in fish, as well as

he distribution of intensity in humans. We assume that all hu-

ans are the same and are equally likely to be infected by the

arasite, and that all infected fish and snails are equal with re-

ards to within- and between-species transmission, so we assume

o assortative mixing. We also ignore density-dependent effects in

osts such as acquired immunity and Allee effects. 

.1. Existence and uniqueness of the solution 

The ODE system (1) is well-posed and epidemiologically rele-

ant in the strip S ⊂ R 

3 . The strip S is defined by the boundaries

f the solutions of the system ( w h , i s , i f ), 

 = 

[
0 , 

N f βh f 

μph 

]
× [ 0 , 1 ] 

2 
. 

he right hand side of the ODE system (1) is continuous with con-

inuous partial derivatives in S . We assume that an initial condition

xists in the strip S . We can then show that a solution of the sys-

em cannot leave this strip S : 

(i) If w h = 0 , then 

d w h 

d t 
= βh f N f i f − μph · 0 ≥ 0 , 

and, if w h = 

N f βh f 

μph 
, then 

d w h 

d t 
= βh f N f i f − μph ·

N f βh f 

μph 

≤ 0 . 

(ii) If i s = 0 , then 

d i s 

d t 
= βsh N h w h · 1 − μs · 0 ≥ 0 , 
Table 2 

Parameters of the opisthorchiasis model. 

Parameter Description 

N h Population size of humans 

N d Population size of dogs 

N c Population size of cats 

N s Population size of snails 

N f Population size of fish 

μph Per capita death rate of adult parasites in humans (includes a

μpd Per capita death rate of adult parasites in dogs (includes addi

μpc Per capita death rate of adult parasites in cats (includes addit

μs Per capita death rate of snails 

μf Per capita death rate of fish including mortality through fishi

βhf Transmission rate from infectious fish to humans per person 

βdf Transmission rate from infectious fish to dogs per dog per fis

βcf Transmission rate from infectious fish to cats per cat per fish

βsd Infection rate of snails per parasite in a dog host 

βsc Infection rate of snails per parasite in a cat host 

βsh Infection rate of snails per parasite in a human host 

β fs Infection rate of fish per snail 
and, if i s = 1 , then 

d i s 

d t 
= βsh N h w h · 0 − μs · 1 ≤ 0 . 

(iii) If i f = 0 , then 

d i f 

d t 
= β f s N s i s · 1 − μ f s · 0 ≥ 0 , 

and, if i f = 1 , then 

d i f 

d t 
= β f s N s i s · 0 − μ f s · 0 ≤ 0 . 

It finally follows with the Picard–Lindelöf theorem that a

nique solution exists for the ODE system (1) in the strip S . 

.2. Equilibrium points 

efinition 1 (Disease free equilibrium point) . The disease free

quilibrium, also called trivial equilibrium point, is the steady state

olution with no disease in the population. 

efinition 2 (Endemic equilibrium point) . The endemic equilib-

ium point is the steady state solution with all state variables pos-

tive, where the disease persists in the population. 

Setting the derivatives equal to zero, the equilibrium points are

iven as the solution of 

 = βh f N f i 
∗
f − μph w 

∗
h , 

 = βsh N h w 

∗
h (1 − i ∗s ) − μs i 

∗
s , 

 = β f s N s i 
∗
s (1 − i ∗f ) − μ f i 

∗
f . 

he system has two solutions, the disease free and the endemic

quilibrium point. The disease free equilibrium point is charac-

erized by E BM 

0 = (w 

∗
h 
, i ∗s , i ∗f ) = (0 , 0 , 0) . The endemic equilibrium

oint E BM 

e = (w 

∗
h 
, i ∗s , i ∗f ) corresponds to 

 

∗
h = 

βh f βsh β f s N s N h N f − μph μs μ f 

βsh N h μph (β f s N s + μ f ) 
, (2a) 

 

∗
s = 

βh f βsh β f s N s N h N f − μph μs μ f 

β f s N s (βh f βsh N h N f + μph μs ) 
, (2b) 

 

∗
f = 

βh f βsh β f s N s N h N f − μph μs μ f 

βh f βsh N h N f (β f s N s + μ f ) 
, (2c) 

hich is in the interior of S if βhf βsh β fs N s N h N f > μph μs μf . 
Dimension 

Animals 

Animals 

Animals 

Animals 

Animals 

dditional mortality due to death of humans) 1/Time 

tional mortality due to death of dogs) 1/Time 

ional mortality due to death of cats) 1/Time 

1/Time 

ng by humans 1/Time 

per fish 1/(Time × Animals) 

h 1/(Time × Animals) 

 1/(Time × Animals) 

1/(Time × Animals) 

1/(Time × Animals) 

1/(Time × Animals) 

1/(Time × Animals) 
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2.3. Basic reproduction number 

Definition 3 (Basic reproduction number) . The basic reproduction

number R 0 is the average number of new cases of an infection

(or number of parasite offspring) caused by one typical infected

individual (or one parasite), from one generation to the next, in a

population with no pre-existing infections. 

To determine R 0 , we define the next-generation matrix (NGM)

K . This matrix relates the numbers of newly infected individuals or

number of adult parasites in consecutive generations. R 0 is then

defined as the dominant eigenvalue of K . 

The linearised infection subsystem describes the production of

newly infected individuals and changes in the states of already in-

fected individuals. To derive the next-generation matrix K , we de-

compose the matrix, which describes the linearised model, into

two matrices, T and �. T describes transmission: the production

of new infections; and � describes transition: the changes in state.

K is defined as the product of −T and �−1 and R 0 is the spectral

radius, ρ , of K . Therefore, R 0 = ρ(−T�−1 ) . 

The interpretation of the ( i, j )th entry of �−1 is the expected

time that an individual, who presently has the infected state j , will

spend in the infected state i . The ( i, j )th entry of T is the rate at

which an individual in the infected state j produces individuals

with the infected state i . Therefore, the ( i, j )th entry of the NGM

K is the expected number of the infected offspring with the state

i who are infected by an individual currently in infected state j

( Diekmann et al., 2010 ). 

The transmission matrix is 

T = 

[ 

0 0 βh f N f 

βsh N h 0 0 

0 β f s N s 0 

] 

, 

and the transition matrix is 

� = 

[ −μph 0 0 

0 −μs 0 

0 0 −μ f 

] 

. 

The next-generation matrix of the basic model is therefore 

K = −T�−1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 

βh f N f 

μ f 

βsh N h 

μph 

0 0 

0 

β f s N s 

μs 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

The eigenvalues of the next-generation matrix K are 

λ1 = 

3 

√ 

βh f βsh β f s N h N s N f 

μph μs μ f 

, 

λ2 = −(−1) 
1 
3 

3 

√ 

βh f βsh β f s N h N s N f 

μph μs μ f 

, 

λ3 = (−1) 
2 
3 

3 

√ 

βh f βsh β f s N h N s N f 

μph μs μ f 

. 

All eigenvalues have the same modulus, so the (not strictly) dom-

inant eigenvalue is λ1 , the only real and positive eigenvalue of K .

Hence, it follows that 

R 0 = 

3 

√ 

βh f βsh β f s N h N s N f 

μph μs μ f 

. (3)

The ecological definition of the basic reproduction number is

the number of offspring adult worms produced by a single adult

worm in its life time, in the absence of density-dependence. This

number corresponds to the cube of R 0 defined in (3) to include all

life stages of the parasite. 
.4. Stability of the equilibrium points 

The basic reproduction number provides a threshold condition

or the stability of the disease free equilibrium point. If R 0 < 1 ,

hen the disease free equilibrium point is locally asymptotically

table, and if R 0 > 1 it is unstable. We conjecture that the disease

ree equilibrium point is globally asymptotically stable if R 0 ≤ 1

ecause we do not expect any non-equilibrium asymptotic dynam-

cs but we do not have a proof for this. 

The endemic equilibrium exists if and only if

hf βsh β fs N h N s N f > μph μs μf , that is R 0 > 1 . To investigate the

ocal stability of the endemic equilibrium point, we use the

outh–Horwitz Criterion ( Proposition 1 in the Appendix) to deter-

ine the signs of the real parts of the eigenvalues of the Jacobian

atrix. 

The Jacobian matrix of the basic model at the endemic equilib-

ium point is 

 = 

[ −μph 0 βh f N f 

βsh N h (1 − i ∗s ) −(βsh N h w 

∗
h 

+ μs ) 0 

0 β f s N s (1 − i ∗
f 
) −(β f s N s i 

∗
s + μ f ) 

] 

= : 

[ − j 1 , 1 0 j 1 , 3 
j 2 , 1 − j 2 , 2 0 

0 j 3 , 2 − j 3 , 3 

] 

, 

or w 

∗
h 
, i ∗s and i ∗

f 
, defined in (2). The eigenvalues of the Jaco-

ian matrix are calculated by setting the characteristic polynomial

p(λ) = det (J − λE ) to zero. This leads to the equation 

3 + λ2 ( j 1 , 1 + j 2 , 2 + j 3 , 3 ) + λ( j 1 , 1 j 2 , 2 + j 1 , 1 j 3 , 3 + j 2 , 2 j 3 , 3 ) 

+ j 1 , 1 j 2 , 2 j 3 , 3 − j 1 , 3 j 2 , 1 j 3 , 2 
! = 0 . 

e can determine the a i of the Routh–Horwitz criterion in

roposition 1 for i = 0 , 1 , 2 , 3 : 

a 0 = 1 , 

 1 = j 1 , 1 + j 2 , 2 + j 3 , 3 , 

 2 = j 1 , 1 j 2 , 2 + j 1 , 1 j 3 , 3 + j 2 , 2 j 3 , 3 , 

 3 = j 1 , 1 j 2 , 2 i j 3 , 3 − j 1 , 3 j 2 , 1 j 3 , 2 . 

ith all the a i ’s at hand, we can calculate the T k ’s for k = 0 , 1 , 2

nd see if they are positive or negative: 

T 0 = a 0 = 1 > 0 , 

 1 = a 1 > 0 , 

 2 = det 

[
a 1 a 0 
a 3 a 2 

]
> 0 ⇔ βh f βsh β f s N h N s N f > μph μs μ f 

⇔ R 0 > 1 . 

From the Routh–Hurwitz criterion it follows that the roots of

he characteristic polynomial p ( λ) have negative real parts and

hus the eigenvalues of J . This means that the endemic equilibrium

s locally asymptotically stable whenever R 0 > 1 . 

. Model with reservoir hosts 

In the second transmission model we add cats and dogs as

eservoir hosts to the basic transmission model. We extend the

asic model (1) by including two additional variables: the mean

umber of adult parasites per hosts in dogs ( w d ) and cats ( w c ).

his leads to 

d w h 

d t 
= βh f N f i f − μph w h , (4a)

d w d 

d t 
= βdf N f i f − μpd w d , (4b)
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d w c 

d t 
= βc f N f i f − μpc w c , (4c)

d i s 

d t 
= (βsh N h w h + βsd N d w d + βsc N c w c )(1 − i s ) − μs i s , (4d)

d i f 

d t 
= β f s N s i s (1 − i f ) − μ f i f . (4e)

The additional state variables are given in Table 1 and the ad-

itional parameters are given in Table 2 . 

.1. Existence and uniqueness of the solution 

The existence and the uniqueness of the solution ( w h , w d ,

 c , i s , i f ) of the ODE system (4) follows in complete analogy to

ection 2.1 in the strip S ⊂ R 

5 given by 

 = 

[
0 , 

N f βh f 

μph 

]
×

[
0 , 

N f βdf 

μpd 

]
×

[
0 , 

N f βc f 

μpc 

]
× [ 0 , 1 ] 

2 
. 

.2. Equilibrium points 

For the model with reservoir hosts (4) we solve the following

ystem 

 = βh f N f i 
∗
f − μph w 

∗
h , 

 = βdf N f i 
∗
f − μpd w 

∗
d , 

 = βc f N f i 
∗
f − μpc w 

∗
c , 

 = (βsh N h w 

∗
h + βsd N d w 

∗
d + βsc N c w 

∗
c )(1 − i ∗s ) − μs i 

∗
s , 

 = β f s N s i 
∗
s (1 − i ∗f ) − μ f i 

∗
f , 

o determine the equilibrium points. We see that E RM 

0 
=

(w 

∗
h 
, w 

∗
d 
, w 

∗
c , i 

∗
s , i 

∗
f 
) = (0 , 0 , 0 , 0 , 0) is the disease free equilibrium

oint and show the existence of at most one endemic equilibrium

oint. We calculated an analytic expression for this endemic equi-

ibrium but do not present it here because of its length. 

.3. Basic reproduction number 

To define the reproduction number of the model with reservoir

osts (4), we use the same method as for the basic model before.

ence, we obtain the transmission matrix 

 = 

⎡ 

⎢ ⎢ ⎣ 

0 0 0 0 βh f N f 

0 0 0 0 βdf N f 

0 0 0 0 βc f N f 

βsh N h βsd N d βsc N c 0 0 

0 0 0 β f s N s 0 

⎤ 

⎥ ⎥ ⎦ 

nd the transition matrix 

= 

⎡ 

⎢ ⎢ ⎣ 

−μph 0 0 0 0 

0 −μpd 0 0 0 

0 0 −μpc 0 0 

0 0 0 −μs 0 

0 0 0 0 −μ f 

⎤ 

⎥ ⎥ ⎦ 

. 

he next-generation matrix is thus defined as 

 = −T�−1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 

βh f N f 
μ f 

0 0 0 0 

βdf N f 
μ f 

0 0 0 0 

βc f N f 
μ f 

βsh N h 
μph 

βsd N d 
μpd 

βsc N c 
μpc 

0 0 

0 0 0 

β f s N s 
μs 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 
he eigenvalues of the next-generation matrix K are the roots of

he characteristic polynomial: 

et (K − λE ) = 

−λ5 +λ2 
β f s N s 

μs 

(
βc f N f 

μ f 

βsc N c 

μpc 
+ 

βsd N d 

μpd 

βdf N f 

μ f 

+ 

βh f N f 

μ f 

βsh N h 

μph 

)
! = 0 

traightforward calculation yields: 

1 = λ2 = 0 , 

3 = 

3 

√ 

β f s N s 

μs 

3 

√ 

βc f N f 

μ f 

βsc N c 

μpc 
+ 

βsd N d 

μpd 

βdf N f 

μ f 

+ 

βh f N f 

μ f 

βsh N h 

μph 

, 

4 = −(−1) 
1 
3 

3 

√ 

β f s N s 

μs 

3 

√ 

βc f N f 

μ f 

βsc N c 

μpc 
+ 

βsd N d 

μpd 

βdf N f 

μ f 

+ 

βh f N f 

μ f 

βsh N h 

μph 

5 = (−1) 
2 
3 

3 

√ 

βs f N s 

μs 

3 

√ 

βc f N f 

μ f 

βsc N c 

μpc 
+ 

βdf N f 

μ f 

βsd N d 

μpd 

+ 

βh f N f 

μ f 

βsh N h 

μph 

. 

ince λ4 and λ5 are complex numbers, λ3 is the dominant real

igenvalue of K , and the reproduction number is 

 0 = 

3 

√ 

β f s N s 

μs 

3 

√ 

βc f N f 

μ f 

βsc N c 

μpc 
+ 

βsd N d 

μpd 

βdf N f 

μ f 

+ 

βh f N f 

μ f 

βsh N h 

μph 

. 

The endemic equilibrium point exists if and only if R 0 > 1 . We

xpect that is locally asymptotically stable for R 0 > 1 but did not

rove this. 

.4. Type reproduction numbers 

To determine the role of cats and dogs in maintaining trans-

ission, we analyse host-specific type-reproduction numbers. They

re given by the spectral radii of the next-generation matrices

ith leaving out one or more host types ( Roberts and Heester-

eek, 2003 ). U i is the host-specific and Q j is the host excluded re-

roduction number, which are defined as 

U i = ρ(K i ) , 

 j = ρ(I − K j ) , 

here K i is the next-generation matrix of only including host i .

n this multi-host population with n types of hosts, the reservoir

ommunity is defined as the minimum set of hosts with U > 1.

 maintenance host is the minimum of m ( m ≤ n ) different hosts

hich satisfy U > 1 and Q < 1 ( Nishiura et al., 2009 ). With the type

eproduction number, we can define the reservoir community and

ubdivide the hosts into maintenance and non-maintenance hosts

 Fig. 2 ). Transmission is not possible without snails and fish, so we

lways include them in the model while determining the role of

he three mammalian hosts, that means i ∈ {humans ( h ), dogs ( d ),

ats ( c )}. 

The different next-generation matrices and their spectral radii

re given by 

 h (= Q d,c ) = ρ(K h ) = ρ

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 

βh f N f 
μ f 

0 0 0 0 0 

0 0 0 0 0 

βsh N h 
μph 

0 0 0 0 

0 0 0 

β f s N s 
μs 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

3 

√ 

N f N h N s βh f βsh β f s 

μ f μph μs 
, 
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Population with an endemic infectious disease: R0 > 1

Reservoir community (U > 1)

Maintenance host (U > 1 and Q < 1)
Non-Maintenance host

Fig. 2. Definition of reservoir, maintenance, and non-maintenance hosts in a population with an endemic infectious disease, figure based on (Nishiura et al., 2009, Fig. 3) . 

Table 3 

Total number tested and positive hosts from two islands in Lao PDR 

( Vonghachack et al., 2017 ). 

Variable Description Value 

n h number of tested humans 994 

p h number of positive tested humans 603 

n d number of tested dogs 68 

p d number of positive tested dogs 17 

n c number of tested cats 64 

p c number of positive tested cats 34 

n s number of tested snails 3102 

p s number of positive tested snails 9 

n f number of tested fish 628 

p f number of positive tested fish 169 
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 d (= Q h,c ) = ρ(K d ) = ρ

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 

0 0 0 0 

βdf N f 
μ f 

0 0 0 0 0 

0 

βsd N d 
μpd 

0 0 0 

0 0 0 

β f s N s 
μs 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

3 

√ 

N f N s N d βdf β f s βsd 

μ f μpd μs 
, 

 c (= Q h,d ) = ρ(K c ) = ρ

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

βc f N f 
μ f 

0 0 

βsc N c 
μpc 

0 0 

0 0 0 

β f s N s 
μs 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

3 

√ 

N f N s N c βc f β f s βsc 

μ f μpc μs 
, 

Q h (= U d,c ) = ρ(K d,c ) = ρ

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 

0 0 0 0 

βdf N f 
μ f 

0 0 0 0 

βc f N f 
μ f 

0 

βsd N d 
μpd 

βsc N c 
μpc 

0 0 

0 0 0 

β f s N s 
μs 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎞
⎟⎟⎟⎟⎟⎠

= 

3 

√ 

N s β f s 

μs 

(
N f N d βdf βsd 

μ f μpd 

+ 

N f N c βc f βsc 

μ f μpc 

)
, 
 c (= U h,d ) = ρ(K h,d ) = ρ

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 

βh f N f 
μ f 

0 0 0 0 

βdf N f 
μ f 

0 0 0 0 0 

βsh N h 
μph 

βsd N d 
μpd 

0 0 0 

0 0 0 

β f s N s 
μs 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎞
⎟⎟⎟⎟⎟⎠

= 

3 

√ 

N s β f s 

μs 

(
N f N h βh f βsh 

μ f μph 

+ 

N f N d βdf βsd 

μ f μpd 

)
, 

nd 

 d (= U h,c ) = ρ(K h,c ) = ρ

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 

βh f N f 
μ f 

0 0 0 0 0 

0 0 0 0 

βc f N f 
μ f 

βsh N h 
μph 

0 

βsc N c 
μpc 

0 0 

0 0 0 

β f s N s 
μs 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎞
⎟⎟⎟⎟⎟⎠

= 

3 

√ 

N s β f s 

μs 

(
N f N h βh f βsh 

μ f μph 

+ 

N f N c βc f βsc 

μ f μpc 

)
. 

. Sensitivity analysis 

Sensitivity analysis describes what happens to some dependent

ariables when one or more independent parameters are changed

 Caswell, 2001 ). Thus, we can see the influence of the different pa-

ameter to the basic reproduction number, the host-specific type-

eproduction number and the endemic equilibrium point. 

.1. Data and parameter values 

Data on prevalence of infection in cats, dogs, snails, and fish;

nd on intensity of infection in humans was collected from two

slands Don Khon and Don Som, Champasack province, Lao Peo-

le’s Democratic Republic (Lao PDR), from October 2011 to Au-

ust 2012. The data was collected in a cross-sectional study for

 pilot community experiment of an integrated intervention pack-

ge to control schistosomiasis. In the absence of time-series lon-

itudinal data, we assume that this data represents an equilib-

ium solution, which we use to estimate the unknown parame-

ers. The number of hosts tested and found positive is shown in

able 3 ( Vonghachack et al., 2017 ). Additional data on the number

f worm eggs per gram of human stool is not shown here. 

We assume triangular distributions as prior distributions for the

odel parameters and estimate ranges and modes from the data in
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Table 4 

Parameter values and ranges of the basic model (1) . 

Variable Value Range Unit 

βhf 4 . 898 × 10 −5 
[
4 . 898 × 10 −6 , 9 . 795 × 10 −5 

]
1/(Animal × Day) 

βsh 9 . 160 × 10 −11 
[
9 . 160 × 10 −12 , 1 . 832 × 10 −10 

]
1/(Animal × Day) 

β fs 3 . 477 × 10 −5 
[
3 . 477 × 10 −6 , 6 . 954 × 10 −5 

]
1/(Animal × Day) 

N h 14,542 [1454.2, 29, 084] Animals 

N s 20,0 0 0 [20 0 0, 40, 0 0 0] Animals 

N f 80 0 0 [800, 16, 000] Animals 

μph 
1 

10 ×365 

[
1 

20 ×365 
, 1 

1 ×365 

]
1/Days 

μs 
1 

1 ×365 

[
1 

2 ×365 
, 1 

0 . 1 ×365 

]
1/Days 

μf 
1 

2 . 5 ×365 

[
1 

5 ×365 
, 1 

0 . 25 ×365 

]
1/Days 

Table 5 

Parameter values and ranges of the model with reservoir hosts (4). 

Variable Value Range Unit 

βhf 4 . 898 × 10 −5 
[
4 . 898 × 10 −6 , 9 . 795 × 10 −5 

]
1/(Animal × Day) 

βdf 4 . 110 × 10 −6 
[
4 . 110 × 10 −7 , 8 . 220 × 10 −6 

]
1/(Animal × Day) 

βcf 4 . 414 × 10 −5 
[
4 . 414 × 10 −6 , 8 . 829 × 10 −5 

]
1/(Animal × Day) 

βsh 3 . 053 × 10 −11 
[
3 . 053 × 10 −12 , 6 . 107 × 10 −11 

]
1/(Animal × Day) 

βsd 3 . 053 × 10 −11 
[
3 . 053 × 10 −12 , 6 . 107 × 10 −11 

]
1/(Animal × Day) 

βsc 3 . 053 × 10 −11 
[
3 . 053 × 10 −12 , 6 . 107 × 10 −11 

]
1/(Animal × Day) 

β fs 3 . 477 × 10 −5 
[
3 . 477 × 10 −6 , 6 . 954 × 10 −5 

]
1/(Animal × Day) 

N h 14,542 [7271, 21, 813] Animals 

N d 7271 [3635.5, 10906.5] Animals 

N c 4847 [2423.5, 7270.5] Animals 

N s 20,0 0 0 [20 0 0, 40, 0 0 0] Animals 

N f 80 0 0 [800, 16, 000] Animals 

μph 
1 

10 ×365 

[
1 

20 ×365 
, 1 

1 ×365 

]
1/Days 

μpd 
1 

4 ×365 

[
1 

8 ×365 
, 1 

0 . 4 ×365 

]
1/Days 

μpc 
1 

4 ×365 

[
1 

8 ×365 
, 1 

0 . 4 ×365 

]
1/Days 

μs 
1 

1 ×365 

[
1 

2 ×365 
, 1 

0 . 1 ×365 

]
1/Days 

μf 
1 

2 . 5 ×365 

[
1 

5 ×30 
, 1 

0 . 25 ×365 

]
1/Days 
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1 MatlabR2017a: bootstrp. 
2 MatlabR2017a: fminsearch. 
able 3 , literature, and expert opinions, as shown in Tables 4 and 5 .

e assume that the mean life span of parasite in humans ( μph ) is

0 years, mean life span of a snail ( μs ) is 1 year and of a fish ( μf )

s 2.5 years ( Brockelman et al., 1986 ). We assume that parasites

n cats ( μpc ) and dogs ( μpd ) die after 4 years, which is the aver-

ge life span of cats and dogs in the area. We use the population

izes of humans from the study in Lao PDR ( Vonghachack et al.,

017 ). From discussions with local village chiefs, we assume that

here are half as many dogs as humans and a third as many cats

s humans. We further expect that there are a lot more snails than

sh. We calculate the modes of the transmission parameters ( β)

y assuming βsh = βsd = βsc and solving the ODE system (4) of

he endemic equilibrium point for the data given in Table 3 (af-

er converting the mean worm burden in humans, cats, and dogs

o prevalence as described in Section 4.2 . For the basic model (1),

e multiply βsh from the reservoir model by three to account for

ncreased transmission from humans in the absence of reservoir

osts. We estimate wide ranges for the transmission parameters

nd the population sizes of snails and fish because we have little

ata on these values. 

.2. Sample construction and maximum likelihood estimation 

We use a Bayesian sampling resampling approach to better esti-

ate parameter distributions. We first draw 10 0,0 0 0 sample sets of

arameter values, for both the basic and the reservoir hosts mod-

ls, from the prior triangular distributions with modes and ranges

escribed in Tables 4 and 5 . We filter out samples that correspond

o values of R < 1 . In the basic model 92,758 (93%) parameter
0 
ets correspond to R 0 > 1 and in the reservoir hosts model 84,548

85%) correspond to R 0 > 1 . 

For the resampling, we calculate probabilities from the likeli-

ood that the solution of the equations is at the equilibrium point

orresponding to the data in Table 5 (and the eggs per gram in

ach human tested). We define the likelihood function L of the

odel with reservoir hosts (4) as 

 = L h L d L c L s L f , 

nd of the basic model (1) as 

 = L h L s L f , 

here 

L h = 

n h ! 

p h !(n h − p h )! 

(
i ∗h 
)p h 

(1 − i ∗h ) 
(n h −p h ) , 

 d = 

n d ! 

p d !(n d − p d )! 

(
i ∗d 
)p d 

(1 − i ∗d ) 
(n d −p d ) , 

L c = 

n c ! 

p c !(n c − p c )! 
( i ∗c ) 

p c (1 − i ∗c ) 
(n c −p c ) , 

L s = 

n s ! 

p s !(n s − p s )! 
( i ∗s ) 

p s (1 − i ∗s ) 
(n s −p s ) , 

 f = 

n f ! 

p f !(n f − p f )! 

(
i ∗f 
)p f 

(1 − i ∗f ) 
(n f −p f ) , 

ssuming that the equilibrium prevalence i ∗
h 
, i ∗

d 
, i ∗c , i ∗s , and i ∗

f 
are

inomially distributed. For the three mammalian hosts we need to

onvert the mean worm burden at the endemic equilibrium into

revalence of infection. For humans we have data on both preva-

ence and intensity of infection (eggs per gram in stool for each

uman). We use the pre-calculated relationship from literature,

 = x 2 + 2 x to convert the eggs per gram in stool, y , into mean

orm burden, x ( Elkins et al., 1991 ). We assume a negative bino-

ial distribution for the number of worms per person, leading to

he relation between mean number of eggs per person ( M ) and the

revalence ( P ) ( Guyatt et al., 1994 ), 

 = 1 −
(

1 + 

M 

k 

)−k 

. (5) 

e assume that cats and dogs have the same relationship between

ean worm burden and eggs per gram in stool and the same

istribution for the number of worms per host as humans. The

revalence of infection in humans is P = 0 . 60 6 6 (calculated from

able 3 ) and the mean number of eggs per person is M = 1108 . 2 ,

o from equation (5) , k = 0 . 10020566 . It follows that the preva-

ence in cats and dogs are 

i ∗c = 1 −
(

1 + 

( w 

∗
c ) 

2 

k 

)−k 

, 

 

∗
d = 1 −

( 

1 + 

(
w 

∗
d 

)2 

k 

) −k 

. 

e resample 20 0 0 sets of parameter values with probability pro-

ortional to the likelihood function with replacement 1 ( Smith and

elfand, 1992; Stone and Chitnis, 2015 ). 

To optimize all the infection rates ( β), we maximize 2 the loga-

ithm of the likelihood function starting from the resampled pa-

ameter set with the highest likelihood ( Myung, 2003; Ziegler,

011 ). The maximum likelihood estimates are shown in Table 6 . 
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Fig. 3. Distributions of the basic reproduction number R 0 of the basic (1) and the model with reservoir hosts (4) calculated for the resampled parameter distributions from 

Section 4.2 . 

Table 6 

Maximum likelihood estimation (MLE) and the corresponding basic reproduction 

number ( R 0 ). 

Basic model Model with reservoir hosts 

Parameter MLE MLE 

βhf 3 . 4891 × 10 −5 1 . 6850 × 10 −5 

βdf - 1 . 2733 × 10 −6 

βcf - 1 . 1851 × 10 −5 

βsh 5 . 6002 × 10 −11 3 . 3575 × 10 −11 

βsd - 5 . 2889 × 10 −11 

βsc - 7 . 5833 × 10 −12 

β fs 4 . 1682 × 10 −5 2 . 5073 × 10 −5 

N h 12,231 15,143 

N d - 6,236 

N c - 6,220 

N s 18,862 6,261 

N f 6,969 6,824 

μph 

1 

1 . 3526 × 365 

1 

2 . 8603 × 365 

μpd - 
1 

0 . 7424 × 365 

μpc - 
1 

1 . 6392 × 365 

μs 
1 

0 . 3580 × 365 

1 

0 . 4600 × 365 

μf 

1 

0 . 4479 × 365 

1 

2 . 2044 × 365 

Reproduction number 

R 0 1.1112 1.1112 
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4.3. Threshold conditions 

The basic reproduction number R 0 calculated for each of these

20 0 0 samples is shown in Fig. 3 . Note that values of R 0 < 1 are

excluded because we assume the existence of the endemic equilib-

rium point. For this equilibrium point, we numerically show that

all eigenvalues of the Jacobian matrix have negative real parts so it

is locally asymptotically stable. 

We calculate the distributions of the type reproduction num-

bers from the resampled distributions of the parameter values

( Fig. 4 ). Humans, snails, and fish belong to the reservoir commu-

nity because their host-specific type-reproduction number is likely

bigger than 1 ( U > 1) and their host excluded type-reproduction

number is likely smaller than 1 ( Q < 1). Humans, snails, and fish

are also maintenance-hosts, because they are the minimum set

which satisfies U > 1. The host specific type-reproduction number
f cats and dogs is smaller than 1 ( U d , U c < 1), so they are non-

aintenance hosts. 

The host-specific type-reproduction numbers, calculated with

he parameter values in Table 6 from the maximum likelihood

stimation, are 

 h = 1 . 0935 , Q h = 0 . 4016 , 

 d = 0 . 2548 , Q d = 1 . 1067 , 

U c = 0 . 3640 , Q c = 1 . 0981 . 

.4. Local sensitivity analysis 

The local sensitivity index is the ratio of the relative change in

he variable and the relative change in the variable. Hence, we de-

ne the normalized forward sensitivity index of a variable u and

he parameter p as, see Chitnis et al. (2008) , 

u 
p := 

d u 

d p 
× p 

u 

. (6)

We first use the formula in (6) to calculate the sensitivity index

f R 0 in the basic model (1) with respect to βhf : 

R 0 

βh f 
= 

d R 0 

d βh f 

× βh f 

R 0 

= 

1 

3 β
2 
3 

h f 

3 

√ 

βsh β f s N h N s N f 

μph μs μ f 

× βh f 

3 

√ 

βh f βsh β f s N h N s N f 
μph μs μ f 

= 

1 

3 

. 

he calculation is similar for the sensitivity indices of R 0 with re-

pect to βsh , β fs , N h , N s and N f . For the sensitivity indices of R 0 

ith respect to μph , μs and μf we have, for example, 

R 0 
μph 

= 

d R 0 

d μph 

× μph 

R 0 

=− 1 

3 μ
4 
3 

ph 

3 

√ 

βh f βsh β f s N h N s N f 

μs μ f 

× μph 

3 

√ 

βh f βsh β f s N h N s N

μph μs μ f 

= −1 

3 

. 

Therefore if, for example, βhf increases by 100%, then R 0 in-

reases by 33%. If μph increases by 100%, then R 0 decreases by

3%. Since the sensitivity index of R 0 is independent of any other

arameters, it is valid locally and globally. Due to the same abso-

ute value of the sensitivity index, all parameters are equally im-

ortant for R . 
0 
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(e) Qd = Uh,c,s,f ; P (Qd > 1) = 0.99
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Fig. 4. Distributions of the host-specific type-reproduction numbers of the model with reservoir hosts (4) calculated from the resampled parameter distributions from 

Section 4.2 and the probability that the number is above 1. 
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Fig. 5. Local sensitivity indices and partial rank correlation coefficients (PRCC) of the basic reproduction number R 0 for the basic model (1) and the model with reservoir 

hosts (4). 
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The sensitivity index of the state variables at the endemic equi-

librium of the basic model is for example 

d w 

∗
h 

d βh f 

× βh f 

w 

∗
h 

= 

βsh β f s N h N f N s 

βsh N h μph (β f s N s + μ f ) 

×βh f 

βsh N h μph (β f s N s + μ f ) 

βh f βsh β f s N h N f N s − μph μs μ f 

= 

βh f βsh β f s N h N f N s 

βh f βsh β f s N h N f N s − μph μs μ f 

. 
r  
ig. 6 (a) shows the sensitivity index of w 

∗
h 

for the parameter val-

es from Table 4 . The local sensitivity analysis for the model with

eservoirs host (4) is performed as described in formula (6) . The

esults for R 0 are shown in Fig. 5 (b) and the results for w 

∗
h 

are

hown in Fig. 6 (b). 

.5. Global sensitivity analysis and numerical simulation 

We use partial rank correlation coefficients (PRCC) to analyse

he sensitivity globally and to compare the influence of the pa-

ameters on R and on the endemic equilibrium point. To calculate
0 
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Fig. 6. Local sensitivity indices and partial rank correlation coefficients (PRCC) of mean worm burden in humans at the endemic equilibrium point w 

∗
h 

of the basic model (1) 

and the model with reservoir hosts (4). 

t  

t  

t

 

e  

s  
he PRCC, we used the Matlab implementation of the PRCC func-

ion developed in Marino et al. (2008) 3 . The function was run on

he 20 0 0 samples from Section 4.2 . 
3 http://malthus.micro.med.umich.edu/lab/usanalysis.html (24.10.2016). 

w  

t

Figs. 5 (c) and (d) show, from the top to the bottom, the influ-

nce of the change in the parameter on R 0 and Figs. 6 (c) and (d)

how the influence on w 

∗
h 

in the basic model (1) and in the model

ith reservoir hosts (4). The closer the absolute value is to one,

he more influence the parameter has on the output. 

http://malthus.micro.med.umich.edu/lab/usanalysis.html
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Fig. 7. Basic reproduction number R 0 for the basic model (1) and the model with reservoir hosts (4) varying population sizes of two hosts with all other parameters as in 

Table 6 . 
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In the basic model (1), the death rate of snails ( μs ) has the

most global influence on R 0 , followed by the death rate of par-

asites in humans ( μph ) and the death rate of fish ( μf ). However

there is little difference between the parameter values, so the basic

model is not able to differentiate between the sensitivity of the pa-

rameters on R 0 . For the model with reservoir hosts (4), the death

rates of snails and fish ( μs , μf ), followed by death rate of parasites

in humans ( μph ) have the most global influence on R 0 . 

The death rate of parasites in humans ( μph ) has the most global

influence on the mean worm burden of humans at the endemic

equilibrium point w 

∗
h 

in both models, followed by the fish to hu-

man transmission rate ( βhf ) and the number of fish ( N f ). 

In Fig. 7 we show two dimensional sensitivity analysis of R 0 

(of both models) to the population sizes of the five hosts with all

other parameters as in Table 6 . Fig. 7 (a) shows the dependence of

R 0 of the basic model (1) when the numbers of snails ( N s ) and

fish ( N f ) are varied. R 0 depends more strongly on the population

size of snails than of fish. The sensitivity of R 0 for the model with

reservoir hosts (4) is presented in Figs. 7 (b)–(d). Fig. 7 (b) shows

the variation of R 0 to the number of snails ( N s ) and fish ( N f ). Sim-

ilar to the basic model, R 0 increases faster with more snails faster

than with more fish. In Fig. 7 (c), we see that R 0 increases faster

with the number of dogs ( N d ) than with the number of cats ( N c ).

Fig. 7 (d) shows that when the numbers of humans ( N h ) and cats

( N c ) are varied, R 0 increases more rapidly with the number of cats.

We show numerical simulations of the basic model (1) and

of the model with reservoir hosts (4) in Fig. 8 . For both models

the parameter values are given in Table 6 and the initial condi-

tions are w h = 1 , w d = 1 , w c = 1 , i s = 0 and i f = 0 . We use the
ormand–Prince method 

4 to integrate over the time interval [0,

0 0 0 0], which corresponds to a time period of 190 years. 

. Discussion 

We analysed two population-based models of transmission dy-

amics of the O. viverrini . The basic model (1) includes the in-

ermediate hosts snails and fish, and humans as definitive hosts.

e extended this model to a model with reservoir hosts (4) by

ncluding cats and dogs as additional definitive hosts. We proved

hat the models are mathematically and epidemiologically well-

osed. We obtained an explicit expression for the basic reproduc-

ion number R 0 . We defined the disease-free and the endemic

quilibrium points, showed the criterion for the existence of these

oints points, and investigated their stability with respect to R 0 .

e used Bayesian sampling-resampling with data from two islands

n Lao PDR to construct distributions for the parameter values. We

nally simulated the mean worm burden in the definitive hosts

nd the prevalence in the intermediate hosts over time. 

The host-specific type-reproduction number defines the num-

er of new infection from one infected individual when certain

ypes of hosts are excluded from the model. It helps to identify

he reservoir community and their maintenance hosts. We showed

hat humans, snails, and fish are maintenance-hosts because they

an sustain transmission on their own. Furthermore, transmission

s not possible if any of these species is removed from the cycle,

o they are also reservoir hosts. This implies that it is possible to
4 MatlabR2017a: ode45. 
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Fig. 8. Numerical simulations of the opisthorchiasis models (1) and (4) with the Dormand–Prince method over a time line of 70,0 0 0 days. The initial values are 1 for the 

worm burdens and 0 for the prevalence. The parameter values are in Table 6 . 
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nterrupt transmission with interventions that only target humans

nd ignore cats and dogs. For example, improving sanitation to

n high enough level would be sufficient to eliminate opisthorchis

ransmission in Lao PDR. 

The basic model could not differentiate between the sensitivity

f the parameters on the basic reproduction number, R 0 . Sensi-

ivity analysis of the model with reservoir hosts showed that R 0 

epends mostly on the death rate of parasites in humans ( μph ),

f snails ( μs ), and of fish ( μf ), and the population sizes of snails

 N s ) and fish ( N f ). Increasing the death rate of parasites in hu-

ans ( μph ) is possible through regular treatment of humans with

raziquantel. Increasing the death rates of snails ( μs ) and fish ( μf )

s more difficult, but reducing the number of snails is possible

hrough snail control. Improved sanitation (which lowers βsh ) and

afe fish production (which lowers βhf ) have a moderate effect on

educing R 0 . 

There are some differences in the sensitivity indices of the equi-

ibrium mean worm burden in humans ( w 

∗
h 
) between the basic and

he model with reservoir hosts and between the local and global

nalysis ( Fig. 6 ). However, the death rate of parasites in humans

 μph ), the transmission rate from fish to humans ( β fs ) and the

umber of fish ( N f ) most often have a high sensitivity index. This

uggests that regular treatment of humans and safe fish production

re the most effective intervention in reducing the parasite burden

n humans. Sensitivity analysis of the model with reservoir hosts

4) showed that the cats have more influence on the worm burden

n humans than dogs. 
In both models, we ignored seasonality, the age of humans, the

ynamics of infection in fish and the latent period in snails and

sh. Transmission of O. viverrini follows a seasonal pattern because

f increases in the number of snails and fish in the rainy season.

his implies that interventions could be more effective if targeted

n the right season. Additionally it may also be possible that in the

ainy season, cats or dogs could sustain transmission. 

The results of the sensitivity analysis depend on the data we

sed to fit the models. This data was collected in 2011–2012 from

 cross-sectional survey in two islands so, in the absence of any

ime-series data, we made the parsimonious assumption that the

ystem was at an endemic equilibrium and that the coverage of

ny interventions (such as improved sanitation) was constant, with

heir effects included in the model parameters. Although there

ay have been intermittent mass drug administration campaigns

n the past, a consistent nationwide schistosomiasis elimination

rogram, with annual mass drug administration (with praziquan-

el which also kills O. viverrini worms) combined with improved

ccess to sanitation and safe water, was only started later in 2015. 

In the models, we assumed all humans are the same and ig-

ored the fact that babies are born without infection and chil-

ren have a lower worm burden than adults. Since humans accu-

ulate parasites over their life times, heterogeneity in the distri-

ution of worms in humans may lead to sustained transmission

ven at lower mean worm burdens. At high parasite density there

re likely to be effects of density-dependence such as competition

nd immune regulation, but we ignore these effects in our sim-
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ple model. A more complete analysis of heterogeneity in human

exposure, density-dependent effects at high parasite densities, and

the impact of high density infections on morbidity and mortality

would likely require an individual-based model, that includes the

intensity of infection in each human. Additionally, detailed data on

the densities of worms in humans would be necessary to parame-

terise such a model. 

O. viverrini is a hermaphrodite — it has both male and female

reproductive organs — so any two worms in one definitive host

can reproduce and Allee effects at low worm densities are less rel-

evant for this species ( Fürst et al., 2012b ) (although they could also

be included in an individual-based model). Assortative mixing be-

tween species is unlikely because cats and dogs are domestic pets

so all definitive hosts live in the same households, eat the same

fish, and are likely the infect the same fish. 

The infection rate from fish to the definitive hosts ( βhf , βdf , βcf )

depends on the intensity of infection in fish. We ignore the inten-

sity of infection in fish, but model the prevalence of infected fish.

Similar to the heterogeneity in humans, the heterogeneity of inten-

sity of infection in fish could lead to higher transmission. Infected

snails and fish are not infectious immediately but need some time

for the parasite to develop. This latent period could lead to a lower

prevalence of infectious snails and fish, because infected snails and

fish can die before becoming infectious. We plan to investigate the

implication of these assumptions in future work. 

This work suggests that including cats and dogs in a model of

opisthorchis allows us to better differentiate the most important

parameters for maintaining transmission and reducing worm bur-

den in humans. However cats and dogs are not necessary to main-

tain transmission so it would be possible to eliminate O. viverrini

by only targeting humans with effective interventions such as reg-

ular treatment, safe fish production and improved sanitation. 
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Appendix A. 

Proposition 1 (Routh–Horwitz criterion, see Korn and

Korn (20 0 0) ) . For a polynomial 

f (x ) = a 0 x 
3 + a 1 x 

2 + a 2 x + a 3 = 0 (A.1)

with a i ∈ R for i = 0 , 1 , 2 , 3 , the number of roots with positive real

parts is equal to the number of sign changes in either one of the se-

quences 

T 0 , T 1 , 
T 2 
T 1 

or 

T 0 , T 1 , T 1 T 2 , 

where 

T 0 = a 0 > 0 , T 1 = a 1 , T 2 = det 

[
a 1 a 0 
a 3 a 2 

]
. 

Given a 0 > 0, all roots have negative real parts if and only if T 0 , T 1
and T 2 are all positive. 
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