View metadata, citation and similar papers at core.ac.uk

brought to you b
provided by edoc

Stem Cell Research 26 (2018) 47-54

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Functional characterization and phenotypic monitoring of human L)
hematopoietic stem cell expansion and differentiation of monocytes and _—
macrophages by whole-cell mass spectrometry

Guido Vogel ?, Aline Cuénod "<, Roxanne Mouchet , André Strauss ?, Claudia Daubenberger <,
Valentin Pfliiger ?, Damien Portevin >“*
2 Mabritec AG, Riehen, Switzerland

b Department of Medical Parasitology and Infection Biology, Swiss TPH, Basel, Switzerland
¢ University of Basel, 4002 Basel, Switzerland

ARTICLE INFO ABSTRACT

Article history:

Received 29 September 2017

Received in revised form 10 November 2017
Accepted 20 November 2017

Available online 22 November 2017

The different facets of macrophages allow them to play distinct roles in tissue homeostasis, tissue repair and in
response to infections. Individuals displaying dysregulated macrophage functions are proposed to be prone to in-
flammatory disorders or infections. However, this being a cause or a consequence of the pathology remains often
unclear. In this context, we isolated and expanded CD34 + HSCs from healthy blood donors and derived them
into CD14 + myeloid progenitors which were further enriched and differentiated into macrophages. Aiming
for a comprehensive phenotypic profiling, we generated whole-cell mass spectrometry (WCMS) fingerprints
of cell samples collected along the different stages of the differentiation process to build a predictive model
using a linear discriminant analysis based on principal components. Through the capacity of the model to accu-
rately predict sample's identity of a validation set, we demonstrate that WCMS profiles obtained from bona fide
blood monocytes and respectively derived macrophages mirror profiles obtained from equivalent HSC deriva-
tives. Finally, HSC-derived macrophage functionalities were assessed by quantifying cytokine and chemokine re-
sponses to a TLR agonist in a 34-plex luminex assay and by measuring their capacity to phagocytise mycobacteria.
These functional read-outs could not discriminate blood monocytes-derived from HSC-derived macrophages. To
conclude, we propose that this method opens new avenues to distinguish the impact of human genetics on the
dysregulated biological properties of macrophages in pathological conditions.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

CD34" hematopoietic stem cells (HSCs) circulating in peripheral
blood of healthy donors are relatively rare, ~0.15% in average (Herbein
et al., 1994). For this reason, HSC sources used for hematopoietic alloge-
neic transplantation following myeloablative regimens, are preferably
performed either following G-CSF mobilization but also using cord
blood for which HSCs frequency (~1%) with repopulation capacities
are substantially higher (Kinniburgh and Russell, 1993; Wang et al.,
1997). For basic research and clinical application purposes, much effort
has been done to promote their expansion in vitro while maintaining
their pluripotency and repopulating capacities using cocktails of cyto-
kines and growth factors, notably Flt-3 ligand (FL), thrombopoietin
(TPO), stem cell factor (SCF), interleukin-6 (IL-6), and/or interleukin-3
(IL-3) (Gammaitoni et al., 2003; Nakahata, 2001). More recently,
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approaches using additional small chemical inhibitors have been de-
scribed reaching unprecedented expansion yields (Zhang and Gao,
2016). Consequently and despite their scarcity, circulating HSCs repre-
sent an accessible cell population that can be easily retrieved by
immune-selection and expanded from otherwise discarded blood
bank byproducts such as leuko-reduction filters (Peytour et al., 2013).
Several reports described the expansion and differentiation of CD34 +
HSCs progenitors into lymphoid and/or myeloid cell types including T
cells, B cells, CD14 + monocytes as well as dendritic cell progenitors
(Arrighi et al., 1999; Mytar et al., 2009; Payuhakrit et al., 2015; Stec
et al., 2007). The generation of macrophages from CD34 precursors
based on the adherence of macrophage progenitors within a mixture
of expanding CD34 progenitors has been described (Clanchy and
Hamilton, 2013). Instead, we are describing here a stepwise methodol-
ogy of progenitor expansion, monocyte differentiation and purification
before final differentiation into macrophages with M-CSF in the absence
of additional growth factors. In addition, although different macrophage
subsets can be readily derived from monocytes isolated from the pe-
riphery (Vogel et al., 2014), a report comparing phenotypically and
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functionally HSC-derived macrophages to bona fide autologous blood-
monocyte-derived macrophages was still missing.

Macrophages are present throughout the body and therefore consti-
tute a “widely dispersed organ system” (Gordon and Pliiddemann,
2017). Tissue-resident macrophages and newly-recruited monocyte-
derived macrophages infiltrating inflamed tissues regulate tissue ho-
meostasis by ingesting dead, dying cells or toxic materials (Wynn and
Vannella, 2016). This function is notably important for the prevention
of neurodegenerative disorders such as Alzheimer's disease in which
tissue-resident macrophages display depressed phagocytosis and clear-
ance of amyloid peptides accumulating as brain deposits (Fiala et al.,
2017). In addition, they play a complex role in response to tissue injury
which requires temporal regulation of the M1-classical activation of
macrophages that sustains inflammation and killing functions to pre-
vent infection and M2 activation which pro-fibrotic and anti-
inflammatory functions favor healing (Mills et al., 2015). These two
types of functions inhibit each other and may lead to inflammatory dis-
orders or promote cancers if unbalanced (Harris, 2014). Of particular
importance, macrophages are “the chicken and the egg of immunity”
(Mills and Ley, 2014). Through their innate capacity to sense conserved
pathogen associated molecular patterns, engulf, process and present an-
tigens derived from the ingested microbes, macrophages provide specif-
ic signals that direct T cell immunity towards the most adequate
response.

Consequently, several human pathogens evolved elaborated strate-
gies to bypass macrophage microbicidal functions and proliferate. For
instance, leishmania parasites and a variety of intra-cellular bacteria in-
hibit or escape phagosomal maturation in order to replicate inside mac-
rophages (Liévin-Le Moal and Loiseau, 2016; Mitchell et al., 2016). From
the host perspective, mendelian susceptibility to mycobacterial and Sal-
monella infection all refers to mutations affecting IL-12, IL-23 and IFN-y
cytokines or pathways which are key components of macrophage acti-
vation (Bustamante et al., 2014). In contrast, a substantial frequency of
human exposed to M. tuberculosis clears the bacteria so efficiently that
no traces of an immune memory can be detected (Cobat et al., 2009).
This likely suggests that a particularly potent innate immune compo-
nent prevails in these individuals. However, little is known about the ge-
netic origin of natural resistance to infections. Aside, macrophages are
also proposed to play an important role in the development of type 2 di-
abetes as an inflammatory disease (Donath and Shoelson, 2011) and di-
abetic patients are more susceptible to infections in general (Abu-
Ashour et al., 2017). Evidence of impaired or exacerbated monocytes/
macrophages functions in a variety of inflammatory disorders accumu-
lates (Liu et al., 2014). Nonetheless, human clinical immunological stud-
ies almost always rely on cells from the blood. Consequently, it becomes
difficult to disentangle from the observed altered functions the contri-
bution of host genetics from the effect of obesity or hyperglycemia on
the hematopoiesis itself, for instance, or simply from the fact that the
most potent effector cells may have simply extravasated to an inflamed
site at the time of phlebotomy. Finally, cellular immunotherapeutic in-
tervention based on the pulmonary transplantation of genetically
engineered macrophages revealed, in mice, promising potential for
the treatment of hereditary pulmonary alveolar proteinosis (Suzuki
et al., 2014). Taken together, the capacity to generate ex vivo HSC-
derived macrophages from a particular individual would open several
avenues: (i) gain mechanistic insights on the origin of the natural resis-
tance to infections, (ii) dissect host genetics from environmental factors
influencing macrophage functions, (iii) provide an immunotherapeutic
tool.

In this report, we describe a method to generate macrophage from
HSC-derived monocytic progenitors and compared them functionally
and phenotypically to bona fide autologous blood-monocyte-derived
macrophages. We assessed the reproducibility of our method by inves-
tigating comprehensive molecular signatures using whole-cell mass
spectrometry biotyping, a method previously described to robustly dis-
criminate immune cells as well as activation status of monocytes or

macrophages (Munteanu et al., 2012; Ouedraogo et al., 2012; Portevin
et al., 2015). We also demonstrate that HSC-derived macrophages
show inflammatory and phagocytic functionalities comparable to their
autologous bona fide monocyte-derived macrophages counterparts.
We propose that such approach is particularly relevant in the context
of immunotherapeutic intervention based on the transplantation of
macrophages but also offer unprecedented avenues to bring mechanis-
tic insights among individuals naturally resistant to a given pathogen
and reciprocally, decipher whether dysfunctions of the monocyte/mac-
rophage compartment observed under certain pathological conditions
appeared as a consequence of the disease and/or have host genetic
determinants.

2. Results
2.1. Generation of macrophages from HSC or blood monocytes progenitors

CD34 + hematopoietic stem cell progenitors were isolated on day 0
(HSCDO) from freshly processed peripheral blood mononuclear cells of
healthy blood donors (n = 12) at an average yield of 1.75 = 10° from 2
+ 108 PBMCs and an average purity of 91.65% +/— 4.31 (Fig. 1, panel
A). HSCs were expanded for seven days (HSCD7) to an average amplifi-
cation factor of 74 +/— 25.8 (Fig. 1, panel B). As depicted in panel C of
Fig. 1, after one week of culture expanded HSCs maintained expression
of CD34 and the stem cell growth factor receptor, CD117 and gained sur-
face expression of CD45. As described previously (Stec et al., 2007), the
replacement of thrombopoietin with macrophage colony stimulating
factor for an additional 7 days of culture allowed partial differentiation
and moderate amplification of HSCD7 into CD14*/HLA-DR™ monocytes
(Fig. 1, panel D and E). At this stage, monocytes were either isolated
from the expansion mix (HSCdMo) or from cryopreserved autologous
peripheral blood mononuclear cells (BMo) using CD14 magnetic beads
to an average purity of 94.13% +/— 4.32 and 96.02% +/— 0.93 respec-
tively (Fig. 1, panel F). The monocyte fractions derived from HSCs pro-
genitors or autologous blood PBMCs were then cultivated separately
for 6 days in the presence of M-CSF as described here (Verreck et al.,
2004), to generate HSC-derived macrophages (HSCDMac) and blood-
derived macrophages (BMoDMac) respectively. Panel E of Fig. 1 depicts
comparable expression levels of relevant antigen presenting cell's
markers i.e. CD16, CD206, CD86 and HLA-DR assesseded on HSCDMac
and BMoDMac.

2.2. Whole-cell MS biotyping reveals closely overlapping signatures of mac-
rophages derived from HSC or blood monocytes progenitors

To appreciate further comprehensively how similar HSCDMac were
to bona fide BMoDMac, we performed a whole-cell mass spectrometry
approach to obtain molecular fingerprints composed of molecular enti-
ties with an apparent mass < 20 kDa present within each cell prepara-
tions. Across three independent donors, 2*10° cellular aliquots were
withdrawn along the different stages of the expansion and differentia-
tion protocol of macrophages from HSCs or autologous blood mono-
cytes. Cells were processed for whole-cell mass spectrometry (WCMS)
profiling similar to a previous report (Portevin et al., 2015). Mass spec-
trometry data were processed, normalized and aligned using
‘MALDIquant’ (Gibb and Strimmer, 2012) to obtain a semi-
quantitative molecular snapshot for all samples (median of detected
peaks' number: 105, IQR: 98-110). An overlay of the averaged spectra
in a restricted mass range for each cell derivatives and each donor is pre-
sented in panel A of Fig. 2 to illustrate the reproducible over-
representation of particular masses for a given cell type and so, indepen-
dently of the donor origin. For instance, signals with an apparent mass
(m/z) of 11,076.6, 11,648 and 11,854.3 were reproducibly more abun-
dant in macrophage samples of HSC or blood monocyte origin. Con-
versely, m/z signals at 11989.5 were consistently more abundant in
freshly isolated or expanded HSCs. Consequently, we generated a heat
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Fig. 1. Isolation, culture and differentiation of hematopoietic stem cells or blood monocytes into macrophages. A) Representative FACS plot showing substantial enrichment of CD34*/
CD45~ HSCs (right panel) isolated from PBMCs (left panel). B) Graph depicting the absolute cell counts during HSC expansion across 12 independent donors. C) Representative FACS
plot histogram of expanded HSCs after one week of culture (control in red overlaid with specified antibody in blue). D) Representative FACS dot plot of HCS expansion mix after one
week of partial differentiation into CD14*/HLA-DR™ monocytes culture (left plot) and following magnetic bead selection of CD14™ cells (right plot). E) Graph depicting the absolute
cell counts during the differentiation of HSCs into monocytes (n = 12 independent donors). F) Representative FACS dot plot of CD14™" selected cells from blood. G) Representative
FACS plot histogram investigating the surface expression of CD16, CD206, CD86 and HLA-DR at the surface of macrophages derived from HSC (HSCDMac) and macrophages derived

from blood monocytes (BMoDMac) (control in red overlaid with specified antibody in blue).

map from the distance matrix computed with the peak intensities for
each signals (SNR > 4) within each individual spectra across the full
mass range (m/z 4000-20,000). As depicted in Fig. 2B, the heat map re-
vealed very low distances between samples of the same cell type and in
particular for HSC-derived macrophages of blood monocyte derived
macrophages indicating further that both macrophage products are
phenotypically extremely similar. In order to test whether the proteo-
mic signatures could be reproducibly detected across additional sam-
ples, we subjected the peak intensity matrix to a supervised
discriminant analysis based on principal components. The scatter plot
visualization of the first two discriminant functions further demonstrat-
ed that WCMS profiles could readily discriminate HSC expanded or not
or HSC derived monocytes or blood monocytes. However, signatures
from macrophage samples derived from HSC or blood monocyte over-
lapped indicating that information in the spectra is missing to segregate
macrophage origin (Fig. 2C). The predictive properties of the discrimi-
nant functions were finally validated with a validation sample set. Ex-
cepting one monocyte sample derived from HSC, the 29 remaining
samples were properly matched to their expected identity (Fig. 2D). In-
terestingly, two macrophage sample from HSC and blood monocyte

origin were properly identified as macrophage but from the other origin
sustaining further that proteomic profiles from both cell derivatives are
finely interlaced and the two populations potentially identical.

2.3. Functionalities of macrophages derived from HSC and bona fide blood
monocytes derived macrophages are comparable

Having demonstrated that HSCDMac and BMoDMac are phenotypi-
cally similar, we aim to study whether both cell derivatives would also
present similar functional capacities. We first investigated the capacity
of both macrophage preparations to phagocytose M. bovis BCG, the
live vaccine strain against tuberculosis. For this purpose, we used a
GFP transformed M. bovis BCG to monitor intra-cellular uptake qualita-
tively by microscopy and quantitavely using flow cytometry. Macro-
phages from three independent donors were seeded at equal density
and incubated with mycobacterial suspension at a multiplicity of infec-
tion of 1:1. After 24 h, cells were washed and mounted in DAPI mount-
ing medium to distinguish infected from non-infected cells (Fig. 3A).
The frequency of macrophage containing green bacteria was very simi-
lar between HSCDMac and BMoDMac (Fig. 3B). Nonetheless,
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Fig. 2. Whole-cell mass spectrometry proteomic profiles of macrophages derived from HSC are highly similar to macrophages derived from bona fide blood monocytes. A) Whole cell mass
spectrometry profiles of the indicated cell types and derivatives (test set) showing that in the selected mass range particular masses are specifically enriched in macrophages derived from
HSC (HSCDMac, pink) and macrophages derived from blood monocytes (BMoDMac, red) or HSC isolated from blood (BHSC, green) and expanded HSC fractions (ExpHSC, blue), and so,
independently of the donor origin (n = 3). B) Heat-map of Manhattan dissimilarities between the indicated cell types and derivatives calculated from the peak list intensities obtained by
whole-cell MS. C) PCA plots of a supervised machine learning approach using discriminant analysis based on principal components (DAPC) illustrating the potential of whole-cell mass
spectrometry fingerprints obtained from the test set to distinguish HSC (expanded or not) from monocytes (derived from HSC or isolated from blood) and to a lesser extent
macrophages (derived either from HSC or from blood monocytes). D) Heat-map of the cell type identity prediction of a validation set (independent donors, n = 6) using the DAPC
tool built from the test set (prediction score ranging from 0 to 100 depicted for each individual sample).

macrophage may uptake multiple bacteria as depicted in the insets of
Fig. 3A and therefore the total amount of ingested micro-organisms
was estimated by looking at the mean fluorescence intensity increase
of infected macrophage compared to uninfected ones. Again, no signifi-
cant difference could be observed between HSCDMac and BMoDMac
demonstrating comparable phagocytic properties of both cell deriva-
tives (Fig. 3C). Another important function of macrophages relies on
their capacity to release inflammatory mediators in response to micro-
bial stimulation. We therefore investigated the capacity of both macro-
phage preparations to produce inflammatory cytokines and
chemokines in response to LPS stimulation, a TLR4 agonist produced
by gram negative bacteria. Again, no significant difference could be ob-
served between HSCDMac and BMoDMac demonstrating comparable
inflammatory properties of both cell derivatives (Fig. 4).

3. Discussion

We showed here that human macrophages can be successfully de-
rived from hematopoietic stem cells (HSCs) through an intermediate
stage of differentiation of HSC-derived monocytes. During the first
week of expansion of HSCs, we observed that CD34 marker expression

was maintained. So was logically CD117, the receptor for the stem cell
growth factor (SCF) present in the amplification medium. Interestingly,
amplified HSCs quickly gained expression of tyrosine phosphatase,
CD45. Although, we did not investigate the precise nature of the CD45
isoform, the expression of this key regulator of immune cell signaling
is known to be progressively gained during the maturation of the lym-
phoid and myeloid lineage from pluripotent HSCs (Hermiston et al.,
2003).

Partial differentiation of CD34 + progenitors into CD14 + mono-
cytes is consistent with the heterogeneity of in vitro-cultured HSCs iso-
lated from peripheral blood with potentially distinct erythroid/
lymphoid/myeloid lineage commitment (Jobin et al., 2015; Kondo
et al., 2003). Consequently, we implemented a CD14 enrichment step
to ascertain the purity of the monocyte fraction subjected to macro-
phage differentiation and have comparable culture conditions between
HSC-derived monocytes and blood-derived monocytes. For the sake of
simplifying the method and reduce costs, it should be possible to simply
substitute the monocyte with the macrophages differentiation medium
as only macrophages adhere to the plates and contaminants may be
washed off easily. We successfully used M-CSF as a maturation factor
for the differentiation of HSCs into monocytes as well as monocyte
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Fig. 3. Comparable phagocytic capacities of macrophages derived from either HSC (HSCDMac) or bona fide blood monocytes (BMoDMac). HSCDMac and BMoDMac were infected with
M.bovis BCG-GFP for 24 h and analyzed by microscopy and flow cytometry A) Representative fluorescence microscopy field and inset of an infected cell depicting the presence of
multiple bacteria in the intra-cellular compartment of macrophages. B) Histogram of the mean frequency of M.bovis BCG-GFP positive cells +/— SEM across macrophages preparations
from 3 independent donors. C) Histogram of the mean fluorescence intensity delta between M.bovis BCG-GFP infected and non- infected macrophages +/— SEM across experimental

triplicates.

into macrophages. Nonetheless, GM-CSF may also substitute to M-CSF
for the maturation of this myeloid lineage and side by side comparison
should deserve further investigation.

We phenotypically compared HSDMac and BModMac by flow cy-
tometry and could not detect differences between the two cell popula-
tions for any of the investigated cell surface markers. Whole-cell mass
spectrometry fingerprinting (WCMS) constitutes a cheap, fast and
therefore widely used method in clinical microbiology. This method
has recently been applied to the field of mammalian cells, mostly cell
lines and primary cells from blood origin (Munteanu and Hopf, 2016;

Ouedraogo et al., 2010). Interestingly, semi-quantitative analysis of
WCMS fingerprints was shown to correlate with apoptosis induction
and discriminate immune cell activation (Dong et al., 2011;
Ouedraogo et al., 2012; Portevin et al,, 2015). We therefore used a
WCMS approach to assess whether different signatures may indicate
the HSC or blood origin of the macrophage population. We observed
that among the various differentiation steps, BMoDMac and HSCDMac
samples were the most similar (Fig. 2B). Using these WCMS signatures,
we built a predictive model to demonstrate the validity of the signatures
to predict the nature of an independent set of samples (validation set,
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Fig. 4. Comparable inflammatory responses of macrophages derived from either HSC (HSCDMac) or bona fide blood monocytes (BMoDMac). HSCDMac and BMoDMac were stimulated or
not with LPS, a TLR 4 agonist, for 24 h and supernatants assessed for 34 different cytokines or chemokines. Results from 3 independent donors are summarized and presented as box-and-
whisker plots for the 18 detected analytes. No significant differences in the ability to release inflammatory mediators were detected between HSCDMac and BMoDMac in response to LPS

(Student's t-Test, p > 0.05).
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Fig. 2D). Given the successful identity prediction based on WCMS fin-
gerprints, we suggest that this analytical pipeline could be of great use
for quality insurance purposes in the context of iPS or bone marrow-
derived samples which can be of particular clinical relevance for immu-
notherapeutic intervention of Alzheimer's disease for instance (Magga
etal, 2012).

Finally, no significant differences between HSCDMac and BMoDMac
could be observed in the phagocytosis of M. bovis BCG or the inflamma-
tory response to LPS. These samples being all derived from healthy
blood donors; we expected and demonstrated that beyond phenotypic
similarities, HSCDMac harbor functional capacities that are tightly com-
parable to macrophages derived from blood monocytes. Under steady
state conditions, all circulating monocytes are derived from CD34 +
progenitors; nonetheless, the hematopoietic niche in which CD34 dif-
ferentiate into monocytes in vivo cannot rigorously be compared with
in vitro culture conditions and as such, the fact that CD34 cell-derived
macrophages and macrophages derived from peripheral blood mono-
cytes are indistinguishable both phenotypically and functionally was
not trivial. However, the monocyte compartment that gives rise to infil-
trating macrophages is subjected to profound qualitative changes in re-
sponse to pathological stresses such as rheumatoid arthritis (Kawanaka
et al., 2002), atherosclerosis (Schlitt et al., 2004), diabetes (Min et al.,
2012), HIV infection (Thieblemont et al, 1995), bacterial sepsis
(Fingerle et al., 1993) and pulmonary tuberculosis (Vanham et al.,
1996). In addition, monocytes from tuberculosis patients showed defec-
tive abilities to differentiate into dendritic cells (Balboa et al., 2013). We
propose that side by side functional comparison of HSDMac and
BMoDMac from similar cohorts of patients could distinguish the genetic
determinants which may drive the disease from the physiological con-
sequences of the respective pathology but also enlighten the cellular or-
igin of the natural resistance to intra-cellular parasites.

4. Methods
4.1. Ethics statement

Fresh blood packs (buffy coat) were purchased anonymously from
the Blutspendezentrum SRK beider in Basel, Switzerland. In compliance
with the Helsinki Declaration, signed informed consents stating specifi-
cally that “the donation or certain components thereof be used for med-
ical research after definitive anonymization” was obtained prior blood
donation. Consent form can be found here: http://blutspendebasel.ch/
blutspende-downloads.html (accessed on August 29th 2017).

4.2. Blood processing for PBMC isolation

Peripheral Blood Mononuclear Cells (PBMCs) were freshly isolated
from blood packs (see ethics statement) by density centrifugation
using Greiner Bio-One Leucosep® tubes according to the manufacturer's
recommendations. PBMCs rings were collected, washed twice in RPMI-
1640 and counted. Part of the collected PBMCs were used directly for
HSC isolation, and the remaining cells suspended at 20 » 10° cells/ml
in ice-cold freezing medium (50% RPMI-1640, 40% FCS, 10% DMSO)
and transferred at — 80 °C in cryotubes and Nalgene® Mr. Frosty for
24 to 72 h before long-term storage in liquid nitrogen.

4.3. Hematopoietic stem cell derived macrophages

Hematopoietic stem cell progenitors were isolated from 100 to 200
« 106 freshly isolated PBMCs using CD34 microbeads (Miltenyi Biotec
GmbH). CD34 + cells were seeded and passed after 72 h at 6 = 10% cells/-
cm? in XVivo10 medium (Lonza) containing FCS (4%), SCF (50 ng/ml),
TPO (15 ng/ml), IL-3 (30 ng/ml) and FIt-3L (30 ng/ml). On day 7, ex-
panded HSCs were transferred in IMDM medium (Lonza) containing
SCF (25 ng/ml), M-CSF (30 ng/ml), IL-3 (30 ng/ml), Flt-3 Ligand
(30 ng/ml) and FCS (20%) at 4 « 10* cells/cm?, cytokines were added

at the same concentration 3 days later. On day 7, cells were subjected
to CD14 selection using CD14 microbeads (Miltenyi Biotec GmbH) and
differentiated in tissue culture treated plates or dishes at a density of
14 « 10* cells/cm? in RPMI-1640 (Sigma-Aldrich), 10% heat-
inactivated FCS (Gibco Life Technologies™), and M-CSF (50 ng/ml) for
7 days at 37 °C in a humidified atmosphere with 5% CO,. Blood mono-
cytes were isolated from PBMCs using CD14 microbeads and differenti-
ated into macrophages as indicated for HSC-derived monocytes.
Macrophages were harvested after incubation with Trypsin/EDTA solu-
tion (Sigma-Aldrich) for 20 min at 37 °C.

4.4. Flow cytometry analysis

Staining of cell aliquots were performed in PBS 0.5% FCS containing
combination of the following antibodies: anti-CD14 FITC (M®P9, Becton
Dickinson), anti-CD16-PE (Leul1c, Becton Dickinson) and anti-HLA-DR
(MDCS8, Miltenyi Biotec) or anti-CD45-FITC (HI30, BD Pharmingen),
anti-CD34-PE (581, BD Pharmingen) and anti-CD117-APC (104D2,
Biolegend) for 15 min on ice. After washing, antibody labeled cell prep-
arations were fixed in CellFix buffer (BD Biosciences), fluorescence ac-
quired on a BD FACSCalibur apparatus and data analyzed using
Flowing Software 2.5.1 (University of Turku).

4.5. Cytokines and chemokines profiling

Analyte concentrations from macrophage culture supernatants
stimulated or not with LPS (0111:B4, 10 ng/ml final, Sigma-Aldrich)
for 24 h were assessed using human cytokine and chemokines 34-plex
(ProcartaPlex™, affymetrix eBioscience), fluorescence acquired on a
Luminex® 200™ System and data analyzed with nCal R package.

4.6. Macrophage phagocytosis of M. bovis BCG-GFP

Exponentially growing M. bovis BCG-GFP culture washed with PBS-
Tween80 (0.1%), resuspended in PBS and centrifugated at 260 g for
10 min to separate clumps from single cell bacteria was frozen in 50%
glycerol and bacterial counts estimated by serial dilution on 7H11 agar
plates complemented with OADC supplement (BD biosciences). Macro-
phage seeded within 16-well glass chamber slides (Lab-Tek®) at a den-
sity of 3 « 10° cells/cm? were infected with M. bovis BCG-GFP at an MOI
1:1. After 24 h, supernatants were discarded and slides mounted in
DAPI-containing Vectashield medium (Vector Laboratories). Two inde-
pendent fields were acquired on a Leica DM5000B for each sample
and 199 cells counted in average (IQR, 104-290). Alternatively, macro-
phages were recovered after 20 min digestion with Trypsin solution
(Sigma) and fixed with BD CellFix solution (BD biosciences), fluores-
cence acquired on a BD FACSCalibur apparatus and data analyzed
using Flowing Software 2.5.1 (University of Turku).

4.7. Whole-cell mass spectrometry

Cryopreserved cell pellets were washed with 70% ethanol and briefly
vortexed before centrifugation (10 min, 16,000 RCF). Supernatants
were discarded, cell pellets dried for 1 min at room temperature and fi-
nally solubilized with 10 pl formic acid 10%, mixed with 2 volumes of a
saturated sinapinic acid solution (40 mg for 1 ml of acetonitrile 60%/H20
37%/TFA 3%) and spotted in quadruplicates on a MALDI-TOF chip. Exter-
nal calibration was performed using ribosomal corresponding m/z sig-
nals from whole-cell E. coli (DH5at). Mass spectra (m/z mass range:
3000 to 30,000) were acquired on a Shimadzu Biotech Axima
Confidence.

4.8. Mass spectrometry data analysis

Mass spectra exported as mzXML files with MALDI-MS Shimadzu
Biotech Launchpad 2.8.1 (Kratos Analytical Ltd) were imported in R
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using MALDIquant Foreign package. Mass spectra were processed ap-
plying successively square-root transformation, Savitzky-Golay
smoothing, SNIP baseline correction, standardization of intensities
based on TIC and aligned using conserved m/z peaks at 5665.5 and
11,310 and a tolerance of 0.032 using MALDIquant R package. Peak de-
tection was performed with a signal-to-noise ratio of 4 and
HalfWindowsSize of 60 and binned with a tolerance of 0.016. Peak list
and their respective intensities were retrieved to build a matrix used
for subsequent linear discriminant analysis and prediction using
adegenet R package.
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