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1. Introduction

1.1 Oscillations

Oscillations are periodic fluctuations away from a state of equilibrium. Oscillatory systems 

are widely studied in mathematics, physics, chemistry and, more recently, biology. Three 

main variables characterize an oscillation. The amplitude describes the extent of 

fluctuation from the baseline or equilibrium. The period describes the duration of one full 

oscillation. Finally, the phase describes the relative displacement of an oscillation. 

Harmonic oscillations, which are built up of sine and cosine waves, are the most common 

type of oscillations. Interactions with oscillating systems are common in Biology. Visual 

cues, which are encoded in spatial oscillations of photons, are detected by neurons in the 

retina. The inner ear on the other hand detects oscillations of pressure in air that we refer 

to as sound. Modifications to the basic characteristics of these oscillations affect the way 

we perceive them. Changing of the amplitude of sound waves for example increases the 

volume of the sound we hear. Changes in the period on the other hand affect the pitch of 

the sound. For the oscillations of photons, a change in period affects the color of the light 

that we perceive. Mammals and many other organisms are equipped to sense oscillations 

of various origins. Additionally, many organisms are themselves able to predict rhythmic 

changes in their environment through the establishment of an internal oscillatory system. 

Circadian rhythm is an important example of this interaction with an external cue that sets 

the phase of oscillatory gene expression and behavior. Another example of an oscillatory 

system in biology is found in the formation of the somites during embryogenesis of 

vertebrates. In this case, the size and shape of newly formed somite is dictated by an 

oscillation that occurs specifically during development. Although there are numerous 

more examples of oscillating systems, we focus on these two widely studied oscillatory 

systems below.
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1.1.1 Circadian rhythm

Circadian rhythms allow organisms to adjust their behavior to the time of the day. The 

systems that establish this rhythm are the most well studied oscillating systems and 

together represent the most well-known example of a biological clock. The word circadian 

stems from the Latin words, ‘circa’ and ‘dies’, which mean ‘approximately’ and ‘day’, 

respectively. The term circadian rhythm is commonly used to describe a rhythm that is 

induced by a timer that has a period of approximately 24 hours. Biological timers are a 

common feature in biology, and especially circadian timers are plentiful. Circadian timing 

of behavior was first reported in the 18th century based on the observation that the leaves 

of the plant Mimosa pudica fold and spread at daily intervals. Through these types of 

behavioral modifications, circadian rhythms offer the organism an ability to cope with the 

day-night cycle, as well as the changing of the seasons (Stoleru et al., 2007). Although 

circadian rhythms and the core clock components that establish them may differ between 

species, there are some core concepts that many of them have in common. First of all, 

the rhythm is temperature compensated. This means that regardless of the temperature, 

the period of the rhythm or oscillation will remain unchanged (Pittendrigh, 1954). 

Secondly, there is an environmental stimulus (also called zeitgeber) that serves to impose 

and enforce the phase of the rhythm. Light, temperature and food availability are 

examples of external cues that can function as zeitgebers (Barrett and Takahashi, 1995; 

Krieger, 1974; Pittendrigh, 1981). Extended signaling of the zeitgeber on the internal 

circadian clock results in entrainment of the rhythm. The period is adjusted and the phase 

of the oscillations is determined by the zeitgeber. As a result of this entrainment, the 

phase of the rhythm is specified and maintained even in the absence of the zeitgeber 

signal. The most well-known and recognizable example of this is the jet lag that occurs 

when traveling between time zones. This stems from a mismatch between the entrained 

circadian rhythm and the signals received from the zeitgeber and is overcome by the 
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resetting of the clock. Circadian clocks have been found in all kingdoms of life. On the 

molecular level however, there is a strong divergence between the clocks in different 

kingdoms. This suggests that the mechanisms that link behavior and gene expression to 

time may have evolved independently (Young and Kay, 2001; Stanewsky et al., 1998). In 

humans, the disruption of the circadian rhythm can, among others, affect cognitive 

function (reviewed in Yaffe et al., 2014), inflammatory disease (reviewed in Lebailly et al., 

2015), and even susceptibility to cancer (reviewed in Sahar and Sassone-Corsi, 2009). 

Early experiments into the mechanism behind circadian regulation took advantage of the 

eclosion rhythm of newly hatching Drosophila melanogaster. These fruit flies hatch from 

their pupae in the early morning. This specific timing suggested that a mechanism that 

keeps circadian time might exist. These studies eventually led to the discovery of the first 

gene involved in circadian rhythm; period (per) (Reddy et al., 1984). In addition to these 

mechanistic insights, studying of circadian behavior has led to insights into the 

characteristics of circadian rhythms in higher eukaryotes. The mechanisms that drive 

oscillatory gene expression according to a circadian rhythm are extremely well conserved 

from fly to human (reviewed in Panda et al., 2002). Although there are some reports of 

circadian rhythms in the nematode Caenorhabditis elegans, it has been the topic of 

debate. Some, low amplitude, not fully entrainable oscillations have been described, but 

the regulatory mechanisms of this system are not fully understood. For that reason, the 

focus below will be on the Drosophila and human circadian networks. The special case of 

C. elegans circadian rhythm is described in more detail in the last paragraph.  

Circadian rhythm in Drosophila melanogaster 

After the discovery of Period as the first core clock component in Drosophila, the fruit fly 

became one of the most commonly used model-organisms to study circadian rhythms. 

The three decades following the discovery of Per saw the discovery of many additional 

factors that seemed to be involved in the regulation of circadian rhythm in Drosophila. 
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One gene encoding such a factor was timeless (tim) (Sehgal et al., 1994). It is aptly 

named, since flies that carry mutations in this gene show strong arrhythmia of circadian 

behavior. Interestingly, as was the case for per, mutations in tim resulted in varying effects 

on circadian behavior and locomotor activity rhythms. Although there are not always one-

to-one homologues, the core mechanism that both Per and Tim proteins are a part of is 

conserved from fly to man (reviewed in Panda et al., 2002). This core mechanism consists 

mainly of a transcriptional feedback model (illustrated in figure 1.1). The two 

transcriptional regulators; Per and Tim do not have DNA-binding capacity but, instead, 

interact with the DNA binding proteins that are encoded by clock (dClk) and cycle (Cyc). 

These DNA-binding proteins are transcriptional activators that reside in the nucleus. They 

bind to a specific DNA element (CACGTG) that is known as the E-box and is found in the 

promoters of per and tim themselves (Lee et al., 1999). The levels of Tim and Per are 

regulated directly and indirectly by light. Tim is bound by the cryptochrome protein 

(dCRY) when it is activated by light in the early morning and interacts with the protein 

Jetlag to initiate degradation of Tim by the proteasome (Lin et al., 2001; Koh et al., 2006). 

Per on the other hand is stabilized by binding Tim, while non-dimerized Per will be 

phosphorylated, ubiquitinated and degraded by double-time (DBT) (Kloss et al., 1998). 

When the levels of Per and Tim in the cytoplasm reach high enough levels, the individual 

proteins, and Per/Tim complexes translocate to the nucleus. The phosphorylation of Per 

that is performed by casein kinase 2 (Ck2) promotes the transition of the Per/Tim complex 

to the nucleus (Lin et al., 2002). In addition to Per and Tim, Dbt also translocates to the 

nucleus. In the nucleus, the Per/Tim dimers bind to dClk/Cyc dimers, and hyper-

phosphorylate the complex (Yu et al., 2006). The hyper-phosphorylated complex does not 

bind DNA and transcription of its targets, including per and tim, is reduced. The light 

sensitivity of Tim results in a rapid drop in levels of Tim in the early day. This is followed 

by phosphorylation of Per by Dbt and the subsequent degradation of Per. Once the Per/
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Fig 1.1 THE DROSOPHILA CIRCADIAN CLOCK 


The circadian clock in Drosophila is based on the cycling transcription of tim and per. Transcription of tim and 
per at the end of the day results in rising levels of Per and Tim in the cytoplasm. Ck2 phosphorylates Per. 
Phosphorylated Per can then, in complex with Tim and Dbt, translocate into the nucleus where it 
hyperphosphorylates and inactivates Clk/Cyc dimers. In the morning, Tim is degraded in a light-dependent 
manner and since Tim no longer stabilizes Per, Dbt can now phosphorylate Per, which results in degradation of 
Per by the proteasome. This process happens both in the nucleus and in the cytoplasm. The 
hyperphosphorylation of Clk/Cyc is lost and at the end of the day it again activates transcription of tim and per 
and thereby restarts the cycle. Figure was inspired by Peschel and Helfrich-Förster, 2011.




Tim dimer levels have dropped sufficiently, the repression is relieved and dClk/Cyc induce 

transcription of per and tim and allow the cycle to start from the beginning. Additional 

feedback loops can be linked to the core clock. An example of this is the transcriptional 

activation of genes encoding for Vrille (Vri) and PAR domain protein 1 (Pdp1ε) by the dClk/

Cyc dimer (Blau and Young, 1999; Cyran et al., 2003). Vri and Pdp1ε then respectively 

inhibit and induce transcription of dClk. Despite the direct feedback of this system back 

into the main clock, stable overexpression or inhibition of Pdp1ε cannot stabilize 

oscillations of dClk (Benito et al., 2007). It can however affect circadian behavior, 

suggesting that it may function downstream of the core clock. 

The core clock that we described above is also functional in a range of tissues such as 

the brain, thorax and abdomen. This has led to the division of the clock into the central- 

and the peripheral oscillators. As this naming suggests, the central oscillator, in the 

nervous system of the fly, may regulate the peripheral oscillators, as is the case in 

mammalian systems (see below). However, rhythms in the periphery can be established 

and maintained independently of the central clock (Plautz et al., 1997). These peripheral 

clocks are also referred to as distributed clocks.


As mentioned previously, the oscillating core clock gives rise to rhythmic behavior. On the 

molecular level, the core clock drives oscillatory expression of large numbers of genes. 

With the help of genome-wide transcriptome analysis, it has been estimated that more 

than 2000 of the transcripts that are expressed in the circadian neurons of Drosophila 

show oscillatory expression (Kula-Eversole et al., 2010). The core clock machinery, as 

described above, is driven to oscillate by a transcriptional regulatory mechanism. To 

investigate whether this could be the case for all oscillating transcripts, the Rosbash lab 

investigated pre-mRNA levels and mRNA levels in dissected heads. Since pre-mRNA is 

considered to have a very short half-life it can be used as a proxy for transcription 
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(Gaidatzis et al., 2015). Interestingly, many oscillating mature mRNAs do not show pre-

mRNA oscillations and vice versa (Rodriguez et al., 2013). This suggests that many of the 

oscillating mRNAs are oscillating due to posttranscriptional regulation.


Circadian rhythm in mammalian systems 

Similarly to Drosophila, the mammalian clocks revolve around a simple negative feedback 

loop. The names in the mammalian systems differ in some cases, but the conservation, 

especially on the functional level, is extensive. The human proteins BMAL1 and 

Cryptochrome replace CYC and TIM respectively. In the second feedback loop system, 

REV-ERBα and RORA act to functionally replace VRI and PDP1ε respectively (reviewed in 

Panda et al., 2002).


The incorporation of circadian rhythms into large organisms, like mammals, requires a 

complex network of signal transduction throughout the body. Peripheral oscillations 

cannot be directly entrained and are regulated through the suprachiasmatic nucleus 

(SCN). Ablation of this nucleus that is located in the hypothalamus disrupts the circadian 

behavior of the organism and results in desynchronization of the clock in peripheral 

tissues (Moore and Eichler, 1972; Yoo et al., 2004). The retina signals to the SCN in 

response to light stimulation and thereby provides the link between the zeitgeber (light) 

and the central oscillator. Other zeitgebers, such as food availability, do not require the 

SCN for entrainment of circadian rhythm (Krieger et al., 1977). The SCN then signals to 

the peripheral oscillators and thereby establishes and maintains the circadian rhythm in 

peripheral tissues. Interestingly, the core clock machinery is expressed both in the SCN 

and peripheral tissues. However, peripheral tissues cannot be entrained in the absence of 

signal from the SCN. This suggests that there is a critical and currently poorly understood 

difference between the clock in the SCN and the clock in the periphery.
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Circadian rhythm in C. elegans 

Circadian rhythms in C. elegans have been studied relatively poorly compared to some of 

the other popular model organisms. Despite this, there have been multiple studies 

confirming the presence of circadian behavior. Locomoter behavior oscillates with a 

circadian period in adults (Saigusa et al., 2002), as does the resistance of arrested L1 

larvae to environmental stresses (Kippert et al., 2002). Although these studies suggest the 

presence of a circadian oscillator, the system seems to be highly variable (Simonetta et 

al., 2009). In addition to these behavioral rhythms, oscillating transcription has been 

detected for numerous genes in adult worms (van der Linden et al., 2010). Unlike 

traditional circadian system however, two different zeitgebers (light and temperature) each 

regulate independent groups of oscillating transcripts. Most of the genes for which 

oscillatory expression was driven by either stimulus do not show oscillatory expression in 

free-running conditions.  

Some of the core clock components that were described and illustrated in figure 1.1 are 

well conserved in C. elegans. Many of these, however, seem to play a role in development 

(Jeon et al., 1999; Banerjee et al., 2005). What other functions they may have in the 

establishment or maintenance of an oscillating system remains unknown.


1.1.2 Somitogenesis

The rhythmic system that we discussed above is the most well studied example of a 

biological clock that is synchronized by outside stimuli. Another biological clock, that is 

well studied, but not regulated by external signaling, is the segmentation clock that 

orchestrates somitogenesis. This system is dependent on an internal timer or clock and 

does not require any external signaling. It is a key example of a developmental timer.


Somitogenesis occurs during embryogenesis and results in the segmentation of the newly 

developing body and the formation of so-called somites. These embryonic structures 
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eventually give rise to the vertebrae and ribs, the skeletal muscle and other tissues. 

Vertebrate tissue formation and differentiation occurs from the anterior to the posterior of 

the developing organism. Accordingly, somites are formed from the anterior to the 

posterior. These cubic structures are formed by groups of cells that bud off on the 

anterior side of the presomitic mesoderm (PSM). Cells that migrate into the PSM from the 

tail bud region replenish the posterior PSM. Somite segmentation occurs at defined 

intervals, with the length and number of repetitions depending on the species. The length 

of these intervals ranges from 8 hours in humans, to 30 minutes in zebrafish. The 

biological mechanism of segmentation is well studied and is known to require two 

regulatory systems that are brought together in a single model; the “clock and wavefront” 

model. One the one hand, an oscillator is present in the posterior PSM, which drives 

oscillations that travel to the anterior along the anterior-posterior axis. On the other side, a 

determination wavefront travels to the posterior from the anterior along the anterior-

posterior axis (Cooke and Zeeman, 1976). These two systems establish the timely 

expression of the master-regulator of somitogenesis; mesoderm posterior 2 (Mesp2) 

(Saga et al., 1997). Somitogenesis is mainly studied in mouse, chicken and zebrafish. The 

models and experiments described below focus on segmentation during mouse 

development.


Determination wavefront 

The “wavefront” part of the “clock and wavefront” model consists of two opposing 

gradients over the anterior-posterior axis of the PSM. From the posterior, FGF8, FGF4 and 

beta catenin form a gradient towards the anterior PSM (Aulehla et al., 2008; Dubrulle et 

al., 2001; Naiche et al., 2011). Reversely, from the anterior, retinoic acid (RA) forms a 

gradient towards the posterior. During development, the front where the FGF proteins, 

beta-catenin and RA are all present shifts to the posterior. The secreted FGFs are only 

expressed in the tail bud region. The continuous migration of cells from the tail bud region 
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to the PSM, combined with the slow degradation of Fgf8 mRNA results in a FGF8 protein 

gradient (Dubrulle and Pourquié, 2004). The posterior-anterior gradient of WNT3A, and its 

downstream signaling factor beta catenin are thought to be established in the same way 

(Aulehla et al., 2003). Both the WNT and FGF signaling pathways regulate the expression 

of different genes and proteins that are also present in a posterior-anterior gradient 

throughout the PSM. FGF and WNT signaling block differentiation and maintain the 

pluripotent state of the posterior PSM (Aulehla et al., 2008; Dubrulle et al., 2001). A 

gradient of the morphogen RA is present in the anterior to posterior orientation and acts 

to decrease FGF levels and counter FGF signaling (Sirbu and Duester, 2006). This 

gradient is established by diffusion of RA from cells in the anterior PSM. The high levels of 

RA in these cells are regulated by the lack of RA metabolizing enzyme in these cells 

(Sakai et al., 2001). In mutants, the loss of RA signaling enforces the FGF8 gradient, 

resulting in the formation of smaller and non-synchronous pairs of somites (Vermot et al., 

2005).


Segmentation clock 

While the determination wavefront slowly progresses over the anterior-posterior axis of 

the PSM, a system of spatiotemporal oscillations contributes to the somite boundary 

formation. These oscillations nucleate in the posterior PSM and travel to the anterior. The 

first mRNA that was shown to oscillate is the chick homologue of Drosophila basic helix-

loop-helix transcription factor hairy (chairy-1) (Palmeirim et al., 1997). The authors showed 

that one period of the oscillation corresponds to the formation of one pair of somites. 

Homologues of this group of transcription factors were soon found to show oscillating 

expression over the PSM in mouse as well as zebrafish. In mice, the genes encoding 

these transcription factors are: Hes1, Hes5, Hes7 and Hey2. Another transcript that 

shows oscillations over the PSM anterior-posterior axis is Lunatic fringe (Lfng), which 

encodes a protein that affects notch signaling (Forsberg et al., 1998; Panin et al., 1997). 
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Perhaps not surprisingly, the oscillations of the segmentation clock, like oscillations in 

circadian rhythm are, at least in part, driven by a simple negative feedback loop. One of 

the key cycling genes that is widely studied in the mouse is Hes7. The promoter of Hes7 

is transcriptionally activated by Notch signaling and inhibited by HES7. NOTCH signaling 

is also rhythmic due to a negative feedback loop. The finding that NOTCH signaling 

induces expression of Lfng has led to the identification of a cis-regulatory element that 

induce transcription in response to NOTCH signaling and inhibit transcription in response 

to HES7 (Cole et al., 2002; Morales et al., 2002; Bessho et al., 2003). In these regulatory 

networks, the timing of induction or inhibition of transcription is essential. The system that 

was described, in combination with a transcriptional delay, can induce oscillatory rhythms 

(Lewis, 2003). Mice that constitutively express core segmentation clock components, 

such as Lfng, in the PSM have severe somite development phenotypes. This shows that 

not just the expression of these factors, but the oscillating expression is important for 

segmentation (Serth et al., 2003). 

1.2 C. elegans as a model organism in developmental biology

The field of developmental biology focuses on the regulation of cellular proliferation, 

differentiation and the fate determination decisions that are made along the way. To study 

this, we take advantage of the nematode Caenorhabditis elegans. 

1.2.1 Physiology

The adult roundworm C. elegans has only 959 somatic cells. These cells make up all 

different tissues ranging from the hypodermis (skin) to the nervous system. Additionally, 

the worm is transparent, which allows for in vivo microscopy. Nematodes are surrounded 

by a cuticle that serves as an exoskeleton and gives the worm its structure and shape. It 

is made up of many different collagens that are secreted by the cells of the hypodermis 

that are situated directly beneath the cuticle. In addition to the longitudinal syncytium 
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formed by the seam cells, the hypodermis consists of 13 different cells, named Hyp 1 – 

13. Nine of these cells are also syncytia, the largest of which, Hyp 7, contains 139 nuclei 

and makes up the bulk of the hypodermis (Shemer and Podbilewicz, 2000). C. elegans 

has a network of 302 neurons as well as musculature, a pharynx and a gut. In terms of 

volume however, the reproductive system takes up most space in the adult. Since a 

single worm hermaphrodite lays approximately 200 eggs during its lifetime, the large size 

of the germline may not come as a surprise. In a population of C. elegans, most worms 

are hermaphrodites. The progeny is therefore generally the product of self-fertilization. 

Males occur in the population at an incidence of approximately 0.1% and are important 

for the genetic diversity of the species. For scientists, the presence of males is essential 

for genetic studies. Worms can survive extreme conditions, but thrive in temperatures 

between 15°C and 25°C.


1.2.2 Larval Development 

C. elegans is a very popular model organism to study development, in part because of its 

invariant development. This means that all cell proliferation, differentiation and migration 

events occur identically among different animals. The speed of worm development 

increases with the environmental temperature. The development times (in hours) that are 

mentioned below describe development at 25°C (Altun et al.). After the egg is laid a larva 

hatches from it after approximately 8-9 hours. Larvae in this first stage of larval 

development (L1) will detect the presence or absence of a food source of bacteria. If no 

bacteria are present the larvae arrest and survive in this state of diapause for up to 10 

days. If a food source is present however, development starts and after approximately 9 

hours of development the worms reach larval stage 2 (L2). The transition between larval 

stages is characterized by a molt. During this molt the worm synthesizes a new cuticle 

and sheds the old one. The ecdysis from the old cuticle marks the beginning of the next 

larval stage. The larva develops through an additional 3 stages that each last 
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approximately 8 hours before it reaches the adult stage. After an additional 8 hours of 

adulthood the worm starts to lay eggs and the life cycle is completed. In addition to this 

continuous developmental pathway, worms can enter another arrested state that is 

referred to as dauer. Any stressful or unfavorable conditions before the L1-L2 molt can 

divert development from regular L2 to the dauer stage. Instead of the L1-L2 molt, worms 

undergo the L1-L2d molt before they form the dauer animal. While in dauer diapause, 

worms can survive extreme and unfavorable conditions for many months.


The correct timing and coordination of cell divisions is crucial for successful development 

of any multicellular organism. Despite the importance of this process, the timing of cell 

divisions during development is not well understood in higher eukaryotes, and is little 

informative in single cell organisms. C. elegans has been widely used as a model to study 

embryonic development. A series of asymmetric divisions in the embryo give rise to the 

founder cells of the different cell lineages. When the egg eventually hatches, the L1 larva 

that emerges has 558 cells (Sulston et al., 1983). During larval development this number 

increases to the final 959 cells in the adult (Sulston and Horvitz, 1977). The relatively small 

number of cells as well as the fact that the cell divisions are readily visible through the 

transparent cuticle have allowed for the full tracing of the worm cell lineage, from the 

fertilized egg cell, to the adult animal. Postembryonic development starts with the 

hatching of the L1 from the egg. Of the 558 cells that an L1 larva emerges with, only 51 

are dividing. Over the 4 larval stages of worm development, these 51 cells divide and 

ultimately add a total of 401 cells to form the adult worm. Despite this relatively small 

number of dividing cells, the worm undergoes dramatic changes of the hypodermis, 

muscle and nervous system. Development of C. elegans is inherently well regulated and 

orchestrated. One example of developmental timing is found in the heterochronic 

pathway. Heterochronic genes make up a system of developmental timing and cell fate 

specification of the hypodermis. The word heterochrony stems from the Greek words 
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‘heteros’, meaning other, and ‘chronos’, which means time. Extensive screening for genes 

that, when mutated, cause or relieve developmental lethality and defects of 

developmental timing has led to the identification of a large number of genes that are 

involved in the heterochronic pathway. The identification of these mutants has allowed for 

the mechanistic dissection of this pathway that keeps developmental time and outlines 

the adoption of cell-fates in the hypodermis. Importantly, this system must also time cell 

divisions in relation to molting, since the failed synchronization of developmental timing 

with the molts is lethal (Ruaud and Bessereau, 2006). 

The cell-fate decisions that occur during larval development of hermaphrodite nematodes 

are widely studied. The seam cells, a group of 20 stem cell-like cells in the hypodermis of 

the newly hatched L1 larvae, are of particular interest. These cells are distributed on two 

sides over the length of the worm. Although their exact lineages differ slightly between 

them, they generally divide once per larval stage. After each seam cell division the 

posterior daughters retain the seam cell fate, while the anterior daughters fuse to the 

hypodermal syncytium (Hyp 7). Before this fusion takes place however, the anterior 

daughters undergo endoreduplication. During this process the cells undergo S-phase, but 

do not divide. Because of this, the cells that fuse to Hyp 7 are tetraploid. In addition to the 

four asymmetrical cell divisions, 10 of the seam cells also undergo a symmetrical cell 

division during early L2. This increases the number of seam cells to two pairs of 16 seam 

cells. The regulation of the seam cell divisions is highly regulated and many different 

heterochronic mutants show abolished or additional symmetrical cell divisions (Ambros 

and Horvitz, 1984). 

1.2.3 Molting

The cuticle provides the essential rigidity and flexibility to the worm. The body muscles of 

the worm are anchored to it, allowing the animal to move. In addition to this, it provides 
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physical protection from the environment, and in the case of parasitic nematodes (such 

as H. contortus, described below) provides mechanisms to evade and cope with the 

immune response of the host. The cuticle can however only accommodate limited growth 

of the worm and eventually impedes growth during larval development. Therefore, the 

cuticle is shed at the end of every larval stage. Over development, the cuticle is therefore 

synthesized five times and shed four times. This process of synthesis and shedding of the 

cuticle is altogether referred to as molting. 


The process starts with a slow reduction of activity and feeding. The worm eventually 

stops moving altogether. This state is referred to as lethargus. The subsequent synthesis 

of the new cuticle, and release and loosening of cuticle from the hypodermis, also known 

as apolysis, both occur during lethargus. Eventually, the period of lethargus ends and the 

worm escapes from the cuticle. This process is also referred to as ecdysis.


Cuticle synthesis 

The cuticle is built up mostly of cross-linked collagens and a number of accessory 

proteins and lipids. The C. elegans genome encodes 167 cuticular collagens. Only 22 of 

these collagens give strong phenotypes when mutated, suggesting that the others are 

either partially redundant or that the phenotypes of single collagen mutants are very minor 

and have not been detected (reviewed in Page and Johnstone, 2007). The biosynthesis of 

the collagen matrix that forms the cuticle is a complex process that requires a number of 

different enzymes (reviewed in Prockop and Kivirikko, 1995). A characteristic of collagen 

proteins is the repetition of a Glycine-X-Y tripeptide sequence. The X- and Y- positions 

here are often proline and hydroxyproline respectively. The hydroxylation of the proline on 

the Y-position takes place in the endoplasmic reticulum (ER) and is catalyzed by the 

multiprotein complex; collagen prolyl 4-hydroxylase (C-P4H). This hydroxylation of the Y-

position proline occurs co-translationally. An essential subunit of the C-P4H complex is 
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encoded by dpy-18 (Winter and Page, 2000). After the individual polypeptide has been 

synthesized, disulphide bonds are formed between the conserved C-terminal cysteine 

residues by protein disulphide isomerases (PDIs, PDI-2 in C. elegans) (Winter et al., 

2007b). In the next step of collagen biosynthesis, associated collagen proteins will 

undergo extensive folding resulting in trimerization and formation of procollagen. This 

trimerization reaction is dependent on peptidyl prolyl cis-trans isomerase (PPIase) 

(Bächinger, 1987). In C. elegans it is unclear exactly which proteins are required, however, 

FKB-4 and FKB-5 have been shown to be required for procollagen trimerisation in cold-

stress conditions (Winter et al., 2007a). After the trimerization, the proteins are exported 

from the ER to the extracellular space. When the procollagen is in the extracellular space 

it is further processed by two cleavages that occur on the N-terminal and C-terminal side 

of the protein trimer. The enzymes that are involved in these cleavage reactions are BLI-4 

(Thacker et al., 2006) and DPY-31 (Novelli et al., 2004) respectively. Finally, the collagen 

trimers will be cross-linked by the NADPH dual oxidase enzyme, BLI-3 (Edens et al., 

2001) and its cofactor MLT-7 (Thein et al., 2009). 

Apolysis & Ecdysis 

To detach the cuticle from the hypodermis, the worm produces different proteases to 

partially degrade the cuticle and allow for the worm to molt. Specifically, NAS-36 and -37 

are two proteases that have been implicated in this process (Suzuki et al., 2004). The loss 

of the genes encoding these two metallopeptidases results in molting phenotypes. 

Complementation of nas-36 and nas-37 expression specifically in the hypodermis 

rescued the molting phenotypes. Similarly, the loss of acn-1, which is a metallopeptidase 

that is, surprisingly, lacking an active site, shows clear molting phenotypes, as well as 

abnormal seam and vulva development (Brooks et al., 2003). In addition, a large number 

of cysteine – and serine proteases is encoded in the C. elegans genome, some of which 

have been implicated in the molting process. When the new cuticle is synthesized and the 
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worm has partially detached itself from the cuticle, ecdysis occurs. During ecdysis, the 

worm performs a number of rapid, rotational movements to physically separate itself from 

the surrounding old cuticle. Once the cuticle is sufficiently loosened, the worm simply 

crawls out of it.


Regulation of molting 

The formation of the C. elegans cuticle and the degradation of the old cuticle are two 

highly complex processes that occur multiple times during nematode development. A 

number of regulatory pathways are known to affect the expression of collagens and 

proteases and thereby regulate worm development. Two important transcription factors 

that have been implicated in the regulation of molting are the nuclear hormone receptors 

(NHR), NHR-23 and NHR-25 (Gissendanner and Sluder, 2000; Kostrouchova et al., 1998); 

Kostrouchova et al., 2001). These two NHRs are the orthologues of Drosophila DHR-3 

and βFTZ-F1, both of which are involved in the ecdysone response in the fly (reviewed in 

(Thummel, 2001)). Worms that lack these genes show molting phenotypes as well as 

abnormal hypodermal development. Additionally, an RNAi screen identified 159 genes, 

including 7 putative transcriptional regulators, that are involved in molting (Frand et al., 

2005). 

In addition to the transcription factors and other proteins that are implicated in molting, 

cholesterol has been implicated as an important factor for molting in C. elegans. In the 

absence of cholesterol the worms arrest and show molting phenotype (Merris et al., 2003; 

Yochem et al., 1999). Since C. elegans requires only very small amounts of cholesterol for 

proper development (Merris et al., 2003), it has been suggested to act as a precursor for 

the synthesis of sterol-based steroid hormones (Matyash et al., 2004). Additionally, a 

mutant of a sterol-modifying enzyme, LET-767, shows increased dependence on 

cholesterol (Kuervers et al., 2003). Although it has been shown that steroidal ligands can 
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bind C. elegans NHRs, few ligand-NHR interactions have been identified (Motola et al., 

2006). 

1.2.4 Evolution and conservation of nematode species

The phylum Nematoda contains 25,043 species and represents a very diverse group of 

species (Zhang, 2013). As a reference, there are approximately 16,000 reported 

mammalian species (Zhang, 2013). The species that is closest to C. elegans on an 

evolutionary scale is the relatively distant; C. briggsae. These two nematodes are 

estimated to share their closest common ancestor approximately 30 million years ago 

(Cutter, 2008). Physiologically, C. briggsae and C. elegans are almost impossible to 

distinguish. As may be expected, coding regions of essential genes are relatively well 

conserved. The conservation of non-coding regions, such as promoters and 3’UTRs, 

however, is poor. Other commonly studied Caenorhabditis species include; C. remanei, C. 

brenneri and C. japonica, which are all dioecious (i.e. non-hermaphroditic) species. 

Other members of the Nematoda phylum that are the subject of study are the parasitic 

nematodes. These worms infect a wide variety of hosts, ranging from insects to human. 

Of particular interest to researchers in the veterinary sciences is the ruminant pathogenic 

parasitic species Haemonchus contortus. This gastrointestinal nematode infects, among 

others, grazing sheep and goats. Its life cycle consists of the free-living larval stages L1-

L3 and the parasitic L4 and adult stages. Unless they are ingested, L3 larvae arrest and 

can remain arrested under harsh conditions in the field. When the L3 is ingested it 

develops to form the L4 and finally the adult. In these stages, H. contortus attaches to the 

wall of the abomasum and feeds on blood, causing parasitic gastroenteritis. This is also 

where the worms mate and the female produces and lays eggs. These eggs are shed 

from the host with the feces and when the L1 larvae hatch in the field the cycle begins 

anew. Since H. contortus is drawing blood from its host, the host organism can show 
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symptoms that are related to blood loss. The infection results in reduction in the 

production of milk and wool, a reduction in animal growth and reduced fertility (Parkins 

and Holmes, 1989). In severe cases the infection may result in the death of the host due 

to the high number of parasites that is feeding in the abomasum. Because the hosts of 

these parasites are commonly kept as livestock for the production of meat, milk and wool, 

these symptoms cause a major financial burden on the industry. Treating infected animals 

with anthelminthic drugs helps to reduce the parasite burden. Antihelminthic drugs can be 

toxic to the host animal and resistance to the different drugs is common (discussed in 

Besier et al., 2016). Drugs targeting molting and cuticle development are of great interest 

because of the absence of these pathways in the host organism and the therefore 

relatively low chance of toxicity. Additionally, the important role of cuticle development in 

physiology may also provide some barrier for the development of resistance. 

Unfortunately, anti-helminthic drug resistance is rising and control of helminthic infections 

is proving challenging (Besier et al., 2016). 

1.3 The regulation of gene expression

During the development of a multicellular organism, a single omnipotent cell gives rise to 

all the cells in the organism. While this cell and its daughter cells share the same genomic 

DNA, they have highly variable characteristics. Differential regulation of gene expression 

allows for the adoption of different cell fates and proliferative profiles. Steady state mRNA 

levels are a direct effect of the balance between mRNA transcription and mRNA decay. 

Posttranscriptional regulation of an mRNA affects the half-life of the transcript and how 

efficiently it is translated. Below we will discuss the process of transcription, 

transcriptional regulation and posttranscriptional regulation.
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1.3.1 Transcription 

In eukaryotes, three multi-subunit enzymes transcribe DNA to produce RNA; DNA-

dependent RNA polymerase I, II and III (RNA Pol I, II and III respectively). Pol I is 

responsible for the transcription of ribosomal RNA (rRNA). Pol III transcribes a wide range 

of small non-coding RNAs including transfer RNA (tRNA). Pol II is the enzyme that is 

responsible for the transcription of messenger RNA (mRNA) from protein coding genes. 

Since mRNAs are the only species of RNA that are translated into protein, these are most 

widely studied and the following introduction will focus on transcription by RNA Pol II.  

The formation of the pre-initiation complex (PIC) is the first step in transcription and is 

commonly referred to as transcription initiation. The PIC is formed on the DNA in the core 

promoter of a gene. The core promoter can be defined as “the minimal stretch of 

contiguous DNA sequence that is sufficient to direct accurate initiation of transcription by 

the RNA polymerase II machinery” (Butler and Kadonaga, 2002). General transcription 

factors, including RNA Pol II, are sequentially recruited to this region (reviewed in 

Sainsbury et al., 2015). The final transcription factor that is recruited phosphorylates pol II 

on serine 5, marking the initiation of transcription (Komarnitsky et al., 2000). Upon 

successful initiation, transcription starts and the transcription machinery moves away 

from the promoter region. The PIC then dissociates and gives way to the elongation 

complex. Some of the transcription factors that made up the PIC remain associated while 

other dissociate. Another set of transcription factors, including P-TEFb, can interact with 

the elongation complex. P-TEFb is composed of multiple proteins, including Cdk9 kinase 

which phosphorylates serine 2 in the CTD of pol II (Shim et al., 2002) and thereby marks 

Pol II as actively elongating (Komarnitsky et al., 2000).  
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1.3.2 Co-transcriptional and posttranscriptional processes.

In addition to transcription itself, there are a number of processes that occur co-

transcriptionally and post-transcriptionally. As soon as the 5’ end of the mRNA has been 

synthesized, it is capped to protect it from 5’-to-3’ degradation and stimulate translation. 

The first nucleotide on the 5’-end of a transcript undergoes a modification that forms a 

protective cap structure. In addition to coding sequences (exons), many genes contain 

large stretches of non-coding sequence; introns. During pre-mRNA splicing, the non-

coding sequences are removed and the resulting coding sequences are fused together. 

This co-transcriptional process that results in the production of mature mRNA is heavily 

regulated. Alternative splicing has the potential to exponentially increase the number of 

possible gene products. Although the genome of the nematode C. elegans encodes 

slightly more protein coding genes than the human genome, the additional complexity of 

human biology is, in part, made possible through the large number of gene isoforms. 

Alternative splicing occurs in the nucleus and gives rise to multiple different gene 

products that can be encoded by a single gene. After the transcribing PolII and 

associated factors have reached the end of the coding region and the 3’ untranslated 

region (3’UTR), transcription is terminated through mechanisms that are not yet fully 

understood. When the primary transcript produced by Pol II has been cleaved, a stretch 

of non-templated adenosines is added to the 3’ end. This is performed by a dedicated 

nucleotide transferase, poly-A polymerase (PAP). After capping, splicing, cleavage and 

poly-adenylation, the mRNA is considered mature and is ready to be exported from the 

nucleus and translated.


1.3.3 Regulation of transcription

The entire process of transcription as described above is dependent on the general 

transcription factors that make up the PIC and elongation complex. The studies that 
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identified the general transcription factors mostly took advantage of cell-free systems that 

consist of expressed or purified proteins or protein fractions and ‘naked’ DNA. However, 

in an in vivo situation, transcription initiation and elongation are complicated by the 

presence of DNA-binding proteins, most importantly, histones. The presence of histones 

and the compaction of the DNA provide an impediment that can be overcome in a 

targeted manner to allow gene specific regulation of transcription. We will describe the 

roles of chromatin regulation and transcription factors below. Although they are described 

separately, it is important to note that chromatin-based regulation and transcription 

factors interact with- and influence each other. 

Chromatin 

Initiation of transcription, as described above, often starts with the binding of TBP to the 

TATA-box, and the subsequent binding of the entire PIC in the promoter region. However, 

the PIC is a very large protein complex and DNA is usually wrapped around a complex of 

histone proteins, making the promoter region relatively inaccessible. One octameric 

histone complex that is associated with DNA is also known as a nucleosome. Highly 

compacted DNA stretches, called heterochromatin, are generally transcriptionally silent, 

while transcriptionally active DNA, or euchromatin, is less heavily compacted. The 

regulation of DNA accessibility intrinsically allows for gene-specific, or locus-specific 

regulation. For this reason it has been extensively studied in many biological contexts.


One nucleosome consists of 147 basepairs (bp) of DNA and a complex of eight histone 

proteins. The histone proteins, or variants, that make up the complex affect the chromatin 

structure and thereby the transcriptional efficiency of the locus (reviewed in Luger et al., 

2012). The chromatin structures in the promoters of transcriptionally regulated genes can 

be highly dynamic. Chromatin remodeling complexes are able to remodel nucleosome 

positioning and actively evict them from DNA. An example of a chromatin remodeler is 
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SWI/SNF, which both remodels and evicts nucleosomes (Lorch et al., 1999; Whitehouse 

et al., 1999). Additionally, posttranslational modifications (PTMs) of histone proteins 

correlate with the different transcriptional activity and chromatin states (Barski et al., 

2007). The main modifications of histones that occur are the methylation and acetylation 

of lysines (K) on histones 3 and 4 (H3 & H4). Acetylation of histone tails directly influences 

nucleosome compaction and leads to a more ‘open’ chromatin state. The function of 

histone methylation depends on the position and the extent of the methylation. The 

promoters of transcriptionally active genes, for example, tend to be associated with 

nucleosomes that have a tri-methylated lysine on position 4 of histone 3 (H3K4me3). On 

the other hand, the repressive trimethylation of histone 3 on lysine 9 (H3K9me3) induces 
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The top panel illustrates the heterochromatic, or transcriptionally silent, state of chromatin. HP1 binds to 
deposited H3K9me3 mark and recruits a histone methyltransferase that will then deposit the H3K9me3 mark on 
neighbouring histones, resulting in spreading of heterochromatin. 
The bottom panel illustrates a hypothetical transcriptionally active domain. Nucleosomes are positioned further 
from each other and even evicted by chromatin remodeling complexes. These complexes can be recruited by 
transcription factors that bind in the region (such as a pioneer transcription factor). Transcription factors can also 
recruit histone methyltransferases, which can in turn affect chromatin remodeling activity. Gene looping can 
bring together multiple regulatory elements and create complex binding sites where for example a co-activator 
can bind. Transcription factors or co-activators can induce the deposition of histone acetyl marks that affect the 
general chromatin density of the locus. 



the formation and spread of heterochromatin through the recruitment of heterochromatin 

protein 1 (HP1) (Lachner et al., 2001), and the histone methyltransferase that deposits the 

H3K9me3 mark. Many of the enzymes responsible for the reading and writing of the most 

common posttranslational modifications have been identified (reviewed in Chen and Dent, 

2014; Musselman et al., 2012). Large scale mapping of PTMs has revealed the correlation 

of specific marks with specific states of chromatin, the function of many of these 

modifications however remains poorly understood. In addition to the recruitment of 

heterochromatin proteins, PTMs have been reported to recruit chromatin-remodeling 

complexes and enzymes that further modify histone tails (Lachner et al., 2001; Shi et al., 

2006; Wysocka et al., 2006). 

Transcription Factors 

The transcription of DNA in an endogenous system generally requires specific 

transcription factors that provide access to the DNA. Any protein that affects the 

transcription of an mRNA, by binding directly to DNA, is referred to as a transcription 

factor. Factors that do not bind DNA but act to influence transcription are referred to as 

co-activators or co-repressors. The general transcription factors that are described above 

are, as the name implies, required for transcription of all mRNA transcripts. However, in 

addition to these general transcription factors there is a host of transcription factors that 

is involved in the regulation of transcription of specific mRNAs. Despite the degenerate 

sequence composition of the recognized target sites, these transcription factors show 

specificity of binding over the genome. The specificity is likely due to the DNA structure 

as well as cooperative binding. Transcription factors that bind to their targets may 

function to repress or increase expression through different mechanisms. One example of 

highly specific transcription factor binding and transcriptional activation is the binding of 

the transcription factor AST-1 in C. elegans. Binding of AST-1 to a specific motif that 
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present in a specific a set of genes, increases gene expression. This finally drives the 

differentiation to the dopaminergic neuronal fate (Flames and Hobert, 2009). 

Traditionally, transcription factor binding was thought to correlate directly with 

transcriptional activity of the locus. Recent studies however have shown that transcription 

factor binding only altered gene expression of a corresponding gene in approximately 

13% of binding events (Vokes et al., 2008). Since the remaining binding events are 

nevertheless specific, they may have a function other than the immediate transcriptional 

activation of the locus (reviewed in Spitz and Furlong, 2012). One important function that 

does not necessarily affect transcription directly (although it may indirectly induce 

transcription) is that of a pioneer transcription factor. These transcription factors can bind 

to chromatin that is not accessible for other factors and recruit chromatin remodeling 

complexes that open the chromatin. This leads to more transcription factor binding sites 

becoming accessible and increases the regulatory potential of the locus.


In eukaryotes, transcription factors often bind to elements that are present in a cluster of 

cis-regulatory elements. These sequences can be located in the promoter or in distal 

regulatory loci such as enhancers. The distance between these enhancer elements and 

their regulated genes may differ greatly. These characteristics are best explained by the 

proposed model of enhancer mechanism of action; gene looping (Amano et al., 2009). 

According to this model, a secondary structure within the chromatin fiber is responsible 

for the co-localization of two regions that are linearly separated by hundreds of kilobases. 

Another level of complexity is added when more than two of these sites localize together. 

The combinatorial effects of different enhancer elements as well as different transcription 

factors may result in more precise regulation of transcription (reviewed in Spitz and 

Furlong, 2012).
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There are numerous classes of transcription factors. One family, of which we have already 

discussed a few members, is the family of nuclear hormone receptors (NHRs). This family 

is especially abundant in C. elegans (reviewed in Antebi, 2006). These transcription 

factors can be located in the cytoplasm or nucleus. Cytoplasmic NHRs present a nuclear 

localization signal (NLS) upon ligand binding, allowing them to be transported to the 

nucleus. Instead, constitutively nuclear NHRs can be associated with DNA in their inactive 

state and thereby allow for very rapid initiation of transcription when the ligand binds. In 

the absence of the ligand, the NHR can be associated with a co-repressor to further 

suppress spurious transcription from the locus. Although NHRs are well conserved, they 

are particularly abundant in C. elegans. There are an impressive 284 NHRs that have been 

identified in C. elegans. Of these 284 NHRs approximately 15 are conserved in the 

metazoan subkingdom (Gissendanner et al., 2004). As we have discussed previously, 

animals lacking specific NHRs show diverse phenotypes, including heterochronic defects.


1.3.4 Posttranscriptional regulation of gene expression

In addition to transcriptional regulation, the modulation of translation as well as the 

regulation of mRNA decay can directly affect gene expression. These processes are 

commonly referred to as posttranscriptional regulation of gene expression. 

mRNA degradation 

mRNA is degraded by three classes of ribonucleases; 5’-to-3’ exonucleases, 

endonuclease and 3’-to-5’ exonucleases. Since mature mRNA is capped at the 5’ end, it 

is generally protected from degradation. Decapping of the transcript is required before 

any 5’ exonucleases can degrade it. The poly-A tail and the associated poly-A binding 

protein protect the 3’ end of the transcript. There are numerous quality control 

mechanisms that act to control transcription, splicing and translation and can initiate 

degradation by overcoming the mRNA protection at either the 3’, or the 5’ end. An 
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example of this is the NMD pathway that functions to recognize transcripts that contain a 

premature stop codon and induces decapping of the transcript. Another example is the 

miRNA-induced degradation of mRNA that we discuss below. 


Translational repression or stimulation 

Another way to regulate gene expression is to inhibit the translation of a particular mRNA 

transcript. RNA binding proteins can bind and thereby translationally repress them. Since 

degradation is not induced, this method of regulation can temporarily inhibit the 

translation of a transcript without affecting mRNA levels. An example of this is the 

silencing of maternal transcripts of pal-1 in the C. elegans oocyte by the interaction with 

two RNA binding proteins: GLD-1 and MEX-3 (Mootz et al., 2004). 

Degradation and translational inhibition are two ways in which posttranscriptional 

regulation can affect gene expression. Some posttranscriptional regulatory mechanisms 

affect both translation efficiency and mRNA stability. The poly-A binding proteins (PABPs), 

for example, are recruited to the newly formed transcripts and play a key role in the 

regulation of both mRNA levels (Coller et al., 1998) and translation efficiency (Allen et al., 

2001; Imataka et al., 1998). Another example of posttranscriptional regulation on both the 

mRNA stability and translational efficiency is found in a class of small RNAs; miRNAs.


miRNA mediated posttranscriptional gene silencing 

miRNA-mediated post-transcriptional regulation is an example of a well-conserved 

regulatory system. The small non-coding miRNAs were originally discovered when 

Ambros and colleagues found that the gene product from the lin-4 region is not protein 

coding, but rather produces a small RNA. The 3’UTR of lin-14 was found to contain a 

sequence that is the reverse complement sequence of the lin-4 small RNA (Lee et al., 

1993). At the same time, it was shown that lin-4 regulates lin-14 protein levels without 

affecting mRNA levels (Wightman et al., 1993). For years after the initial discovery of lin-4, 
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the system was considered unique to C. elegans and no evidence of conservation was 

found. The identification of another miRNA, let-7, prompted the discovery and 

characterization of a class of small RNAs that post-transcriptionally regulates their mRNA 

targets by binding in the 3’UTR; miRNAs (Reinhart et al., 2000). The highly conserved 

let-7 and many other miRNAs have since been found in many different organisms, 

including vertebrates.


Most miRNAs are transcribed as a primary transcript from dedicated miRNA genes (Lau 

et al., 2001). This transcript is bound by the RNA binding protein Pasha (or DGCR8 in 

humans) and its associated endonuclease, Drosha (Denli et al., 2004; Gregory et al., 2004; 

Lee et al., 2003). The endonuclease cleaves the primary transcript to produce the 

precursor miRNA (pre-miRNA) stem-loop. Upon export from the nucleus by Exportin-5, 

the pre-miRNA is bound by Dicer (Grishok et al., 2001; Ketting et al., 2001; Lund et al., 

2004). This enzyme, that is also an endonuclease, functions to cleave the pre-miRNA and 

produces the mature miRNA guide and passenger strands. The miRNA passenger strand 

(or miRNA*) is low in abundance and relatively unstable when compared to the guide 

strand (Lim et al., 2003). This is likely caused by the lack of protection from nucleases that 

Argonaute proteins offer to the guide strand (Vaucheret et al., 2004). The preferential 

loading of the guide strand into Argonaute depends on the thermodynamic stability of the 

miRNA:miRNA* complex (Khvorova et al., 2003). While loaded in Argonaute however, 

miRNAs can be very stable and often have half-lives of 12 hours or more (van Rooij et al., 

2007; Gatfield et al., 2009). While the miRNA is loaded in Argonaute, GW182 is recruited 

to form, together with members of the CCR4-NOT complex, the miRNA induced RNA 

Silencing Complex (miRISC) (Behm-Ansmant et al., 2006). As the name implies, the 

miRISC functions to silence gene expression in sequence specifically. It can do so by 

binding a miRNA target site in the 3’UTR of a transcript and inducing translational 
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repression and degradation of the transcript (Bazzini et al., 2012; Djuranovic et al., 2012; 

Guo et al., 2010). 

In the following work, we leverage the power of C. elegans as a model to study a complex 

network of oscillating gene expression and we study the role this network plays in 

nematode development.
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2. Extensive Oscillatory Gene Expression during 
C. elegans Larval Development
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2.1 Article

In the print version: Reprinted from Molecular Cell, vol. 53, Hendriks GJ, Gaidatzis D, 

Aeschimann F, Großhans H, Extensive Oscillatory Gene Expression during C. elegans 

Larval Development, 380-392, Copyright 2014, with permission from Elsevier. 

http://dx.doi.org/10.1016/j.molcel.2013.12.013


In the electronic version of this thesis, a manuscript of “Extensive Oscillatory Gene 

Expression during C. elegans Larval Development” replaces the article described above. 

For the printed version of the paper, please see the reference above. Please note that the 

page numbers in the rest of the online version of this thesis have been kept identical to 

the print version. 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Abstract	

Oscillations	are	a	key	to	achieving	dynamic	behavior	and	thus	occur	in	biological	

systems	as	diverse	as	the	beating	heart,	defecating	worms,	and	nascent	somites.	

Here	we	report	pervasive,	large-amplitude,	and	phase-locked	oscillations	of	gene	

expression	in	developing	C.	elegans	larvae,	caused	by	periodic	transcription.	Nearly	

one	fifth	of	detectably	expressed	transcripts	oscillate	with	an	8h	period,	and	

hundreds	change	>10-fold.	Oscillations	are	important	for	molting	but	occur	in	all	

phases,	implying	additional	functions.	Ribosome	profiling	reveals	that	periodic	

mRNA	accumulation	causes	rhythmic	translation,	potentially	facilitating	transient	

protein	accumulation	as	well	as	coordinated	production	of	stable,	complex	

structures	such	as	the	cuticle.	Finally,	large	amplitude	oscillations	in	RNA	sampled	

from	whole	worms	indicate	robust	synchronization	of	gene	expression	programs	

across	cells	and	tissues,	suggesting	that	these	oscillations	will	be	a	powerful	new	

model	to	study	coordinated	gene	expression	in	an	animal.		

	 	



	

Introduction	

	

As	a	ubiquitous	feature	in	biology,	oscillations	have	been	considered	one	of	its	

fundamental	dynamic	principles	that	drive	processes	away	from	equilibrium	(Hasty	

et	al.,	2010).	Part	of	their	utility	stems	from	the	broad	range	of	time-scales	over	

which	oscillations	can	drive	dynamic	behavior,	from	the	millisecond	periods	of	

rhythmic	neuronal	spiking	to	the	24-hour	periods	of	circadian	clocks.	Accordingly,	

the	theoretic	understanding	and	experimental	design	of	oscillators	has	also	been	a	

major	field	of	research	in	mathematical	and	synthetic	biology	(Hogenesch	and	Ueda,	

2011;	Tyson	et	al.,	2008).	

Biological	oscillations	drive	not	only	rhythmic	behaviors	of	cells,	tissues,	and	

organisms,	but	also	periodic	gene	expression	programs.	Circadian	clocks	in	

particular	direct	extensive	rhythmic	gene	expression	to	help	organisms	anticipate	

environmental	changes	caused	for	instance	by	daily	cycles	of	light	and	temperature	

(Hogenesch	and	Ueda,	2011).	In	mammals,	separate,	peripheral	clocks	act	in	distinct	

tissues.	They	are	synchronized	through	a	central	pacemaker	in	the	suprachiasmatic	

nucleus	of	the	hypothalamus	and	drive	rhythmic	expression	of	large	sets	of	genes	

(Mohawk	et	al.,	2012).	Interestingly,	although	individual	peripheral	clocks	can	direct	

oscillations	in	3-10%	of	active	genes	in	a	given	tissue,	there	is	little	overlap	in	the	

sets	of	genes	that	undergo	periodic	expression	in	different	tissues	(Mohawk	et	al.,	

2012).	As	exemplified	by	the	vertebrate	segmentation	clock,	oscillators	can	also	be	

utilized	to	drive	periodic	developmental	events	(Kageyama	et	al.,	2012),	but	

generally	much	less	is	known	about	rhythmic	gene	expression	in	developmental	



	

than	circadian	contexts.	In	C.	elegans,	only	~20	genes	are	known	to	be	periodically	

expressed	during	development	(Johnstone	and	Barry,	1996;	Lassandro	et	al.,	1994;	

Hashmi	et	al.,	2004;	Davis	et	al.,	2004;	Frand	et	al.,	2005;	Hao	et	al.,	2006;	

Kostrouchova	et	al.,	2001;	Gissendanner	et	al.,	2004;	Jeon	et	al.,	1999;	Monsalve	et	

al.,	2011;	McMahon	et	al.,	2003)	.	However,	because	systematic	and	quantitative	

studies	have	not	been	performed,	the	prevalence	of	periodic	gene	expression	has	

remained	unknown	and	insights	into	general	principles	underlying	the	rhythmic	

expression	patterns	have	been	lacking.		

	

Here,	using	genome-wide	and	temporally	highly	resolved	gene	expression	

studies,	we	reveal	extensive	periodic	gene	expression	during	C.	elegans	larval	

development,	comprising	a	fifth	of	expressed	genes.	Our	characterization	reveals	

robust,	transcriptionally	driven	oscillations	across	a	continuum	of	phases	that	result	

in	periodic	translation,	and	thus	promote	periodic	developmental	processes	such	as	

molting.	These	results	highlight	an	unanticipated	dynamic	and	complexity	of	gene	

expression	patterns	during	C.	elegans	development.	Moreover,	we	propose	that	a	

unique	combination	of	features	makes	these	oscillations	a	powerful	model	to	study	

coordinated	gene	expression	in	an	animal.		

	

	 	



	

Results	

The	expression	of	thousand	of	genes	oscillates	extensively	during	development	

	

To	obtain	insight	into	the	dynamics	of	gene	expression	during	C.	elegans	larval	

development,	we	performed	a	high-resolution	and	genome-wide	time-course	

analysis.	Synchronized	L1	stage	larvae	were	placed	on	food	at	25°C,	and	samples	

collected	hourly	over	a	16h	period	that	covered	development	from	L3	to	the	young	

adult	stage.	Unexpectedly,	cross	correlation	plots	of	gene	expression	profiles	

obtained	by	mRNA	sequencing	revealed	a	periodical	increase	in	similarity,	rather	

than	a	progressive	decrease	during	development	(Fig.	1A).	For	instance,	expression	

patterns	at	t=21h	were	noticeably	more	similar	to	expression	patterns	at	t=27h	and	

28h	than	to	those	at	24h.	

	 To	identify	trends	in	gene	expression	levels	that	could	explain	this	

observation,	we	performed	principle	component	analysis.	Three	principle	

components	(PC)	explained	~92%	of	the	variation	(Fig.	1B).	The	loadings	of	the	first	

displayed	a	monotonic	increase	over	time,	thus	revealing	a	set	of	genes	whose	

expression	is	altered	continuously	along	the	time	course.	These	are	mostly	related	

to	germline	development	and	function	(see	below).		

The	loadings	of	the	second	and	third	PCs	displayed	an	oscillatory	pattern	

with	a	period	of	eight	hours	(Fig.	1B).	This	suggested	that	a	large	number	of	genes	

oscillated	at	a	common	period	but	with	different	phases	(Experimental	Procedures).	

To	test	this	possibility,	we	fitted	a	general	cosine	function	with	a	fixed	period	of	8h	

and	unknown	phase	and	amplitude.	Since	the	first	PC	explained	a	large	part	of	the	



	

data,	we	included	it	as	an	additional	component	when	performing	the	fit.	Comparing	

PC1	to	the	oscillation	amplitude	for	every	gene	revealed	two	distinct	classes	of	

dynamically	changing	genes	with	largely	mutually	exclusive	membership:	genes	that	

increase	their	expression	and	those	that	oscillate	(Fig.	1C).	This	allowed	us	to	

categorize	genes	into	‘flat’	(black),	‘rising’	(green)	and	‘oscillating’	(red)	based	on	

empirically	chosen	cut-offs	(Supplemental	Experimental	Procedures).	The	

oscillating	class	contained	the	previously	reported	~20	genes	with	periodic	

expression.	However,	oscillatory	expression	is	much	more	pervasive	in	that	this	

class	comprised	2,718	genes,	corresponding	to	18.9%	of	14,378	expressed	genes	

(Table	S1).		

	 Following	cosine	wave	fitting,	we	could	examine	amplitudes	and	phases	of	

oscillations	more	readily	and	observed	large	changes	(Fig.	1D;	note	that	the	

amplitude	of	the	cosine	function	equals	half	the	magnitude	of	change	between	

trough	and	peak	expression).	For	instance,	the	levels	of	all	2,718	'oscillating'	genes	

changed	more	than	2.1-fold,	and	those	of	>400	genes	exceeded	a	10-fold	change.	For	

comparison,	comprehensive	studies	of	circadian	clocks	revealed	typical	median	

expression	changes	of	2-fold	(Hughes	et	al.,	2009;	Duffield,	2003).	The	extent	of	

changes	seen	here	is	yet	more	striking	when	considering	that	we	examined	RNA	

from	whole,	undissected	worms,	not	from	specific	tissues	or	cells.	

A	unifying	theme	among	the	previously	identified	periodically	expressed	

genes	appears	to	be	a	connection	to	molting	as	determined	by	the	molecular	nature	

of	the	encoded	proteins	and/or	mutant	phenotypes	(Johnstone	and	Barry,	1996;	

McMahon	et	al.,	2003;	Lassandro	et	al.,	1994;	Hashmi	et	al.,	2004;	Davis	et	al.,	2004;	



	

Frand	et	al.,	2005;	Hao	et	al.,	2006;	Kostrouchova	et	al.,	2001;	Gissendanner	et	al.,	

2004;	Jeon	et	al.,	1999;	Monsalve	et	al.,	2011)	.	Molting	occurs	with	an	eight	hour	

periodicity	at	the	end	of	each	larval	stage	and	involves	the	generation	of	a	new	

cuticle	and	shedding	of	the	old	one		(Monsalve	and	Frand,	2012).	As	we	will	discuss	

below,	several	classes	of	genes	with	roles	in	molting	are	also	enriched	among	the	

oscillatory	genes	that	we	identify	here.	Nonetheless,	rather	than	being	restricted	to	

the	times	of	the	molt,	rhythmic	gene	expression	occurred	in	all	phases	(Fig.	1D;	a	full	

period	corresponds	to	8h	or	360°,	and	a	phase	difference	of	45°	thus	to	a	peak	shift	

by	1h;	the	molt	occurs	roughly	between	180°	and	270°).	This	was	also	readily	

apparent	when	plotting	the	expression	changes	of	all	'oscillating'	genes	in	a	heatmap	

(Fig.	1E).	A	somewhat	larger	number	of	genes	were	in	the	90°,	135°	and	315°	bins.	

RT-qPCR	confirmed	the	oscillations	and	phases	of	expression	for	18	genes	(Fig.	1F)	

in	RNA	sampled	from	an	independent	time	course.	

	

	

Oscillations	are	independent	of	life	history	and	synchronization	procedure	

	

To	assess	the	robustness	of	the	oscillations	and	potential	effects	of	life	history	(Karp	

et	al.,	2011),	we	analyzed	mRNA	expression	patterns	in	C.	elegans	that	had	exited	

from	dauer	diapause	arrest.	In	contrast	to	continuous	larval	development,	which	

proceeds	from	L1	through	the	L4	stage,	dauer	animals	arrest	development	in	an	

alternative	L3	stage	for	instance	in	response	to	starvation	(Hu,	2007).	Synchronous	

exit	from	dauer	can	be	induced	by	providing	food	to	such	dauer	larvae,	which	will	



	

subsequently	go	through	an	L3-to-L4	molt	and	continue	development	through	the	

L4	into	the	adult	stage.	

	 We	placed	dauer-arrested	animals	on	food	and	collected	hourly	samples	over	

22h.	Cross	correlation	plots	again	revealed	periodical	similarity	of	the	expression	

patterns	(Fig.	2A).	A	heatmap	that	displayed	changes	in	the	expression	patterns	of	

all	genes	that	were	periodically	expressed	following	continuous	development	

revealed	strikingly	similar	oscillatory	expression	patterns	for	post-dauer	animals	

(Fig.	2B).	Thus,	oscillations	are	highly	robust	and	not	substantially	influenced	by	life	

history.	This	was	in	fact	also	true	for	the	steadily	upregulated	genes,	whereas	more	

diversity	was	seen	with	the	bulk	of	genes	that	did	not	follow	either	of	these	two	

patterns	(Fig.	2B).	

	

	

Oscillations	are	locked	in	phase	over	time	

	

To	further	explore	the	robustness	of	the	oscillations,	we	followed	them	over	time	by	

preparing	in	an	extended	time	course	where	we	sampled	worms	every	two	hours	

between	18	h	and	36	h	of	development	at	25°C,	and	thus	covering	the	entire	L3	

stage	along	with	the	later	stages	investigated	in	the	first	experiment.	Beyond	

confirming	that	the	genes	with	oscillatory	expression	during	the	L4	stage	were	also	

rhythmically	expressed	during	the	L3	stage	(see	Fig.	5,	below),	this	permitted	us	to	

examine	whether	phase	relationships	were	maintained	across	these	stages.	

Strikingly,	and	consistent	with	a	robust	oscillator,	we	found	that	phases	were	tightly	



	

locked	between	stages.	Thus,	peaks	occurred	in	the	same	phase	during	the	earlier	

and	the	later	stage	(Fig.	2C).	

	

	

Oscillations	are	not	temperature-compensated	

	

Although	8h	is	a	harmonic	of	the	24h	circadian	cycle,	it	is	also	the	period	of	the	

molting	cycle.	Unlike	circadian	clocks,	which	are	temperature-compensated	

(Hogenesch	and	Ueda,	2011),	the	length	of	the	molting	cycle	in	C.	elegans	is	strongly	

temperature-dependent	and	approximately	doubles	when	ambient	temperature	is	

decreased	from	25°C	to	15°C.	To	test	whether	the	oscillator	that	drove	the	transcript	

oscillations	that	we	had	identified	was	compensated,	we	grew	worms	at	15°C	and	

collected	samples	every	3h	for	36h	between	late	L3	and	adult	stage.	RT-qPCR-based	

examination	of	the	transcripts	that	oscillated	with	an	~8h	period	at	25°C	(Fig.	1F)	

revealed	that	the	oscillations	themselves	were	maintained	but	that	the	period	now	

increased	to	~18h	(Fig.	2D,E).	This	finding	not	only	provides	further	evidence	for	

the	robustness	of	the	oscillations,	it	also	reveals	that,	unlike	circadian	clocks,	the	

underlying	oscillator	is	not	compensated.	This	is	consistent	with,	yet	does	not	prove,	

a	mechanism	important	to	keep	developmental	time.	

	

	

Oscillations	occur	in	diverse	somatic	tissues		

	



	

To	gain	insight	into	the	developmental	function	of	the	oscillations,	we	sought	to	

determine	where	periodic	gene	expression	occurred.	To	this	end,	we	plotted	the	

levels	of	all	genes	in	the	soma	versus	the	levels	in	the	gonad	of	young	adult	animals	

and	color-coded	them	according	to	the	three	categories,	'oscillating',	'rising'	and	

'flat'	(Fig.	3A).	Whereas	genes	whose	expression	neither	oscillated	nor	increased	

steadily	tended	to	be	equally	expressed	in	soma	and	gonad	(Fig.	3A,B),	genes	with	

steadily	increasing	expression	exhibited	typically	higher	levels	in	the	gonad	(Fig.	

3A,B).	By	contrast,	'oscillating'	genes	were	more	highly	expressed	in	the	soma	than	

the	gonad	(Fig.	3A,B).		

	 To	confirm	that	somatic	expression	contributed	significantly	to	the	

oscillations,	we	profiled	gene	expression	of	germline-less	glp-4	mutant	animals	

across	a	developmental	time	course.	Because	glp-4	animals	experience	a	

developmental	delay,	we	harvested	them	at	later	time	points	than	wild-type	animals	

to	obtain	animals	of	comparable	stages	(Supplemental	Experimental	Procedures).	

Consistent	with	our	hypothesis,	we	could	readily	observe	periodic	gene	expression	

in	glp-4	animals	(Fig.	3C),	despite	the	fact	that	these	animals	grow	more	

asynchronously	than	wild-type	animals,	which	will	obscure	oscillations.	Collectively,	

these	results	suggest	that	periodic	gene	expression	occurs	preferentially	in	somatic	

tissues.	Moreover,	the	extensive	loss	of	upregulation	among	'rising'	genes	at	the	

later	time	points	of	gpl-4	animal	development	demonstrates	that	these	mostly	

correspond	to	germline-expressed	genes.	

	 The	spatial	expression	patterns	of	some	2,000	C.	elegans	genes,	mostly	with	

human	homologues,	were	recently	inferred	from	an	analysis	of	GFP	expression	



	

driven	by	their	promoters	(Hunt-Newbury	et	al.,	2007).	Using	these	data,	we	found	

that	epidermal	cells	(hypodermis	and	seam	cells)	were	enriched	for	expression	of	

oscillating	genes	whereas	body	wall	muscle	cells	and	neurons	appeared	to	be	

depleted	(Fig.	3D).	However,	the	extents	of	depletion	and	enrichment	were	

generally	small,	not	exceeding	1.2-fold,	which	reveals	that	oscillatory	gene	

expression	can	occur	in	many	somatic	tissues.		

	

	

Periodic	expression	of	cuticular	collagen	genes	may	facilitate	assembly	of	a	complex	

structure	

	

To	identify	molecular	function	and	processes	subject	to	periodic	gene	expression,	

we	performed	gene	ontology	(GO)	term	enrichment	and	depletion	analysis	

(Ashburner	et	al.,	2000).	Consistent	with	oscillations	as	a	preferentially	somatic	

event,	various	terms	related	to	function	and	development	of	the	germline	were	

strongly	depleted	(Table	S2).	Moreover,	many	of	the	most	significantly	depleted	

terms	were	linked	to	translation	and	the	ribosome,	e.g.	among	123	expressed	genes	

associated	with	"Structural	constituent	of	ribosome",	mostly	encoding	ribosomal	

proteins,	none	was	periodically	expressed.		

	 By	contrast,	GO:0003735	"Structural	constituent	of	cuticle",	a	term	

associated	almost	exclusively	with	cuticular	collagen	genes,	was	highly	enriched	(Fig.	

4A).	Collagen	genes	had	accounted	for	half	of	the	~20	genes	previously	known	to	

undergo	periodic	expression	(Johnstone	and	Barry,	1996;	McMahon	et	al.,	2003),	



	

but	we	were	nonetheless	surprised	by	the	extent	of	oscillations:	91	of	126	expressed	

genes,	or	72%,	were	periodically	expressed.	All	but	one	of	the	remaining	35	genes	

increased	expression	across	the	time	course,	and	these	presumably	represent	adult-

specific	collagens.		

Closer	examination	of	expression	phases	further	revealed	that	collagen	genes	

preferentially	peak	between	180°	and	270°	(Fig.	4B,	C),	the	time	when	animals	molt	

as	determined	by	the	occurrence	of	lethargus	in	a	separate	time	course	(data	not	

shown).	Nonetheless,	different	classes	of	collagens	displayed	noticeably	dissimilar	

expression	patterns:	for	members	of	the	largest	class,	the	col	genes,	expression	

peaked	indeed	mostly	during	the	molt	(Fig.	4C).	Cuticular	collagens	are	assigned	to	

this	gene	class	solely	by	sequence	homology.	By	contrast,	collagens	of	the	rol	family	

were	identified	genetically	through	mutations	that	caused	worms	to	display	an	

abnormal	movement	(roller)	phenotype	due	to	helical	distortions	of	the	cuticle.	sqt	

(squat)	genes	can	be	mutated	to	cause	heterozygous	roller	and	homozygous	dumpy	

(short,	fat)	phenotypes.	We	find	that	expression	of	sqt	and	rol	genes	occurs	in	a	

highly	coordinated	manner,	with	peaks	occurring	all	before	the	molt	within	a	

window	of	10°	(Fig.	4C),	and	almost	identical	amplitudes	(log2(A)	ranging	from	2.67	

to	2.72).	Taking	further	into	account	the	specific	genetic	interactions	(Kusch	and	

Edgar,	1986)	as	well	as	sequence	similarities	among	these	cuticular	proteins	

(Kramer	et	al.,	1990),	we	propose	that	these	proteins	form	a	cuticular	substructure.	

	 Such	a	model	is	consistent	with	findings	for	the	dpy	(dumpy)	collagen	genes:	

Individual	DPY	proteins	contribute	to	one	of	two	specific	cuticular	substructures	

(McMahon	et	al.,	2003),	and	this	functional	specification	coincides	with	expression	



	

in	two	separate	clusters	(Fig.	4C;	(McMahon	et	al.,	2003;	Johnstone	and	Barry,	1996).	

The	specific	function	of	the	'solitary'	dpy-17	is	currently	unknown	and	may	be	

unique.		

We	conclude	that	although	collagen	expression	occurs	preferentially	during	

the	molt,	individual	collagen	genes	reveal	highly	specific	temporal	expression	

patterns,	which	permits	their	incorporation	into	the	cuticle	at	the	right	time	and	

place.		

	

Rhythmic	expression	frequently	occurs	for	genes	that	encode	proteases	or	steroid	

metabolism	and	signaling	proteins	

	

In	addition	to	cuticular	collagens,	two	other	major	themes	became	apparent	

following	GO-term	enrichment	analysis	of	'oscillating'	genes	(Fig.	4A).	The	first	was	

proteolysis	and	resulted	from	frequent	rhythmic	expression	among	three	peptidase	

families	(Table	1;	Fig.	4D).	These	families	contain	peptidases	with	known	functions	

in	molting,	e.g.,	NAS-37	(Suzuki	et	al.,	2004;	Davis	et	al.,	2004)	and	CPZ-1	(Hashmi	et	

al.,	2004),	but	the	diversity	of	phases	(Fig.	4D)	suggests	roles	beyond	molting.	

Periodic	protease	activity	may	also	be	achieved	or	refined	by	rhythmic	expression	of	

protease	inhibitors,	as	indicated	by	the	enrichment	of	the	GO-term	"Serine-type	

endopeptidase	inhibitor	activity"	(Fig.	4A,B).	

	 The	second	theme	comprised	steroid	hormone	metabolism	and	signaling.	

Thus,	cytochrome	P450s	(CYPs),	UDP-glucuronosyl/glucosyl	transferases	(UGTs),	

and	short	chain	dehydrogenases/reductases	enzymes	are	enriched	among	



	

oscillatory	genes	(Table	1,	Fig.	4E).	These	types	of	enzymes,	and	the	steroid	

hormones	they	metabolize,	play	key	roles	in	molting	in	insects	(King	et	al.,	2000;	Iga	

and	Kataoka,	2012)	and,	presumably,	C.	elegans	(Entchev	and	Kurzchalia,	2005).	

Hence,	their	enrichment	might	reflect	a	function	in	molting	hormone	metabolism	in	

C.	elegans.	

The	Hedgehog	(Hh)	pathway	genes	of	C.	elegans,	which	frequently	exhibit	

oscillatory	expression	(Fig.	4A,F,	Table	1),	may	also	be	linked	to	this	theme.	This	is	

because	they	may	function	in	sterol	metabolism	and	signaling	rather	than	canonical	

Hh	signaling	(Bürglin	and	Kuwabara,	2006),	and	because	many	of	them	are	

important	for	molting	(Zugasti	et	al.,	2005;	Hao	et	al.,	2006).	Periodic	expression	

was	previously	noted	for	four	Hh-related	genes	(Hao	et	al.,	2006),	but	we	find	it	to	

be	pervasive	both	among	the	genes	in	these	families	and	the	putative	Hh	receptors,	

which	are	characterized	by	the	presence	of	a	Patched-like	domain	(Table	1,	Fig.	4F).	

An	attractive	hypothesis	is	that	oscillations	can	act	as	filters	for	signaling	by	helping	

to	match	specific	receptor	and	ligand	pairs	through	finely	tuned	co-expression,	

allowing	them	to	execute	distinct	functions	in	molting	and	possibly	other	processes.	

	

	

mRNA	level	oscillations	cause	rhythmic	protein	production	

	

The	examples	provided	above	suggest	that	mRNA	levels	oscillations	could	permit	

either	transient	protein	accumulation,	or	production	of	stable	proteins	at	a	given	

time	when	they	are	required	for	integration	into	a	complex	structure.	However,	both	



	

scenarios	are	based	on	the	assumption	that	mRNA	level	oscillations	cause	rhythmic	

protein	production.	This	assumption	is	not	trivial	as	evidenced	by	the	discovery	of	

extensive	posttranscriptional	regulation	that	refines	and	modifies	circadian	

transcriptional	oscillations	(Hogenesch	and	Ueda,	2011).	Hence,	to	rigorously	test	

this	notion,	we	examined	whether	transcript	level	oscillations	in	C.	elegans	larvae	

resulted	in	periodic	transcript	translation.	We	performed	ribosome	profiling	to	

assess	the	translational	status	of	cellular	mRNAs	(Ingolia	et	al.,	2009)	over	a	

separate	time	course.	We	sequenced	ribosome	protected	fragments	(RPFs)	as	well	

as	rRNA-depleted	total	RNA	from	worms	collected	every	2	hours	during	

development	from	L3	to	young	adult	stage.	Confirming	that	RPFs	reflect	translation,	

they	displayed	robust	phasing	and	were	depleted	from	5'UTRs	and,	yet	more	

extensively,	3'UTRs	(Fig.	S1),	exactly	as	expected	(Ingolia	et	al.,	2009).	Strikingly,	the	

oscillations	that	occurred	at	a	transcript	level	were	also	present	at	the	translational	

level	(Fig.	5).	Conversely,	the	oscillations	seen	at	the	translational	level	were	well	

explained	by	transcript	level	oscillations.	Hence,	we	conclude	that	periodic	protein	

production	is	indeed	the	default	result	of	periodic	transcript	accumulation	in	C.	

elegans	larvae.	

	

	

Oscillatory	gene	expression	is	driven	by	periodic	transcription	

	

Although	the	circadian	clock	was	long	considered	to	drive	oscillations	through	

periodic	transcription,	pre-mRNA	level	oscillations	appear	to	be	a	poor	predictor	of	



	

mRNA	level	oscillations	(Koike	et	al.,	2012).	On	the	other	hand,	the	promoters	of	a	

few	periodically	expressed	C.	elegans	genes	have	been	shown	to	drive	periodic	

accumulation	of	reporter	proteins	(Frand	et	al.,	2005;	Davis	et	al.,	2004;	Hao	et	al.,	

2006).	We	therefore	wished	to	test	quantitatively	and	comprehensively	whether	the	

present	oscillator	drives	rhythmic	accumulation	of	mRNAs	through	rhythmic	

transcription.	Hence,	we	sequenced	rRNA-depleted	total	RNA	samples	to	determine	

pre-mRNA	levels	as	a	proxy	of	transcription.	For	this,	we	used	the	same	RNA	sample	

as	those	that	we	had	subjected	to	mRNA	sequencing	(Fig.	1).	When	analyzing	

transcripts	for	which	sufficient	intronic	reads	were	available,	we	found	that	pre-

mRNAs	and	mRNAs	oscillated	with	highly	comparable	phase	and	amplitudes	(Fig.	

6A,	B).	Consistent	with	transcriptional	oscillations	preceding	mature	transcript	level	

oscillations,	pre-mRNA	peaks	occurred	on	average	some	15	min	prior	to	mature	

mRNA	peaks	(Fig.	S2).	We	conclude	that	transcriptional	regulation	is	a	major	

contributor	to	the	oscillations	that	we	observe.	At	the	same	time,	'oscillating'	genes	

are	found	across	all	chromosomes	and	without	any	apparent	clustering	of	genes	

according	to	phase	of	expression	(Fig.	6C),	suggesting	that	there	are	no	specific	

chromosomal	domains	that	drive,	or	are	particularly	permissive	to,	periodic	gene	

expression.	

	 	



	

Discussion	

	

	

Extensive	oscillatory	gene	expression	serves	a	developmental	function	in	C.	elegans	

larvae	

	

We	report	here	extensive	oscillatory	gene	expression	during	C.	elegans	larval	

development.	Superficially,	the	oscillations	may	appear	reminiscent	of	

transcriptional	bursts	(Raj	and	van	Oudenaarden,	2008).	However,	we	can	rule	out	

that	the	two	are	linked	based	on	the	fact	that	transcriptional	bursts	occur	

stochastically.	Hence,	they	cannot	be	observed	in	ensembles	of	cells,	let	alone	the	

populations	of	whole	animals,	comprised	of	numerous	distinct	cell	types	and	tissues,	

that	we	studied	here.	

Formally,	it	is	nonetheless	possible	that	periodic	gene	expression	does	not	

serve	a	particular	purpose	but	represents	mere	noise,	perhaps	as	a	side	effect	of	

another	periodic	process.	The	fact	that	oscillations	involve	high-amplitude	

expression	level	changes	of	a	large	number	of	genes,	and	that	the	process	is	highly	

robust,	strongly	argue	against	this	possibility.	Thousands	of	genes	change	>2-fold,	

and	hundreds	>10-fold.	If	these	changes	reflected	‘noise’	rather	than	function,	it	

would	be	difficult	to	conceive	mechanisms	by	which	animals	and	their	cells	could	

prevent	this	noise	from	drowning	the	signal	of	‘meaningful’	changes	in	gene	

expression.		



	

At	the	same	time,	oscillations	were	highly	reproducible	over	three	

independent	time	courses	examined	by	different	detection	technologies;	

independent	of	life	history;	and,	although	not	temperature-compensated,	robust	

under	different	temperature	regimens.	Finally,	we	not	only	observed	reproducibly	

oscillations	for	the	same	genes,	but	these	oscillations	were	also	phase-locked,	i.e.,	

the	phase	difference	between	pairs	of	different	genes	remained	the	same	in	different	

experiments.	Kim	et	al.	(2013)	also	recently	observed	extensive	oscillatory	gene	

expression	but	grouped	oscillatory	genes	in	a	small	number	of	distinct	expression	

clusters	instead	of	specifically	examining	phases	and	amplitudes.	However,	when	

we	analyzed	their	data,	we	found	a	similar	continuum	of	phases	as	in	our	data,	and	

phase-locking	was	maintained	across	stages	(Fig.	S3).	Summarily,	the	impressive	

robustness	of	the	process	thus	provides	additional	strong	evidence	for	a	functional	

role.	

	

	

A	role	of	periodic	gene	expression	in	molting	

	

The	above	considerations	support	that	widespread	rhythmic	gene	expression	in	C.	

elegans	serves	a	biological	purpose.	Because	oscillations	are	not	temperature-

compensated,	they	cannot	function	analogously	to	a	circadian	clock.	Instead,	they	

are	likely	to	control	a	developmental	process.	The	repetitious	nature	of	molting	

makes	it	the	strongest	candidate,	and	gene	expression	oscillations	and	molting	

occur	indeed	both	with	the	same	periodicity.		



	

Cuticular	collagens	are	a	particularly	clear	example	of	oscillatory	expression	

of	genes	involved	in	molting.	Consistent	with	cuticle	generation	during	the	molt,	

their	expression	peaks	preferentially	during,	or	in	close	temporal	connection	with,	

the	molt.	Surprisingly,	however,	this	pattern	is	atypical,	i.e.,	a	continuum	of	gene	

expression	phases	is	visible	when	examining	the	entirety	of	2,719	genes.	When	

combined	with	the	fact	that	this	number	corresponds	to	nearly	a	fifth	of	expressed	

genes,	it	seems	indeed	likely	that	oscillations	occur	for	many	genes	that	are	not	

required	for	the	actual	molting	process.	However,	we	speculate	that	extensive	

oscillatory	gene	expression	permits	coordination	of	molting	with	other	cellular,	

developmental,	or	behavioral	processes,	which	can	be	essential	for	viability	(Ruaud	

and	Bessereau,	2006).	In	fact,	given	the	extensive	and	robust	phase-locking,	it	seems	

possible	that	the	succession	of	periodically	expressed	genes	may	define	a	larval	

growth	or	development	module	in	C.	elegans.	

	

	

The	utility	of	gene	expression	oscillations	extends	beyond	driving	transient	protein	

accumulation	

	

Atypical	as	the	expression	patterns	of	cuticular	collagen	genes	relative	to	the	overall	

patterns	may	be,	they	provide	particularly	interesting	insights	into	the	utility	of	

periodic	gene	expression	by	highlighting	a	function	that	goes	beyond	achieving	

transient	protein	accumulation.	Cuticular	collagens	are	stable	proteins	that	remain	

associated	with	the	cuticle	once	incorporated.	At	the	same	time,	the	cuticle	is	a	



	

complex	structure	of	several	layers	that	need	to	be	sequentially	assembled	(Page	

and	Johnstone,	2007).	Rhythmic	and	phase-locked	collagen	production	then	permits	

streamlining	of	this	production	through	"just	in	time"	delivery	of	individual	

components,	facilitating	faithful	and	efficient	cuticle	assembly.	We	propose	that	

other	oscillators	may	similarly	be	utilized	to	this	end.	

	

	

Phase	information	provides	insights	into	the	biology	of	cuticle	synthesis	

	

Johnstone	and	colleagues	previously	noticed	the	co-expression	of	dpy	collagens	

destined	for	the	same	cuticular	sub-structure	(Johnstone	and	Barry,	1996;	McMahon	

et	al.,	2003)	and	reported	that	collagens	generally	fell	in	three	expression	clusters	

termed	'early',	'intermediate'	and	‘late’	(Johnstone	and	Barry,	1996;	McMahon	et	al.,	

2003).	However,	these	conclusions	were	based	on	semi-quantitative	expression	

analysis	of	only	ten	genes.	Our	comprehensive	analysis	reveals	a	much	more	

sophisticated	choreography	of	collagen	gene	expression	that	involves	a	broad	

distribution	of	phases.	This	finding	suggests	the	possibility	that	individual	collagens	

may	indeed	be	more	functionally	distinct	than	previously	appreciated,	and	that	this,	

and	not	a	need	to	achieve	massive	production	of	a	generic	collagen,	has	given	rise	to	

the	large	number	of	collagen	genes	present	the	C.	elegans.	

Another	unexpected	finding	in	our	data	is	the	observation	of	collagen	

expression	after	the	molt.	It	had	previously	been	assumed	that	cuticle	synthesis	was	

a	molt-specific	event	(Page	and	Johnstone,	2007),	and	that	the	larval	growth	that	



	

does	occur	between	molts	is	facilitated	by	physical	stretching	of	the	flexible	cuticle	

(Knight	et	al.,	2002).	Our	data	suggest	the	possibility	that	synthesis	of	specific	

collagens	could	additionally	contribute	to	cuticle	growth	between	molts.	Consistent	

with	this	notion,	cuticle	regeneration	can	occur	after	physical	injury	(Pujol	et	al.,	

2008).	

	 		

	

Rhythmic	transcription	drives	mRNA	level	oscillations	

	

Our	finding	that	pre-mRNA	expression	patterns	faithfully	mirror	mature	mRNA	

oscillations	reveals	rhythmic	transcription	as	a	key	driver	of	oscillations	and	implies	

a	need	for	rhythmically	modulated	transcription	factor	activity.	The	diversity	of	

expression	phases	potentially	suggests	the	involvement	of	many	different	factors,	

and	we	observe	periodic	expression	for	92	transcription	factors,	including	several	

that	are	required	for	molting	(data	not	shown).		

	 Our	efforts	to	identify	motifs	in	the	promoters	of	co-expressed	genes	have	so	

far	failed	to	yield	convincing	leads	as	to	the	identity	of	involved	transcription	factors	

(our	unpublished	data).	However,	lin-42,	the	rhythmically	expressed	C.	elegans	

orthologue	of	the	core	circadian	clock	gene	and	transcriptional	regulator	Period	

(Jeon	et	al.,	1999;	Monsalve	et	al.,	2011)	is	a	particularly	interesting	candidate,	since	

loss	of	lin-42	activity	causes	arrhythmic	molts	(Monsalve	et	al.,	2011).	Whether	LIN-

42	indeed	drives	rhythmic	transcription	to	time	molts	remains	to	be	established,	

since	no	targets	are	known.	Validating	this	hypothesis	will	presumably	require	the	



	

use	of	single	animal-based	techniques,	because	arrhythmia,	in	population-based	

studies,	will	inevitably	generate	an	appearance	of	decreased	oscillations.	At	any	rate,	

it	will	be	of	great	interest	to	identify	in	future	studies	the	transcription	factors	at	the	

heart	of	these	oscillations,	and	understand	how	they	cross-talk	to	one	another.	

Possibly,	this	may	occur	in	analogy	with	periodic	transcription	during	the	budding	

yeast	cell	cycle	(Bähler,	2005),	where	transcription	factors	sequentially	regulate	one	

another	(Simon	et	al.,	2001)	and	additionally,	differ	in	their	activities	when	present	

alone	or	in	pairs	(Kato	et	al.,	2004).	These	two	features	may	then	suffice	to	achieve	

both	phase-locking	and	a	continuum	of	expression	phases.	At	the	same	time,	we	

would	like	to	emphasize	that	although	our	data	demonstrate	that	the	oscillator	

manifests	by	driving	extensive	oscillatory	transcription,	it	remains	to	be	established	

whether	the	functionality	of	the	core	oscillator	itself	equally	depends	on	

transcription.	

	

	

A	unique	combination	of	features	defines	a	new	model	to	study	gene	expression	

oscillations	and	coordinated	gene	expression	in	an	animal	

	

It	has	been	emphasized	that	the	study	of	diverse	oscillators	in	various	systems	has	

been	instrumental	to	identify	unifying	themes	and	idiosyncrasies	(Hogenesch	and	

Ueda,	2011;	Tyson	et	al.,	2008).	We	propose	that	the	oscillations	that	we	present	

here	have	a	number	of	unusual	characteristics	that	merit	investigation.	For	instance,	

insights	into	the	mechanisms	that	achieve	robust	phase-locking	and	broad	



	

distribution	of	phases	may	be	illuminating	for	our	understanding	of	coordinated	

gene	expression	more	generally.	Moreover,	a	relatively	short	period	and	high	

amplitudes	generate	an	interesting	problem	for	gene	expression	kinetics:	Rapid	

induction	needs	to	be	balanced	with	rapid	degradation.	In	other	words,	are	the	

affected	transcripts	inherently	unstable,	which	would	necessitate	yet	higher	

transcription	levels	upon	induction,	or	is	their	degradation	rate	increased	once	

expression	declines,	and	if	so,	by	which	means?	Finally,	it	is	striking	that	oscillations	

are	robustly	detectable	in	RNA	from	whole	animals,	as	this	suggests	the	presence	of	

effective	mechanisms,	yet	to	be	uncovered,	that	coordinate	oscillations	spatially	and	

temporally.	The	diversity	of	genetic	and	other	tools	available	for	C.	elegans	will	

permit	extensive	and	productive	investigation	of	this	novel	model	oscillator	to	

resolve	these	and	other	issues.	

	

	

Experimental	Procedures	

	
Worm	culture	

Animals	were	grown	and	synchronized	at	the	L1	or	dauer	stages	according	to	

standard	procedures	detailed	in	the	Supplemental	Experimental	Procedures.	

	

RNA	sequencing,	ribosome	profiling,	and	RT-qPCR	

For	RNA	sequencing,	RNA	was	extracted	from	extensively	washed	animals	and	

extracted	by	freeze-thawing	or	mortar	and	pestle	in	Tri	Reagent.	DNase-treated,	



	

quality-controled	RNA	was	used	for	preparation	of	mRNA	sequencing	or	rRNA-

depleted	total	RNA	sequencing	using	commercial	kits	and	protocols.	Ribosome	

profiling	was	performed	following	an	adaptation	of	published	protocols	(Ingolia	et	

al.,	2012;	Bazzini	et	al.,	2012).	RT-qPCR-based	validation	of	mRNA-seq	data	was	

performed	on	a	separately	collected	time	course,	with	candidate	genes	chosen	based	

on	a	wide	distribution	of	their	respective	phases.	All	relevant	steps	are	further	

detailed	in	the	Supplemental	Experimental	Procedures	

	

Processing	of	the	RNA-seq	and	ribosome	profiling	data	

All	the	RNA-seq	data	(50bp	read	length)	were	mapped	to	the	C.	elegans	genome	

(ce6)	using	the	spliced	alignment	algorithm	SpliceMap	included	with	the	R	package	

QuasR	(Au	et	al.,	2010)	as	detailed	in	the	Supplemental	Experimental	Procedures.	

For	ribosome	profiling,	bowtie	(Langmead	et	al.,	2009)	was	used	to	map	the	~30	bp	

ribosome-protected	fragments	obtained	after	3’	adapter	removal	to	the	C.	elegans	

genome	(ce6)	allowing	only	uniquely	mapping	reads.	Gene	expression	

quantification	was	performed	by	counting	reads	and	analyzing	them	as	detailed	in	

the	Supplemental	Experimental	Procedures.	

	

	

Principal	Component	Analysis	and	cosine	curve	fitting	

After	mean-normalization	of	the	log2	gene	expression	levels,	we	performed	PCA	

using	the	function	princomp	in	R	with	default	parameters.	A	combination	of	the	

principle	components	PC2	and	PC3	permitted	representation	of	sinusoidal	waves	



	

with	an	eight	hour	period	and	any	phase	angle	(Supplemental	Experimental	

Procedures).	Hence,	for	each	gene	we	fitted	a	separate	cosine	curve	with	a	known	

period	of	8	hours	and	thus	a	frequency	ω	=	2*π/8h	and	unknown	variables	C	and	φ.	

Since	(C*cos(ωt	+	φ)	=	A*cos(ωt)	-	B*sin(ωt)	with	A	=	C*cos(φ)	and	B	=	C*sin(φ)),	

we	performed	the	fit	using	a	linear	regression	including	the	two	components	

cos(ωt)	and	-sin(ωt)	as	regressors.	Because	a	large	proportion	of	the	variance	in	the	

data	was	explained	by	the	non-periodic	first	principal	component	PC1,	we	included	

it	as	a	separate	regressor	during	the	fit.	Based	on	a	scatterplot	comparing	PC1	to	the	

oscillation	amplitude,	we	classified	the	genes	into	three	categories,	oscillating,	

increasing	and	flat.	A	detailed	description	is	provided	in	the	Supplemental	

Experimental	Procedures.	

	

GO	enrichment	analysis	

GO	annotations	for	C.	elegans	were	downloaded	from	

http://www.geneontology.org/gene-associations/gene_association.wb.gz		and	

enrichments	and	depletions	calculated	as	detailed	in	in	the	Supplemental	

Experimental	Procedures.	To	display	the	normalized	phase	distributions	for	all	the	

oscillating	genes	that	belong	to	enriched	GO	terms	in	a	heatmap,	we	binned	the	

phases	into	8	equally	sized	intervals	and	corrected	for	gene	number	variations	

across	phase	bins	and	GO	terms	(Supplemental	Experimental	Procedures).	

	

Tissue	enrichment	analysis	

To	determine	whether	periodic	gene	expression	occurred	preferentially	in	the	soma	



	

or	the	germline,	we	examined	mRNA	sequencing	data	obtained	for	gonads	dissected	

out	of	wild-type	young	adult	animals	and	for	germline-less	glp4ts	mutant	young	

adult	animals,	kindly	provided	by	Dr.	Rafal	Ciosk	(C.	Scheckel,	D.G.,	and	R.	Ciosk,	

unpublished	data).	C.	elegans	promoter::GFP	fusions	expression	data	(Hunt-

Newbury	et	al.,	2007)	were	obtained	from	http://gfpweb.aecom.yu.edu		and	

analyzed	for	those	cell	types	that	had	at	least	100	expressed	genes	as	detailed	in	the	

Supplemental	Experimental	Procedures.	

	

Accession	numbers	

All	sequencing	and	ribosome	profiling	data	generated	for	this	study	have	been	

deposited	in	NCBI's	Gene	Expression	Omnibus	(Edgar	et	al.,	2002)	and	are	

accessible	through	GEO	Series	accession	number	GSE52910	

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=	GSE52910).	
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Table	1:	Selected	gene	classes	enriched	among	periodically	expressed	genes	

Gene	class	 Definition1	 Periodic		
Expression2	

Cuticular	collagen	 GO:0003735	 72%	(91/126)	
Cytochrome	P450	(CYP)	 IPR001128	 57%	(27/47)	
UDP-glucuronosyl/glucosyl	transferase	
(UGT)	

IPR002213	 54%	(37/69)	

Short-chain	dehydrogenase/reductase	 WB:	dhs	class	 40%	(12/30)	
Hedgehog	receptor		 GO:0008158	 70%	(19/27)	
Hh-related	genes:	
Warthog	(wrt)	
Ground-like	(grl)		
Groundhog	(grd)	
Quahog	(qua)	
Hog	only	(hog)	

	
WB:	wrt	class	
WB:	grl	class	
WB:	grd	class	
WB:	qua	class	
WB:	hog	class	

	
78%	(7/9)	
83%	(15/18)	
100%	(13/13)	
100%	(1/1)	
100%	(1/1)	

Metallopeptidase	M14		 GO:0004181	 77%	(10/13)	
Astacin/peptidase	M12		 IPR001506	 75%	(24/32)	
Peptidase	C1A,	papain	C-terminal	
(Peptidase_C1A_C)	

IPR000668	 52%	(11/21)	

1	GO:	Gene	ontology;	IPR:	Interpro;	WB:	Wormbase	
2	Percentage	of	detectably	expressed	genes.	Numbers	in	brackets:	number	of	genes	
with	oscillatory	expression/number	of	genes	detectably	expressed	
	
	

	 	



	

Figure	Legends	

	

Figure	1:	The	expression	of	thousands	of	genes	oscillates	at	an	eight	hour-period.	

(A) Cross-correlation	plot	of	gene	expression	patterns	obtained	by	sequencing	of	

mRNA	sampled	from	C.	elegans	grown	for	the	indicated	time	from	L1	at	25°C.		

(B) Proportion	of	variance	of	gene	expression	profiles	in	(A)	explained	by	16	

principle	components	(PCs).	Inset,	PC1	through	PC3	changes	(loadings)	over	

time.	

(C) Plotting	of	oscillation	amplitude,	derived	by	cosine	wave	fitting,	over	PC1	

reveals	three	separable	classes	of	genes	the	expression	of	which	is	‘flat’	(black),	

rises	over	time	(green),	or	oscillates	(red).	

(D) A	radar	chart	plotting	oscillation	amplitude	over	the	phase	of	peak	expression	

reveals	that	periodic	gene	expression	occurs	in	all	phases.	

(E) Heat	map	showing	gene	expression	changes	of	genes	assigned	to	classes	as	

defined	in	(C).	‘Oscillating’	genes	were	sorted	by	phase	prior	to	plotting	and	

assigned	to	indicated	45°	bins	(equaling	1h	of	development	in	this	time	course	

where	one	period	corresponds	to	8	h).	

(F) Genes	from	each	bin	were	analyzed	by	RT-qPCR	on	RNA	collected	from	a	

separate	time	course	experiment.	Expression	patterns	from	the	mRNA	

sequencing	and	the	RT-qPCR	experiment	are	overlaid.	

Note	that	amplitudes	in	(C),	(D)	are	in	log2	and,	by	definition,	correspond	to	only	

half	the	change	from	peak	to	trough.	

	



	

	

Figure	2:	Periodic	gene	expression	is	robust	and	phase-locked	but	not	temperature-

compensated.	

(A) Cross-correlation	plot	of	gene	expression	patterns	obtained	by	sequencing	of	

mRNA	sampled	from	C.	elegans	synchronously	released	from	dauer	and	grown	

for	the	indicated	time	at	25°C.		

(B) Heat	maps	comparing	side-by-side	changes	in	expression	for	each	gene	in	each	

of	the	three	categories	identified	in	Fig.	1C	for	animals	grown	continuously	after	

L1,	or	transiently	arrested	in	dauer	prior	to	resuming	development	for	the	time	

indicated.		

(C) Gene	expression	data	were	collected	over	an	extended	time	course	(Fig.	5),	and	

phases	fitted	separately	for	the	first	and	the	second	half	of	the	time	course.	A	

comparison	of	the	two	resulting	phases	in	a	scatter	plot	reveals	close	correlation	

of	phases	(circular	correlation	coefficient	rC	=	0.79;	(Fisher	and	Lee,	1983).	The	

points	in	the	top	left	and	bottom	right	corners	are	a	consequence	of	the	circular	

nature	of	the	data	where	0°	=	360°.		

(D),	(E)	Expression	of	the	genes	shown	in	Fig.	1F	was	determined	by	RT-qPCR	for	

animals	grown	for	the	indicated	times	at	15°C	or	25°C,	respectively.	Principle	

component	analysis	demonstrates	an	increased	period	of	oscillations	at	(D)	15°C	

relative	to	(E)	25°C.	Data	from	Fig.	1F	were	used	for	the	25°C	timecourse	PCA.		

	

Figure	3:	Oscillations	occurs	in	various	somatic	tissues	



	

(A) Scatter	plot	comparing	absolute	gene	expression	in	gonads	and	soma.	Each	dot	

corresponds	to	a	gene	and	is	color-coded	according	to	the	categories	in	Fig.	1C	

('oscillating':	red;	'rising':	green;	'flat':	black).		

(B) 	Distributions	of	relative	expression	levels	(comparing	soma	to	gonad)	for	the	

categories	shown	in	Fig.	1C.	Negative	values	denote	enriched	expression	in	the	

gonad,	positive	values	denote	enriched	expression	in	the	soma.	'Oscillating'	

genes	are	shifted	towards	higher	expression	in	the	soma	relative	to	the	two	

other	groups	(p<<2.2x10-16;	Kolmogorov-Smirnov	test).	

(C) Heat	maps	comparing	side-by-side	changes	in	expression	for	each	gene	in	each	

of	the	three	categories	identified	in	Fig.	1C	for	wild-type	and	germline-less	glp-4	

mutant	animals.	Because	glp-4	animals	are	developmentally	delayed,	they	were	

sampled	at	later	time	points.	

(D) Analysis	of	promoter	activity		(Hunt-Newbury	et	al.,	2007)	of	'oscillating'	

genes	reveals	only	modest	enrichment	for	specific	tissues	within	the	soma.	

	

Figure	4:	Specific	molecular	functions	and	processes	are	enriched	among	

periodically	expressed	genes.		

(A),	(B)	GO-term	enrichment	of	‘oscillating’	genes.	(B)	The	heatmap	shows	the	

normalized	phase	distributions,	in	45°	bins,	for	all	the	oscillating	genes	that	

belong	to	enriched	GO	terms.	Two	normalization	steps	(Supplemental	

Experimental	Procedures)	correct	for	the	fact	that	gene	numbers	vary	across	

phase	bins	(Fig.	1E)	and	GO	terms	(Fig.	4A).	(MF)	=	Molecular	Function,	(CC)	=	

Cellular	Compartmentalization,	(BP)	=	Biological	Process.	



	

(C)-(F)	'Oscillating'	genes	coding	for	proteins	of	the	indicated	families	were	plotted	

by	phase.	The	processes	and/or	gene	families	selected	drive	the	following	GO-

term	enrichments:	(C)	"Structural	constituent	of	the	cuticle";	(D)	

“Metallopeptidase	acitivity”,	"Metallocarboxypeptidase	activity",	

"Metalloendopeptidase	activity",	and	"Proteolysis";	(E)	“Electron	carrier	activity”,	

“Iron	ion	binding”,	“Heme	binding”,	and	“Oxidoreductase	activity,	acting	on	

paired	donors,	with	incorporation	or	reduction	of	molecular	oxygen"	(CYPs)	and	

“Transferase	activity,	transferring	hexosyl	groups”	(UGTs);	and	(F)	"Hedgehog	

receptor	activity"(F).	

	

Figure	5:	Rhythmic	mRNA	accumulation	causes	periodic	translation.	

Ribosome	profiling	was	performed	to	examine	the	translational	status	of	expressed	

mRNAs	and	compared	to	mRNA	expression	analysis	for	‘oscillating’	genes.	The	

timecouse	was	performed	at	two-hour	intervals,	but	the	data	was	resampled	at	a	

one	hour	grid	through	spline	interpolation	for	the	heatmap	to	permit	better	

comparison	with	the	other	datasets.	‘Translational	efficiency’	depicts	the	residual	

changes	observed	in	the	ribosome	profiling	data	after	subtracting	mRNA	expression	

data.	

See	also	Figure	S1	

	

Figure	6:	Oscillations	are	driven	by	periodic	transcription	

(A) Heat	maps	comparing	expression	changes	of	‘oscillating’	genes	at	pre-mRNA	

levels	(‘RiboZero	intronic’;	obtained	by	sequencing	of	rRNA-depleted	RNA	and	



	

counting	intronic	reads)	and	mature	mRNA	levels	('Poly(A)	exonic';	obtained	by	

sequencing	polyadenylated	mRNA	and	counting	exonic	reads;	Fig.	1E).	Genes	for	

which	sufficient	pre-mRNA	reads	were	detectable	are	shown.	The	same	RNA	

samples	were	utilized	for	both	sequencing	reactions.	

(B) Following	cosine	wave	fitting	of	the	data	shown	in	Fig.	6A,	amplitudes	derived	

for	mature	mRNA	and	pre-mRNA	were	plotted	against	one	another.	

(C) Genes	were	plotted	by	chromosomal	location	and	phase.	

See	also	Figure	S2.	
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Figure 3
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2.2 Supplemental materials and methods

In the print version: Reprinted from Molecular Cell, vol. 53, Hendriks GJ, Gaidatzis D, 

Aeschimann F, Großhans H, Extensive Oscillatory Gene Expression during C. elegans 

Larval Development, 380-392, Copyright 2014, with permission from Elsevier. 

http://dx.doi.org/10.1016/j.molcel.2013.12.013


In the electronic version of this thesis, a manuscript of the supplemental materials and 

methods from “Extensive Oscillatory Gene Expression during C. elegans Larval 

Development” replaces the supplemental materials and methods described above. For 

the printed version of the paper, please see the reference above. Please note that the 

page numbers in the rest of the online version of this thesis have been kept identical to 

the print version. 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Supplemental Figure S1. Related to Figure 5. Composite start codon and stop codon 
profiles for ribosome protected fragments (RPFs) and RNA-Seq reads. 
The positions of the 5’ ends of the reads are used for the counting. Only genes with an anno-
tated 3’UTR or 5’UTR of at least 50bp are used in the respective panels. To reduce the 
disproportionate impact of highly expressed transcripts, we normalized the coverage of each 
transcript by its expression (coverageNorm=coverage/(expression+8)*avgExpression). The 
pseudocount of 8 was used to reduce the impact of transcripts with very low expression 
levels. avgExpression denotes the average transcript expression and was used as a global 
constant to scale back the counts. (A),(C) 3 nucleotide periodicity and depletion of RPFs from 
(A) 5’UTRs and (C) 3’UTRs supports their origin from mRNAs undergoing translation. (B), (D) 
RNA-Seq reads from the same transcripts are shown for comparison.
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Supplemental Figure S2. Related to Figure 6. Pre-mRNA levels 
peak before mature mRNA levels. 
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mRNA-Seq Kim et al. 2013

Supplemental Figure S3. Related to Discussion. Oscillations and phase relationships are robust. 
Heat maps showing gene expression changes in the time course presented in Fig. 1 (left panel), and in Kim 
et al., 2013 (doi: 10.1038/ng.2763) (right panel) reveal that phase relationships among genes are main-
tained between the two experiments and across each time course.



	  
Supplemental	  Table	  S1:	  Gene	  expression	  classes.	  Related	  to	  
Figure	  1	  
See	  separate	  Excel	  file.	  
	  
	  
	  
Supplemental	  Table	  S2:	  GO-‐terms	  depleted	  among	  'oscillating'	  
genes.	  Related	  to	  Figure	  4	  

GO-‐term	   overlap	  
genes	  
in	  set	   p-‐value	  

fold	  
enrichment	  

embryo	  development	  ending	  in	  
birth	  or	  egg	  hatching	  (BP)	   177	   2628	   8.00E-‐17	   0.36	  
reproduction	  (BP)	   109	   1841	   2.30E-‐16	   0.31	  
receptor-‐mediated	  endocytosis	  
(BP)	   25	   651	   4.60E-‐12	   0.2	  
hermaphrodite	  genitalia	  
development	  (BP)	   30	   678	   1.30E-‐10	   0.23	  
translation	  (BP)	   0	   136	   8.20E-‐08	   0	  
structural	  constituent	  of	  ribosome	  
(MF)	   0	   123	   3.90E-‐07	   0	  
nucleic	  acid	  binding	  (MF)	   20	   429	   9.70E-‐07	   0.25	  
ribosome	  (CC)	   0	   114	   1.20E-‐06	   0	  
RNA	  interference	  (BP)	   1	   126	   4.70E-‐06	   0.04	  
intracellular	  (CC)	   16	   344	   1.10E-‐05	   0.25	  
cytokinesis	  (BP)	   3	   143	   4.20E-‐05	   0.11	  
helicase	  activity	  (MF)	   0	   81	   6.10E-‐05	   0	  
ATP	  binding	  (MF)	   45	   660	   6.30E-‐05	   0.36	  
meiosis	  (BP)	   2	   116	   0.00011	   0.09	  
negative	  regulation	  of	  vulval	  
development	  (BP)	   6	   177	   0.00014	   0.18	  
protein	  binding	  (MF)	   9	   214	   2.00E-‐04	   0.22	  
RNA	  binding	  (MF)	   5	   156	   0.00024	   0.17	  
germ	  cell	  development	  (BP)	   2	   107	   0.00029	   0.1	  
nematode	  larval	  development	  (BP)	   147	   1659	   0.00053	   0.47	  
growth	  (BP)	   118	   1368	   0.00058	   0.46	  
ATP-‐dependent	  helicase	  activity	  
(MF)	   0	   60	   0.00076	   0	  
protein	  kinase	  activity	  (MF)	   21	   335	   0.0012	   0.33	  
nucleotide	  binding	  (MF)	   17	   289	   0.0012	   0.31	  
protein	  phosphorylation	  (BP)	   22	   343	   0.0015	   0.34	  
P	  granule	  (CC)	   0	   53	   0.0017	   0	  
meiotic	  chromosome	  segregation	  
(BP)	   3	   105	   0.0017	   0.15	  
pronuclear	  migration	  (BP)	   0	   50	   0.0025	   0	  
apoptotic	  process	  (BP)	   27	   389	   0.0026	   0.37	  



nucleus	  (CC)	   66	   797	   0.0029	   0.44	  
GTP	  binding	  (MF)	   7	   149	   0.0041	   0.25	  
ubiquitin-‐dependent	  protein	  
catabolic	  process	  (BP)	   1	   61	   0.0059	   0.09	  
neuron	  projection	  (CC)	   0	   42	   0.0065	   0	  
intracellular	  protein	  transport	  (BP)	   1	   59	   0.0073	   0.09	  
protein	  dephosphorylation	  (BP)	   4	   102	   0.0077	   0.21	  
cell	  division	  (BP)	   5	   115	   0.0078	   0.23	  
inductive	  cell	  migration	  (BP)	   6	   126	   0.009	   0.25	  
cell	  death	  (BP)	   0	   39	   0.0094	   0	  
positive	  regulation	  of	  growth	  rate	  
(BP)	   124	   1329	   0.01	   0.49	  
DNA	  repair	  (BP)	   0	   38	   0.011	   0	  
protein	  tyrosine	  phosphatase	  
activity	  (MF)	   3	   84	   0.011	   0.19	  
cell	  fate	  specification	  (BP)	   0	   37	   0.012	   0	  
mitochondrion	  (CC)	   6	   122	   0.012	   0.26	  
unfolded	  protein	  binding	  (MF)	   0	   35	   0.015	   0	  
axon	  (CC)	   3	   80	   0.016	   0.2	  
transcription,	  DNA-‐dependent	  
(BP)	   0	   34	   0.017	   0	  
embryo	  development	  (BP)	   9	   153	   0.017	   0.31	  
neuronal	  cell	  body	  (CC)	   2	   65	   0.018	   0.16	  
transferase	  activity,	  transferring	  
phosphorus-‐containing	  groups	  
(MF)	   32	   399	   0.02	   0.42	  
mitotic	  spindle	  organization	  (BP)	   3	   72	   0.031	   0.22	  
secretion	  by	  cell	  (BP)	   3	   72	   0.031	   0.22	  
gonad	  development	  (BP)	   8	   127	   0.043	   0.33	  
cytosol	  (CC)	   1	   41	   0.046	   0.13	  
cell	  migration	  (BP)	   6	   102	   0.05	   0.31	  
striated	  muscle	  dense	  body	  (CC)	   5	   90	   0.051	   0.29	  
gamete	  generation	  (BP)	   4	   78	   0.052	   0.27	  
regulation	  of	  cell	  proliferation	  (BP)	   4	   78	   0.052	   0.27	  
signal	  transduction	  (BP)	   8	   122	   0.058	   0.35	  
response	  to	  DNA	  damage	  stimulus	  
(BP)	   4	   74	   0.069	   0.29	  
morphogenesis	  of	  an	  epithelium	  
(BP)	   30	   345	   0.071	   0.46	  
cytoplasm	  (CC)	   51	   551	   0.071	   0.49	  
regulation	  of	  meiosis	  (BP)	   4	   73	   0.074	   0.29	  
small	  GTPase	  mediated	  signal	  
transduction	  (BP)	   5	   84	   0.077	   0.31	  
GTPase	  activity	  (MF)	   6	   92	   0.094	   0.34	  
striated	  muscle	  myosin	  thick	  
filament	  assembly	  (BP)	   9	   124	   0.096	   0.38	  



axonal	  fasciculation	  (BP)	   4	   65	   0.13	   0.33	  
DNA	  binding	  (MF)	   35	   366	   0.17	   0.51	  
structural	  molecule	  activity	  (MF)	   10	   121	   0.18	   0.44	  
protein	  catabolic	  process	  (BP)	   10	   120	   0.19	   0.44	  
nucleoside-‐triphosphatase	  activity	  
(MF)	   9	   108	   0.21	   0.44	  
determination	  of	  adult	  lifespan	  
(BP)	   73	   710	   0.22	   0.54	  
G-‐protein	  coupled	  receptor	  
signaling	  pathway	  (BP)	   12	   135	   0.23	   0.47	  
plasma	  membrane	  (CC)	   13	   137	   0.31	   0.5	  
oogenesis	  (BP)	   16	   163	   0.33	   0.52	  
	  
	  
	  
	  
	  
Supplemental	  Table	  S3:	  Primer	  sequences.	  Related	  to	  Figure	  1.	  
	  

	  
Oscillating	  targets	  

Target	   Primer	  Left	   Primer	  Right	  
Wrt-‐2	   agccagctcaagtcgcttac	   aatgcttggtgctgttgttg	  
nspb-‐11	   atgttcgctaagtgcttcgccg	   atggatagtatgatgggtagtacgctgg	  
Phat-‐3	   tgctctcttctcggtcttga	   gggtgtacacgaacgctgtt	  
Abu-‐10	   ctattgtcgccctggcactttc	   gtcttgagctggagcttgttgg	  
Abu-‐6	   ttgggtggtggtagtagtggt	   actcaacaagttcaggttcaa	  

C35A5.11	   tggccagcgtgtaattctgta	   ttgtgatcttctgtgcccgg	  
ZK1307.2	   tcgaatgatccgcgtatccc	   cagcaggaaagatacggacca	  
abu-‐11	   gagcgcggaggaacacattc	   tcactcactctgacaagcttga	  
Lin-‐42	   tcttgttcacgtgaccttc	   ggctccgtctggcatagtaa	  
F01D4.8	   gcctccattttgattcatcgtct	   ccgttttctgttgctgacga	  
F35B12.3	   tttgagagtcgtcggtgctc	   tctggaatggactcttcagaaca	  
ZK470.6	   tcgttcgagccagctacttc	   aagaagtgcctgctcgttttc	  
B0454.5	   gccttgacgaaatcttcattcga	   gttgcccgtcacattcttcg	  
F55H12.4	   tcgagcatgcattctgaaggt	   gcatgttggcaaaggaacca	  
His-‐24	   aatgtcatccagatcaatgctcatctcc	   ttctctggcacacggaaacgtc	  
hlh-‐33	   gctgcgaagagtggatcaga	   gcagcggtggtttataatcact	  
Lin-‐29	   ccgacgagtacgaagaatgg	   gtgattgtgggttgaacacg	  
Pqn-‐47	   gaccagcgttactgtgtgga	   gtaccggtgattcgctttgt	  

	   	   	  
	  

Reference	  
Target	   Primer	  Left	   Primer	  Right	  
Act-‐1	   gttgcccagaggctatgttc	   caagagcggtgatttccttc	  

	   	  



Supplemental	  Experimental	  Procedures	  
	  
Preparation	  of	  dauers	  
	  
Dauer	  animals	  were	  obtained	  through	  a	  previously	  established	  
protocol	  (Sinha	  et	  al.,	  2012)	  that	  we	  used	  with	  minor	  modifications.	  
Briefly,	  30,000	  N2	  larvae	  were	  added	  to	  300	  ml	  of	  S-‐medium	  
supplemented	  with	  1x	  Antibiotic-‐Antimycotic	  (Life	  Technologies;	  
#15240-‐062)	  and	  grown	  at	  room-‐temperature.	  Five	  times	  0.5	  grams	  
of	  OP50	  bacterial	  pellet	  were	  added	  during	  the	  first	  6	  days	  of	  the	  
culture.	  Dauer	  larvae	  were	  typically	  harvested	  from	  cleared	  media	  
after	  10-‐12	  days.	  Visual	  inspection	  of	  the	  cultures	  showed	  that	  >90%	  
of	  all	  worms	  were	  dauers.	  The	  worms	  were	  washed	  and	  incubated,	  
while	  rolling,	  with	  1%	  SDS	  for	  15	  minutes,	  followed	  by	  two	  washes	  
with	  0.1	  M	  NaCl	  and	  floatation	  on	  35%	  Ficoll-‐400	  for	  15	  minutes	  at	  
100g.	  The	  yellow	  band	  that	  formed	  during	  the	  flotation	  was	  
transferred	  to	  a	  new	  15ml	  conical	  tube	  and	  washed	  three	  times	  with	  
0.1	  M	  NaCl.	  Finally,	  the	  worms	  were	  precipitated	  through	  15%	  Ficoll-‐
400	  to	  remove	  any	  remaining	  debris	  and	  carcasses	  and	  washed	  three	  
times	  with	  M9.	  The	  resulting	  culture	  was	  visually	  inspected	  and	  the	  
worms	  were	  left	  in	  M9	  overnight,	  before	  they	  were	  plated	  on	  2%	  
NGM	  plates	  (approximately	  1500	  worms	  per	  plate)	  with	  OP50	  and	  
left	  to	  develop	  for	  the	  desired	  amount	  of	  time.	  	  
	  
	  
Preparation	  of	  L1	  larvae	  and	  time	  courses	  
	  
Gravid	  adults	  (N2	  or	  glp-‐4(bn2))	  were	  bleached	  and	  the	  eggs	  
recovered	  left	  to	  hatch	  overnight	  at	  room-‐temperature	  in	  M9.	  The	  
hatched	  L1	  larvae	  were	  plated	  on	  2%	  NGM	  plates	  (approximately	  
1500	  worms	  per	  plate)	  with	  OP50	  and	  left	  to	  develop	  for	  the	  desired	  
amount	  of	  time	  at	  the	  appropriate	  temperature.	  Note	  that	  N2	  
samples	  at	  25°C	  were	  named	  21h	  through	  36h	  although	  the	  actual	  
harvesting	  occurred	  between	  22h	  and	  37h.	  This	  was	  done	  to	  account	  
for	  a	  slight	  developmental	  delay	  in	  this	  relative	  to	  other	  time	  courses	  
under	  the	  same	  conditions	  (data	  not	  shown).	  The	  time	  that	  is	  
mentioned	  in	  the	  sample	  name	  more	  closely	  resembles	  the	  actual	  
developmental	  time	  it	  takes	  to	  reach	  this	  point	  in	  development.	  For	  
glp-‐4,	  worms	  were	  harvested	  bi-‐hourly	  for	  RNA	  isolation	  between	  40	  
and	  52	  hours	  of	  development	  because	  a	  pilot	  experiment	  had	  
revealed	  a	  strong	  developmental	  delay	  of	  the	  mutant	  animals	  (data	  
not	  shown).	  



	  
	  
Harvesting	  of	  worms	  for	  RNA	  purification	  
	  
Worms	  were	  washed	  off	  the	  plates	  with	  M9	  and	  collected	  in	  15ml	  
conical	  tubes.	  The	  culture	  was	  washed	  three	  additional	  times	  with	  
M9	  to	  remove	  any	  remaining	  bacteria.	  Finally,	  the	  worms	  were	  
pelleted	  and	  resuspended	  in	  Tri	  Reagent	  (Molecular	  Research	  Center;	  
TR	  118)	  and	  frozen	  in	  liquid	  nitrogen.	  
	  
	  
RNA	  isolation	  and	  sequencing	  library	  preparation	  
	  
Samples	  were	  treated	  with	  6	  freeze-‐thaw	  cycles	  from	  liquid	  nitrogen	  
to	  a	  heatblock	  at	  42°C.	  Subsequently,	  debris	  was	  spun	  down	  and	  
supernatant	  was	  transferred	  to	  a	  fresh	  tube.	  RNA	  isolation	  was	  
performed	  using	  Tri	  Reagent	  and	  standard	  protocols.	  Total	  RNA	  was	  
DNAse	  treated	  and	  RNA	  quality	  was	  assessed	  with	  an	  Agilent	  
Bioanalyzer	  prior	  to	  library	  preparation.	  For	  mRNAseq	  we	  prepared	  
the	  libraries	  with	  a	  Truseq	  stranded	  mRNA	  sample	  preparation	  kit	  
(Illumina).	  For	  "RiboMinus"	  libraries,	  a	  Ribo-‐Zero	  Magnetic	  Kit	  
(Epicentre;	  MRZH11124)	  was	  used	  to	  remove	  ribosomal	  RNA	  from	  
total	  RNA	  samples	  and	  depletion	  validated	  through	  Agilent	  
Bioanalyzer	  analysis.	  Subsequent	  library	  preparation	  was	  performed	  
with	  a	  ScriptSeq	  v2	  RNA-‐Seq	  library	  preparation	  kit	  (Epicentre).	  The	  
quality	  of	  the	  resulting	  libraries	  was	  assessed	  with	  an	  Agilent	  
Bioanalyzer	  and	  concentrations	  were	  measured	  with	  a	  Qubit	  
fluorometer	  prior	  to	  pooling.	  
	  
	  
Ribosome	  profiling	  
	  
We	  adapted	  published	  protocols	  (Ingolia	  et	  al.,	  2012;	  Bazzini	  et	  al.,	  
2012)	  to	  perform	  ribosome	  profiling.	  Synchronized	  L1	  stage	  larvae	  
were	  placed	  on	  peptone	  rich	  plates	  seeded	  with	  NA22	  bacteria,	  
incubated	  at	  25°C	  and	  samples	  collected	  every	  two	  hours	  between	  18	  
–	  36	  hours	  thereafter.	  Depending	  on	  the	  time	  point,	  between	  100’000	  
(late	  time	  points)	  and	  200’000	  (early	  time	  points)	  worms	  were	  
harvested.	  After	  collection,	  the	  worm	  pellet	  was	  washed	  three	  times	  
with	  M9	  buffer	  to	  remove	  bacteria,	  then	  washed	  once	  with	  buffer	  A	  
(20	  mM	  Tris-‐HCl	  (pH	  8.5),	  140	  mM	  KCl,	  1.5	  mM	  MgCl2,	  0.5	  %	  Nonidet	  
P40,	  1	  mM	  DTT,	  0.1	  mM	  Cycloheximide),	  snap-‐frozen	  in	  liquid	  



nitrogen	  and	  stored	  at	  -‐80	  °C.	  	  Worm	  pellets	  were	  resuspended	  in	  
400	  µl	  (time	  points	  18	  h,	  20	  h	  and	  22	  h)	  or	  500	  µl	  (all	  other	  time	  
points)	  of	  cold	  lysis	  buffer	  (buffer	  A	  with	  2	  %	  PTE	  (polyoxyethylene-‐
10-‐tridecylether)	  and	  1	  %	  DOC	  (sodiumdeoxycholate	  monohydrate))	  
and	  then	  crushed	  with	  mortar	  and	  pestle	  pre-‐cooled	  with	  liquid	  
nitrogen.	  The	  thawed	  lysates	  were	  clarified	  by	  centrifugation	  (10	  
minutes,	  10’000	  g,	  4	  °C)	  and	  their	  absorbance	  at	  260	  nm	  measured.	  
In	  a	  total	  volume	  of	  385	  µl,	  110	  absorbance	  units	  of	  lysate	  were	  
mixed	  with	  lysis	  buffer	  and	  2	  µl	  of	  RNase	  I	  (100	  Units/µl,	  Ambion)	  
and	  incubated	  for	  1	  hour	  at	  23	  °C,	  300	  rpm.	  From	  the	  remainder	  of	  
the	  lysates,	  total	  RNA	  was	  isolated	  with	  Tri	  Reagent	  (Molecular	  
Research	  Center;	  TR	  118)	  and	  an	  rRNA-‐depleted	  library	  for	  RNA	  
sequencing	  prepared	  as	  described	  above.	  	  
	  
To	  isolate	  monosomes,	  350	  µl	  of	  the	  digested	  lysates	  were	  loaded	  on	  
linear	  sucrose	  gradients	  and	  centrifuged	  for	  3	  hours	  at	  39’000	  rpm,	  4	  
°C,	  using	  a	  SW-‐40	  rotor	  and	  an	  Optima™L-‐80	  XP	  Ultracentrifuge	  
(Beckman	  Coulter).	  Gradients	  were	  mixed	  with	  a	  Gradient	  Master	  
(Biocomp)	  from	  5%	  (w/v)	  and	  45%	  (w/v)	  sucrose	  solutions	  
containing	  20	  mM	  Tris	  pH	  8.5,	  140	  mM	  KCl,	  1.5	  mM	  MgCl2,	  1	  mM	  
DTT	  and	  0.1	  mM	  cycloheximide.	  After	  centrifugation,	  the	  gradients	  
were	  fractionated	  using	  a	  Tris	  Pump	  (Teledyn	  ISCO),	  a	  Gradient	  
Fractionator	  (BR-‐184-‐X,	  Brandel)	  and	  a	  fraction	  collector	  (FC-‐203B,	  
Gilson).	  Absorbance	  profiles	  at	  254	  nm	  were	  recorded	  with	  an	  Econo	  
UV	  monitor	  EM-‐1	  (Biorad)	  coupled	  to	  a	  LabJack	  U6	  data	  acquisition	  
device	  using	  the	  DAQFactory-‐Express	  software.	  Gradients	  were	  
fractionated	  in	  24	  fractions	  of	  equal	  volume	  and	  the	  RNA	  from	  
fractions	  corresponding	  to	  the	  monosomal	  peak	  (i.e.	  fractions	  13	  and	  
14	  or	  fractions	  14	  and	  15)	  isolated	  with	  Tri	  Reagent	  (Molecular	  
Research	  Center;	  TR	  118).	  
	  
The	  RNA	  from	  the	  monosomal	  fraction	  was	  separated	  using	  a	  15%	  
TBE-‐Urea	  Gel	  (Invitrogen)	  and	  the	  region	  around	  28-‐30	  nucleotides	  
excised	  to	  isolate	  Ribosome	  protected	  fragments	  (RPFs).	  The	  gel	  
piece	  was	  forced	  through	  a	  pierced	  small	  tube	  inside	  an	  eppendorf	  
tube	  by	  centrifugation	  and	  RNA	  from	  the	  gel	  debris	  was	  eluted	  by	  
overnight	  incubation	  in	  600	  µl	  cracking	  buffer	  (20	  mM	  Tris-‐HCl	  (pH	  
7.9),	  1	  mM	  EDTA,	  400	  mM	  NH4Acetate,	  0.5	  %	  SDS).	  RNA	  was	  
precipitated	  with	  isopropanol	  at	  -‐80	  °C	  for	  at	  least	  4	  hours	  
(isopropanol	  precipitation).	  RPFs	  were	  3’	  dephosphorylated	  with	  10	  
Units	  of	  T4	  polynucleotide	  kinase	  (NEB)	  in	  T4	  PNK	  buffer	  with	  40	  
Units	  of	  RNasin	  for	  1	  hour	  at	  37	  °C.	  Following	  isopropanol	  



precipitation,	  the	  RNA	  samples	  were	  ligated	  to	  3’	  adapters	  according	  
to	  the	  Illumina®	  TruSeq™	  Small	  RNA	  Sample	  Preparation	  protocol	  
and	  using	  the	  reagents	  of	  the	  kit,	  then	  again	  precipitated	  with	  
isopropanol.	  Ligation	  products	  were	  5’	  phosphorylated	  for	  30	  
minutes	  at	  37	  °C	  with	  15	  Units	  of	  T4	  polynucleotide	  kinase	  (NEB)	  in	  
T4	  PNK	  buffer,	  1	  mM	  ATP	  and	  40	  Units	  of	  RNasin.	  Following	  heat-‐
inactivation	  of	  the	  enzyme	  for	  10	  minutes	  at	  70	  °C,	  the	  RNA	  was	  
precipitated	  by	  isopropanol.	  Ligation	  to	  5’	  adapters,	  reverse	  
transcription,	  PCR	  amplification	  with	  barcoded	  primers	  and	  gel-‐
purification	  of	  the	  PCR	  products	  were	  performed	  using	  the	  Illumina	  
TruSeq	  Small	  RNA	  Sample	  Prep	  kit.	  Four	  different	  barcodes	  (RPIX	  2,	  
4,	  5,	  6)	  were	  used.	  
	  
	  
Processing	  of	  the	  RNA-‐seq	  data	  
	  
All	  the	  RNA-‐seq	  data	  (50bp	  read	  length)	  were	  mapped	  to	  the	  C.	  
elegans	  genome	  (ce6)	  using	  the	  spliced	  alignment	  algorithm	  
SpliceMap	  included	  with	  the	  R	  package	  QuasR	  
(www.bioconductor.org/packages/2.12/bioc/html/QuasR.html)	  	  (Au	  
et	  al.,	  2010).	  The	  command	  used	  to	  perform	  the	  alignments	  was	  "proj	  
<-‐	  
qAlign("samples.txt","BSgenome.Celegans.UCSC.ce6",splicedAlignme
nt=TRUE)".	  Gene	  expression	  was	  quantified	  by	  counting	  the	  number	  
of	  reads	  that	  started	  within	  any	  of	  the	  exons	  belonging	  to	  a	  particular	  
gene	  (WormBase,	  WS190).	  The	  command	  used	  to	  create	  the	  count	  
table	  was	  qCount(proj,exons,orientation="same")	  in	  the	  case	  of	  
ribosome	  depleted	  samples	  and	  
qCount(proj,exons,orientation="opposite",selectReadPosition="end")	  
in	  the	  case	  of	  the	  polyA	  selected	  samples.	  The	  library	  preparation	  
protocol	  for	  polyA	  selected	  RNAs	  creates	  reads	  that	  correspond	  to	  
the	  reverse	  complement	  of	  the	  original	  RNA	  and	  therefore	  we	  had	  to	  
count	  the	  reads	  on	  the	  opposite	  strand	  of	  the	  actual	  gene.	  To	  
compensate	  for	  differences	  in	  the	  read	  depths	  of	  the	  various	  libraries,	  
we	  divided	  each	  sample	  by	  the	  total	  number	  of	  reads	  and	  multiplied	  
by	  the	  average	  library	  size.	  To	  minimize	  the	  large	  differences	  in	  
expression	  caused	  by	  genes	  with	  small	  number	  of	  counts,	  log2	  
expression	  levels	  were	  calculated	  after	  adding	  a	  pseudocount	  of	  8	  
(y=log2(x+8).	  Note	  that	  we	  did	  not	  normalize	  by	  transcript	  length	  as	  
we	  mostly	  performed	  differential	  analyisis	  during	  the	  various	  
timecourse	  datasets.	  Moreover,	  by	  normalizing	  to	  the	  average	  library	  
size	  instead	  of	  the	  arbitrary	  number	  of	  1	  million,	  we	  avoided	  



distortions	  when	  adding	  the	  pseudocount.	  Intronic	  expression	  for	  
each	  gene	  was	  quantified	  by	  subtracting	  the	  reads	  that	  fall	  within	  
exons	  from	  the	  reads	  that	  cover	  the	  whole	  gene	  body.	  Exon	  
coordinates	  were	  extended	  by	  10bp	  on	  both	  sides	  to	  ensure	  that	  
exonic	  reads	  close	  to	  the	  junctions	  are	  not	  counted	  as	  intronic	  reads.	  	  
	  
	  
Processing	  of	  the	  ribosome	  footprinting	  data	  
	  
The	  3'	  adaptor	  (TGGAATTCTCGGGTGCCAAGG)	  was	  removed	  from	  
the	  reads	  using	  the	  function	  preprocessReads	  from	  within	  the	  R	  
package	  QuasR	  (default	  parameters).	  Mapping	  of	  the	  short	  fragments	  
(about	  30bp	  length)	  to	  the	  C.	  elegans	  genome	  (ce6)	  was	  performed	  
using	  bowtie	  (Langmead	  et	  al.,	  2009)	  allowing	  only	  for	  uniquely	  
mapping	  reads.	  The	  command	  used	  to	  perform	  the	  alignments	  was	  
"proj	  <-‐	  qAlign("samples.txt","BSgenome.Celegans.UCSC.ce6").	  Gene	  
expression	  quantification	  was	  performed	  analogous	  to	  the	  case	  of	  the	  
RNA-‐seq	  data.	  
	  
	  
Principal	  Component	  Analysis	  
	  
After	  mean-‐normalization	  of	  the	  log2	  gene	  expression	  levels,	  we	  
performed	  PCA	  using	  the	  function	  princomp	  in	  R	  (default	  
parameters).	  The	  loadings	  corresponding	  to	  the	  second	  and	  third	  
principal	  component	  (PC)	  appeared	  to	  be	  sinusoidal	  waves	  of	  the	  
same	  period	  of	  roughly	  eight	  hours.	  We	  noticed	  that	  the	  phase	  
difference	  of	  the	  two	  PCs	  appeared	  shifted	  by	  approximately	  two	  
hours,	  i.e.	  a	  quarter	  of	  the	  period.	  Hence,	  combinations	  of	  PC2	  and	  
PC3	  can	  represent	  sinusoidal	  waves	  with	  any	  phase	  angle,	  because	  
the	  phase	  difference	  of	  PC2	  and	  PC3	  is	  the	  same	  as	  the	  phase	  
difference	  between	  cos(x)	  and	  sin(x).	  To	  be	  precise,	  since	  C*cos(ωt	  +	  
φ)	  =	  A*cos(ωt)	  -‐	  B*sin(ωt)	  with	  A	  =	  C*cos(φ)	  and	  B	  =	  C*sin(φ),	  it	  
follows	  that	  a	  weighted	  combination	  of	  PC2	  and	  PC3	  can	  represent	  
expression	  patterns	  with	  arbitrary	  phases.	  PCA	  revealed	  this	  
relationship	  without	  any	  prior	  trigonometric	  knowledge.	  
	  
	  
Cosine	  curve	  fitting	  
	  
For	  each	  gene	  we	  fitted	  a	  separate	  cosine	  curve	  y=C*cos(ωt	  +	  φ)	  with	  
a	  known	  period	  of	  8	  hours	  (ω	  =	  2*𝑝/8)	  and	  unknown	  variables	  C	  and	  



φ.	  Since	  a	  cosine	  curve	  with	  an	  arbitrary	  amplitude	  C	  and	  angle	  φ	  can	  
be	  represented	  as	  a	  weighted	  sum	  of	  a	  cosine	  and	  a	  sine	  function	  
with	  no	  phase	  (C*cos(ωt	  +	  φ)	  =	  A*cos(ωt)	  -‐	  B*sin(ωt)	  with	  A	  =	  
C*cos(φ)	  and	  B	  =	  C*sin(φ))	  we	  performed	  the	  fit	  using	  a	  linear	  
regression	  including	  the	  two	  components	  cos(ωt)	  and	  -‐sin(ωt)	  as	  
regressors.	  Principal	  Component	  Analysis	  (see	  previous	  section)	  
indicated	  that	  a	  large	  proportion	  of	  the	  variance	  in	  the	  data	  is	  
explained	  by	  the	  non-‐periodic	  first	  principal	  component.	  We	  
therefore	  also	  included	  it	  as	  a	  separate	  regressor	  during	  the	  fit.	  Given	  
16	  datapoints,	  for	  each	  regression	  we	  obtained	  three	  coefficients.	  A	  
and	  B,	  which	  represent	  the	  amplitude	  and	  the	  phase	  of	  the	  oscillatory	  
component,	  as	  well	  as	  the	  contribution	  from	  the	  first	  principal	  
component	  PC1.	  Based	  on	  the	  scatterplot	  comparing	  PC1	  to	  the	  
oscillation	  amplitude=√(A2	  +	  B2)	  we	  classified	  the	  genes	  into	  three	  
categories,	  'oscillating',	  'increasing'	  and	  'flat'.	  The	  necessary	  cutoffs	  
were	  largely	  dictated	  by	  the	  structure	  of	  the	  plot.	  The	  precise	  
locations	  of	  the	  cutoffs	  were	  optimized	  manually	  in	  order	  to	  reduce	  
false	  positives	  after	  inspecting	  the	  resulting	  expression	  heatmaps	  for	  
the	  three	  classes.	  The	  following	  three	  lines	  of	  R	  code	  were	  used	  to	  
perform	  the	  classification:	  increasing	  <-‐	  2*amplitude-‐PC1	  <	  -‐1.7;	  
oscillating	  <-‐	  !increasing	  &	  (amplitude	  >	  0.55);	  flat	  <-‐	  !increasing	  &	  
!oscillating;	  Note	  that	  the	  amplitude	  of	  a	  sinusoidal	  wave	  
corresponds	  to	  only	  half	  the	  fold	  change	  between	  trough	  and	  peak.	  
	  
	  
GO	  enrichment	  analysis	  
	  
GO	  annotations	  for	  C.	  elegans	  were	  downloaded	  from	  
http://www.geneontology.org/gene-‐
associations/gene_association.wb.gz	  (06-‐Jun-‐2013)	  and	  combined	  
with	  the	  expression	  data	  using	  the	  WormBase	  gene	  identifier.	  
Overrepresented	  GO	  terms	  in	  the	  set	  of	  oscillating	  genes	  were	  
determined	  by	  calculating	  the	  fold	  enrichment	  of	  the	  number	  of	  
overlapping	  genes	  compared	  to	  what	  to	  expect	  by	  change	  given	  the	  
number	  of	  genes	  in	  a	  particular	  GO	  term	  and	  the	  number	  of	  
oscillating	  genes	  with	  only	  expressed	  genes	  considered.	  To	  minimize	  
the	  large	  enrichments	  that	  would	  otherwise	  be	  caused	  by	  GO	  terms	  
with	  small	  number	  of	  genes,	  we	  added	  a	  pseudocount	  of	  12	  before	  
calculating	  the	  actual	  ratio.	  For	  example	  in	  the	  case	  of	  the	  GO	  terms	  
"structural	  constituent	  of	  cuticle",	  there	  were	  91	  genes	  in	  the	  overlap	  
while	  one	  would	  only	  expect	  126*2718/14378=23.8	  by	  chance.	  Thus	  
the	  pseudocount-‐corrected	  enrichment	  was	  



(91+12)/(23.8+12)=2.87.	  This	  quantity	  was	  calculated	  for	  all	  the	  GO	  
terms	  and	  used	  to	  select	  the	  most	  enriched	  ones	  based	  on	  a	  cutoff	  of	  
1.5	  fold.	  This	  approach	  can	  be	  seen	  as	  a	  compromise	  between	  pure	  
enrichment	  calculations,	  which	  can	  create	  artificially	  high	  
enrichments	  for	  terms	  with	  very	  few	  members,	  and	  hypergeometric	  
tests,	  which	  can	  create	  very	  low	  p-‐values	  for	  terms	  with	  a	  large	  
number	  of	  members	  even	  when	  the	  actual	  enrichments	  are	  very	  low.	  
	   To	  display	  the	  normalized	  phase	  distributions	  for	  all	  the	  
oscillating	  genes	  that	  belong	  to	  enriched	  GO	  terms	  in	  a	  heatmap,	  we	  
binned	  the	  phases	  between	  0	  and	  360	  degrees	  into	  8	  equally	  sized	  
intervals.	  For	  each	  pathway,	  we	  counted	  the	  number	  of	  genes	  that	  fell	  
into	  each	  of	  the	  8	  phase	  bins.	  This	  resulted	  in	  a	  table	  with	  rows	  
corresponding	  to	  pathways	  and	  columns	  corresponding	  to	  the	  phase	  
bins.	  Then	  we	  performed	  two	  steps	  of	  normalization.	  In	  the	  first	  we	  
corrected	  for	  the	  fact	  that	  not	  all	  phases	  (over	  all	  the	  pathways)	  
contain	  the	  same	  number	  of	  genes.	  We	  thus	  divided	  each	  column	  by	  
the	  total	  number	  of	  genes	  in	  that	  column	  and	  multiplied	  by	  the	  
average	  number	  of	  genes	  per	  column.	  In	  the	  second	  normalization	  
step,	  we	  converted	  the	  counts	  in	  the	  table	  into	  densities	  to	  account	  
for	  the	  fact	  that	  not	  all	  pathways	  have	  the	  same	  number	  of	  genes.	  
Therefore	  we	  divided	  each	  row	  in	  the	  table	  by	  the	  total	  number	  of	  
genes	  in	  that	  row	  and	  multiplied	  by	  the	  average	  number	  of	  genes	  per	  
row.	  
	  
	  
Tissue	  enrichment	  analysis	  
	  
To	  determine	  whether	  periodic	  gene	  expression	  occurred	  
preferentially	  in	  the	  soma	  or	  the	  germline,	  we	  examined	  mRNA	  
sequencing	  data	  obtained	  for	  gonads	  dissected	  out	  of	  wild-‐type	  
young	  adult	  animals	  and	  for	  germline-‐less	  glp-‐4(bn2)	  mutant	  young	  
adult	  animals,	  kindly	  provided	  by	  Dr.	  Rafal	  Ciosk	  (C.	  Scheckel,	  D.G.,	  
and	  R.	  Ciosk,	  unpublished	  data).	  To	  gain	  more	  detailed	  insight	  into	  
the	  spatial	  expression	  of	  the	  oscillating	  genes,	  we	  downloaded	  data	  
from	  the	  C.	  elegans	  promoter::GFP	  fusions	  database	  
http://gfpweb.aecom.yu.edu	  (04-‐Mar-‐2013).	  For	  each	  strain,	  a	  list	  of	  
cell	  types	  is	  provided	  in	  which	  the	  construct	  is	  expressed.	  We	  
converted	  that	  data	  into	  a	  rectangular	  matrix	  where	  rows	  correspond	  
to	  strains,	  columns	  correspond	  to	  cell	  types	  and	  expression	  is	  
denoted	  by	  either	  0	  or	  1	  within	  the	  matrix.	  The	  number	  of	  expressed	  
genes	  in	  each	  cell	  type	  varied	  strongly.	  We	  thus	  only	  considered	  cell	  
types	  with	  at	  least	  100	  expressed	  genes	  for	  further	  analysis.	  The	  



strain	  identifiers	  were	  mapped	  to	  Wormbase	  gene	  identifiers	  using	  
mappings	  from	  WormMart.	  
	  
	  
RT-‐qPCR-‐based	  validation	  of	  oscillations	  
	  
Candidate	  targets	  for	  RT-‐qPCR	  validation	  of	  RNAseq	  data	  were	  
chosen	  based	  on	  a	  wide	  distribution	  of	  their	  respective	  phases.	  
Primers	  were	  designed	  to	  be	  exon-‐junction	  spanning	  if	  possible.	  
cDNA	  synthesis	  was	  performed	  using	  the	  ImpromII	  Reverse	  
Transcription	  System	  (Promega;	  A3800)	  according	  to	  the	  
manufacturers	  protocol	  using	  random	  primers	  and	  1	  µg	  of	  total	  RNA	  
per	  sample.	  qPCR	  was	  performed	  on	  a	  StepOnePlus	  realtime	  PCR	  
system	  (Applied	  Biosystems)	  using	  SYBR	  Green	  Mastermix	  (Applied	  
Biosystems;	  4309155)	  and	  the	  primers	  listed	  in	  Supplementary	  
Table	  3.	  Ct	  values	  were	  corrected	  for	  act-‐1	  expression	  and	  
normalized	  to	  the	  mean	  expression	  for	  every	  candidate.	  PCA	  on	  qPCR	  
data	  was	  performed	  as	  described	  above.	  
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3. Results

3.1 Oscillations occur specifically during larval development

To further characterize and investigate the robustness of oscillatory expression that 

occurs during development we examined gene expression during all stages of 

development. We collected a continuous time course from 5 hours until 48 hours after 

arrested L1s were placed on a medium containing food. We will refer to the time of 

feeding as developmental time (dt) 0 hours. The overall correlation, similarly to the shorter 

developmental time course (figure 2.1A), shows a pattern of oscillating correlation (data 

not shown). The expression patterns of oscillating genes, rising genes and flat genes are 

all recapitulated in the long time course (figure 3.1A-C). Oscillating genes peak once per 

larval stage from the L1 to L4 stages and do not show oscillatory expression once they 

reach adulthood. The maintenance of the oscillating pattern furthermore shows that 

phases are locked through larval stages.


3.2 A handful of genes shows non-typical oscillations

Oscillatory expression, visualized in the heat maps in figure 3.1A, seems highly 

homogeneous. To investigate whether there are genes that do not follow the typical 

pattern of expression that we see in expression heat maps, we examined expression 

profiles of all oscillating genes. We found that approximately 1.5% of genes oscillate in a 

non-typical fashion. Some examples of non-typical oscillating genes are shown in figure 

3.1D, panels III-VI. Since our data is from a single biological replicate, the classification is 

rather arbitrary and likely includes many typical oscillators. Despite the low number, these 

non-typical oscillators may shed a light on the mechanisms that drive oscillatory gene 

expression. They include genes that peak only three times during development and some 

genes that peak five times. Interestingly, the five genes that peak five times during 
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Fig 3.1 GENE EXPRESSION DURING C. ELEGANS LARVAL DEVELOPMENT 

Full developmental expression profiles during worm development of the three classes of genes that we previously 
classified (see subchapter 2.2). A) The expression profiles of oscillating genes show that transcripts peak once per 
larval stage. Additionally, no oscillations are visible after the worms reach the adult stage (arrow-head). B) Gene 
expression genes previously classified as ‘rising’. Expression profiles reveal that these genes are strongly 
downregulated during adulthood. C) The expression patterns of the set of genes that we previously classified as 
‘flat’. Note the different scale of the plot. Also, note that the 40 hour timepoint is an outlier and RNAseq will be 
repeated for this sample. D) Individual expression profiles of typical (panels I-II) and non-typical (Panels III-VI) 
oscillating genes. 



development are all histone genes. There is no evidence to suggest that the genes that 

peak three times during development are related. Taken together, the presence of non-

typical oscillators suggests that although the system is highly robust, specific regulation 

of a subset of genes can overcome the typical oscillatory expression pattern.


3.3 Oscillations arrest during L2 developmental arrest in daf-2 mutants

Since adult animals do not show oscillatory gene expression, we were interested to 

further investigate the link between development and rhythmic gene expression. We 

investigated gene expression in worms carrying a mutation in the nematode orthologue of 

insulin receptor daf-2(e1370) (Ruaud and Bessereau, 2006). These animals show a 

penetrant, and synchronous, delay during L2 development when grown at 20°C. We 

collected worms between DT 10 hours and 56 hours and performed mRNA sequencing. 

As can be seen in figure 3.2A, expression profiling shows that oscillatory expression 

temporarily arrests and re-starts shortly before the L2-L3 molt. As with continuous 

development, a detailed examination of expression profiles of oscillating genes revealed a 

small group, approximately 0.5% of all oscillating genes, that showed minor abnormalities 

in their oscillating expression profiles. The most striking examples are shown in figure 

3.1D, panels V-VI. However, since only one of these genes reliably maintains oscillating 

expression during developmental arrest, we conclude that oscillatory expression of 

thousands of genes during C. elegans larval development is tightly linked to larval 

development.


3.4 Developmental oscillatory gene expression is conserved in C. 

briggsae and H. contortus

The link between oscillatory gene expression and animal development that we identified 

previously prompted us to investigate the conservation of the system in the nematodes 
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Fig 3.2 GENE EXPRESSION DURING DEVELOPMENT OF daf-2 (e1370) MUTANT WORMS 

Gene expression patterns of daf-2(e1370) worms grown at 20°C, from late L1 until L4 larval stages. A) Gene 
expression profiles show that oscillations slow down and freeze during the arrested L2 stage and reset upon 
reinitiation of development. B) Rising gene expression profiles are not affected in the mutant. C) Gene expression 
profiles of genes classified as ‘flat’. D) Expression patterns of four typical oscillating genes (panels I-IV) and the 
two most striking atypical genes (panels V-VI). 



Caenorhabditis briggsae and Haemonchus contortus. As previously described, C. 

briggsae represents the species closest in terms of evolutionary distance to C. elegans, 

while the parasitic H. contortus is more evolutionarily distinct. To investigate conservation 

in this obligate parasite we collaborated with Lucien Rufener, André Wenger, and Jacques 

Bouvier from Elanco Animal Health (previously Novartis Animal Health).


Time course samples were collected to span more than a single stage. Since C. briggsae 

develops slightly faster than C. elegans we collected a time course starting at 18 hours 

DT until 33 hours. For H. contortus, where stage lengths escalate, we collected samples 

to cover all free-living stages of the parasite’s lifecycle. The samples were collected every 

12 hours between 0 hours DT and 96 hours with added time points at 30 hours DT and 

146 hours DT. Both sets of samples were subjected to poly-A selected mRNA 

sequencing. 


We performed principal component analysis (PCA) to investigate overall trends in the C. 

briggsae and H. contortus datasets. The PCA of the C. briggsae dataset shows that, as 

with C. elegans (figure 3.3A), one rising, and two oscillating principal components can be 

detected (figure 3.3B). The PCA of the H. contortus data shows what looks like a single 

oscillation that is represented by principal components 1 and 3 (figure 3.3C). As in C. 

elegans and C. briggsae data, a single principal component also shows a rising pattern. 


To investigate the possible oscillations of gene expression in more detail, we performed 

independent sine fitting for both the C. briggsae and H. contortus data with period-

lengths of 7 hours and 60 hours respectively. These estimates were based on the 

principal component analyses. The method and categorization requirements that we have 

described previously (see subchapter 2.2) translated well to these new datasets (data not 

shown). The phases of genes that were classified as “oscillating” based on this fitting of 

the C. briggsae data show a relatively uniform distribution as was also seen for C. elegans 
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(figures 3.3D and 3.3E). The H. contortus data on the other hand suggests that most 

oscillating transcripts oscillate in the same phase (figure 3.3F). These findings are 

corroborated by the individual expression profiles of the genes that were classified as 

oscillating in either C. briggsae or H. contortus (figures 3.3G, 3.3H, 3.3I). 


Since in C. briggsae genes oscillate in different phases we plotted the phases of genes 

that oscillate in C. elegans and compared them to the predicted phases of all 1-to-1 

orthologues of these genes in C. briggsae (figure 3.3J). This illustrates the remarkable 

extent of phase-conservation between C. elegans and C. briggsae. Finally, we compared 

the percentage of oscillating genes among all genes to the percentage present among 

orthologues of genes that oscillate in C. elegans. For both C. briggsae and H. contortus 

we see a strong enrichment of oscillating genes among orthologues of C. elegans 

oscillating genes, suggesting that the system is conserved in both C. briggsae and H. 

contortus (figures 3.3K and 3.3L). A little less than 40% of the orthologues of genes that 

oscillate in C. elegans are not categorized as oscillating in C. briggsae (figure 3.3K). 

However, the predicted amplitudes of genes that are not categorized as oscillating still 
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Fig 3.3 CONSERVATION OF OSCILLATORY GENE EXPRESSION IN NEMATODES 

A) Principal component analysis (PCA) reveals a single rising and two oscillating principal components that are 
visible in the RNAseq data from C. elegans. The period of the oscillations that are visualized by principal 
components two and three is approximately eight hours. B) PCA performed on data collected from a C. briggsae 
time course also reveals one rising principal component and two oscillating components. The period of the 
oscillations of principal components two and three is approximately seven hours. C) PCA on data from a H. 
contortus developmental time course reveals a single rising principal component, and two principal components 
that have an oscillating appearance. The period of oscillatory gene expression that we estimated from these 
principal components is 60 hours. D) The phases of C. elegans oscillating genes are universally distributed. E) 
Like in C. elegans, the phases of C. briggsae genes that we classify as oscillating are relatively uniformly 
distributed. There does seem to be a depletion of genes with phases between 0° and 90°. F) Unlike C. elegans 
and C. briggsae, oscillating genes in H. contortus do not show a uniform distribution of phases. G) Expression 
profiles of oscillating genes in C. elegans. H) Expression profiles of genes that oscillate in C. briggsae confirm 
the uniform distribution of phases. I) The expression profiles of H. contortus genes confirm the discrete phase of 
oscillating genes. J) Phase-correlation between oscillating genes in C. elegans and all their 1-1 orthologues in C. 
briggsae. This also includes the genes that we did not classify as oscillating in C. briggsae. The phases correlate 
well and the circular correlation score is 0.6351. K) Among all C. briggsae genes that have a 1-1 orthologue in C. 
elegans, approximately 13% oscillate. Of the C. briggsae genes that have an oscillating 1-1 orthologue in C. 
elegans, approximately approximately 63% oscillate. This enrichment is highly significant (p < 2.2e-16, binomial 
test). L) Among all H. contortus genes that have a 1-1 orthologue in C. elegans, approximately 11% oscillate. Of 
the H. contortus genes that have an oscillating 1-1 orthologue in C. elegans, approximately 48% oscillate. This 
enrichment is highly significant (p < 2.2e-16, binomial test). 



correlate well with the phases in C. elegans (figure 3.3J). This argues that we 

underestimate the percentage of oscillating genes in C. briggsae, and the enrichment of 

oscillating genes is even greater.


In conclusion, we see extensive conservation of oscillatory gene expression in both C. 

briggsae and H. contortus. The phases of oscillations in C. elegans are very well 

conserved in C. briggsae. In H. contortus we see changes in period and a singular phase 

of oscillatory gene expression and importantly, we only detect a single wave of 

expression rather than a sustained oscillation. Nevertheless, we show highly significant 

enrichment of orthologues of genes that oscillate in C. elegans among the genes showing 

oscillating expression patterns in H. contortus. The strong conservation of the system 

argues that it is important in nematode physiology. 

3.5 Oscillatory gene expression is not limited to coding genes

As we have reported, oscillatory expression of coding genes is widespread during C. 

elegans larval development. To examine whether non-coding genes would also show 

oscillating gene expression profiles, we examined small RNA expression profiles during 

development. The small RNA data additionally allowed us to investigate the hypothesis 

that was put forth by Kim et al (2013). that suggests that oscillations of miRNAs would 

functionally dampen oscillations of mRNAs (discussed below). Our results show that 

oscillatory expression also affects miRNA expression level. The miRNAs that are plotted 

in figure 3.4A are both the guide (green sidebar) and passenger strands (red sidebar) of 

any miRNAs that show oscillatory expression of either strand. Interestingly, many of the 

oscillating miRNA guide and passenger strands belong to the miR-35 family of miRNAs 

that includes 7 miRNAs. All of the members of this family show oscillatory expression of 

both the guide and passenger strands, with varying amplitudes and robustness. The 

characteristic of the oscillations of the miRNA guide and passgenger strands vary widely 
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(figure 3.4B). Since miRNA guide and passenger strands are synthesized together, the 

difference between the two strands is likely mostly due to the difference in stability. The 

wide range of miRNA oscillation charactersitics shown in figure 3.4B illustrates the effect 

of miRNA degradation on the temporally resolved expression levels of miRNAs. Taken 

together, this data clearly shows that oscillating expression is not limited to coding genes 

and also affects miRNA expression.
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Fig 3.4 OSCILLATIONS OF MIRNAS DURING DEVELOPMENT 

A) Oscillatory expression affects expression levels of miRNA guide (green sidebar) and passenger (red sidebar). 
miRNA guide and passenger strands were identified based on mean expression level in the time course. B) 
Expression profiles of miRNAs that show differential stability (panels I-II). The two miRNA and miRNA*s that are 
shown here, lin-4 and let-7 respectively, show differential stability between miRNA strands. Two other miRNAs, 
miR-788 and miR-235, show regulated differential stability between guide and passenger strands (panels III-IV). 



4. Discussion

4.1 Thousands of genes oscillate during C. elegans development

Developmental expression profiles have been widely used to investigate development in 

model organisms. Previous transcriptome-wide expression profiling studies on both 

miRNA and mRNA level have been performed at a resolution of approximately 1-2 

timepoints per larval stage (Kato et al., 2009; Spencer et al., 2011). We have shown that 

gene expression is highly dynamic even within a single larval stage. Approximately 19% 

of the transcriptome shows oscillatory gene expression levels and changes more than 

2.1-fold. Oscillations occur only during larval development, and expression peaks once 

per larval stage. Our results support and are supported by independent studies that have 

reported evidence of oscillating gene expression in C. elegans larval development 

(Francesconi and Lehner, 2014; Grün et al., 2014; Kim et al., 2013; Snoek et al., 2014; 

Turek and Bringmann, 2014). Although the other studies detect pervasive and 

reproducible oscillatory expression, the exact number of oscillating genes differs slightly 

depending on the data quality and classification method (Kim et al., 2013; Turek and 

Bringmann, 2014). A detailed analysis indicates that thousands of genes that we 

classified as “flat”, actually show oscillating expression with very low amplitudes. In 

conclusion, oscillating gene expression is robust and highly pervasive during C. elegans 

larval development.


4.2 Larval oscillatory expression is conserved in nematodes

The conservation of oscillatory gene expression in C. briggsae and C. elegans furthermore 

suggests a role of importance in animal development. These findings are supported by 

qPCR data that demonstrates that a handful of C. briggsae transcripts show oscillatory 

expression (Grün et al., 2014). The strength of phase conservation that we detect, despite 
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the evolutionary distance, suggests that the phases of the oscillations may serve an 

important role (figure 3.3J). For cuticle synthesis for example, a series of sequential 

reactions process the collagens to produce the final secreted complex. The sequential 

expression of these enzymes and proteins may optimize complex formation and minimize 

energy expenditure. Genes that peak at the same time may therefore be part of the same 

protein complexes. Accordingly, mutations in a series of genes that are involved in cuticle 

formation and oscillate with highly similar phases, all result in similar rolling phenotypes 

(figure 2.4). These genes, despite being encoded at different loci, oscillate with highly 

similar phases and amplitudes. In addition to conservation in C. briggsae, we also see 

conservation of the system, although not of phases of oscillatory expression, in H. 

contortus. The period length of 60 hours, measured using principal component analysis, 

is higher than expected based on previous timing experiments (Julia Tietz, Lucien Rufener 

& Jacques Bouvier, personal communication). Surprisingly, the phases of genes that show 

oscillatory expression in H. contortus are not universally distributed. The long 

development time per stage may, combined with our relatively low temporal resolution, 

result in the detection of oscillatory expression in a single phase. When we investigate the 

orthologues of oscillating genes in C. elegans however we see clear enrichment among 

the genes that show these long oscillations with a single phase in H. contortus. The 

strong conservation in the larval development of C. briggsae and H. contortus suggests 

that oscillatory expression during larval development is important in nematode 

development.


4.3 Molecular mechanism

Oscillatory expression can be established through oscillating transcription, oscillating 

degradation, or a combination of the two. The finding that intron-containing transcripts 

(pre-mRNAs) show oscillatory expression suggests that oscillating transcription drives 
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rhythmic gene expression. To investigate this further, we created reporter constructs 

where the promoters of oscillating genes were used to drive expression of a fluorescent 

reporter (in collaboration with Yannick Hauser). The GFP reporter we used is destabilized 

by the addition of a PEST sequence and localized to the nucleus because it is fused to 

histone protein H2B.  We performed microscopy and could show that GFP protein levels 

oscillate during larval development (data not shown). We furthermore showed that gfp 

RNA levels oscillate and recapitulate the rhythmic expression of the endogenous gene 

that is under control of the same oscillating promoter (YP Hauser, GJ Hendriks, H 

Grosshans, unpublished). This suggests that, at least in the case of our reporters, the 

promoter contains all the regulatory elements that are required to initiate oscillating 

transcription. Taken together, these results support our previous finding that oscillatory 

expression is driven on the transcriptional level.  

4.4 Involvement of miRNAs

Kim et al. showed that the miRNA lin-4 dampens oscillatory expression of lin-14 (Kim et 

al., 2013). They suggest that dampening of oscillatory expression may be a general 

function of miRNAs during C. elegans development. To investigate if miRNAs are likely to 

perform this role in development, we investigated miRNA expression profiles. We found 
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B) Significant depletion of oscillation genes among genes that are associated with cell divisions (p = 0.02, 
binomial test). Among histone genes, a significant enrichment of oscillating genes was seen (p = 0.04, binomial 
test). 
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that although there is a subset of miRNAs that is expressed in oscillatory fashion, 

approximately two-thirds of them are miRNA passenger strands (figure 3.4A). Of the 

miRNAs that do show oscillatory expression, the fold-changes of the miRNA are relatively 

minor compared to most oscillations on the mRNA level (figure 3.1A). This indicates that it 

is unlikely that the oscillations of a single miRNA dampen oscillations of any mRNA fully. 

The shared function of different oscillating miRNAs, like the miR-35 family or unrelated 

oscillating miRNAs, may however dampen relatively strong oscillations on the mRNA 

level. 


miRNAs can assert their function on gene expression through either mRNA decay, or 

translational repression. We have previously shown that translational efficiency of 

oscillating mRNAs is constant over development (figure 2.5). This argues against 

translational inhibition of oscillating mRNA as a way of repressing oscillations on the 

protein level. Additionally, we found no transcripts that show oscillations on the pre-

mRNA level (based on intronic reads), but do not oscillate on the mature mRNA (data not 

shown). This suggests that there are no miRNAs that induce degradation of an oscillating 

mRNA and thereby repress the oscillatory expression. We conclude that, contrary to what 

was described by Kim et al., oscillating miRNAs, in general, do not function to dampen 

oscillatory expression of coding transcripts. 


4.5 Relation to other rhythmic phenomena

Rhythmic gene expression is a common feature of many oscillating systems. We 

investigate the relationship between C. elegans larval oscillatory expression and two of 

these widely-studied systems; circadian rhythm and the cell cycle. 
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4.5.1 Larval oscillatory expression is not related to circadian rhythm in C. elegans 

A circadian rhythm has been described in many different species, including C. elegans. 

As described previously (see chapter 1.1.1 Circadian rhythm in C. elegans), the C. elegans 

circadian rhythm is less well characterized and seems less extensive than in most other 

organisms. One of the orthologues of the key clock-component period, lin-42, shows 

strong, and previously described, oscillating expression (Jeon et al., 1999) (Monsalve et 

al., 2011). This raises the question whether oscillatory gene expression during larval 

development is linked to circadian rhythm. Van der Linden and colleagues reported on a 

large number of genes that are periodically expressed (van der Linden et al., 2010). They 

distinguished between genes that always oscillate, only oscillate in cycling dark-light or 

warm-cold conditions, and genes that can be entrained to either rhythm. They only 

classified very few genes as always oscillating, these were therefore not included in our 

analysis. In the other categories, we could only detect a small but significant enrichment 

of oscillating genes among the set of genes that are driven by warm-cold cycles, but 

cannot be entrained (figure 4.1A). Furthermore, Rodriguez et al. showed that oscillatory 

expression of transcripts that are under circadian control, in Drosophila, is regulated at 

the post-transcriptional level (Rodriguez et al., 2013). We on the other hand have shown 

that oscillations occur at the pre-mRNA level and are therefore transcriptionally regulated. 

Additionally, we have shown previously that as opposed to circadian clocks, larval 

oscillatory gene expression is not temperature-compensated (figures 2.2D-E). Taken 

together, this indicates that the system is not related to circadian rhythm in C. elegans. 

We can however not rule out that in C. elegans, a small number of orthologues of 

circadian rhythm factors are involved in the maintenance of oscillatory expression during 

larval development (see below).
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4.5.2 Larval oscillatory expression is not related to cell division cycles 

Oscillatory gene expression has been reported in synchronously cycling Saccharomyces 

cerevisiae (Spellman et al., 1998). The number of cells that divide during nematode larval 

development is, however, relatively limited. Additionally, overall cell divisions throughout 

the worm are not synchronized and rhythmic (Sulston and Horvitz, 1977). There is 

however one specific tissue where cell divisions do mostly follow this rhythm; the 

hypodermis. This tissue is of special interest since many of the oscillating genes are 

expressed here (YP. Hauser, G. Brancati, GJ. Hendriks, H. Grosshans, unpublished). The 

hypodermis grows during larval development by the fusion of seam cells to the 

hypodermal syncytium. These cell fusions occur once per larval stage. The seam cells 

that fuse to the hypodermis are the product of asynchronous cell divisions, where one of 

the daughter cells remains in a stem cell-like state, while the other undergoes 

differentiation and fusion. In addition to these four asynchronous cell divisions, the seam 

cells also undergo one synchronous cell division in the early L2 stage. If cell division 

would induce periodic transcription, this additional, synchronous, cell division would drive 

five expression peaks during larval development and shorten the period length during the 

L1 and L2 stages. With few exceptions (see below), oscillating genes do not show five 

expression peaks during larval development. Accordingly, we do not see enrichment, but 

rather a depletion of oscillating genes among genes that are involved in cell cycle 

regulation (figure 4.1B). One group of genes that is involved in cell cycle regulation, and 

does show significant enrichment of oscillating genes (figure 4.1B), encodes histone 

genes. During S phase of mitosis, the coordinated DNA replication requires large numbers 

of histone proteins to be available (Marzluff et al., 2008). The RNA transcripts of these 

histone-coding genes, which are usually not poly-adenylated, accumulate during S 

phase, and are rapidly degraded after the conclusion of replication. Since we perform 

poly-A selection, we only detect low levels of histone transcripts in our data. Out of the 
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eight oscillating genes, five show a clear, atypical pattern with five peaks of expression 

(for example figure 1.3 panel VI). Detailed examination of all oscillating gene expression 

profiles revealed that these are the only genes that show this fifth peak. This indicates 

that repetitive divisions of the seam cells could cause oscillations of this subset of genes. 

The thousands of genes that oscillate in a typical fashion, and peak four times during 

development are however not periodically transcribed in response to the cell cycle.


4.6 Rhythmic development as driver or function of oscillatory 

expression

The large number of genes that oscillate, and the high fold-changes of gene expression 

that they undergo, exact a heavy energetic toll on the organism. It is unlikely that such an 

energetically expensive network of co-regulated expression would not play an important 

role in development. The findings that oscillatory expression occurs specifically during, 

and at all stages of larval development, support this hypothesis. This is reinforced further 

by the strong correlation between development and oscillating gene expression, that we 

see during a transient developmental arrest (figure 3.2A). Finally, the strong conservation 

of the network of oscillating genes to C. briggsae and H. contortus, argues that it plays an 

important role in development. Although these findings do not provide direct evidence 

that oscillations are essential for development, they imply that oscillatory gene expression 

and development are closely linked. The driver as well as function of the system is 

therefore likely to be developmental. Since we know that many oscillating genes are 

expressed in the hypodermis (YP Hauser, G. Brancati, GJ Hendriks, Grosshans H, 

unpublished), we focus on repetitive developmental events that occur in the hypodermis.


Two types of repetitive development have been previously linked to the hypodermis; 

hypodermal cell lineage specification and the molting cycle (Sulston and Horvitz, 1977). 

Below we will elaborate on the evidence that implicates these two processes with 
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oscillatory expression. Since the data that we have obtained is mostly correlative, it is 

impossible to distinguish a potential cause from a potential effect of oscillatory gene 

expression. We will therefore discuss both rhythmic processes as possible drivers and 

outputs of the oscillating expression during larval development.


4.6.1 Molting as a possible function or driver of oscillatory gene expression

The rhythmic nature of the molting process makes it a good candidate output of 

oscillating expression. Many of the genes that we found to be oscillating are collagens 

and are involved in the synthesis of the cuticle. In addition, many proteases that may be 

required for cuticle synthesis also oscillate. Moreover, many of these genes peak 

specifically during the molt, where they likely exert their function in the construction or 

destruction of the cuticle. Periodic expression could function to minimize energy 

expenditure and orchestrate the sequential steps of cuticle production by availability of 

enzymes and structural components of the cuticle. All things considered, oscillatory gene 

expression likely functions to regulate molting cycles.


Although a function in the regulation of molting is likely, it is worth noting that in addition 

to the oscillating collagens and proteases, there are many oscillating genes that have no 

known role in cuticle generation and show expression peaks outside of the molt. This 

suggests that oscillatory expression may have a role unrelated to molting. 

The molting cycle induces a number of changes in worm behavior. One example of this is 

the occurrence of lethargus. During this period in the molting cycle the worms do not 

feed. Due to its small size and volume, changes in nutrient supply can have rapid effects 

on physiology throughout the animal. This change in nutrition supply might be an 

interesting possible driver of rhythmicity since some of the oscillating transcription factors 

are nuclear hormone receptors (see below). The ligands that these NHRs require to initiate 

transcription of their targets could be directly or indirectly provided through feeding. 
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NHRs are often pre-assembled on DNA and can therefore rapidly induce transcription for 

many targets. Repetitive molting, specifically through repetitive feeding, has the potential 

to cause repetitive gene expression patterns.


4.6.2 Cellular differentiation and fusion as a possible function or driver of 

oscillatory gene expression

During development, seam cells undergo four asymmetrical divisions and one 

symmetrical division in the early L2 stage. Since they divide a total of five times, cell 

divisions are unlikely to cause the rhythmic gene expression profiles that we observe. 

Cellular differentiation and fusion, however, occur only once per stage, during the 

asymmetrical divisions. Both differentiation and cellular fusion coincide with dramatic 

changes in gene expression and availability of transcription factors. Interestingly, a recent 

study that has examined gene expression profiles in different mammalian, models of 

differentiation, reported that there are sequential waves of transcriptional regulation 

required for development (Arner et al., 2015). These sequential waves of different genes 

being upregulated would correspond to different phases of C. elegans oscillating genes. 

The repetitive nature of these cellular differentiation events would finally result in an 

oscillating pattern. During cellular fusion, 20 (from L2-L4) seam cells fuse to the 

hypodermis. Before the fusion these cells undergo endoreduplication, resulting in 40 

diploid genomes. When these cells fuse, transcription factor availability shifts instantly 

and gene expression follows. Co-regulation of transcription over these 40 genomes could 

cause synchronous changes in gene expression that can be detected in whole-worm 

expression profiling. The extremely rapid and well-synchronized expression could be 

induced by activation of ligand dependent NHRs that are pre-assembled on the genome. 

Induction by other, perhaps slower, mechanisms may result in the universal distribution of 

the phases of oscillating genes. 
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In summary, differentiation and fusion of the seam cells could be either a driver or a result 

of the gene expression profiles that we observe. Since we see many oscillating genes 

being expressed in the hypodermis we hypothesize that they are linked to either seam cell 

differentiation in the hypodermis, the molting cycle or perhaps connect these two modular 

developmental pathways. Interestingly, both of these systems have been previously 

described as possible modular systems, where simple reiteration of the system allows for 

further growth (Monsalve and Frand, 2012; Sternberg, 1991). We propose that the 

oscillating gene expression is part of the module of development that regulates seam cell 

divisions and molting and may function to synchronize the two modular systems as well 

as connect modular development to linear (non-modular) development.  

4.7 Open questions and outlook

4.7.1 The role of transcript stability in oscillatory expression

Stability of oscillating transcripts 

We have shown that transcriptional oscillations drive oscillating expression levels of 

thousands of genes. In addition to rapid and oscillating transcription, we see equally rapid 

degradation of oscillating transcripts. Since the promoter of an oscillating gene can drive 

expression of gfp in an oscillating pattern, that closely resembles that of the endogenous 

gene (YP Hauser, GJ Hendriks & H Grosshans, unpublished), the degradation of 

oscillating RNA is likely aspecific. Additionally, oscillating, but non-specific, mRNA decay 

would not support the universal distribution of phases of oscillating genes of C. elegans 

and C. briggsae. Specific degradation of transcripts could explain this, however, as 

mentioned previously, transcript stability does not differ between endogenous transcripts 

and reporters that are driven from the same promoter. Additionally, we did not detect any 

oscillations on the transcriptional level of genes that do not show oscillations on the 

mature mRNA level (data not shown). Taken together, this indicates that oscillating 
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destabilization does not cause oscillatory expression of any genes. Instead, oscillating 

transcription overcomes the extreme instability of oscillating transcripts. Whether only 

oscillating transcripts are degraded, or all transcripts in the cells where oscillations occur 

are rapidly turned over, remains unclear. The high transcript instability as well as the 

dynamics and possible regulation of degradation during and after larval development 

remains a point of interest. 

Stability of miRNAs 

While many, if not all, miRNA passenger strands show oscillatory expression, there are 

numerous guide strands that do not show this pattern. This is in line with the concept that 

differential Argonaute loading of miRNA strands results in differential stability of the 

strands (Vaucheret et al., 2004). Since we do not see any oscillating miRNA guide strands 

where the passenger strand does not oscillate, we propose that the passenger strands of 

these miRNAs are inherently unstable and can function as a measure of transcription. This 

is supported by qPCRs measuring the highly similar pri-miR-788 and miR-788* levels 

during development (data not shown). Two examples of differential stability between the 

guide and passenger strands are let-7 and lin-4. Expression profiles of these two 

essential and well-studied miRNAs (figures 3.4B I & 3.4B II) show clear differences 

between the strands. Oscillatory expression of let-7 miRNA passenger strands suggest 

that transcription of let-7 oscillates while steady-state levels of the let-7 guide strand rise 

in a stepwise manner. lin-4 guide levels however rise rapidly and stay relatively stable until 

transcription of lin-4 stops in the adult stage. Both lin-4 and let-7 are examples of 

miRNAs that show a constitutive difference between guide and passenger stability. Two 

other miRNAs of particular interest are miR-788 and miR-235 (figure 3.4B III and 3.4B IV). 

Transcription of these two miRNAs oscillates, as can be seen by the oscillations in the 

miRNA passenger strand levels. The mature miRNA levels however show two distinct 

expression patterns (figure 3.4). miR-788 is high during L2 and L3 and is rapidly degraded 
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during the L4 stage. This suggests that the miRNA is temporarily stabilized, and then 

rapidly degraded. miR-235 on the other hand oscillates with a phase that is distinct from 

its passenger strand. When the worms reach the adult stage however, the guide strand is 

stabilized in the absence of transcription. This miRNA seems to be highly unstable during 

development, but is stabilized in adult animals. Taken together this data shows that 

differential stabilization between miRNA guide and passenger strands is widespread. It 

furthermore shows that this stabilization of the guide strand can be regulated and change 

over development in C. elegans. miRNA oscillations provide an excellent model to study 

the mechanisms that govern miRNA stability modification and identify the key factors 

involved. 

4.7.2 Transcription factors that drive oscillations

The molecular mechanisms driving oscillatory expression during nematode larval 

development remain unclear. As we have shown previously, the oscillations are driven on 

a transcriptional level (figure 2.6A). A number of transcriptional regulators have been 

implicated in seam cell development and timing of molting. Strikingly, worms that carry a 

mutation in lin-42, which is the C. elegans orthologue of human period, have severe 

defects in the timing of molting as well as seam cell divisions (Monsalve et al., 2011). The 

homology to period, cycling expression pattern of lin-42, and phenotypes of lin-42 mutant 

animals have led to the hypothesis that LIN-42 acts as the main timer of seam cell 

divisions and the molting cycle (Monsalve et al., 2011). More recent data however has 

shown that oscillatory expression of certain miRNAs is maintained in the absence of 

l in-42 (McCulloch and Rougvie, 2014). Additionally, available chromatin 

immunoprecipitation (ChIP) DNA sequencing data does not suggest that LIN-42 targets 

are enriched for oscillating genes (Perales et al., 2014) (figure 4.2A). Taken together, this 

indicates that although lin-42 may play an important role, it is unlikely to be the main timer 

of C. elegans larval oscillatory expression. 
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nhr-23 on the other hand encodes for orthologues of the accessory mammalian clock 

proteins REV-ERB and RORA. Interestingly, knockdown of nhr-23 results in molting 

defects (Monsalve et al., 2011). RNAi of another NHR encoding gene, nhr-25, gives rise to 

molting phenotypes as well as hypodermal differentiation defects (Kostrouchova et al., 

1998). All three of these transcriptional regulators have been previously suggested to be 

involved in the cyclic or modular development of C. elegans during larval development 

(Monsalve and Frand, 2012). NHR-23 and NHR-25, as well as another transcriptional 

regulator, BLMP-1, show significant enrichments of oscillating genes among their targets, 

as predicted by ChIP (figure 4.2A) (Celniker et al., 2009). In addition, the phases of these 

predicted targets seem to be relatively restricted (figure 4.2B). Interestingly, preliminary 

data from promoter dissection studies in the lab identified a putative blmp-1 binding site 

that is essential for oscillatory expression of a reporter (YP Hauser, GJ Hendriks & H 

Grosshans, data not shown). blmp-1 is the C. elegans orthologue of the highly conserved 
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mammalian B lymphocyte-induced maturation protein 1 (blimp1). This transcriptional 

repressor was originally discovered to transcriptionally repress human beta-interferon in 

mammalian cell culture (Keller and Maniatis, 1991). In C. elegans, a mutation in 

blmp-1(tm548) derepresses unc-5 in the distal tip cells, which results in distal tip 

migration defects. A recent study showed that BLMP-1 in C. elegans may also function as 

a transcriptional activator (Yang et al., 2015). Our preliminary data shows that oscillations 

are strongly reduced in this background. However, asynchrony of the population of worms 

could also cause extensive reduction of oscillatory expression. The asynchrony that we 

see in the strain does not appear to be more extreme than in other mutants where 

oscillatory expression is maintained, but this needs to be quantified in more detail. We 

therefore hypothesize that BLMP-1 is a major regulator of oscillatory expression in C. 

elegans development. Quantitative measures of synchrony will be performed in the future 

to further examine this hypothesis.


4.7.3 Tissue specificity of oscillating genes

We know that oscillatory expression is abundant in the hypodermis. Our reporters of 

oscillating genes are however not exclusively expressed in the hypodermis. In many 

cases, the hypodermis is only one of the tissues where we see expression. It may be that 

expression in some additional tissues, where no oscillation occurs, merely dampens the 

amplitude that we detect. However, since in most cases, the addition of two cosine waves 

produces another cosine wave with modified amplitude and phase, we cannot conclude 

that phases in the hypodermis are universally distributed. It is a possibility that oscillations 

in the hypodermis all occur in the same phase, and oscillations in another tissue occur in 

another phase. Co-expression and expression levels in these two tissues would 

determine the eventual phase and amplitude that we detect in whole-worm experiments. 

According to this model, it would even be possible that all genes expressed in the tissue 

oscillate. Genes that are specifically expressed in the hypodermis, such as collagens, for 
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which we see strong enrichment, and genes required for hypodermal fate specification, 

would show the highest amplitudes and similar phases. Genes that are also expressed in 

the other tissue, or even ubiquitously, would have lower amplitudes and be less likely to 

be classified as oscillating. This could explain the thousands of genes that oscillate at 

very low amplitude and were classified as ‘flat’. Whether oscillations occur in one or 

multiple tissues, and if the phases are distributed within a tissue, remains unknown and a 

question we hope to answer in the near future. 


�90



5. References

Allen, N.P., Huang, L., Burlingame, A., and Rexach, M. (2001). Proteomic 
analysis of nucleoporin interacting proteins. J. Biol. Chem. 276, 29268–29274.

Altun, Z.F., Herndon, L.A., Wolkow, C.A., Crocker, C., Lints, R., and Hall, D.H. 
WormAtlas. 2002-2015.

Amano, T., Sagai, T., Tanabe, H., Mizushina, Y., Nakazawa, H., and Shiroishi, 
T. (2009). Chromosomal dynamics at the Shh locus: limb bud-specific 
differential regulation of competence and active transcription. Dev. Cell 16, 
47–57.

Ambros, V., and Horvitz, H.R. (1984). Heterochronic mutants of the nematode 
Caenorhabditis elegans. Science 226, 409–416.

Antebi, A. (2006). Nuclear hormone receptors in C. elegans. WormBook 1–13.

Arner, E., Daub, C.O., Vitting-Seerup, K., Andersson, R., Lilje, B., Drablos, F., 
Lennartsson, A., Rönnerblad, M., Hrydziuszko, O., Vitezic, M., et al. (2015). 
Transcribed enhancers lead waves of coordinated transcription in transitioning 
mammalian cells. Science.

Aulehla, A., Wehrle, C., Brand-Saberi, B., Kemler, R., Gossler, A., Kanzler, B., 
and Herrmann, B.G. (2003). Wnt3a plays a major role in the segmentation 
clock controlling somitogenesis. Dev. Cell 4, 395–406.

Aulehla, A., Wiegraebe, W., Baubet, V., Wahl, M.B., Deng, C., Taketo, M., 
Lewandoski, M., and Pourquié, O. (2008). A beta-catenin gradient links the 
clock and wavefront systems in mouse embryo segmentation. Nat. Cell Biol. 
10, 186–193.

Banerjee, D., Kwok, A., Lin, S.-Y., and Slack, F.J. (2005). Developmental 
timing in C. elegans is regulated by kin-20 and tim-1, homologs of core 
circadian clock genes. Dev. Cell 8, 287–295.

Barrett, R.K., and Takahashi, J.S. (1995). Temperature compensation and 
temperature entrainment of the chick pineal cell circadian clock. J. Neurosci. 
15, 5681–5692.

Barski, A., Cuddapah, S., Cui, K., Roh, T.-Y., Schones, D.E., Wang, Z., Wei, 
G., Chepelev, I., and Zhao, K. (2007). High-resolution profiling of histone 
methylations in the human genome. Cell 129, 823–837.

Bazzini, A.A., Lee, M.T., and Giraldez, A.J. (2012). Ribosome profiling shows 
that miR-430 reduces translation before causing mRNA decay in zebrafish. 
Science 336, 233–237.

Bächinger, H.P. (1987). The influence of peptidyl-prolyl cis-trans isomerase on 
the in vitro folding of type III collagen. J. Biol. Chem. 262, 17144–17148.

�91



Behm-Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P., and 
Izaurralde, E. (2006). mRNA degradation by miRNAs and GW182 requires 
both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes 
& Development 20, 1885–1898.

Benito, J., Zheng, H., and Hardin, P.E. (2007). PDP1epsilon functions 
downstream of the circadian oscillator to mediate behavioral rhythms. J. 
Neurosci. 27, 2539–2547.

Besier, R.B., Kahn, L.P., Sargison, N.D., and Van Wyk, J.A. (2016). Diagnosis, 
Treatment and Management of Haemonchus contortus in Small Ruminants 
(Elsevier Ltd).

Bessho, Y., Hirata, H., Masamizu, Y., and Kageyama, R. (2003). Periodic 
repression by the bHLH factor Hes7 is an essential mechanism for the somite 
segmentation clock. Genes & Development 17, 1451–1456.

Blau, J., and Young, M.W. (1999). Cycling vrille expression is required for a 
functional Drosophila clock. Cell 99, 661–671.

Brooks, D.R., Appleford, P.J., Murray, L., and Isaac, R.E. (2003). An essential 
role in molting and morphogenesis of Caenorhabditis elegans for ACN-1, a 
novel member of the angiotensin-converting enzyme family that lacks a 
metallopeptidase active site. J. Biol. Chem. 278, 52340–52346.

Butler, J.E.F., and Kadonaga, J.T. (2002). The RNA polymerase II core 
promoter: a key component in the regulation of gene expression. Genes & 
Development 16, 2583–2592.

Celniker, S.E., Dillon, L.A.L., Gerstein, M.B., Gunsalus, K.C., Henikoff, S., 
Karpen, G.H., Kellis, M., Lai, E.C., Lieb, J.D., MacAlpine, D.M., et al. (2009). 
Unlocking the secrets of the genome. Nature 459, 927–930.

Chen, T., and Dent, S.Y.R. (2014). Chromatin modifiers and remodellers: 
regulators of cellular differentiation. Nature Publishing Group 15, 93–106.

Cole, S.E., Levorse, J.M., Tilghman, S.M., and Vogt, T.F. (2002). Clock 
regulatory elements control cyclic expression of Lunatic fringe during 
somitogenesis. Dev. Cell 3, 75–84.

Coller, J.M., Gray, N.K., and Wickens, M.P. (1998). mRNA stabilization by 
poly(A) binding protein is independent of poly(A) and requires translation. 
Genes & Development 12, 3226–3235.

Cooke, J., and Zeeman, E.C. (1976). A clock and wavefront model for control 
of the number of repeated structures during animal morphogenesis. J. Theor. 
Biol. 58, 455–476.

Cutter, A.D. (2008). Divergence times in Caenorhabditis and Drosophila 
inferred from direct estimates of the neutral mutation rate. Mol. Biol. Evol. 25, 
778–786.

�92



Cyran, S.A., Buchsbaum, A.M., Reddy, K.L., Lin, M.-C., Glossop, N.R.J., 
Hardin, P.E., Young, M.W., Storti, R.V., and Blau, J. (2003). vrille, Pdp1, and 
dClock form a second feedback loop in the Drosophila circadian clock. Cell 
112, 329–341.

Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F., and Hannon, G.J. 
(2004). Processing of primary microRNAs by the Microprocessor complex. 
Nature 432, 231–235.

Djuranovic, S., Nahvi, A., and Green, R. (2012). miRNA-mediated gene 
silencing by translational repression followed by mRNA deadenylation and 
decay. Science 336, 237–240.

Dubrulle, J., McGrew, M.J., and Pourquié, O. (2001). FGF signaling controls 
somite boundary position and regulates segmentation clock control of 
spatiotemporal Hox gene activation. Cell 106, 219–232.

Dubrulle, J., and Pourquié, O. (2004). fgf8 mRNA decay establishes a 
gradient that couples axial elongation to patterning in the vertebrate embryo. 
Nature 427, 419–422.

Edens, W.A., Sharling, L., Cheng, G., Shapira, R., Kinkade, J.M., Lee, T., 
Edens, H.A., Tang, X., Sullards, C., Flaherty, D.B., et al. (2001). Tyrosine 
cross-linking of extracellular matrix is catalyzed by Duox, a multidomain 
oxidase/peroxidase with homology to the phagocyte oxidase subunit 
gp91phox. The Journal of Cell Biology 154, 879–891.

Flames, N., and Hobert, O. (2009). Gene regulatory logic of dopamine neuron 
differentiation. Nature 458, 885–889.

Forsberg, H., Crozet, F., and Brown, N.A. (1998). Waves of mouse Lunatic 
fringe expression, in four-hour cycles at two-hour intervals, precede somite 
boundary formation. Current Biology 8, 1027–1030.

Francesconi, M., and Lehner, B. (2014). The effects of genetic variation on 
gene expression dynamics during development. Nature 505, 208–211.

Frand, A.R., Russel, S., and Ruvkun, G. (2005). Functional genomic analysis 
of C. elegans molting. Plos Biol 3, e312.

Gaidatzis, D., Burger, L., Florescu, M., and Stadler, M.B. (2015). Analysis of 
intronic and exonic reads in RNA-seq data characterizes transcriptional and 
post-transcriptional regulation. Nat. Biotechnol. 33, 722–729.

Gatfield, D., Le Martelot, G., Vejnar, C.E., Gerlach, D., Schaad, O., Fleury-
Olela, F., Ruskeepää, A.-L., Oresic, M., Esau, C.C., Zdobnov, E.M., et al. 
(2009). Integration of microRNA miR-122 in hepatic circadian gene 
expression. Genes & Development 23, 1313–1326.

Gissendanner, C.R., and Sluder, A.E. (2000). nhr-25, the Caenorhabditis 
elegans ortholog of ftz-f1, is required for epidermal and somatic gonad 
development. Dev. Biol. 221, 259–272.

�93



Gissendanner, C.R., Crossgrove, K., Kraus, K.A., Maina, C.V., and Sluder, 
A.E. (2004). Expression and function of conserved nuclear receptor genes in 
Caenorhabditis elegans. Dev. Biol. 266, 399–416.

Gregory, R.I., Yan, K.-P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, 
N., and Shiekhattar, R. (2004). The Microprocessor complex mediates the 
genesis of microRNAs. Nature 432, 235–240.

Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., 
Fire, A., Ruvkun, G., and Mello, C.C. (2001). Genes and mechanisms related 
to RNA interference regulate expression of the small temporal RNAs that 
control C. elegans developmental timing. Cell 106, 23–34.

Grün, D., Kirchner, M., Thierfelder, N., Stoeckius, M., Selbach, M., and 
Rajewsky, N. (2014). Conservation of mRNA and Protein Expression during 
Development of C. elegans. Cell Reports.

Guo, H., Ingolia, N.T., Weissman, J.S., and Bartel, D.P. (2010). Mammalian 
microRNAs predominantly act to decrease target mRNA levels. Nature 466, 
835–840.

Imataka, H., Gradi, A., and Sonenberg, N. (1998). A newly identified N-
terminal amino acid sequence of human eIF4G binds poly(A)-binding protein 
and functions in poly(A)-dependent translation. The EMBO Journal 17, 7480–
7489.

Jeon, M., Gardner, H.F., Miller, E.A., Deshler, J., and Rougvie, A.E. (1999). 
Similarity of the C. elegans developmental timing protein LIN-42 to circadian 
rhythm proteins. Science 286, 1141–1146.

Kato, M., de Lencastre, A., Pincus, Z., and Slack, F.J. (2009). Dynamic 
expression of small non-coding RNAs, including novel microRNAs and 
piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome 
Biol 10, R54.

Keller, A.D., and Maniatis, T. (1991). Identification and characterization of a 
novel repressor of beta-interferon gene expression. Genes & Development 5, 
868–879.

Ketting, R.F., Fischer, S.E., Bernstein, E., Sijen, T., Hannon, G.J., and 
Plasterk, R.H. (2001). Dicer functions in RNA interference and in synthesis of 
small RNA involved in developmental timing in C. elegans. Genes & 
Development 15, 2654–2659.

Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003). Functional siRNAs 
and miRNAs exhibit strand bias. Cell 115, 209–216.

Kim, D.H., Grün, D., and van Oudenaarden, A. (2013). Dampening of 
expression oscillations by synchronous regulation of a microRNA and its 
target. Nature Publishing Group 45, 1337–1344.

Kippert, F., Saunders, D.S., and Blaxter, M.L. (2002). Caenorhabditis elegans 
has a circadian clock. Current Biology 12, R47–R49.

�94



Kloss, B., Price, J.L., Saez, L., Blau, J., Rothenfluh, A., Wesley, C.S., and 
Young, M.W. (1998). The Drosophila clock gene double-time encodes a 
protein closely related to human casein kinase Iepsilon. Cell 94, 97–107.

Koh, K., Zheng, X., and Sehgal, A. (2006). JETLAG resets the Drosophila 
circadian clock by promoting light-induced degradation of TIMELESS. Science 
312, 1809–1812.

Komarnitsky, P., Cho, E.J., and Buratowski, S. (2000). Different 
phosphorylated forms of RNA polymerase II and associated mRNA 
processing factors during transcription. Genes & Development 14, 2452–
2460.

Kostrouchova, M.M., Krause, M.M., Kostrouch, Z.Z., and Rall, J.E.J. (2001). 
Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts 
of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 98, 7360–
7365.

Kostrouchova, M., Krause, M., Kostrouch, Z., and Rall, J.E. (1998). CHR3: a 
Caenorhabditis elegans orphan nuclear hormone receptor required for proper 
epidermal development and molting. Development 125, 1617–1626.

Krieger, D.T. (1974). Food and water restriction shifts corticosterone, 
temperature, activity and brain amine periodicity. Endocrinology 95, 1195–
1201.

Krieger, D.T., Hauser, H., and Krey, L.C. (1977). Suprachiasmatic nuclear 
lesions do not abolish food-shifted circadian adrenal and temperature 
rhythmicity. Science 197, 398–399.

Kuervers, L.M., Jones, C.L., O'Neil, N.J., and Baillie, D.L. (2003). The sterol 
modifying enzyme LET-767 is essential for growth, reproduction and 
development in Caenorhabditis elegans. Mol. Genet. Genomics 270, 121–
131.

Kula-Eversole, E., Nagoshi, E., Shang, Y., Rodriguez, J., Allada, R., and 
Rosbash, M. (2010). Surprising gene expression patterns within and between 
PDF-containing circadian neurons in Drosophila. Proc Natl Acad Sci U S A 
107, 13497–13502.

Lachner, M., O'Carroll, D., Rea, S., Mechtler, K., and Jenuwein, T. (2001). 
Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. 
Nature 410, 116–120.

Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant 
class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. 
Science 294, 858–862.

Lebailly, B., Boitard, C., and Rogner, U.C. (2015). Circadian rhythm-related 
genes: implication in autoimmunity and type 1 diabetes. Diabetes Obes Metab 
17 Suppl 1, 134–138.

�95



Lee, C., Bae, K., and Edery, I. (1999). PER and TIM inhibit the DNA binding 
activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting 
formation of the heterodimer: a basis for circadian transcription. Mol. Cell. 
Biol. 19, 5316–5325.

Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans 
heterochronic gene lin-4 encodes small RNAs with antisense complementarity 
to lin-14. Cell 75, 843–854.

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., 
Rådmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates 
microRNA processing. Nature 425, 415–419.

Lewis, J. (2003). Autoinhibition with transcriptional delay: a simple mechanism 
for the zebrafish somitogenesis oscillator. Current Biology 13, 1398–1408.

Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, 
M.W., Burge, C.B., and Bartel, D.P. (2003). The microRNAs of Caenorhabditis 
elegans. Genes & Development 17, 991–1008.

Lin, F.J., Song, W., Meyer-Bernstein, E., Naidoo, N., and Sehgal, A. (2001). 
Photic signaling by cryptochrome in the Drosophila circadian system. Mol. 
Cell. Biol. 21, 7287–7294.

Lin, J.-M., Kilman, V.L., Keegan, K., Paddock, B., Emery-Le, M., Rosbash, M., 
and Allada, R. (2002). A role for casein kinase 2alpha in the Drosophila 
circadian clock. Nature 420, 816–820.

Lorch, Y., Zhang, M., and Kornberg, R.D. (1999). Histone octamer transfer by 
a chromatin-remodeling complex. Cell 96, 389–392.

Luger, K., Dechassa, M.L., and Tremethick, D.J. (2012). New insights into 
nucleosome and chromatin structure: an ordered state or a disordered affair? 
Nat. Rev. Mol. Cell Biol. 13, 436–447.

Lund, E., Güttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). 
Nuclear export of microRNA precursors. Science 303, 95–98.

Marzluff, W.F., Wagner, E.J., and Duronio, R.J. (2008). Metabolism and 
regulation of canonical histone mRNAs: life without a poly(A) tail. Nature 
Publishing Group 9, 843–854.

Matyash, V., Entchev, E.V., Mende, F., Wilsch-Bräuninger, M., Thiele, C., 
Schmidt, A.W., Knölker, H.-J., Ward, S., and Kurzchalia, T.V. (2004). Sterol-
derived hormone(s) controls entry into diapause in Caenorhabditis elegans by 
consecutive activation of DAF-12 and DAF-16. Plos Biol 2, e280.

McCulloch, K.A., and Rougvie, A.E. (2014). Caenorhabditis elegans period 
homolog lin-42 regulates the timing of heterochronic miRNA expression. Proc 
Natl Acad Sci U S A 111, 15450–15455.

Merris, M., Wadsworth, W.G., Khamrai, U., Bittman, R., Chitwood, D.J., and 
Lenard, J. (2003). Sterol effects and sites of sterol accumulation in 

�96



Caenorhabditis elegans: developmental requirement for 4alpha-methyl 
sterols. J. Lipid Res. 44, 172–181.

Monsalve, G., and Frand, A. (2012). Toward a unified model of developmental 
timing: A “molting” approach. Worm 1, 221–230.

Monsalve, G.C., Van Buskirk, C., and Frand, A.R. (2011). LIN-42/PERIOD 
Controls Cyclical and Developmental Progression of C.&nbsp;elegans Molts. 
Current Biology 21, 2033–2045.

Moore, R.Y., and Eichler, V.B. (1972). Loss of a circadian adrenal 
corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 
42, 201–206.

Mootz, D., Ho, D.M., and Hunter, C.P. (2004). The STAR/Maxi-KH domain 
protein GLD-1 mediates a developmental switch in the translational control of 
C. elegans PAL-1. Development 131, 3263–3272.

Morales, A.V., Yasuda, Y., and Ish-Horowicz, D. (2002). Periodic Lunatic fringe 
expression is controlled during segmentation by a cyclic transcriptional 
enhancer responsive to notch signaling. Dev. Cell 3, 63–74.

Motola, D.L., Cummins, C.L., Rottiers, V., Sharma, K.K., Li, T., Li, Y., Suino-
Powell, K., Xu, H.E., Auchus, R.J., Antebi, A., et al. (2006). Identification of 
ligands for DAF-12 that govern dauer formation and reproduction in C. 
elegans. Cell 124, 1209–1223.

Musselman, C.A., Lalonde, M.-E., Côté, J., and Kutateladze, T.G. (2012). 
Perceiving the epigenetic landscape through histone readers. Nat Struct Mol 
Biol 19, 1218–1227.

Naiche, L.A., Holder, N., and Lewandoski, M. (2011). FGF4 and FGF8 
comprise the wavefront activity that controls somitogenesis. Proc Natl Acad 
Sci U S A 108, 4018–4023.

Novelli, J., Ahmed, S., and Hodgkin, J. (2004). Gene interactions in 
Caenorhabditis elegans define DPY-31 as a candidate procollagen C-
proteinase and SQT-3/ROL-4 as its predicted major target. Genetics 168, 
1259–1273.

Page, A.P., and Johnstone, I.L. (2007). The cuticle. WormBook 1–15.

Palmeirim, I., Henrique, D., Ish-Horowicz, D., and Pourquié, O. (1997). Avian 
hairy gene expression identifies a molecular clock linked to vertebrate 
segmentation and somitogenesis. Cell 91, 639–648.

Panda, S., Hogenesch, J.B., and Kay, S.A. (2002). Circadian rhythms from 
flies to human. Nature 417, 329–335.

Panin, V.M., Papayannopoulos, V., Wilson, R., and Irvine, K.D. (1997). Fringe 
modulates Notch-ligand interactions. Nature 387, 908–912.

Parkins, J.J., and Holmes, P.H. (1989). Effects of gastrointestinal helminth 
parasites on ruminant nutrition. Nutr Res Rev 2, 227–246.

�97



Perales, R., King, D.M., Aguirre-Chen, C., and Hammell, C.M. (2014). LIN-42, 
the Caenorhabditis elegans PERIOD homolog, Negatively Regulates 
MicroRNA Transcription. PLoS Genet.

Peschel, N., and Helfrich-Förster, C. (2011). Setting the clock--by nature: 
circadian rhythm in the fruitfly Drosophila melanogaster. FEBS Lett. 585, 
1435–1442.

Pittendrigh, C.S. (1954). ON TEMPERATURE INDEPENDENCE IN THE 
CLOCK SYSTEM CONTROLLING EMERGENCE TIME IN DROSOPHILA. 
Proc Natl Acad Sci U S A 40, 1018–1029.

Pittendrigh, C.S. (1981). Circadian Systems: Entrainment. Biological Rhythms 
II, 95–124.

Plautz, J.D., Kaneko, M., Hall, J.C., and Kay, S.A. (1997). Independent 
photoreceptive circadian clocks throughout Drosophila. Science 278, 1632–
1635.

Prockop, D.J., and Kivirikko, K.I. (1995). Collagens: molecular biology, 
diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434.

Reddy, P., Zehring, W.A., Wheeler, D.A., Pirrotta, V., Hadfield, C., Hall, J.C., 
and Rosbash, M. (1984). Molecular analysis of the period locus in Drosophila 
melanogaster and identification of a transcript involved in biological rhythms. 
Cell 38, 701–710.

Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., 
Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 
RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 
901–906.

Rodriguez, J., Tang, C.-H.A., Khodor, Y.L., Vodala, S., Menet, J.S., and 
Rosbash, M. (2013). Nascent-Seq analysis of Drosophila cycling gene 
expression. Proc Natl Acad Sci U S A 110, E275–E284.

Ruaud, A.-F., and Bessereau, J.-L. (2006). Activation of nicotinic receptors 
uncouples a developmental timer from the molting timer in C. elegans. 
Development 133, 2211–2222.

Saga, Y., Hata, N., Koseki, H., and Taketo, M.M. (1997). Mesp2: a novel 
mouse gene expressed in the presegmented mesoderm and essential for 
segmentation initiation. Genes & Development 11, 1827–1839.

Sahar, S., and Sassone-Corsi, P. (2009). Metabolism and cancer: the 
circadian clock connection. Nat. Rev. Cancer 9, 886–896.

Saigusa, T., Ishizaki, S., Watabiki, S., Ishii, N., Tanakadate, A., Tamai, Y., and 
Hasegawa, K. (2002). Circadian behavioural rhythm in Caenorhabditis 
elegans. Current Biology 12, R46–R47.

�98



Sainsbury, S., Bernecky, C., and Cramer, P. (2015). Structural basis of 
transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 129–
143.

Sakai, Y., Meno, C., Fujii, H., Nishino, J., Shiratori, H., Saijoh, Y., Rossant, J., 
and Hamada, H. (2001). The retinoic acid-inactivating enzyme CYP26 is 
essential for establishing an uneven distribution of retinoic acid along the 
anterio-posterior axis within the mouse embryo. Genes & Development 15, 
213–225.

Sehgal, A., Price, J.L., Man, B., and Young, M.W. (1994). Loss of circadian 
behavioral rhythms and per RNA oscillations in the Drosophila mutant 
timeless. Science 263, 1603–1606.

Serth, K., Schuster-Gossler, K., Cordes, R., and Gossler, A. (2003). 
Transcriptional oscillation of lunatic fringe is essential for somitogenesis. 
Genes & Development 17, 912–925.

Shemer, G., and Podbilewicz, B. (2000). Fusomorphogenesis: cell fusion in 
organ formation. Dev. Dyn. 218, 30–51.

Shi, X., Hong, T., Walter, K.L., Ewalt, M., Michishita, E., Hung, T., Carney, D., 
Peña, P., Lan, F., Kaadige, M.R., et al. (2006). ING2 PHD domain links 
histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99.

Shim, E.Y., Walker, A.K., Shi, Y., and Blackwell, T.K. (2002). CDK-9/cyclin T 
(P-TEFb) is required in two postinitiation pathways for transcription in the C. 
elegans embryo. Genes & Development 16, 2135–2146.

Simonetta, S.H., Migliori, M.L., Romanowski, A., and Golombek, D.A. (2009). 
Timing of locomotor activity circadian rhythms in Caenorhabditis elegans. 
PLoS ONE 4, e7571.

Sirbu, I.O., and Duester, G. (2006). Retinoic-acid signalling in node ectoderm 
and posterior neural plate directs left-right patterning of somitic mesoderm. 
Nat. Cell Biol. 8, 271–277.

Snoek, L.B., Sterken, M.G., Volkers, R.J.M., Klatter, M., Bosman, K.J., 
Bevers, R.P.J., Riksen, J.A.G., Smant, G., Cossins, A.R., and Kammenga, 
J.E. (2014). A rapid and massive gene expression shift marking adolescent 
transition in C. elegans. Sci Rep 4, 3912.

Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., 
Brown, P.O., Botstein, D., and Futcher, B. (1998). Comprehensive 
identification of cell cycle-regulated genes of the yeast Saccharomyces 
cerevisiae by microarray hybridization. Molecular Biology of the Cell 9, 3273–
3297.

Spencer, W.C., Zeller, G., Watson, J.D., Henz, S.R., Watkins, K.L., McWhirter, 
R.D., Petersen, S., Sreedharan, V.T., Widmer, C., Jo, J., et al. (2011). A spatial 
and temporal map of C. elegans gene expression. Genome Research 21, 
325–341.

�99



Spitz, F., and Furlong, E.E.M. (2012). Transcription factors: from enhancer 
binding to developmental control. Nature Publishing Group 13, 613–626.

Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, 
S.A., Rosbash, M., and Hall, J.C. (1998). The cryb mutation identifies 
cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681–692.

Sternberg, P.W. (1991). Control of cell lineage and cell fate during nematode 
development. Curr Top Dev Biol. 177–225.

Stoleru, D., Nawathean, P., Fernández, M. de L.P., Menet, J.S., Ceriani, M.F., 
and Rosbash, M. (2007). The Drosophila circadian network is a seasonal 
timer. Cell 129, 207–219.

Sulston, J.E., and Horvitz, H.R. (1977). Post-embryonic cell lineages of the 
nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156.

Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, J.N. (1983). The 
embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 
100, 64–119.

Suzuki, M., Sagoh, N., Iwasaki, H., Inoue, H., and Takahashi, K. (2004). 
Metalloproteases with EGF, CUB, and thrombospondin-1 domains function in 
molting of Caenorhabditis elegans. Biol. Chem. 385, 565–568.

Thacker, C., Sheps, J.A., and Rose, A.M. (2006). Caenorhabditis elegans 
dpy-5 is a cuticle procollagen processed by a proprotein convertase. Cell. 
Mol. Life Sci. 63, 1193–1204.

Thein, M.C., Winter, A.D., Stepek, G., McCormack, G., Stapleton, G., 
Johnstone, I.L., and Page, A.P. (2009). Combined extracellular matrix cross-
linking activity of the peroxidase MLT-7 and the dual oxidase BLI-3 is critical 
for post-embryonic viability in Caenorhabditis elegans. J. Biol. Chem. 284, 
17549–17563.

Thummel, C.S. (2001). Molecular mechanisms of developmental timing in C. 
elegans and Drosophila. Dev. Cell 1, 453–465.

Turek, M., and Bringmann, H. (2014). Gene Expression Changes of 
Caenorhabditis elegans Larvae during Molting and Sleep-Like Lethargus. 
PLoS ONE 9, e113269.

van der Linden, A.M., Beverly, M., Kadener, S., Rodriguez, J., Wasserman, S., 
Rosbash, M., and Sengupta, P. (2010). Genome-Wide Analysis of Light- and 
Temperature-Entrained Circadian Transcripts in Caenorhabditis elegans. Plos 
Biol 8, e1000503.

van Rooij, E., Sutherland, L.B., Qi, X., Richardson, J.A., Hill, J., and Olson, 
E.N. (2007). Control of stress-dependent cardiac growth and gene expression 
by a microRNA. Science 316, 575–579.

Vaucheret, H., Vazquez, F., Crété, P., and Bartel, D.P. (2004). The action of 
ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA 

�100



pathway are crucial for plant development. Genes & Development 18, 1187–
1197.

Vermot, J., Gallego Llamas, J., Fraulob, V., Niederreither, K., Chambon, P., 
and Dollé, P. (2005). Retinoic acid controls the bilateral symmetry of somite 
formation in the mouse embryo. Science 308, 563–566.

Vokes, S.A., Ji, H., Wong, W.H., and McMahon, A.P. (2008). A genome-scale 
analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated 
patterning of the mammalian limb. Genes & Development 22, 2651–2663.

Whitehouse, I., Flaus, A., Cairns, B.R., White, M.F., Workman, J.L., and 
Owen-Hughes, T. (1999). Nucleosome mobilization catalysed by the yeast 
SWI/SNF complex. Nature 400, 784–787.

Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of 
the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in 
C. elegans. Cell 75, 855–862.

Winter, A.D., and Page, A.P. (2000). Prolyl 4-hydroxylase is an essential 
procollagen-modifying enzyme required for exoskeleton formation and the 
maintenance of body shape in the nematode Caenorhabditis elegans. Mol. 
Cell. Biol. 20, 4084–4093.

Winter, A.D., Eschenlauer, S.C.P., McCormack, G., and Page, A.P. (2007a). 
Loss of secretory pathway FK506-binding proteins results in cold-sensitive 
lethality and associate extracellular matrix defects in the nematode 
Caenorhabditis elegans. J. Biol. Chem. 282, 12813–12821.

Winter, A.D., Keskiaho, K., Kukkola, L., McCormack, G., Felix, M.-A., 
Myllyharju, J., and Page, A.P. (2007b). Differences in collagen prolyl 4-
hydroxylase assembly between two Caenorhabditis nematode species 
despite high amino acid sequence identity of the enzyme subunits. Matrix 
Biol. 26, 382–395.

Wysocka, J., Swigut, T., Xiao, H., Milne, T.A., Kwon, S.Y., Landry, J., Kauer, 
M., Tackett, A.J., Chait, B.T., Badenhorst, P., et al. (2006). A PHD finger of 
NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. 
Nature 442, 86–90.

Yaffe, K., Falvey, C.M., and Hoang, T. (2014). Connections between sleep and 
cognition in older adults. Lancet Neurol 13, 1017–1028.

Yang, J., Fong, H.T., Xie, Z., Tan, J.W.H., and Inoue, T. (2015). Direct and 
positive regulation of Caenorhabditis elegans bed-3 by PRDM1/BLIMP1 
ortholog BLMP-1. Biochim. Biophys. Acta 1849, 1229–1236.

Yochem, J., Tuck, S., Greenwald, I., and Han, M. (1999). A gp330/megalin-
related protein is required in the major epidermis of Caenorhabditis elegans 
for completion of molting. Development 126, 597–606.

Yoo, S.-H., Yamazaki, S., Lowrey, P.L., Shimomura, K., Ko, C.H., Buhr, E.D., 
Siepka, S.M., Hong, H.-K., Oh, W.J., Yoo, O.J., et al. (2004). 

�101



PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals 
persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad 
Sci U S A 101, 5339–5346.

Young, M.W., and Kay, S.A. (2001). Time zones: a comparative genetics of 
circadian clocks. Nature Reviews Genetics 2, 702–715.

Yu, W., Zheng, H., Houl, J.H., Dauwalder, B., and Hardin, P.E. (2006). PER-
dependent rhythms in CLK phosphorylation and E-box binding regulate 
circadian transcription. Genes & Development 20, 723–733.

Zhang, Z.Q. (2013). Animal biodiversity: An outline of higher-level 
classification and survey of taxonomic richness (Addenda 2013). (Zootaxa). 

�102



Curriculum Vitae

�103



�104



In the electronic version of this thesis the CV has been omitted.

�105


	mmc1-3.pdf
	molcel4886mmc1 cover.pdf
	molcel4886mmc1 body
	Fig. S1 (RPFs)_MolCell_v.3.ai.pdf
	Fig. S2 (Txn).ai.pdf
	Fig. S3_v.1(vanO).ai.pdf
	Supplements_MolCell_submitted.pdf


	Supplements_MolCell_submitted.pdf
	Fig. S1 (RPFs)_MolCell_v.3.ai.pdf
	Fig. S2 (Txn).ai.pdf
	Fig. S3_v.1(vanO).ai.pdf
	Supplements_MolCell_submitted.pdf

	Supplements_MolCell_submitted.pdf
	Fig. S1 (RPFs)_MolCell_v.3.ai.pdf
	Fig. S2 (Txn).ai.pdf
	Fig. S3_v.1(vanO).ai.pdf
	Supplements_MolCell_submitted.pdf




