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Abstract: Enzymatic hydrolysis is an integral step in the conversion of lignocellulosic biomass to 

ethanol. The conversion of cellulose to fermentable sugars in the presence of inhibitors is a complex 

kinetic problem. In this study, we describe a novel approach to estimating the kinetic parameters 

underlying this process. This study employs experimental data measuring substrate and enzyme 

loadings, sugar and acid inhibitions for the production of glucose. Multiple objectives to minimize 

the difference between model predictions and experimental observations are developed and 

optimized by adopting multi-objective particle swarm optimization method. Model reliability is 

assessed by exploring likelihood profile in each parameter space. Compared to previous studies, this 

approach improved the prediction of sugar yields by reducing the mean squared errors by 34% for 

glucose and 2.7% for cellobiose, suggesting improved agreement between model predictions and the 

experimental data. Furthermore, kinetic parameters such as K2IG2, K1IG, K2IG, K1IA, and K3IA are 

identified as contributors to the model non-identifiability and wide parameter confidence intervals. 

Model reliability analysis indicates possible ways to reduce model non-identifiability and tighten 

parameter confidence intervals. These results could help improve the design of lignocellulosic 

biorefineries by providing higher fidelity predictions of fermentable sugars under inhibitory 

conditions. 

Keywords: Multi-objective regression; enzymatic hydrolysis kinetics; parameter estimation; 

multi-objective particle swarm optimization; likelihood profile 

Nomenclature  

A acetic acid concentration, g/kg KiIG inhibition constants for glucose 

in each reaction, g/kg 
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bi enzyme activity decreasing factor, kg/g KiIG2 inhibition constants for 

cellobiose in each reaction, g/kg 

C5 C5 sugar concentration, g/kg KiIX inhibition constants for C5 

sugars in each reaction, g/kg 

E1max maximum mass of CBH and EG that can adsorb 

onto one unit mass of substrate, 0.06 g/g 

K3M cellobiose saturation 

constant, g/kg 

E2max maximum mass of β-glucosidase that can adsorb 

onto one unit mass of substrate, 0.01 g/g 

kir reaction rates for each 

reaction, g/kg/h 

E1B bound concentration of CBH and EG , (g/kg) N number of experimental 

measurement points 

E2B bound concentration of β-glucosidase, (g/kg) p number of parameters in the 

model 

E1F free concentration of CBH and EG, (g/kg) S substrate concentration, g/kg 

E2F free concentration of β-glucosidase, g/kg S0 substrate initial concentration, 

g/kg 

EiT total enzyme concentration, g/kg α quantile of the χ
2
-distribution 

fβG fraction of the maximum β-glucosidase activity df degree of freedom 

G glucose concentration, g/kg V objective matrix 

G2 cellobiose concentration, g/kg x vector of state variables 

K1ad dissociation constant for the CBH and EG 

adsorption/desorption reaction, 0.4 g/g 

y vector of observables 

K2ad dissociation constant for the β-glucosidase 

adsorption/desorption reaction, 0.1 g/g 

θ vector of model parameters 

 

1. Introduction 

Global concerns over climate impacts of greenhouse gas (GHG) emissions have led to the 

pursuit of low carbon intensity alternatives to fossil fuels [1]. These efforts led to the 

commercialization of corn grain and sugarcane based ethanol to replace petroleum derived fuels in 

the transportation sector [2]. However, competition with food production and the desire for greater 

GHG reductions prompted the development of lignocellulosic biomass conversion technologies [3,4]. 

The conversion of lignocellulosic biomass into ethanol is a sustainable approach to produce 

renewable fuels with significant reduction of GHG emissions [5]. Economic and performance 

challenges have limited the commercial adoption of lignocellulosic ethanol technologies [6].  

Lignocellulosic biomass such as corn stover is mainly composed of cellulose, hemicellulose and 

lignin intertwined by a complex matrix formed by these three biopolymers. This protective matrix is 

a detriment to the biological conversion of lignocellulosic biomass into fermentable sugars. 

Therefore, scientists have developed various methods to extract sugars from lignocellulosic 

biomass [7]. Enzymatic hydrolysis combined with feedstock pretreatment is preferred over other 

chemical hydrolysis for its higher yield, minimal byproduct formation, low energy requirements, and 

mild operating conditions [8,9]. However, this technique faces technical challenges and the process 

is not yet economically feasible [10,11]. 
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Figure 1. Lignocellulosic biomass ethanol production via enzymatic hydrolysis and 

fermentation. 

Enzymatic hydrolysis is an important process in the conversion of lignocellulosic biomass into 

ethanol. As shown in Figure 1, lignocellulosic biomass is first fed into a pretreatment and 

conditioning process, then it proceeds to the enzymatic hydrolysis and fermentation units where it 

mixes with cellulase enzymes. Hydrolysis yields sugars that are fermented into ethanol. The beer 

mixture can be distilled into high purity ethanol. Process by-products include stillage and lignin 

which can be combusted to generate power and steam. The National Renewable Energy Laboratory 

has described the details of this process and estimated that ethanol can be produced at a minimum 

fuel-selling price of $2.15 per gallon [12]. 

Process modeling contributes to biofuel process development through model-based evaluation 

of the integrated operation of hydrolysis and co-fermentation process [13] and model-based 

optimization of bioprocesses [14]. In particular, kinetic modeling of enzymatic hydrolysis allows for 

performing realistic process operation simulations which improves biorefinery design and 

optimization. The fidelity of the modeling significantly depends on the availability of a reliable 

enzymatic hydrolysis kinetic model which can reflect the main reaction rates and activities from 

reactants to products in the process.  

Previous studies developed various kinetic models for enzymatic hydrolysis of cellulose 

substrate based on empirical data or fundamental mechanistic models, which have recently been 

reviewed in Bansal et al. [15]. Mechanistic models are often preferred to empirical models because 

empirical models are only applicable to the conditions under which they are developed and do not 

completely characterize the major physical and chemical activities in the process. Furthermore, 

mechanistic models provide insights into the major chemical activities of enzymes and substrates and 

allow simulating conditions that lie outside experimental conditions. However, developing robust 

mechanistic models for enzymatic processes is challenging due to limited informative experimental 
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datasets and the complex nature of lignocellulosic feedstocks. Therefore, recent studies focus on 

developing semi-mechanistic kinetic models describing major reaction activities.  

One of the extensively cited semi-mechanistic kinetic models for enzymatic hydrolysis of 

cellulose was proposed by Kadam et al. [16]. This model incorporates parameters for enzyme 

adsorption, sugar inhibitions, temperature effects, and substrate reactivity. Subsequent studies have 

refined this model: Zheng et al. [17] considered the adsorption of enzyme onto lignin in their model; 

Tsai et al. [18] combined the Kadam’s model [16] with a transglycosylation reaction at high glucose 

levels; Scott et al. [19] recently modified the model by introducing acetic acid inhibition effects and 

considering changes in bounded enzyme activity based on experimental observations.  

Model parameter estimation from experimental data is crucial in the model development. A 

consensus has been reached that kinetic parameter estimation with multi-response data is favored in 

terms of parameter reliability [20-22]. Central to this realization in the model development is the 

formation of optimization objective functions from multiple responses. Although least squares or 

weighted least squares functions are often formulated as the optimization targets in previous model 

developments [16-19], they have been reported to have limitations when dealing with multi-response 

data [21,23]. In order to avoid this problem, multiple objectives are optimized simultaneously instead 

of combining them into one single objective. 

Providing confidence intervals for estimated model parameters is necessary for assessing the 

reliability of the developed model. A profile likelihood method is adopted in this research as 

suggested by Raue et al. [24]. This work demonstrates a novel method for improving parameter 

estimates of kinetic models of enzymatic hydrolysis. 

2. Hydrolysis kinetic model  

The multireaction model proposed by Kadam et al.[16] is sophisticated enough to describe the 

complexities of enzymatic hydrolysis of lignocellulosic biomass. It includes adsorption mechanism 

of cellulase components onto substrate, considers end-product (C6 and C5 sugar) inhibitions and 

incorporates substrate reactivity change due to variations in crystal structure, degree of 

polymerization and substrate accessibility among other reasons. Based on experimental observations, 

Scott et al. [19] made some modifications about this model: elimination of the inhibitory effect of 

xylose on β-glucosidase, incorporation of acetic acid inhibitory effect and consideration of the 

change of the activity of the adsorbed enzymes. The modified reaction scheme is illustrated in 

Figure 2. As shown, there are three major reactions: 1) cellulose conversion to cellobiose, 

2) cellulose conversion to glucose, and 3) cellobiose conversion to glucose. Dashed lines indicate 

inhibitory effects caused by acetic acid, sugars, and intermediate products.   

Enzyme adsorption onto the lignocellulosic substrates have been described by a Langmuir 

model [25] formulated as Equation (1): 

.                                                   (1) max 1,2
1

i iad iF
iB

iad iF

E K E S
E i

K E
  


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Figure 2. Reaction scheme for cellulose enzymatic hydrolysis. Enzymes involved in r1: 

endo-β-1,4-glucanase (EC 3.2.1.4) and exo-β-1,4-cellobiohydrolase (CBH) (EC 3.2.1.91). 

Enzymes involved in r2: exo-β-1,4-cellobiohydrolase (CBH) (EC 3.2.1.91) and 

exo-β-1,4-glucan glycohydrolase (EC 3.2.1.74). Enzymes involved in r3: β-glucosidase. 

Dashed lines show the inhibition effects of sugars and acids on enzymes (adapted from 

Kadam et al. [16]). 

Equations (2)–(4) describe the reaction rates shown in Figure 2 are: 

                            (2) 

  2 1
2 2 0

2 2 2 2 5 2 2

1
1 / / / /

r B S

IG IG IX IA

k E R S
r b S

G K G K C K A K
 

   
                          (3) 

 
3 2 2

3

3 3 3 21 / /

G r F

M IG IA

f k E G
r

K G K A K G




  
                                         (4) 

where r1 represents the reaction rate for the Cellulose-to-Cellobiose reaction with competitive 

glucose, cellobiose, C5 sugar and acetic acid inhibition, r2 is reaction rate for the 

Cellulose-to-Glucose reaction with competitive glucose, cellobiose, C5 sugar and acetic acid 

inhibition, r3 is the reaction rate for the Cellobiose-to-Glucose reaction with competitive glucose and 

acetic acid inhibition. The substrate reactivity is correlated as 

0

S

S
R

S
                                                                (5) 

Mass balances for cellulose, cellobiose, glucose and enzymes are 

1 2

d

dt

S
r r                                                               (6) 

2
1 3

d
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  1 1
1 1 0

2 1 2 1 5 1 1

1
1 / / / /

r B S

IG IG IX IA

k E R S
r b S

G K G K C K A K
 

   



57 

 

AIMS Energy  Volume 4, Issue 1, 52-67. 

2 3

d
1.111 1.053

dt

G
r r                                                      (8) 

iT iF iBE E E                                                             (9) 

where, 1.056, 1.111 and 1.053 are molecular mass ratio of Cellobiose/Cellulose (substrate), 

Glucose/Cellulose, and Glucose/Cellobiose. 

This mathematical model considers the effects of substrate and enzyme loadings, sugar and acid 

inhibitions, and decreasing activities of substrate and bounded enzymes on the production of glucose. 

In general, increasing substrate loading or decreasing enzyme loading reduces the yield of glucose. 

Increasing sugar and acid content impede the production of glucose. As reported in [19], the 

substrate loading also affects the amount of enzyme that can be bounded to substrate. In order to 

estimate the parameters quantifying these relationships, it is preferable to select experimental 

datasets that measure the production of glucose and cellobiose with respect to substrate loading, 

enzyme loading, sugar and acid content.  

3. Methods 

The general methodology adopted by this study is shown in Figure 3. First, we process 

experimental data and design an appropriate kinetic reaction model. Then, we calibrate the model 

parameters to gather initial guesses before optimizing the model objective functions. Finally, we 

analyze the reliability of the developed model and calculate parameter confidence levels to estimate 

the uncertainty ranges for the obtained parameters. An optional step is to modify the kinetic reaction 

model based on initial optimization results and model reliability analysis. This is often needed when 

the initial model is not an accurate representation of the experimental process. 

 

Figure 3. Kinetic model design, calibration, optimization, and parameter confidence 

level estimate methodology. 

3.1. Experimental data 

This study employs experimental data published by Scott et al. [19] and shown in Table 1. This 

experimental dataset includes varying initial solid loadings (10–25% w/w), and the use of the 

pretreatment liquor and washed solids with or without supplementation of key inhibitors. Feedstock 

types include full slurry (F), washed solids (W), W with acetic acid, W with a sugar stock solution, 

and W with only Glucose (G). The glucan content in the solids varies between 53.2 and 63.2 weight 
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percent. Enzyme dose in filter paper units (FPU) per gram of glucan varies between 5.4 and 25.0. 

The table also provides initial soluble solids content in g/kg feedstock of cellobiose, glucose, xylose, 

arabinose, and acetic acid. A total of 12 experimental dataset were employed to calibrate the model 

parameters. Both glucose and cellobiose versus time were measured in the dataset. Details about the 

experimental setup are provided by Scott et al. [19]. 

Table 1. Initial experimental conditions for enzymatic hydrolysis of cellulose to 

sugars (adapted from [19]) 

No. Feedstock
a 

SF
b
 Glucan

c
 ET 

d 
G20 G0 X0 Ar0 Ac0 

Exp1 F 0.15 63.2 25.0 1.26 24.07 63.87 10.57 12.20 

Exp2 F 0.15 63.2 8.2 1.26 24.17 64.20 10.57 12.20 

Exp3 W 0.10 60.1 9.6 0.0 0.0 0.0 0.0 0.0 

Exp4 F 0.10 60.1 9.6 1.57 16.47 44.14 7.01 8.16 

Exp5 F 0.15 63.2 9.6 1.26 24.05 64.44 10.57 12.20 

Exp6 W+Ac. A 0.15 63.2 9.6 0.0 0.0 0.0 0.0 12.20 

Exp7 W 0.15 63.2 9.6 0.0 0.0 0.0 0.0 0.0 

Exp8 W+Sug. 0.15 63.2 9.6 1.26 24.05 64.44 10.57 0.0 

Exp9 W 0.13 60.1 9.6 0.0 0.0 0.0 0.0 0.0 

Exp10 W+G 0.10 53.2 5.4 0.0 140.07 0.0 0.0 0.0 

Exp11 W 0.25 53.2 16.2 0.0 0.0 0.0 0.0 0.0 

Exp12 W 0.25 53.2 5.4 0.0 0.0 0.0 0.0 0.0 

Initial soluble solids content [g/kg]: G20: cellobiose; G0: glucose; X0: xylose; Ar0: arabinose; Ac0: acetic acid. 
a F: full slurry; W: washed solids; Ac. A: acetic acid; Sug: sugar stock solution; G: glucose 
b Solid fraction as weight percent of insoluble solids. 
c Glucan percentage content in solids. 
d Enzyme dose in filter paper units (FPU) per gram of glucan. 

3.2. Parameter estimation 

Equation (6)–(9) can be written in a general form: 

 ( ) ( ), ,t t tx f x θ                                         (10) 

    t ty g x                                             (11) 

where, f is reaction rate vector composed of Equation (2)–(4). State variables x(t) correspond to the 

measured concentrations of cellulose (S), cellobiose (G2), and glucose (G) in Equation (2)–(4). θ is 

p-dimensional vector of model parameters to be estimated. g is mapping function vector from state 

variables x(t) to the observables y(t), which is usually a conversion from measured variables to target 

variables.  

The estimation of model parameters θ is achieved by optimizing the objective functions which 

represent the fitness of the observables predicted by the model to the experimental data. The 

objective functions are usually written as mean squared residuals (also called mean squared error) 
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and mean cross-product of residuals, and constitute an objective matrix V. In this calibration, there 

are two observables (glucose and cellobiose) from experimental measurements [19]. The objective 

matrix has 2 by 2 dimensions and it can be written as 

        

        

2

1 1 1 1 2 2

1 1 1 1

2

1 1 2 2 2 2

1 1 1 1

1 1
, , ,

1 1
, , ,

i i

i i

N ND D
i i i i i i

n n n n n n

i n i ni i

N ND D
i i i i i i

n n n n n n

i n i ni i

y y t y y t y y t
N N

y y t y y t y y t
N N

   

   

 
   

 
 
   
  

 
 

 
 

θ θ θ

V

θ θ θ

 

where, 1

i

ny denotes n
th

 data point for 1
st
 observable measured at time point tn in the i

th
 experiment, 

 1 ,i

ny t is the model prediction of 1
st
 observable at time point tn under the i

th
 experimental condition. 

In our study, the diagonal elements of matrix V are chosen as the objectives. The two objective 

optimization problem is formulated as 

     
2 2

1 1 2 2

1 1 1 1

1 1ˆ argmin , , ,
i iN ND D

i i i i

n n n n

i n i ni i

y y t y y t
N N   

 
     

  
 

 
θ θ θ       (12) 

subject to 
min max θ θ θ . 

The two formulated objectives indicate the difference between model predictions and 

experimental measurements of cellobiose concentration and glucose concentration separately. In 

most situations, the experimental measurement accuracy for different variables is not the same. The 

advantage of the proposed multi-objective regression method is to allow the user to obtain a set of 

solutions which have different objective combinations. The user can determine the final solutions 

afterwards based on their scientific or empirical judgment.  

3.3. Model reliability analysis and parameter confidence intervals 

Model reliability analysis is based on the likelihood profiling method as suggested in [24]. 

Accurate confidence intervals can also be derived from the model reliability analysis. The idea of the 

approach is to explore the parameter space for each parameter in the direction of the least increase of 

the determinant of objective matrix | |V , it is achieved by 

       
2 2

1 1 2 2

1 1 1 1

1 1
argmin , , ,

i i

j k

N ND D
i i i i

k n n n n

i n i ni i

y y t y y t
N N 




   

 
    

  
 

 
V θ θ     (13) 

where, component 
k (k = 1, 2,…, p) is fixed in a single optimization and the rest parameters are 

re-calibrated with the initial values from θ̂ . The k
th
 dimension of parameter space is gradually 

explored by changing
k . In this sense, the direction of the least increase in likelihood | |V  can be 
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found after the exploration of
k . 

The upper limit of | |V  increase in terms of 
k is controlled by 

 

 
 2ln , ,

ˆ
N df 

V θ

V θ
                                     (14) 

where θ̂  is the best estimate and N is the total number of experimental points. α is the significant 

level and df is the degree of freedom in the chi-squared distribution. The slope of | |V in the least 

increase direction indicates the reliability of the model. If the slope is small, it takes long steps to 

reach the upper limit of | |V , so that the parameter has a wide confidence interval. Otherwise, the 

parameter has a narrow confidence interval. 

3.4. Implementation 

Multi-objective parameter estimation is achieved by adopting a novel approach based on a 

Multi-Objective Particle Swarm Optimization (MOPSO) method [26]. MOPSO is a novel technique 

designed to address global optimization problems with multiple, competing objectives. This class of 

problems yield multiple possible solutions of equal merit known as a Pareto optima. Additionally, the 

solution sets provide statistical information regarding the confidence levels of the parameters. Details 

regarding our MOPSO implementation are provided in the Supplementary.  

The code is written in C++ and Object-Oriented Programming concept is applied. The basic 

structure of the algorithm is shown in Figure 4. A data unit class is employed in order to enhance data 

transfer between other three classes: ExpData, Reaction and Residual. ExpData mainly composes 

experimental data input and data elements. Reaction includes reactor model implementation and an 

ordinary differential equation (ODE) solver wrapper. CVODE library [27] is used to integrate ODEs 

 

Figure 4. Schematic of algorithm structure. 
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in this study. Class Residual implements mapping from state variables to response variables, 

extracting prediction data to match with experimental dataset, and calculating objective values. 

4. Results and Discussion 

Parameter calibration was accomplished by selecting initial values identified in the analysis of 

Scott et al. [19]. These values were determined by a weighted least squares regression of the model 

described in Figure 2 to the experimental data. An additional parameter estimation searched through 

a wide parameter range that is 100 times larger or smaller than the initial parameter values. The 

optimization model goal was to minimize the residual errors between the kinetic model predictions 

and experimental data. For this purpose, we developed a multi-objective formulation of the kinetic 

model that simultaneously minimizes residual errors between predicted and observed yields of 

glucose and cellobiose. This is an important feature of the algorithm because it allows the user to 

determine which objective is more important and select optimal parameters based on multiple 

criteria. 

4.1. Comparison of kinetic model predictions to experimental data  

This study compares the performance of the kinetic model parameters gathered by the modified 

MOPSO algorithm to Scott et al. [19]. Figure 5 compares the mean squared errors of cellobiose and 

glucose between the two models. The MOPSO algorithm generates a set of solutions and each 

solution is an estimate of model parameters. The solution sets constitute a Pareto front in the 

corresponding objective function coordinates. Compared to the best estimate obtained by Scott et 

al. [19], some MOPSO solutions improve on a single objective while the other objective is degraded. 

A subset of MOPSO solutions achieve lower mean squared errors for both cellobiose and glucose in 

the lower left corner. 

The minimum mean squared error limit for the first objective (glucose) is approximately 6.6, 

and for the second objective (cellobiose) the limit is approximately 2.3. The Pareto front shows 

solutions for which reducing the error in one objective can only be accomplished by increasing the 

error in the other objective. The parameters gathered by Scott et al. [19] achieve residual errors of 

12.69 and 2.98 for glucose and cellobiose (see Table 2), respectively. Although all the Pareto 

solutions are optimal, solutions in the lower left (marked as black circular dots) of Figure 5 are 

attractive because of their improved fitness for both glucose and cellobiose yields.  

Table 2 shows two selected solutions from MOPSO and Scott et al. [19]. The mean squared errors for 

glucose yield predictions decreased from 12.69 to 8.317 for MOPSO1—a 34% reduction; for 

cellobiose the error reduction was only 2.7 % and even increased in the other case. According to the 

determinant criteria (Equation 14), MOPSO estimates (both MOPSO1 and MOPSO2) achieve a 

statistically significant improvement compared to the previous model. Furthermore, some parameters 

such as K1IG2, K1IX, and k1r are orders-of-magnitude different than the original values although they 

achieve similar predictions. fβG is kept to 1.0 since there is no evidence showing the decreasing activity 

of β-glucosidase enzyme.  
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Table 2. Parameter estimates from MOPSO and Scott et al. [19]. 

 K1IG2 K2IG2 K1IX K2IX k1r K1IG k2r K2IG k3r K3M 

MOPSO1 6.28e-4 63.1050 6.843e-3 4.5515 2451.23 877.9974 4.894e-2 20120.4 20590.4 1.9861 

MOPSO2 2.5557 102.0897 18.7779 4.2967 0.8022 448.4742 4.752e-2 16264.4 17461.8 1.9106 

Scott 0.041 4.264 0.395 5.877 28.65 22.658 0.422 1.00e06 128.4 0.301 

 K3IG K1IA K2IA K3IA b1 b2 fβG R G RG2 Det 

MOPSO1 1.689e-2 10.2570 1.2223 1143.372 6.7369 4.280 1.0(f) 8.317 2.90 21.24 

MOPSO2 1.967e-2 65.4988 0.5055 751.1735 6.8027 4.3254 1.0(f) 8.221 2.99 21.82 

Scott 0.612 1.00e6 2.97 1.00e6 6.822 6.376 0.766 12.69 2.98 37.18 

(f) represents the parameter is fixed; RG is mean squared errors for glucose; RG2 is mean squared errors for cellobiose; 

Det represents the determinant of residual matrix. 

 

Figure 5. Kinetic model comparison of mean squared errors between model 

prediction and experimental data. X axis shows mean squared error of glucose and Y 

axis represents mean squared error of cellobiose; E

GY  and P

GY  are glucose 

concentrations measured in experiments and predicted by model; 
2

E

GY  and 
2

P

GY  are 

cellobiose concentrations measured in experiments and predicted by model; N is the total 

number of experimental points; black circular dots show the mean squared errors of 

glucose and cellobiose that are both smaller than Scott’s model [19].  

Figure 6 compares experimental data to model predictions from MOPSO and Scott et al. [19]. 

In this comparison, we selected the MOPSO2 solution and the estimated parameter values are shown 

in Table 2. As shown, both models achieve a qualitatively suitable representation of the experimental 

trends in all cases. The main differences observed in the predictions of glucose production are found 

in the 10
th

, 11
th

 and 12
th
 experimental conditions shown in Figure 6. MOPSO improves upon the 

Scott’s model by reducing the mean squared errors of glucose from 156.76 to 48.57 in 10
th

 

experiment. The model by Scott et al. appears to overpredict the production of glucose under initial 

high glucose concentration, while MOPSO yields a more accurate prediction of the inhibitory effects 

of glucose. MOPSO overpredicts the production of glucose at lower enzyme loading as in 12
th
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experiment condition. However, additional experimental data would be required to validate these 

observations given the likelihood of uncertainty in the experimental measurements. 

 

Figure 6. Experimental data and model predictions for glucose and cellobiose 

concentrations vs reaction time. Square dots are experimental measurements of glucose 

and circle dot are experimental measurements of cellobiose; Solid lines are predictions 

based on MOPSO estimates; Dash lines are predictions from Scott et et al. [19].  

4.2. Kinetic model reliability analysis and parameter confidence intervals 

Figure 7 shows the result of exploiting profile likelihood along each parameter space. The 

profile of the likelihood in terms of parameter value provides the information of model reliability. 

The model reliability is reduced in the case that the likelihood profile does not increase or only 

increase slowly in either one side exploring direction or both sides (increase and decease of 

parameter value) in the parameter coordinate. Correspondingly, the parameter has a wide confidence 

interval in this case. The model is usually said non-identifiable if the increase in the likelihood is 

slow and statistically insignificant when the parameter value increases or decreases. One of the 

advantages of likelihood profiling method is to allow us to visually evaluate the likelihood profile in 

each parameter space. 

The likelihood (det (V)) does not increase in the parameter space of K2IG2, K1IG, K2IG, K1IA, and 

K3IA except approaching the natural lower bound of 0. Scott et al. [19] points out that reducing the 

number of estimated parameters can tighten the confidence intervals by fixing some parameters in 
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the calibration. In their best model, the above five parameters are fixed along with K1IG2, k3r, K3M, 

K3IG. The underlying reason is that these parameters are non-identifiable which results in the wide 

range of parameter confidence intervals when they are included in the model. Reducing the 

parameter redundancy as shown in Scott et al. [19] is one way to increase model reliability. An 

alternative is to improve experimental design. Considering the experimental design as shown in 

Table 1, the amount of sugars (cellobiose and glucose) and acetic acid do not change much from 

experiment to experiment, which is not favorable to quantifying the inhibitory effects of the sugars 

and acetic acid. Further design of experiments can be based on this knowledge and improve model 

parameter reliability.  

 

Figure 7. Exploration of profile likelihood along each parameter space. Black dots 

show the det(V) value achieved after re-optimization vs each parameter; solid lines are 

fitted trend lines; dash lines are the upper limit of det(V) according to Equation (14) with 

5% percentile of a Chi-squared distribution and 16 degrees of freedom. 

The likelihood in some parameters such as K1IX, k1r, k3r, K3IG and b2 changes gradually but the 

gradient is relatively small which results in either unclosed confidence intervals or large confidence 
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intervals. Among all the reasons, one of them is still related to inadequate experiment design which 

gives good explanations for likelihood profile in terms of K1IX and K3IG. Correlations between 

parameters might be another reason, for example, k1r might have strong correlations with K1IG, K1IA 

and K1IX. In summary, exploiting profile likelihood is helpful to analyzing the reliability of the 

estimates and serve as a powerful tool in model-based experiment design.  

Another virtue of exploiting likelihood profile is to obtain accurate confidence intervals. Table 3 

shows upper and lower limits for the MOPSO kinetic model parameters with a 95% confidence level. 

Most of the parameters have wide or undefined confidence intervals, which indicates that there is 

insufficient experimental data to provide a robust estimate of the kinetic parameters in the model.  

Table 3. Estimated MOPSO kinetic model parameter values and minimum and 

maximum confidence intervals at the 95% level. 

 K1IG2 K2IG2 K1IX K2IX k1r K1IG k2r K2IG 

MOPSO2 2.5557 102.0897 18.7779 4.2967 0.8022 448.4742 4.752e-2 16264.4 

CI
95%

 0.6389 2.317 4.5632 - 0.3486 14.5754 1.59e-2 - 

21.50 - - 43.8778 - - 0.3 - 

 k3r K3M K3IG K1IA K2IA K3IA b1 b2 

MOPSO2 17461.8 1.9106 1.967e-2 65.4988 0.5055 751.1735 6.8027 4.3254 

CI
95%

 460.1 1.92e-2 - - - - 5.7260 - 

- 9.2097 1.4476 - 16.7698 - 7.1884 6.0642 

CI95% refers to the confidence interval with 0.95 confidence level. (-) in the tables indicates the upper or lower intervals 

are undetermined based on the likelihood profile method within approximately 20 times or 1/20th times of the estimates.  

5. Conclusions 

Lignocellulosic ethanol production is a sustainable alternative for the production of renewable 

fuels. This study investigated the enzymatic hydrolysis of lignocellulosic biomass to produce 

fermentable sugars. Kinetic models for this process are an important part of estimating the technical 

and economic performance of lignocellulosic ethanol biorefineries. 

This paper describes the use of a novel multi-objective parameter estimation method for 

developing reliable hydrolysis kinetic models. Estimates from the multi-objective regression shows a 

statically significant improved fit to the experimental data compared to previous studies. We 

achieved improved predictions for the yields of glucose and cellobiose from cellulose in the presence 

of high glucose content. Furthermore, we analyzed model reliability by adopting the likelihood 

profiling method. This method allows us to efficiently analyze which parameters contribute to model 

non-identifiability and identify possible ways to improve model reliability. Parameter confidence 

intervals are accurately determined with this method.  

Comparisons of the kinetic models to experimental data indicate qualitative agreement between 

predicted and measured glucose and cellobiose yields. We developed inferences about the underlying 

phenomena and acknowledge uncertainty in the experimental measurement. Additional experimental 

data could improve the accuracy of the model parameter estimates and our ability to predict the 

performance of enzymatic hydrolysis in future research. 
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