
Tightly-Secure PAK(E)

José Becerra1, Vincenzo Iovino1, Dimiter Ostrev1, Petra Šala12, and Marjan
Škrobot1

1 University of Luxembourg
{name.lastname}@uni.lu,

2 École Normale Supérieure, Computer Science Department

Abstract. We present a security reduction for the PAK protocol in-
stantiated over Gap Diffie-Hellman Groups that is tighter than previ-
ously known reductions. We discuss the implications of our results for
concrete security. Our proof is the first to show that the PAK protocol
can provide meaningful security guarantees for values of the parameters
typical in today’s world.

Keywords: Password-Authenticated Key Exchange, PAK, Tight Reductions,
Random Oracle.

1 Introduction

1.1 PAKE protocols

A password authenticated key exchange (PAKE) protocol allows two users who
only share a password to establish a high entropy shared secret key by exchang-
ing messages over a hostile network. PAKE protocols have only minimal require-
ments for the long-term secrets that users need to hold in order to succeed and
therefore are interesting both theoretically and in practice. To date, there have
been over twenty years of intensive research on PAKE, and PAKE protocols
have recently seen more and more deployment in applications such as ad hoc
networks [35] or the Internet of Things [32].

Numerous PAKE protocols have been proposed over the years. Among them,
only a handful have been considered for use in real-world applications: EKE
[6], SPEKE [17], SRP [36], PPK and PAK [8,26,25], KOY [19], Dragonfly [15],
SPAKE2 [3] and J-PAKE [14]. The last two protocols, along with SRP and
Dragonfly that have been standardized in the form of RFC2945 and RFC7664
respectively, are currently being considered by the Internet Engineering Task
Force (IETF).

When evaluating different PAKE designs, two main criteria are the protocol’s
efficiency in terms of computation and communication, and the security guaran-
tees that the protocol provides. Of these two criteria, the efficiency is easier to
understand by just looking at the protocol description. On the other hand, it is
difficult to judge whether a protocol is secure. A necessary condition for security
is that no attacks on the protocol have been found so far, but most researchers
agree that this is not sufficient.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/145232946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.2 Security models and reductions for PAKE

One way to rigorously discuss the security of PAKE protocols is to formally
define a security challenge: an interaction between two algorithms called a chal-
lenger and an adversary. The interaction is designed to model the capabilities
that a real world adversary is believed to have; the success of an adversary in
the security challenge corresponds to a successful attack on the protocol. Sev-
eral such security models have been introduced over the years. A few prominent
ones are the indistinguishability-based models of Bellare, Pointcheval and Rog-
away [5] and Abdalla, Fouque and Pointcheval [2], the simulation-based model of
Boyko, MacKenzie and Patel [8]3, and the Universally Composable (UC) model
of Canetti et al. [9].

In this approach, the security of a protocol is established in the following
way: given an adversary A that runs in time t and has success probability ε in
the security challenge, one constructs an algorithm BA known as a reduction.
BA runs A as a subroutine and solves some known hard computational problem
in time t′ and with success probability ε′. If it is widely believed that it is
impossible to solve the hard computational problem in time t′ and with success
probability ε′, then one can conclude that no adversary running in time t can
have a probability of ε to successfully attack the protocol.

1.3 Online dictionary attacks

Security models for PAKE must properly account for online dictionary attacks,
in which an adversary guesses a password and tries to run the protocol with
one of the honest users to verify the guess. Since passwords come from a small
set, this attack has a non-negligible chance of success. Online dictionary attacks
cannot be entirely prevented, but their effects can be mitigated to some extent
for example by requiring users to choose strong passwords, limiting the number
of unsuccessful login attempts, or even using machine learning to detect a pattern
in login attempts that suggests an online dictionary attack might be in progress.

From the point of view of cryptographic research on PAKE, online dictionary
attacks and the countermeasures listed above are taken as given; the focus is
on ensuring that the adversary can do essentially no better than to run the
best online dictionary attack in the circumstances. This intuitive requirement is
formalized differently in indistinguishability-based and simulation-based models.
In the indistinguishability-based model that we use in this paper4, the formal
requirement is that for all PPT adversaries A that perform at most n online
dictionary attacks,

Adv(A) ≤ F(D,L, n) + ε (1)

3 For the relation between the indistinguishability-based and simulation-based models,
see the recent work [23].

4 A detailed description of the FtG model of Bellare, Pointcheval and Rogaway [5] can
be found in Section 4.

where Adv(A) is the advantage5 of the adversary in breaking the protocol, where
F(D,L, n) is the maximum probability of success6 of any password guessing
strategy that uses n guesses against a password distribution D and login attempt
policy L, and where ε is a negligible term.

In the present work, we focus on the behavior of the term ε of equation (1).
A precise theoretical or empirical characterization of the function F(D,L, n)
is an important and interesting research question, but is outside the scope of
this paper. Here, we merely mention that many previous works use the formu-
lation F(D,L, n) = n/N of [5,2] which corresponds to making the simplifying
assumptions that there is no login attempt policy and that passwords are in-
dependent and uniformly distributed from a dictionary of size N . On the other
hand, some recent research [33] suggests that real-life passwords follow Zipf’s
law, and proposes [34, Section 3] the formulation F(D,L, n) = Cns where C, s
are parameters that have to be estimated empirically. Our results regarding the
behavior of the term ε of equation (1) hold independently of the password dis-
tribution and login attempt policy, and in particular, they hold for any of the
cases mentioned above.

1.4 The PAK protocol

One of the PAKE protocols whose security has been studied in the provable
security framework is the PAK protocol [8,26,25]. It is a PAKE protocol with
several desirable characteristics: low computation and communication cost, and
security proofs in two different security models: the simulation-based model of
Boyko, MacKenzie and Patel [8] and the so-called Find-then-Guess (FtG) model
of Bellare, Pointcheval and Rogaway [5]. A modified version of PAK has been
used to detect man-in-the-middle attacks against SSL/TLS without third-parties
[10], and a lattice-based version of PAK has been used to provide security against
quantum adversaries [11]. Moreover, variants of the PAK protocol have been
included in IEEE standard [16], while the patent held by Lucent Technologies
[27] is expiring soon. Therefore, the PAK protocol is a candidate for wide-scale
practical deployment.

While there are security proofs for PAK in two different models, in both
cases the reductions are loose, meaning either that the running time t′ of the
reduction BA is much larger than the running time t of the adversary A or that
the success probability ε′ of BA is much smaller than the success probability ε
of A, or some combination of the two.

A loose reduction is usually considered less than ideal. From a qualitative
point of view, a reduction gives the assurance that “breaking the protocol is at
most a little easier than solving the hard computational problem” [12]. However,
if a reduction is loose, it leaves open the possibility that “a little easier” is in
fact “substantially easier”. From a quantitative point of view, a loose reduction
means that larger security parameters must be chosen to guarantee a given level

5 The advantage is twice the success probability minus one.
6 By success we mean guessing the password of any user.

of security, which in turn increases the communication and computation cost of
the protocol; therefore, a tight reduction is considered preferable [4].

We illustrate the last point by looking in detail at the best previous result
for PAK [25, Theorem 6.9], which we reproduce here for convenience.

Theorem 1 (Theorem 6.9 in [25]). Consider the PAK protocol7 instantiated
over a group G = 〈g〉 of order q and with password dictionary of size N . Let A
be an adversary that runs in time t and performs at most nse, nex, nre, nco, nro
queries of type SendSend, ExecuteExecute, RevealReveal, CorruptCorrupt, Random OracleRandom Oracle and a single TestTest
query. Let Adv(A) be the advantage of this adversary in the security challenge
as defined in the FtG model8. Let texp be the time required for an exponentiation
in G. Then, for t′ = O(t+ ((nro)

2 + nse + nex)texp)

Adv(A) =
nse
N

+O

(
nseAdvl - cdh

G (t′, (nro)
2) +

(nse + nex)(nro + nse + nex)

q

)
(2)

where Advl - cdh
G (t′, (nro)

2) is the maximum success probability of an algorithm
that is allowed to run for time t′ and to output a list of (nro)

2 candidate solutions
to the CDH problem, and succeeds if at least one solution in the list is correct.

We plug in some concrete values in the above theorem. For the order of the
group q, we use the recommended q ≈ 2256 for long-term security from [12,
Chapter 7]. For the number of random oracle queries, we take nro ≈ 263, the
number of SHA1 computations performed in the recent attack [31]. Next, we use
the approximation that solving the discrete logarithm problem in group G takes
about

√
q ≈ 2128 operations [22, Section 7]. We see that with these values of the

parameters, we can estimate

Advl - cdh
G (t′, (nro)

2) ≈ 1

and therefore the term

nseAdvl - cdh
G (t′, (nro)

2) >> 1

makes the right hand-side of Eq.2 meaningless in bounding Adv(A), which, by
definition, is a number less than or equal to 1. This means that we cannot
reasonably claim that the security proof gives the guarantee ”an adversary can
essentially do no better than an online dictionary attack”, except in the trivial
case when the online dictionary attack itself succeeds with probability close to
one.

1.5 Our contribution

We provide a tight reduction for PAK instantiated over Gap Diffie-Hellman
groups; these are groups in which solving the Decisional Diffie-Hellman Problem

7 A detailed description of the protocol is in Section 3.
8 A detailed description of the FtG model of Bellare, Pointcheval and Rogaway [5] can

be found in Section 4.

is easy but solving the Computational Diffie-Hellman problem is equivalent to
solving the Discrete Logarithm Problem and is believed to be hard [18]9. We
employ proof techniques that have been used previously in [1,20].

The formal statement of our result can be found in Theorem 2.

Theorem 2. Consider the PAK protocol instantiated over a Gap Diffie-Hellman
group G1 = 〈g〉 of order q and with password dictionary of size N . Let A be an
adversary that runs in time t and performs at most nse, nex, nre, nco, nro queries
of type SendSend, ExecuteExecute, RevealReveal, CorruptCorrupt, Random OracleRandom Oracle and a single TestTest query.
Let Adv(A) be the advantage of this adversary in the security challenge as defined
in the FtG model. Let texp and tddh be the time required for an exponentiation
in G1 and deciding DDH in G1, respectively. Then, for t′′ = O(t+ (nro + nse +
nex)texp + (nse + nro)tddh)

Adv(A) ≤ F(D,L, nse) + 8Advgap - cdh
G1

(t′′) +O

(
(nse + nex)(nro + nse + nex)

q

)
(3)

where Advgap - cdh
G1

(t′′) is the maximum success probability of an algorithm that is
allowed to run for time t′′ in solving the Gap-Diffie-Hellman (Gap-DH) problem
in group G1.

We perform a similar analysis of our result as in the previous section, using the
same values of q, and nro. Since t′′ << 2128 (assuming the most powerful ad-
versaries today have t at most ≈ 280 to 285), we can assume that Advgap - cdh

G1
(≈

285) / 2−35. Furthermore, the term O ((nse + nex)(nro + nse + nex)/q) is negli-
gible compared to the other two terms. Thus, by using the tight reduction, we
are able to obtain the guarantee: assuming that Advgap - cdh

G1
(≈ 285) / 2−35 then

for all adversaries A with running time t / 285, the advantage in breaking the
PAK protocol instantiated over a Gap Diffie Hellman group of order ≈ 2256 is at
most ≈ 2−30 higher than the advantage of breaking the protocol using the best
online dictionary attack for the given password distribution and login attempt
policy.10

Thus, by relying on the Gap-Diffie-Hellman assumption instead of the List-
Diffie-Hellman assumption as in [25] we are able to remove the degradation fac-
tors that cause the previous security proof for PAK to fail to provide meaningful
guarantees for typical values of the parameters in today’s world.

1.6 Organization of the paper

The rest of the paper is organized as follows: in Section 2, we introduce notation
and give details on the Gap Diffie-Hellman groups and hardness assumptions

9 More details on Gap Diffie-Hellman groups and the relevant computational problems
and assumptions are given in Section 2.

10 We refer to [34, Figure 4] for an estimation of the advantage of online dictionary
attacks as a function of the number of guesses for two real-world password datasets.

used in this paper. In Section 3, we give a detailed description of the PAK pro-
tocol. In Section 4, we introduce the security model FtG of Bellare, Pointcheval
and Rogaway [5]. In Section 5, we prove our main result. We conclude the paper
in Section 6.

2 Preliminaries

In this section, we introduce notation, define pairings, and state the hardness
assumptions upon which the security of PAK protocol rests.

2.1 Notation

We write d
$←− D for sampling uniformly at random from set D and |D| to

denote its cardinality. The output of a probabilistic algorithm A on input x is
denoted by y ← A(x), while y := F (x) denotes a deterministic assignment of
the value F (x) to the variable y. Let {0, 1}∗ denote the bit string of arbitrary
length while {0, 1}l stands for those of length l. Let κ be the security parameter
and negl(κ) denote a negligible function. When we sample elements from Zq,
it is understood that they are viewed as integers in [1 . . . q], and all operations
on these are performed mod q. In general, we use G to denote any cyclic group
while G1 refers to a bilinear group. Let H1 be a full-domain hash mapping {0, 1}∗
to G1. All remaining hash functions, H2, H3 and H4, map from {0, 1}∗ to {0, 1}κ.

2.2 Cryptographic building blocks

Let G1,GT be cyclic groups of prime order q and g a generator of G1.

Definition 1. A bilinear map is a function e : G1 × G1 → GT such that the
following properties are satisfied:

1. Bilinear: ∀ u, v ∈ G1, a, b ∈ Zq, e(ua, vb) = e(u, v)ab.

2. Non-degenerate: e(g, g) generates GT .

3. Computable: ∀ u, v ∈ G1, a, b ∈ Zq, there is an efficient algorithm to compute
e(ua, vb).

Definition 2. (Bilinear Group). G1 is a bilinear group if there exists group GT
and a bilinear map e : G1 ×G1 → GT .

2.3 Cryptographic hardness assumptions

Let G be any multiplicative cyclic group, with generator g and |G| = q. For
X = gx and Y = gy, let DH(X,Y) = gxy, where {gx, gy, gxy} ∈ G.

Definition 3. (Computational Diffie-Hellman (CDH) Problem). Given (g, gx,

gy) compute gxy, where {gx, gy, gxy} ∈ G and (x, y)
$←− Z2

q. Let the advantage of
a PPT algorithm A in solving the CDH problem be:

Advcdh
G (A) = Pr [(x, y)

$←− Z2
q, X = gx, Y = gy : A(X,Y) = DH(X,Y)].

CDH assumption: There exist sequences of cyclic groups G indexed by κ such
that for all PPT adversaries A Advcdh

G (A) ≤ negl(κ), where κ is the security
parameter.

Definition 4. (List-Computational Diffie-Hellman (L-CDH) Problem). Given

(g, gx, gy) compute gxy, where {gx, gy, gxy} ∈ G and (x, y)
$←− Z2

q. Let A be a
PPT algorithm which attempts to solve the L-CDH problem and outputs a list
of n elements, its advantage is defined as follows:

Advl - cdh
G (A, n) = Pr [(x, y)

$←− Z2
q, X = gx, Y = gy : DH(X,Y) ∈ A(X,Y)].

L-CDH assumption: There exist sequences of cyclic groups G indexed by κ such
that for all PPT adversaries A Advl - cdh

G (A, n) ≤ negl(κ), where κ is the security
parameter.

Definition 5. (Decision Diffie-Hellman (DDH) Problem). Distinguish a tuple

(gx, gy, gxy) from (gx, gy, gz), where {gx, gy, gz} ∈ G1 and (x, y, z)
$←− Z3

q. Let
the advantage of a PPT algorithm A in solving DDH problem be:

Advddh
G (A) = |Pr [(x, y)

$←− Z2
q, X = gx, Y = gy, Z = gxy : A(X,Y, Z) = 1]

− Pr [(x, y, z)
$←− Z3

q, X = gx, Y = gy, Z = gz : A(X,Y, Z) = 1]|. (4)

DDH assumption: There exist sequences of cyclic groups G indexed by κ such
that for all PPT adversaries A Advddh

G (A) ≤ negl(κ), where κ is the security
parameter.

Gap Diffie-Hellman (Gap-DH) groups are those where the DDH problem can
be solved in polynomial time but no PPT algorithm can solve the CDH problem
with advantage greater than negligible, e.g. bilinear groups from Def. 2. More
formally:

Definition 6. (Gap-Diffie-Hellman (Gap-DH) Problem). Given (g, gx, gy) and
access to a Decision Diffie-Hellman Oracle (DDH-O) compute gxy.

Adv
gap - cdh
G1

(A) = Pr [(x, y)
$←− Z2

q, X = gx, Y = gy : Addh - o(X,Y) = DH(X,Y)].

Gap-DH assumption: There exists sequences of bilinear groups G1 indexed by
κ, such that for all PPT A Advgap - cdh

G1
(A) ≤ negl(κ), where κ is the security

parameter.

3 The PAK Protocol

In this section, we describe the PAK protocol from [25], whose mathematical
description is presented in Fig. 1. A few other variants of PAK were developed
in [26].

3.1 Protocol description

Here, we make use of the same notation as in [25] (October version). Now, we
describe the protocol informally.

Initialization

Public: G1, g, q; H1 : {0, 1}∗ → G1;

H2, H3, H4 : {0, 1}∗ → {0, 1}k;

Client C Server S

Secret: π πS [C] = (H1(πC))−1

x
$←− Zq

α := gx

γ := H1(π)

m := α · γ C,m

abort if ¬acceptable(m)

y
$←− Zq

µ := gy

γ′ := πS [C]

σ := (m · γ′)y

k := H2(C, S,m, µ, σ, γ′)

k′′ := H3(C, S,m, µ, σ, γ′)

µ, k sk := H4(C, S,m, µ, σ, γ′)

abort if ¬acceptable(µ)

σ := µx

γ′ := γ−1

abort if k 6= H2(C, S,m, µ, σ, γ′)

k′ := H3(C, S,m, µ, σ, γ′)

sk := H4(C, S,m, µ, σ, γ′) k′

abort if k′ 6= k′′

Fig. 1: The PAK protocol.

Before any protocol execution, public parameters are fixed and passwords are
shared between clients and servers during the initialization phase. More specif-
ically, for efficiency reasons and security in case of password file compromise,
servers only keep the inverse element of each password’s hash value.

The PAK protocol consists of three message rounds. In the first message
round, the client sends a group element m – generated by multiplying a random

group element α with the mask γ (also a group element) that is derived from the
shared password π – along with its ID to the server. In the second message round,
upon receiving the message C,m, the server first checks with the acceptable
function if the received value m is an element of G1. Then, it selects a random
group element µ, removes the mask from the received m, and computes the
shared secret σ, confirmation codes k, k′, a session key sk and sets sid and pid
values (thus accepting). Once all these values are computed, the server sends µ
and k to the client. Upon receiving the second message, the client first checks if
µ is valid group element. If so, it computes the shared secret and confirmation
code k and checks the validity of the latter. If all checks are correct, the client
computes his confirmation code k′ and a session key sk, sets sid and pid values,
and then it sends k′ in the third message round and terminates. The server, once
it receives value k′ and checks its validity, also terminates.

3.2 Instantiating the protocol over Gap Diffie-Hellman groups

Gap-DH groups were introduced in the pioneering work of Boneh, Lynn and
Shacham [7]. For instance, Gap-DH groups can be derived by the supersingular
elliptic curve given by the equation y2 = x3 + 2x± 1 over the field F3l . It can be
seen that for some values of l the number of points in this curve divides 36l − 1.
The value 6 is called the multiplier that has to be neither too small for the CDH
problem to be hard, nor too big for the Decision Diffie-Hellman Oracle (DDH-
O) to be efficient. An example of DDH-O on this curve is the Weil pairing [30].
Gap-problems were also studied by Okamoto and Pointcheval [29].

In order to have efficient PAK execution, H1 : {0, 1}∗ → G1 must be an
efficiently computable function. We point the reader to [26,28] for efficient im-
plementations of H1. Note that it is crucial for such an algorithm to run in
constant time, otherwise timing attacks on a password are possible. For more
details on pairings, we refer readers to [13].

4 Model

For our proof, we will use the well-known Find-then-Guess (FtG) security model
from [5], which guarantees security against an adversary fully controlling the
network, concurrent sessions, loss of session keys, as well as forward secrecy.
Furthermore, the security model incorporates the essential requirements that
PAKE protocols must satisfy: i) an eavesdropper adversary should not learn any
information about the password and ii) an adversary can verify at most one
password guess per protocol execution in an active attack.

In the FtG model, security is defined via a security experiment Gftg played
between a challenger CHftg and some adversary A. The task of CHftg is to
administrate the security experiment while keeping the appropriate secret infor-
mation outside from A’s view. Roughly speaking, A wins the security experiment
if he is able to distinguish established session keys from random strings.

We will start by formally defining PAKE protocols. This will be followed by
an in-depth description of the FtG security model.

PAKE protocol. A PAKE protocol can be represented as a pair of algorithms
(genPW,P), where genPW is a password generation algorithm and P is the
description of the protocol that specifies how honest parties behave. A genPW
algorithm takes as input a set of possible passwords Passwords, together with
a probability distribution P.

Participants and passwords. In the two-party PAKE setting, each principal
U is either from a Clients set or a Servers set, both of which are finite, dis-
joint, nonempty sets. The set ID represents the union of Clients and Servers.
Furthermore, we assume that each client C ∈ Clients possesses a password πC ,
while on the other hand each server S ∈ Servers holds a vector of the passwords
of all clients πS := 〈πC〉C∈Clients.

Protocol execution. P is a PPT algorithm that specifies reaction of princi-
pals to network messages. In a real scenario, each principal may run multiple
executions of P with different users, thus in our model each principal is allowed
an unlimited number of instances executing P in parallel. We denote with ΠU

i

the i-th instance of a U principal. In some places, where distinction matters, we
will denote client instances with ΠC

i and server instances by ΠS
j .

When assessing the security of P, we assume that the adversary A has com-
plete control of the network. Practically, this means that principals solely com-
municate through the adversary that may consider delaying, reordering, modi-
fying, dropping messages sent by honest principals or injecting messages of its
choice in order to attack the protocol. Moreover, the adversary has access to in-
stances of the principals through the game’s interface (offered by the challenger).
Thus, while playing the security game, A provides the inputs to the challenger
CHftg – who parses the received messages and forwards them to corresponding
instances – via the following queries:

– SendSend(U, i,M): A sends message M to instance ΠU
i . As a response, ΠU

i pro-
cesses M according to the protocol description P, updates its corresponding
internal state and outputs a reply that is given to A. Whenever this query
causes ΠU

i to accept, terminate or abort, it is indicated to A. Additionally,
to instruct client C to initiate a session with server S, the adversary sends
a message containing the name of the server to an unused instance of C, i.e.
SendSend(C, i, S).

– ExecuteExecute(C, i, S, j): This triggers an honest run of P between instances ΠC
i

and ΠS
j . The transcript of the protocol execution is given to A. It covers

passive eavesdropping on protocol flows.

– RevealReveal(U, i): As a response to this query, A receives the current value of the
session key skiU computed at ΠU

i . A may do this only if ΠU
i holds a session

key, e.g. it is in accept or terminate state. This query captures potential
session key leakage as a result of its use in higher level protocols. Also, it
ensures that if some session key gets compromised, other session keys remain
protected.

– TestTest(U, i): CHftg flips a bit b and answers this query as follows: if b = 1, A
gets skiU . Otherwise, it receives a random string from the session key space.
This query can only be asked once by A at any time during the execution
of Gftg. This query simply measures the adversarial success and does not
correspond to any real-world adversarial capability.

– CorruptCorrupt(U): The password πU is given to A if U is a client, and the list of
passwords πU in case U is a server 11.

As can be seen above, the adversary is allowed to send multiple SendSend, ExecuteExecute,
RevealReveal and CorruptCorrupt queries to the challenger, and only a single TestTest query.

Accepting and terminating. In the FtG model from [5], an instance ΠU
i

accepts whenever it holds a session key skiU , a session ID sidiU and a partner
ID pidiU . Note that the meaning of ”accept” in this context is different from the
usage of ”accept” in other settings such as computational complexity.

An instance ΠU
i terminates if it holds skiU , sidiU , pidiU and will not send nor

receive any more messages. Due to the protocol design, ΠU
i may accept once

and terminate later. Note also that it is possible for a server running the PAK
protocol to accept at the time it sends the second protocol flow and to later
abort if it receives a wrong confirmation code in the third protocol flow.

Partnering. We say that instances ΠC
i and ΠS

j are partnered if both oracles

accept holding (skiC , sidiC , pidiC) and (skjS , sidjS , pidjS) respectively and the
following conditions hold:

1. skiC = skjS , sidiC = sidjS , pidiC = S, pidjS = C

2. no other instance accepts with the same sid.

Freshness. It captures the idea that the adversary should not trivially know
the session key being tested. We incorporate forward secrecy in the definition
of freshness. An instance ΠU

i is said to be fs-fresh unless i) a RevealReveal query was
made to ΠU

i or its partner (if it has one) or ii) a CorruptCorrupt(U ′) query was made
before the TestTest query (where U ′ is any participant) and SendSend(U, i,M) query was
made at some point.

PAKE security. The goal of A is to guess the bit b used to answer the test
query. Let SuccFtGP (A) be the event where A asks a single test query directed to
a fs-fresh instance and A outputs his guess b′, where b′ = b. The advantage of
A attacking P is defined as:

AdvFtG
P (A) = 2 · Pr [SuccFtGP (A)]− 1 (5)

11 This is the weak-corruption model of [5].

In the original formulation of the model from [5], we say that protocol P is FtG-
secure if there exists a positive constant B such that for every PPT adversary
A it holds that

AdvFtG
P (A) ≤ B · nse

N
+ ε (6)

where nse is an upper bond on the number of SendSend queries A makes, and ε
is negligible in the security parameter. Following our discussion in section 1.3,
we can modify the definition to allow arbitrary password distribution and login
attempt policy; thus, we can define a protocol to be secure if for for every PPT
adversary A,

AdvFtG
P (A) ≤ F(D,L, nse) + ε (7)

where we are using nse as an upper bound on the number of online password
guesses the adversary can make.
The following fact can be easily verified using Eq. 5:

Fact 1

Pr [SuccFtGP (A)] = Pr [SuccFtGP ′ (A)]+ε⇔ AdvFtG
P (A) = AdvFtG

P ′ (A)+2ε. (8)

5 Proof of Security

In this section, we prove the security of the PAK protocol instantiated over
Gap Diffie-Hellman groups. Due to similarity with the proof of the original PAK
protocol [25], we present an overview for those security games that remain the
same as in the original protocol and focus on those that deviate from the original
proof. In Fig. 2 we provide the description of the game hops and highlight those
games which differ from the original security proof. The terminology regarding
adversary’s actions, partnering and events stays as in [25] (see App. A).

G0 : Original protocol.
G1 : Force uniqueness of instances.
G2 : Forbid lucky guesses on hash outputs and backpatch for consistency.
G3 : Randomize session keys for ExecuteExecute queries (L-CDH).
G4 : Check password guesses.
G5 : Randomize session keys for paired instances (L-CDH).
G6 : Forbid two password guesses per online attempt on server (L-CDH).
G7 : Internal password oracle.

Fig. 2: Description of games for the original PAK.

The main difference between the existing proof in the FtG model and our
proof is that our reduction algorithm makes use of a Decisional Diffie-Hellman
Oracle (DDH-O). Such oracle is available in gap groups, and it will output 1
on input (g, gx, gy, gz) if gz = DH(gx, gy) and 0 otherwise. This additional

information can be leveraged – in games G3, G5 and G6 – to increase the success
probability and reduce the running time of the reduction compared to Theorem
6.9 in [25].

Proof of Theorem 2: We will denote by Pi the protocol executed in game Gi,
for i from 0 to 7. Before we start with the revised games, we will first describe
in Fig. 3 how the random oracle queries to H1 are answered by the simulator
(reduction). It is important to highlight that the simulator has access to ψ1[π]
values (see App. B).

Game G0 : Original protocol. In this game, the challenger runs the original
protocol P0 for the adversary A.

Game G1 : Force uniqueness of instances. Let G1 be exactly the same as
G0, except that if any of the values m and µ chosen by honest instances collide
with previously generated ones, the protocol aborts and the adversary fails.

The probability of this event happening is negligible in the security parameter
and limited by the birthday bound. More precisely, for all adversaries A:

AdvFtG
P0

(A) ≤ AdvFtG
P1

(A) +
(nse + nex)(nse + nex + nro)

q
. (9)

Game G2 : Forbid lucky guesses on hash outputs and backpatch for
consistency. Let G2 be the same as G1, with the difference that now the sim-
ulator answers SendSend and ExecuteExecute queries without making any random oracle
queries, while ensuing random oracle queries are backpatched to ensure consis-
tency in the view of the adversary.

In addition, G2 forbids lucky guesses on hash functions. Specifically, in G1

there are cases where an unpaired client instance ΠC
i may accept a confirmation

code k, but the adversary has not asked the required random oracle queries to
H1 and H2 in order to compute k, i.e. he proactively produced the correct one.

The probability of this event happening is O(nro+nse)
q . A similar scenario occurs

when considering an unpaired server instance. Then:

AdvFtG
P1

(A) = AdvFtG
P2

(A) +
O(nro + nse)

q
. (10)

Game G3 : Randomize session keys for Execute queries. Let G3 be
exactly the same as G2, except that during processing of an Hl(C, S,m, µ, σ, γ

′)
query for l ∈ {2, 3, 4}, there is no check for a testexecpw(C, i, S, j, πc) event.

As a result of this change, even if testexecpw(C, i, S, j, πc) event is triggered,
the simulator will answer an Hl(C, S,m, µ, σ, γ

′) query with a random string
from {0, 1}κ.

Claim 1 For all adversaries A running in time t, there exists an algorithm D
running in time t′′ = O(t+ (nro + nse + nex) · texp + nro · tddh), such that:

AdvFtG
P2

(A) ≤ AdvFtG
P3

(A) + 2Advgap - cdh
G1

(t′′). (11)

Proof: Let ε be the probability that testexecpw occurs in G2. In that case
Pr(SuccFtGP2

(A)) ≤ Pr(SuccFtGP3
(A)) + ε. By Fact 1, AdvFtG

P2
(A) ≤ AdvFtG

P3
(A) +

2ε. Note that games G2 and G3 are indistinguishable if testexecpw does not
occur.

Now, we will construct an algorithmD that attempts to win its Gap-DH game
against CHcdh by running A as a subroutine on a simulation of the protocol P2.
For fixed (X,Y) that are coming from CHcdh, D simulates G2 to A with the
following changes:

1. For every ExecuteExecute(C, i, S, j) query, set m = X · gρiC , µ = Y · gρjS , where

(ρiC , ρjS)
$←− Z2

q, while k, k′ stay random strings from {0, 1}κ.

2. Each time A asks a Hl(C, S,m, µ, σ, γ
′) query for l ∈ {2, 3, 4} – where values

m,µ were generated in ExecuteExecute(C, i, S, j) query, and H1(πc) query returned
(γ′)−1 – D calls DDH-O with input (m · γ′, µ, σ). Once DDH-O returns 1,
the “winning” Hl query is identified, and D computes Z value as follows

Z = σ ·XρjS · Y ρiC · gρiC ·ρjS · µψ1[πc], (12)

submits it to CHcdh as a solution for (X,Y) challenge, and stops. The advantage
of D in solving Gap-DH is equal to ε and its running time is t′′ = O(t+ (nse +
nex + nro)texp + nrotddh). ut

DISCUSSION. Notice that the running time of D in G3 has slightly increased (by
nrotddh − nrotexp) when comparing with MacKenzie’s reduction, since c · texp =
tddh, where c is some constant. As in [25], ε′ = ε. However, here only a single Z
value is computed and sent, in contrast to the existing reduction where a list of
size nro is submitted to CHcdh.

Game G4 : Check password guesses. The challenger executes P3 as in G3,
except that if correctpw event occurs, then the protocol execution aborts and
the adversary succeeds.

As consequence, before any CorruptCorrupt query, whenever the simulator detects
(via oracle queries) that the adversary uses the correct password to compute
the confirmation code k, the protocol will be aborted and the adversary will be
deemed successful, i.e., no unpaired client or server instance will terminate prior
to correctpw event or CorruptCorrupt query.

AdvFtG
P3

(A) ≤ AdvFtG
P4

(A). (13)

Game G5 : Randomize session keys for paired instances. G5 is identical
to G4, except in case pairedpwguess event occurs. In that case, the game stops
and adversary fails.

In this particular reduction, we will show that an adversary A who i) can
adaptively corrupt user (thus knowing the password πc) and ii) manages to
compute sk for paired instances ΠC

i and ΠS
j , could be used as a subroutine to

solve the Gap-DH problem.

Claim 2 For any adversary A running in time t, an algorithm D running in
time t′′ = O(t+ (nse + nro + nexe)texp + (nse + nro)tddh) can be built such that:

AdvFtG
P4

(A) ≤ AdvFtG
P5

(A) + 2Advgap - cdh
G1

(t′′). (14)

Proof: If pairedpwguess does not occur, then games G4 and G5 are indistin-
guishable. Let ε be the probability that pairedpwguess event occurs, when A
is running in G4.

Next, we will construct an algorithm D that attempts to win its Gap-DH
game against CHcdh by running A as a subroutine on a simulation of the protocol
P4. For a given pair (X,Y), D simulates G4 to A with the following changes:

1. In CLIENT ACTION 0 query to ΠC
i and input S, set m = X · gρC,i where

ρC,i
$←− Zq.

2. In SERVER ACTION 1 query to ΠS
j and input 〈C,m〉, set µ = Y · gρS,j ,

where ρS,j
$←− Zq.

3. In CLIENT ACTION 1 to ΠC
i and input 〈µ, k〉, if ΠC

i is unpaired, D first
verifies k using DDH-O and the list of random oracle queries. If k is correctly
constructed (DDH-O outputs 1), ΠC

i outputs k′ and terminates, or rejects
otherwise.

4. In SERVER ACTION 2 query to ΠS
j with input k′, if ΠS

j was paired after
its SERVER ACTION 1 but is now unpaired, then D verifies k′. If k′ is
correctly constructed, then ΠS

j terminates. Otherwise, it rejects.

5. After A terminates, the simulator selects queries of the form Hl(C, S, m, µ,
σ, π), for which the following conditions are satisfied: i) m and µ generated
by some instances ΠC

i and ΠS
j respectively, ii) ΠC

i is paired with ΠS
j and

ΠS
j is paired with ΠC

i after SERVER ACTION 1, iii) (γ′)−1 = H1(π). For
every such query, D calls DDH-O with input (m · γ′, µ, σ).

Once DDH-O returns 1, D computes Z value in the same way as for G3

(Eq. 12), submits it to CHcdh as a solution for (X,Y) challenge, and stops.
The advantage of D in solving Gap-DH is equal to ε and its running time is
t′′ = O(t+ (nse + nro + nexe)texp + (nse + nro)tddh). ut

DISCUSSION. To explain why the original reduction from [25] contains nse
degradation factor, and how we can avoid such degradation in ours, consider the
following scenario:

Suppose that the adversary A against protocol P4 first makes a CLIENT
ACTION 0 query to ΠC

i and receives as an answer m = X · gρC,i value in
which Diffie-Hellman challenge X is planted. Next, A obtains πc = π[C, S] via
CorruptCorrupt(S) query. With this information,Amay decide to impersonate S to C by
making a CLIENT ACTION 1 query with an input 〈µ, k〉 to ΠC

i . Since A knows
the correct password, he could compute and send the correct confirmation code
k; however, A could also choose to send an incorrect one. Now, the simulator
faces a problem: ΠC

i has to verify k and based on the verification outcome

either accept or reject. Put differently, the simulator is unable to verify whether
testpw(C, i, S, πc, l = 2) is triggered; this could be done by checking if σ =
DH(α, µ), but the simulator does not know the discrete log of X.

To circumvent this obstruction, the reduction in [25] has to guess an instance
that will be the target of the TestTest query: this provides guarantee that there won’t
be any corruption before session keys are accepted, and thus the simulator can
safely plant the received Diffie-Hellman challenge (X,Y) in the TestTest session. This
technique yields a factor of nse in front of Advl - cdh

G advantage in Theorem 1.
In contrast, by using Gap-DH groups, our simulator can query DDH-O

with input (α, µ, σ) to verify if σ = DH(α, µ) and check whether the event
testpw(C, i, S, πc, l = 2) is triggered or not. Hence, we can avoid guessing of
the TestTest instance, which makes our reduction tight with respect to the success
probability. Compared to [25], the running time of the reduction algorithm has
increased by an additive term (nse + nro)tddh, due to the invocation of DDH-O
needed for the simulator to identify correct random oracle queries.

Game G6 : Forbid two password guesses per online attempt on server.
Let G6 be identical to G5, except that if doublepwserver event occurs, the
protocol halts and the adversary fails. We assume that the check for doublep-
wserver occurs before the check for pairedpwguess.

Claim 3 For any adversary A running in time t, there exists an algorithm D
running in time t′′ = O(t+ (nse + nro + nexe)texp + nrotddh) such that

AdvFtG
P5

(A) ≤ AdvFtG
P6

(A) + 4Adv
gap - cdh
G1

(t′′) (15)

Proof: We will construct an algorithm D that attempts to win its Gap-DH game
against CHcdh by running A as a subroutine on a simulation of the protocol P5.
For a given pair (X,Y), D simulates G5 to A with the following changes:

1. In H1(π) query, output Xψ1[π]gψ
′
1[π], where ψ1[π]

$←− {0, 1} and ψ′1[π]
$←− Zq.

2. In a SERVER ACTION 1 query to a server ΠS
j with input 〈C,m〉 where

acceptable(m) is true, set µ = Y · gρ
′
S,j .

3. Tests for correctpw and pairedpwguess, from G4 and G5 respectively, are
not made.

4. After A terminates, the simulator D using DDH-O first creates a list Lc of
Hl(C, S,m, µ, σ, γ

′) queries, with l ∈ {2, 3, 4}, such that σ = DH(m · γ′, µ).
Then D selects from the list Lc two different queries, say Hl(C, S,m, µ, σ, γ

′)

and Hl̂(C, S,m, µ, σ̂, γ̂
′), for l, l̂ ∈ {2, 3, 4} such that there was i) a SERVER

ACTION 1 query to a server instance ΠS
j with input 〈C,m〉 and output

〈µ, k〉, ii) an H1(π) query that returned (γ′)−1, an H1(π̂) query that returned
(γ̂′)−1 and iii) ψ1[π] 6= ψ1[π̂]. Then D outputs:

Z =

(
σ · σ̂−1 · (γ′)−ρ

′
S,j · (γ̂′)ρ

′
S,j · Y ψ

′
1[π]−ψ

′
1[π̂]

)ψ1[π]−ψ1[π̂]

, (16)

where Z = DH(X,Y).

G6 is indistinguishable from G5 until the event doublepwserver occurs. Let
the ε be the probability that doublepwserver occurs when A is running in G5.
When doublepwserver occurs for two passwords π 6= π̂, the success probability
of D is ε/2 and its running time is t′′ = O(t+(nse+nro+nexe)texp+nrotddh). ut

DISCUSSION: This game shows that A’s probability of simultaneously guessing
(discarding) more than one password during a single online attempt on a server
executing P6 is negligible. In most PAKE proofs (in [25] too), this reduction
typically brings the highest security degradation: e.g. 1/n3ro appears in the case
of Dragonfly [21] and SPEKE [24]. In contrast, our protocol only suffers from a
constant loss (4) in the success probability.

The reason for 1/n2ro degradation when using L-CDH in PAK reduction is
the following: D has to compute and output a list of possible DH values and he
expects the solution for CDH to be contained within the list if A wins its game.
The list is computed as follows: for particular pairs of queries Hl(C, S,m, µ, σ, γ

′)

and Hl̂(C, S,m, µ, σ̂, γ̂
′), for l, l̂ ∈ {2, 3, 4}, D computes Z as in Eq. 16 and adds

it to his list of possible DH values. The size of the list is upper bounded by
(nro)

2, resulting in unfeasible running time for D.
In contrast, by using Gap-DH groups, D can identify the right pair of Hl

queries (at the cost of at most nrotddh in the running time) and then compute
a single, correct Z value using Eq. 16. As a result, we can remove the quadratic
factor in the running time of D.

Game G7 : Internal password oracle. The purpose of this game is to estimate
the probability of the correctpw event occurring, i.e. the adversary guessing the
correct password πc.

Let G7 be as G6, except that there is an internal password oracle Opw which
generates all passwords during the initialization of the users. The simulator uses
it to i) handle CorruptCorrupt queries and ii) test whether correctpw occurs. More
specifically, when A asks CorruptCorrupt(U), the query is simply forwarded to Opw
which returns πU if U ∈ Clients, otherwise returns 〈πU [C]〉C∈Clients. To de-
termine whether correctpw occurs, the simulator queries Opw with test(π,C),
which returns TRUE if π = πC and FALSE otherwise.

By definition G6 and G7 are perfectly indistinguishable. Then:

AdvFtG
P6

(A) = AdvFtG
P7

. (17)

Claim 4 For all PPT adversaries A:

AdvFtG
P7
≤ F(D,L, nse). (18)

Proof: Let ψ denote the correctpw event and ψc its compliment. The proba-
bility that A succeeds in G7 is given by:

Pr [SuccFtGP7
(A)] = Pr [ψ] · Pr [SuccFtGP7

(A) | ψ] +

Pr [ψc] · Pr [SuccFtGP7
(A) | ψc] (19)

We look at the first term of Eq. 19. Since there are nse SendSend queries, the
probability of correctpw occurring is bounded by Pr [ψ] ≤ F(D,L, nse). Ad-
ditionally, it follows from G4 that Pr [SuccFtGP7

(A) | ψ] = 1. Now we look at the
second term of Eq. 19. Given that correctpw does not occur, A succeeds by
making a TestTest query to a fresh instance ΠU

i and guessing the bit b used in the
TestTest query. By examining RevealReveal and H4 queries throughout the proof, it follows
that the view of A is independent of skiU , therefore Pr [SuccFtGP7

(A) | ψc] = 1/2.
Putting everything together, using Eq. 19 and Eq. 5:

AdvFtG
P7
≤ F(D,L, nse). ut

6 Conclusion

In this paper, we proposed a new instantiation for the PAK protocol and showed
that the security proof from [25] can be adapted to cover our proposal. Our
reduction to the Gap Diffie-Hellman problem is significantly tighter than the
previous reduction to the List Diffie-Hellman problem. From a theoretical point
of view, this shows that the security of PAK is closely related to the security of
Gap-DH assumption. In terms of concrete security, the advantage of the tighter
proof is that it provides the guarantee that with typical values of the group size
for today, even the most computationally powerful adversaries today cannot do
significantly better than an online dictionary attack. In future work it would be
interesting to see if similar techniques could lead to tighter security proofs in
other existing PAKE protocols.

Assumption t′ − t− tsim ε′/ε

Standard CDH O(c · texp) 1/n2
ro

L-CDH O((nro)
2 · texp) 1/nse

Gap-DH O(nro · tddh) 1

Table 1. Comparison of running time and success probability of PAK reduction al-
gorithm when using different variants of CDH assumption. Variable texp represents
the running time to compute exponentiation in G, tddh the time for deciding DDH,
tsim = (nse + nro + nexe)texp, c is a constant, nro and nse are the number of random
oracle and send queries respectively.

ACKNOWLEDGEMENTS

We would like to thank the anonymous referees for their comments. This work
was supported by the Luxembourg National Research Fund (CORE project
AToMS and CORE Junior grant no. 11299247).

References

1. Abdalla, M., Chevassut, O., Pointcheval, D.: One-Time Verifier-Based Encrypted
Key Exchange. In: Vaudenay, S. (ed.) Public Key Cryptography - PKC 2005.
LNCS, vol. 3386, pp. 47–64. Springer (2005)

2. Abdalla, M., Fouque, P., Pointcheval, D.: Password-Based Authenticated Key Ex-
change in the Three-Party Setting. In: Vaudenay, S. (ed.) Public-Key Cryptography
– PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer (2005)

3. Abdalla, M., Pointcheval, D.: Simple Password-Based Encrypted Key Exchange
Protocols. In: Menezes, A. (ed.) Topics in Cryptology - CT-RSA 2005. LNCS, vol.
3376, pp. 191–208. Springer (2005)

4. Bellare, M.: Practice-Oriented Provable Security. In: Damg̊ard, I. (ed.) Lectures
on Data Security, Modern Cryptology in Theory and Practice. LNCS, vol. 1561,
pp. 1–15. Springer (1998)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
Against Dictionary Attacks. In: Advances in Cryptology – EUROCRYPT 2000.
LNCS, vol. 1807, pp. 139–155. Springer (2000)

6. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks. In: 1992 IEEE Symposium on Research in
Security and Privacy, SP 1992. pp. 72–84 (1992)

7. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) Advances in Cryptology - ASIACRYPT 2001. LNCS, vol. 2248, pp.
514–532. Springer (2001)

8. Boyko, V., MacKenzie, P.D., Patel, S.: Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman. In: Preneel, B. (ed.) Advances in Cryptology
– EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer (2000)

9. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally Compos-
able Password-Based Key Exchange. In: Cramer, R. (ed.) Advances in Cryptology
– EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer (2005)

10. Dacosta, I., Ahamad, M., Traynor, P.: Trust No One Else: Detecting MITM Attacks
against SSL/TLS without Third-Parties. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) Computer Security - ESORICS 2012. LNCS, vol. 7459, pp. 199–216. Springer
(2012)

11. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably Secure Password
Authenticated Key Exchange Based on RLWE for the Post-Quantum World. In:
Handschuh, H. (ed.) Topics in Cryptology - CT-RSA 2017. LNCS, vol. 10159, pp.
183–204. Springer (2017)

12. Ecrypt, I.: ECRYPT II Yearly Report on Algorithms and Keysizes. European
Network of Excellence in Cryptology II, Tech. Rep (2012)

13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for Cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (Sep 2008)

14. Hao, F., Ryan, P.: J-PAKE: Authenticated Key Exchange without PKI. Transac-
tions on Computational Science 11, 192–206 (2010)

15. Harkins, D.: Simultaneous Authentication of Equals: A Secure, Password-Based
Key Exchange for Mesh Networks. In: Proceedings of the 2008 Second Interna-
tional Conference on Sensor Technologies and Applications. pp. 839–844. SEN-
SORCOMM ’08, IEEE Computer Society (2008)

16. Standard Specifications for Password-Based Public Key Cryptographic Techniques.
Standard, IEEE Standards Association, Piscataway, NJ, USA (2002)

17. Jablon, D.P.: Strong Password-Only Authenticated Key Exchange. ACM SIG-
COMM Computer Communication Review 26(5), 5–26 (1996)

18. Joux, A., Nguyen, K.: Deparating Decision Diffie–Hellman from Computational
Diffie–Hellman in Cryptographic Groups. Journal of Cryptology 16(4), 239–247
(2003)

19. Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange
Using Human-Memorable Passwords. In: Pfitzmann, B. (ed.) Advances in Cryp-
tology – EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer (2001)

20. Krawczyk, H.: Hmqv: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) Advances in Cryptology - CRYPTO 2005. LNCS, vol. 3621, pp.
546–566. Springer (2005)

21. Lancrenon, J., Škrobot, M.: On the Provable Security of the Dragonfly Protocol.
In: Lopez, J., Mitchell, C.J. (eds.) Information Security – ISC 2015. LNCS, vol.
9290, pp. 244–261. Springer (2015)

22. Lenstra, A.K.: Key Lengths. Tech. rep., Wiley (2006)
23. Lopez Becerra, J.M., Iovino, V., Ostrev, D., Škrobot, M.: On the Relation Between

SIM and IND-RoR Security Models for PAKEs. In: SECRYPT 2017. SCITEPRESS
(2017)

24. MacKenzie, P.: On the Security of the SPEKE Password Authenticated
Key Exchange Protocol. Cryptology ePrint Archive, Report 2001/057 (2001),
http://eprint.iacr.org/2001/057

25. MacKenzie, P.: The PAK Suite: Protocols for Password-Authenticated Key Ex-
change. DIMACS Technical Report 2002-46 (2002)

26. MacKenzie, P.D.: More Efficient Password-Authenticated Key Exchange. In: Nac-
cache, D. (ed.) Topics in Cryptology - CT-RSA 2001. LNCS, vol. 2020, pp. 361–377.
Springer (2001)

27. MacKenzie, P.: Methods and Apparatus for Providing Efficient Password Authen-
ticated Key Exchange (2002), https://www.google.com/patents/US20020194478,
publication number US20020194478 A1

28. Mrabet, N.E., Joye, M.: Guide to Pairing-Based Cryptography. Chapman & Hal-
l/CRC (2016)

29. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the
Security of Cryptographic Schemes. In: Kim, K. (ed.) Public-Key Cryptography -
PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer (2001)

30. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer Science &
Business Media (2009)

31. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The First
Collision for full SHA-1. IACR Cryptology ePrint Archive 2017, 190 (2017), http:
//eprint.iacr.org/2017/190

32. Thread-Group: Thread Protocol. http://threadgroup.org/ (2015)
33. Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s Law in Passwords.

IEEE Transactions on Information Forensics and Security (2017)
34. Wang, D., Wang, P.: On the Implications of Zipf’s Law in Passwords. In: Askoxy-

lakis, I.G., Ioannidis, S., Katsikas, S.K., Meadows, C.A. (eds.) Computer Security
- ESORICS 2016. LNCS, vol. 9878, pp. 111–131. Springer (2016)

35. Warner, B.: Magic Wormhole. https://github.com/warner/magic-wormhole

(2016)
36. Wu, T.D.: The Secure Remote Password Protocol. In: Proceedings of the Network

and Distributed System Security Symposium, NDSS 1998. The Internet Society
(1998)

https://www.google.com/patents/US20020194478
http://eprint.iacr.org/2017/190
http://eprint.iacr.org/2017/190
http://threadgroup.org/
https://github.com/warner/magic-wormhole

A Terminology from the original proof of PAK

First, we introduce the terminology from [25] that deals with adversary’s actions
and partnering.

We say “in a CLIENT ACTION κ query to ΠC
i ”, to refer to “in a Send query

to ΠC
i that results in execution of CLIENT ACTION κ procedure” and “in a

SERVER ACTION κ query to ΠS
j ”, to refer to “in a Send query to ΠS

j that

results in execution of SERVER ACTION κ procedure”. A client instance ΠC
i is

paired with a server instance ΠS
j if there is a CLIENT ACTION 0 query to ΠC

i

with input S and output 〈C,m〉, there is a SERVER ACTION 1 query to ΠS
j

with input 〈C,m〉 and output 〈µ, k〉 and there is a CLIENT ACTION 1 query
to ΠC

i with input 〈µ, k〉. A server instance ΠS
j is paired with client instance

ΠC
i whenever there is a CLIENT ACTION 0 query to ΠC

i with input S and
output 〈C,m〉, there is a SERVER ACTION 1 query to ΠS

j with input 〈C,m〉
and output 〈µ, k〉, and if there is a SERVER ACTION 2 query to ΠS

j with input

k′, then there was previously a CLIENT ACTION 1 query to ΠC
i with input

〈µ, k〉 and output k′.

Next we describe those events taken from [25] which are required in our proof
of security.

– testpw(C, i, S, π, l): for some m,µ and γ′, A makes i) an Hl(C, S,m, µ, σ, γ
′)

query, ii) a CLIENT ACTION 0 query to a client instance ΠC
i with input S

and output 〈C,m〉, iii) a CLIENT ACTION 1 query to ΠC
i with input 〈µ, k〉

and iv) an H1(π) query returning (γ′)−1, where the last query is either the
Hl(·) query or the CLIENT ACTION 1 query, σ = DH(α, µ), m = α ·(γ′)−1
and l ∈ {2, 3, 4}.

– testpw!(C, i, S, π): for some k, a CLIENT ACTION 1 query with input
〈µ, k〉 causes a testpw(C, i, S, π, 2) event to occur, with associated value k.

– textpw(S, j, C, π, l): for somem,µ, γ′ and k,Amakes anHl(C, S,m, µ, σ, γ
′)

query, and previously made i) a SERVER ACTION 1 query to a server in-
stance ΠS

j with input 〈C,m〉 and output 〈µ, k〉, and ii) an H1(π) query re-

turning (γ′)−1, where σ = DH(α, µ), m = α·(γ′)−1 and ACCEPTABLE(m).
The associated value of this event is k, k′′ or skjs.

– testpw!(S, j, C, π): SERVER ACTION 2 query to ΠS
j is made with input

k′, and previously a testpw(S, j, C, π, 3) event occurs with associated value
k′.

– testpw∗(S, j, C, π): testpw(S, j, C, π, l) event occurs for some l ∈ {2, 3, 4}.

– testpw(C, i, S, j, π) : for some l ∈ {2, 3, 4}, both a testpw(C, i, S, π, l) and
testpw(S, j, C, π, l) event occur, where ΠC

i is paired with ΠS
j , and ΠS

j is

paired with ΠC
i after its SERVER ACTION 1 query.

– testexecpw(C, i, S, j, π): for some m,µ and γ′, A makes an Hl(C, S,m, µ,
σ, γ′) query, for l ∈ {2, 3, 4}, and previously made i) an Execute(C, i, S, j)

query that generates m,µ, and ii) an H1(π) query returning (γ′)−1, where
σ = DH(α, µ) and m = α · (γ′)−1.

– correctpw: before any Corrupt query, either a testpw!(C, i, S, πC) event
occurs for some C,i and S, or a testpw∗(S, j, C, πC) event occurs for some
S, j, and C.

– doublepwserver: before any Corrupt query, both testpw∗(S, j, C, π) event
and a testpw∗(S, j, C, π̂), for some S, j, C and π 6= π̂.

– pairedpwguess: a testpw(C, i, S, j, πC) event occurs, for some C, i, S and j

B Hash function simulation

H1: For each hash query H1(π), if the same query was previously asked, the simulator
retrieves the record (π, Φ, ψ1) from the list Lh1 and answers with Φ. Otherwise, the
answer Φ is chosen according to the following rule:

? Rule H1

Choose ψ1
$←− Zq. Compute Φ := gψ1 and write the record (π, Φ, ψ1) to Lh1.

Fig. 3: Simulation of the hash function H1

	Tightly-Secure PAK(E)
	Introduction
	PAKE protocols
	Security models and reductions for PAKE
	Online dictionary attacks
	The PAK protocol
	Our contribution
	Organization of the paper

	Preliminaries
	Notation
	Cryptographic building blocks
	Cryptographic hardness assumptions

	The PAK Protocol
	Protocol description
	Instantiating the protocol over Gap Diffie-Hellman groups

	Model
	PAKE protocol.
	Participants and passwords.
	Protocol execution.
	Accepting and terminating.
	Partnering.
	Freshness.
	PAKE security.

	Proof of Security
	Conclusion
	Terminology from the original proof of PAK
	Hash function simulation

