
PhD-FSTC-2017-65
The Faculty of Sciences, Technology and Communication

DISSERTATION

Defence held on 29/11/2017 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG
EN INFORMATIQUE

by

Qixia YUAN
Born on 28 December 1986 in Shandong (China)

COMPUTATIONAL METHODS FOR ANALYSING
LONG-RUN DYNAMICS OF

LARGE BIOLOGICAL NETWORKS

Dissertation defence committee
Dr. Thomas Sauter, Chairman & Dissertation co-supervisor
Professor, Université du Luxembourg

Dr. Jun Pang, Vice-chairman & Daily advisor
Université du Luxembourg

Dr. Sjouke Mauw, Dissertation supervisor
Professor, Université du Luxembourg

Dr. Jaco van de Pol
Professor, University of Twente

Dr. Ion Petre
Professor, Turku Centre for Computer Science, Åbo Akademi University

Dr. Andrzej Mizera, Daily advisor
Luxembourg Institute of Health

The author was employed at the University of Luxembourg and supported by the Fonds
National de la Recherche Luxembourg (FNR) in the project “New Approaches to Pa-
rameter Estimation of Gene Regulatory Networks” (reference 7814267).

Summary

Systems biology combines developments in the fields of computer science, mathematics,
engineering, statistics, and biology to study biological networks from a holistic point of
view in order to provide a comprehensive, system level understanding of the underlying
system. Recent developments in biological laboratory techniques have led to a slew of
increasingly complex and large biological networks. This poses a challenge for formal
representation and analysis of those large networks efficiently.

To understand biology at the system level, the focus should be on understanding the
structure and dynamics of cellular and organismal function, rather than on the charac-
teristics of isolated parts of a cell or organism. One of the most important focuses is the
long-run dynamics of a network, as they often correspond to the functional states, such
as proliferation, apoptosis, and differentiation. In this thesis, we concentrate on how to
analyse long-run dynamics of biological networks. In particular, we examine situations
where the networks in question are very large.

In the literature, quite a few mathematical models, such as ordinary differential equa-
tions, Petri nets, and Boolean networks (BNs), have been proposed for representing
biological networks. These models provide different levels of details and have different
advantages. Since we are interested in large networks and their long-run dynamics, we
need to use “coarse-grained” level models that focus on the system behaviour of the
network while neglecting molecular details. In particular, we use probabilistic Boolean
networks (PBNs) to describe biological networks. By focusing on the wiring of a net-
work, a PBN not only simplifies the representation of the network, but it also captures
the important characteristics of the dynamics of the network.

Within the framework of PBNs, the analysis of long-run dynamics of a biological net-
work can be performed with regard to two aspects. The first aspect lies in the identi-
fication of the so-called attractors of the constituent BNs of a PBN. An attractor of a
BN is a set of states, inside which the network will stay forever once it goes in; thus
capturing the network’s long-term behaviour. A few methods have been discussed for
computing attractors in the literature. For example, the binary decision diagram based
approach [ZYL+13] and the satisfiability based approach [DT11]. These methods, how-
ever, are either restricted by the network size, or can only be applied to synchronous
networks where all the elements in the network are updated synchronously at each time
step. To overcome these issues, we propose a decomposition-based method. The method
works in three steps: we decompose a large network into small sub-networks, detect at-
tractors in sub-networks, and recover the attractors of the original network using the
attractors of the sub-networks. Our methods can be applied to both asynchronous net-
works, where only one element in the network is updated at each time step, and syn-
chronous networks. Experimental results show that our proposed method is significantly
faster than the state-of-the-art methods.

i

ii

The second aspect lies in the computation of steady-state probabilities of a PBN with
perturbations. The perturbations of a PBN allow for a random, with a small probability,
alteration of the current state of the PBN. In a PBN with perturbations, the long-run dy-
namics is characterised by the steady-state probability of being in a certain set of states.
Various methods for computing steady-state probabilities can be applied to small net-
works. However, for large networks, the simulation-based statistical methods remain
the only viable choice. A crucial issue for such methods is the efficiency. The long-run
analysis of large networks requires the computation of steady-state probabilities to be
finished as soon as possible. To reach this goal, we apply various techniques. First, we
revive an efficient Monte Carlo simulation method called the two-state Markov chain
approach for making the computations. We identify an initialisation problem, which
may lead to biased results of this method, and propose several heuristics to avoid this
problem. Secondly, we develop several techniques to speed up the simulation of PBNs.
These techniques include the multiple central processing unit based parallelisation, the
multiple graphic processing unit based parallelisation, and the structure-based paralleli-
sation. Experimental results show that these techniques can lead to speedups from ten
times to several hundreds of times.

Lastly, we have implemented the above mentioned techniques for identification of at-
tractors and the computation of steady-state probabilities in a tool called ASSA-PBN. A
case-study for analysing an apoptosis network with this tool is provided.

Acknowledgments

First of all, I would like to thank Prof. Dr. Sjouke Mauw for providing me the with
the opportunity to join the SaToSS research group as a PhD student at the University of
Luxembourg.

Secondly, I want to thank Prof. Dr. Thomas Sauter for co-supervising me in the field of
systems biology.

I thank my daily supervisors Dr. Jun Pang and Dr. Andrzej Mizera for leading me into
the world of research and the field of computational systems biology. Without their
ongoing support, this work would be undoubtedly impossible.

I thank my collaborator Dr. Hongyang Qu. The successful collaboration with him has
lead to several publications and a lot of contributions to this thesis.

I thank Prof. Dr. Ion Petre and Prof. Dr. Jaco van de Pol for being the external reviewer
of my thesis and joining my thesis defence committee.

I thank my colleague Zachary Smith for correcting the English grammar mistakes in the
thesis.

I thank my friends and colleagues: Xihui Chen, Wei Dou, Olga Gadyatskaya, Haiqin
Huang, Ravi Jhawar, Hugo Jonker, Barbara Kordy, Piotr Kordy, Artsiom Kushniarou,
Li Li, Karim Lounis, Guozhu Meng, Samir Ouchani, Soumya Paul, Aleksandr Pilgun,
Yunior Ramirez Cruz, Rolando Trujillo Rasua, Marco Rocchetto, Cui Su, Jorge Toro
Pozo, Chunhui Wang, Jun Wang, Zhe Liu, Yang Zhang, and Lu Zhou for their inspiring
and informative discussions.

I would like to thank my parents for their continuous support during the past four years.

Qixia Yuan
December 18, 2017

iii

Contents

1 Introduction 1

1.1 Attractors in Systems Biology . 1

1.2 Research Problems . 2

1.3 Modelling of Biological Networks . 4

1.4 Addressing Research Problems with Boolean Models 9

1.4.1 Attractor Detection in Large Boolean Models 9

1.4.2 Steady-state Probabilities Computation in Large Boolean Models. 10

1.5 Thesis Overview . 11

2 Preliminaries 15

2.1 Finite discrete-time Markov chains (DTMCs) 15

2.2 Boolean Networks . 16

2.3 Probabilistic Boolean Networks (PBNs) 19

I Attractor Detection 23

3 Attractor Detection in Asynchronous Networks 25

3.1 Introduction . 25

3.2 Related Work . 26

3.3 An SCC-based Decomposition Method 27

3.3.1 Decomposing a BN into Blocks 27

3.3.2 Detecting Attractors in Blocks 29

3.3.3 Recovering Attractors of the Original BN 34

3.4 Implementation . 36

3.4.1 Encoding BNs in BDDs . 36

3.4.2 A BDD-based Attractor Detection Algorithm 37

3.4.3 An SCC-based Decomposition Algorithm 38

3.5 Evaluation . 41

3.6 Discussions and Future Work . 46

v

vi

4 Attractor Detection in Synchronous Networks 49

4.1 Introduction . 49

4.2 An SCC-based Decomposition Method 49

4.2.1 Decomposition of a BN . 50

4.2.2 Detection of Attractors in a Block 50

4.2.3 Recovery of Attractors for the Original BN 54

4.3 A BDD-based Implementation . 56

4.3.1 An Optimisation . 59

4.4 Experimental Results . 60

4.5 Conclusion and Future Work . 61

II Steady-state Computation 63

5 Efficient Steady-state Computation 65

5.1 The Two-state Markov Chain Approach 65

5.2 Two-state Markov Chain Approach: The Initialisation Problem 67

5.3 Evaluation . 70

5.3.1 The Skart Method . 71

5.3.2 Performance Evaluation . 71

5.4 A Biological Case study . 73

5.4.1 Preliminaries of Steady-state Analysis 74

5.4.2 An Apoptosis Network . 75

5.5 Discussions and Conclusion . 78

5.6 Derivation of Formulas . 78

5.6.1 Derivation of the Number of “Burn-in” Iterations 78

5.6.2 Derivation of the Sample Size 80

5.6.3 Derivation of the Asymptotic Variance 81

5.6.4 ‘Pitfall Avoidance’ Heuristic Method: Formula Derivations . . . 82

6 Multiple-core Based Parallel Steady-state Computation 83

6.1 GPU Architecture . 84

6.2 PBN Simulation in a GPU . 85

6.2.1 Trajectory-level Parallelisation 85

6.2.2 Data Arrangement . 88

6.2.3 Data Optimisation . 89

6.2.4 Node-reordering for Large and Dense Networks 92

vii

6.3 Strongly Connected Component (SCC)-based Network Reduction . . . 92

6.4 Evaluation . 94

6.4.1 Randomly Generated Networks 95

6.4.2 Performance of SCC-based Network Reduction 97

6.4.3 An Apoptosis Network . 97

6.5 Conclusion and Discussions . 98

7 Structure-based Parallel Steady-state Computation 101

7.1 Structure-based Parallelisation . 101

7.1.1 Removing Unnecessary Nodes 102

7.1.2 Performing Perturbations in Parallel 102

7.1.3 Updating Nodes in Parallel . 103

7.1.4 The New Simulation Method 106

7.2 Evaluation . 107

7.2.1 Randomly Generated Networks 107

7.2.2 An Apoptosis Network . 111

7.3 Conclusion . 112

III The Tool for Steady-state Analysis 113

8 ASSA-PBN: a Software Tool for Probabilistic Boolean Networks 115

8.1 Toolbox Architecture . 116

8.2 Modeller . 117

8.3 Simulator . 118

8.4 Analyser . 119

8.4.1 Computation of Steady-state Probabilities 120

8.4.2 Parameter Estimation . 121

8.4.3 Long-run Influence and Sensitivity 123

8.4.4 Towards Parameter Identifiability Analysis 124

8.5 Multiple Probabilities Problem . 125

9 Conclusion and Future Work 127

9.1 Conclusion . 127

9.2 Future Work . 128

9.2.1 Controllability of BNs . 128

9.2.2 Decomposition of BNs . 129

viii

Bibliography 131

Curriculum Vitae 143

List of Figures

1.1 An example of ODE models demonstrating enzyme catalysed reactions.
Left top: Enzyme catalysed reactions where E stands for enzyme, S
stands for substrate, C stands for complex, and P stands for product.
Left below: The corresponding graph showing the reactions. Right: The
corresponding ODEs. 5

1.2 Left: An example of a Bayesian network consisting of four nodes. The
parents of nodeC areA andB;C is independent ofD. Thus, P{C|A,B,D} =
P{C|A,B}. Right: An example of a Boolean network consisting of
four nodes. An arrow “→” represents activation while an arrow with a
bar ending (“a”) represents inhibition. Boolean functions are not shown
in this figure. This network structure contains a loop (A → C → B →
A) while the Bayesian network on the left does not contain any loop. . . 6

1.3 Left: An example of a Petri net describing the reaction A + 2B →
2C. The dots inside a place node are the marking tokens of that node.
Node A is marked with one token; node B is marked with two tokens;
node C has no token. Right: An example showing how the reaction
A + 2B → 2C is described in Bio-PEPA. In this example, α is a label
for this reaction. In the first line, (α, 1) ↓ A means that A participates as
a reactant (↓) in this reaction with stoichiometry 1. The meanings of the
remaining two lines are similar to the first line. 7

1.4 Left: An example of a statechart. The graph above the dashed line shows
that the presence of A and SA can work together to control the presence
of B. The graph below the dashed line is the corresponding statechart
of the graph above. The presence of an element is represented as value
1 and the absence of an element is shown as value 0. This example is
modified based on Figure 2 in [SN10]. Right: An example of a hybrid
automaton. It describes the changes of the concentration of x. The
changes of x is governed by either the equations in the box above or
the equations in the box below. The switch of the two boxes is the
concentration of x itself. 8

2.1 The Boolean network in Example 2.2.1 and its state transition graph. . . 17

2.2 Three types of attractor systems in a synchronous BN. 18

2.3 Three types of attractor systems in an asynchronous BN. 18

3.1 SCC decomposition of a BN. 28

ix

x LIST OF FIGURES

3.2 Two transition graphs. 28

3.3 Fulfilment 2 of Example 3.3.2. 33

3.4 Transition graphs of the two fulfilments for block B2. 40

3.5 Transition graphs of the three fulfilments for block B4. 41

3.6 Wiring of the MAPK logical model of [GCBP+13]. The diagram con-
tains three types of nodes: stimuli nodes (pink), signalling component
nodes (gray) with highlighted MAPK protein nodes (light pink), and cell
fate nodes (blue). Green arrows and red blunt arrows represent positive
and negative regulations, respectively. For detailed information on the
Boolean model of the MAPK network containing all modelling assump-
tions and specification of the logical rules refer to [GCBP+13] and the
supplementary material thereof. 42

3.7 The SCC structure of the MAPK network (mutant MAPK r3). Each
node represents an SCC. Model components contained in each SCC are
listed in Table 3.1. For each pair of a parent SCC and one of its child
SCCs, a directed edge is drawn pointing from the parent SCC to the child
SCC. Node 12 is not connected to any other node as EGFR is set to be
always true and hence the influence from EGFR stimulus (node 12) is
cut. The SCC structure of mutant MAPK r4 is virtually the same; the
only difference is that model components contained in certain SCCs are
slightly different: EGFR is switched with FGFR3 and EGFR stimulus
is switched with FGFR3 stimulus. 43

3.8 The wiring of the multi-value logic model of apoptosis by Schlatter et
al. [SSV+09] recast into a binary Boolean network. For clarity of the
diagram the nodes I-kBa, I-kBb, and I-kBe have two positive inputs.
The inputs are interpreted as connected via ⊕ (logical OR). 45

3.9 The SCC structure of the apoptosis model. Each node represents an SCC
in the apoptosis model. The nodes contained in each SCC are listed in
Table 3.3. For each pair of a parent SCC and one of its child SCCs, a
directed edge is added pointing from the parent SCC to the child SCC. . 47

4.1 SCC decomposition and the transition graph of block B1. 50

4.2 Two transition graphs used in Example 4.2.1 and Example 4.2.2. 51

4.3 Transition graphs of two fulfilments in Example 4.2.3. 53

4.4 Two fulfilments used in Example 4.3.1. 58

4.5 Transition graphs of the three fulfilments for block B4. 59

LIST OF FIGURES xi

5.1 Conceptual illustration of the idea of the two-state Markov chain con-
struction. (a) The state space of the original discrete-time Markov chain
is split into two meta states: states A and B form meta state 0, while
states D, C, and E form meta state 1. The split of the state space into
meta states is marked with dashed ellipses. (b) Projecting the behaviour
of the original chain on the two meta states results in a binary (0-1)
stochastic process. After potential subsampling, it can be approximated
as a first-order, two-state Markov chain with the transition probabilities
α and β set appropriately. 66

5.2 Prediction on the performance of the the Skart and the two-state MC
methods. 73

6.1 Architecture of a GPU. 84

6.2 Workflow of steady-state analysis using trajectory-level parallelisation. . 87

6.3 Demonstration of storing Boolean functions in integer arrays. 90

6.4 Storing states in one array and coalesced fetching for threads in one warp. 91

6.5 SCC-based network reduction. 93

6.6 Speedups of GPU-accelerated steady-state computation. 94

7.1 Speedups obtained with network reduction and node-grouping techniques.
The pre-processing time is excluded from the analysis. 109

7.2 Speedups of Methodnew with respect to Methodref 110

8.1 Interface after loading a PBN into ASSA-PBN. 116

8.2 The architecture of ASSA-PBN. 116

8.3 Interface of the simulator window in ASSA-PBN. 119

8.4 Interface of computing steady-state probabilities with the two-state Markov
chain approach in ASSA-PBN. 121

8.5 Interface of parameter estimation in ASSA-PBN. 122

8.6 The fitness heat map presented after performing parameter estimation in
ASSA-PBN. 123

8.7 Interface of long-run analyses in ASSA-PBN. 124

8.8 Plot of a profile likelihood computed in ASSA-PBN. 124

List of Tables

3.1 Nodes of the MAPK pathway (mutant r3) in SCCs as shown in Figure 3.7. 43

3.2 Evaluation results on two real-life biological systems. 44

3.3 Nodes of the apoptosis network in SCCs as shown in Figure 3.9. 44

4.1 Selected results for the performance comparison of methods M1 and M2. 61

5.1 Ranges of integer values for n0 that do not satisfy the ‘critical’ condition
n(α, β) < 2n0 for the given values of r and s. 68

5.2 Performance of the second and third approaches. 70

5.3 Performance comparison of the Skart and the two-state MC methods. . 72

5.4 Logistic regression coefficient estimates for performance prediction. . . 72

5.5 Performance of the two methods with respect to different precisions. . . 72

5.6 Long-term influences of RIP-duebi, co1, and FADD on co2 in the ‘ex-
tended apoptosis model’ in [TMP+14] under the co-stimulation of both
TNF and UV(1) or UV(2). 76

5.7 Long-run sensitivities w.r.t selection probability perturbations. 77

5.8 Long-run sensitivities w.r.t permanent on/off perturbations of RIP-deubi. 77

6.1 Frequently accessed data arrangement. 89

6.2 Speedups of GPU-accelerated steady-state computation of 8 randomly
generated networks. “# re.” is short for the number of redundant nodes;
“s.” is short for the sequential two-state Markov chain approach; “–”
means the GPU-accelerated parallel approach without the network re-
duction technique applied; and “+” means the GPU-accelerated parallel
approach with the network reduction technique applied. 96

6.3 Speedups of GPU-accelerated steady-state computation with the reorder-
and-split method applied. “+” means with the reorder-and split method
applied; while “–” menas without the method applied. 96

6.4 Speedups of GPU-accelerated steady-state computation of a real-life
apoptosis network. “s.” represents the sequential two-state Markov chain
approach; “–” represents the GPU-accelerated parallel approach without
applying the network reduction technique; and “+” represents the GPU-
accelerated parallel approach with the network reduction technique ap-
plied. 97

xiii

xiv LIST OF TABLES

7.1 Influence of sample sizes on the speedups of Methodnew with respect
to Methodref . In the fifth column, p.-p. is short for pre-processing and
the time unit is second. 110

7.2 Performance of Methodref and Methodnew on an apoptosis network. . 111

1

Introduction

“Progress in the study of biological networks such as the heart, brain, and
liver will require computer scientists to work closely with life scientists and
mathematicians. Computer science will play a key role in shaping the new
discipline of systems biology and addressing the significant computational
challenges it poses.”

– Anthony Finkelstein et al., Computational challenges of systems biology

Systems biology is a scientific field that analyses complex biological networks in a com-
putational and mathematical way. It combines developments in the fields of computer
science, mathematics, engineering, statistics, and biology to study biological networks
from a holistic point of view. The result of the study is a comprehensive, system-
level understanding of the behaviours of the underlying design principles and mecha-
nisms [Gat10, IGH01, Kit02]. Recent developments in biological laboratory techniques
have provided a large amount of data on biological networks. Indeed, in the last few
years there has been a rapid increase in not only the quantity but also the quality of
biological network data [HK09]. MetaCore [Ana17], an integrated software suite for
functional analysis of many biological networks, has provided more than 1.6 million
molecular interactions and more than 1,600 pathway maps. This rapid increase facili-
tates more realistic computational modelling of biological networks, but at the same time
poses significant challenges with respect to the size of the state space of the resulting
computational models that needs to be considered. Hence, to ensure a profound under-
standing of biological networks, developments of new methods are required to provide
means for formal analysis and reasoning about large networks.

In this thesis, we take this challenge and propose a few computational methods for
analysing large biological networks. In particular, we are interested in analysing the
long-run dynamics of such networks. We explain in details why the long-run dynamics
are our focus by introducing a vital concept of attractors in Section 1.1. With this fo-
cus in mind, we formulate the research objective in terms of two research problems in
Section 1.2. We then discuss several mathematical models for describing biological net-
works and explain the reason why we use probabilistic Boolean networks (PBNs) as the
modelling framework for describing large biological networks and performing long-run
analyses of them. Finally, we provide an overview of this thesis in Section 1.5.

1.1 Attractors in Systems Biology

Originally, the concept of attractors comes from dynamical systems theory, where the
whole system is considered to evolve towards a set of preferred states called an attractor.

1

2 Chapter 1 Introduction

More formally, an attractor is a set of states inside which the system will stay forever
once entered. In biology, this concept dates back to the 1950s when the British devel-
opmental biologist Conrad H. Waddington demonstrated his famous “epigenetic land-
scape” as a conceptual picture of development of cell fate [Wad57]. From the view of
Waddington, development takes place like a ball rolling down a sloping landscape that
contains multiple “valleys” and “ridges”. The valleys describe stable cellular states (cell
types) and the ridges act as barriers. Different cell states are maintained by epigenetic
barriers that can be overcome by sufficient perturbations. According to C. Wadding-
ton, “this landscape presents, in the form of a visual model, a description of the general
properties of a complicated developing system in which the course of events is controlled
by many different processes that interact in such a way that they tend to balance each
other.” [Wad57]. This suggests that cell types might be reflected by the balanced states
of an underlying regulatory network, which is astonishingly similar to the mathematical
notion of attractors of dynamical systems [MML09].

The idea of attractors in the context of biological networks has gained a lot of attention
and shapes a new direction towards the understanding of these networks. Attractors are
originally hypothesised to characterise cellular phenotypes [Kau69a, Kau69b, Kau93].
Later, another complementary conjecture is that attractors correspond to functional cel-
lular states such as proliferation, apoptosis, or differentiation [Hua99, Hua01]. These
interpretations can cast new light on the understanding of cellular homeostasis and can-
cer progression [SDZ02b]. Notably, Shinya Yamanaka, the laureate of the 2012 No-
bel Prize in Physiology or Medicine, explains using Waddington’s epigenetic landscape
the effect that an effective stimulus is able to push a cell from a lineage-committed
(stable) state back to a pluripotent (unstable) state. Yamanaka treats the pluripotent
states as the ridges, and the lineage-committed states as the valleys which are inter-
preted as attractors. He shows that a lineage-committed state can be pushed up to a
pluripotent state with a competent stimulus, resulting in a higher differentiation po-
tency of the cell [Shi09]. In addition to the usage in understanding biological networks,
attractors also play an important role in the development of new drugs. According
to [OALH06, Hop08], the number of new drugs reaching the market stage has dramati-
cally decreased since the 1980s. A simple explanation from the viewpoint of attractors
could be: the modification to a node located in the internal position of a network can
be immediately or quickly counteracted by the feedback relations and therefore, the
network cannot be easily modified by pharmacological intervention [TMD+11].

Attractors reflect the long-run dynamics of a biological network; and an understanding
of attractors is closely linked with an understanding of the related network. Inspired by
this, we concentrate on the analysis of the long-run dynamics of biological processes in
this thesis. In particular, we are interested in analysing the long-run dynamics of large
computational models, which often arise in the study of biological networks.

1.2 Research Problems

An important way for analysing the long-run dynamics of a biological network is to iden-
tify the attractors of this network. For small networks, their attractors can be quickly
identified with various methods like enumeration. With the use of techniques like bi-
nary decision diagrams (BDDs) and satisfiability (SAT) solver, attractors of medium

1.2 Research Problems 3

networks can also be found efficiently [DT11, ZYL+13]. The BDD-based method usu-
ally encodes the corresponding transition relation of a biological network with BDDs
and takes advantages of the efficient BDD operations. Although the symbolic encoding
of BDDs is efficient, their efficiency is severely hampered when the network becomes
huge, e.g., a network with over 1030 states. The SAT-based methods transform a bi-
ological network into a satisfiability problem. The attractor identification can then be
solved by finding a valid assignment of the satisfiability problem. Due to the efficient
implementation of SAT solver, they can deal with larger networks within shorter time
comparing to BDD-based methods. However, their application is restricted to a special
type of networks where the dynamics is deterministic. In addition, a few approximation
methods [KBS15, NRTC11] have been proposed to deal with large networks. However,
those methods cannot guarantee to identify all the attractors as they are only approxima-
tion. This observation leads to the formulation of our first research problem.

Research Problem 1. How to efficiently identify attractors of large biological net-
works?

The attractors of a network characterise its long-run behaviour. However, if we incorpo-
rate random perturbations, the dynamic of the network may evolve out of its attractor.
For example, in a gene regulatory network, we can introduce perturbations by allowing
the values of each gene to be flipped from an expressed (ON) state to an unexpressed
(OFF) state and vice versa with a certain probability. The network can then evolve out
of an attractor with certain probability due to the flip of genes. In other words, attractors
do not exist in such networks any more. Their long-run behaviour is rather characterised
by the probabilities of the network to be in certain states. If the chance for perturbations
is very small, then with a high probability, the network will stay in its attractor cycles
for a large majority of the time. Therefore, the attractor states can still carry most of
the probability mass in the long run. Hence, the probability of being in an attractor in
the long run is of vital importance. In the networks whose dynamics can be treated as
an ergodic Markov chain (we refer to Chapter 2 for the formal definition of an ergodic
Markov chain), such a probability is referred as steady-state or long-run probability.
Not only are the steady-state probabilities important to reveal the long-run behaviour
of a network, but also they constitute the foundation for further in-depth analysis of
this network. For instance, in the context of a gene regulatory network, such proba-
bilities can provide answers to questions of the following types: “what is the influence
of one gene on another in the long-run?” or “how sensitive is the network with respect
to perturbations of a given gene?” Moreover, they could help to formulate new biology
hypotheses and, in consequence, to extend and to improve current biological knowledge.

Considering the above reasons, it is easy to conclude that computing the steady-state
probabilities is an import task for long-run analysis of a biological network. There are
various ways to make such computations. For example, they can be computed via itera-
tive methods like Jacobi [BMW14] or Gauss-Seidel [BMW06]. These iterative methods
require the transition matrix of the corresponding Markov chain of a biological network
as input. Starting from an arbitrary initial distribution, they update the distribution by
multiplying it with the transition matrix in each iteration. When the difference between
the new distribution and the previous distribution is smaller than a pre-defined threshold,
the iteration finishes and the last calculated distribution is considered as the steady-state
distribution of the biological network. This distribution contains the steady-state prob-
abilities for all the states and the steady-state probability for a particular set of states

4 Chapter 1 Introduction

can be obtained by summing up the probabilities of each state in the set. The Jacobi
and Gauss-Seidel methods differ a little in the way of updating the distribution in each
iteration. The Jacobi method always uses the old distribution to update all the values
in the new distribution while the Gauss-Seidel method makes use of the partially up-
dated distribution to update the remaining values. Since the iterative methods require
the transition matrix, which is exponential to the number of elements in a network, such
methods only work for smaller networks.

For large networks, estimating the probabilities via simulation-based statistical meth-
ods remains the only viable choice. A key issue of these methods is their efficiency,
which involves two problems to be considered. The first is to determine a suitable
method of estimating the probabilities via sampling finite trajectories; and the second
is to make trajectory simulation as fast as possible. A prominent technique explored for
the first problem is the method of statistical model checking [YS02, SVA05], which is a
simulation-based approach using hypothesis testing to infer whether a stochastic system
satisfies a property. Statistical model checking is quite successful in verifying bounded
properties, where the estimation is made based on finite executions of the underlying
system. The estimation of steady-state probabilities is, however, related to unbounded
properties, which is a property reflecting infinite length paths. Approaches like the Skart
method [TWLS08] and the perfect simulation algorithm [EP09] have been explored for
statistical model checking of “unbounded until” properties. The Skart method has a
sound mathematical background and enables estimating confidence intervals with a rel-
atively smaller size of trajectories. However, it requires to store all the simulated states
which is memory inefficient. Moreover, the state space of large networks is so huge
that the simulated states cannot be directly used by the Skart method for the reason of
efficiency. Abstraction of the simulated states is needed. The perfect simulation algo-
rithm uses even less samples to make an estimation. However, it requires the underlying
network to be monotonic. The monotonicity assigns order information to the states of a
network and a state can only transit to another state which has a higher order. This strict
requirement restricted the application of the perfect simulation algorithm in analysing
biological networks as a biological network may not be monotonic. Since the efficiency
is vital for computing the steady-state probabilities of a biological network, especially
in terms of in-depth analysis, methods to handle the above two problems of efficiency
are required. Hence, our second research problem focuses on the efficiency of the com-
putation of steady-state probabilities. We formulate it as follows.

Research Problem 2. How to efficiently compute the steady-state probability of being
in a set of states of a large biological network?

1.3 Modelling of Biological Networks

To perform a formal analysis for a biological network, the first step is to represent the
network in the form of a mathematical/computational model. A number of mathemati-
cal/computational frameworks have been proposed for modelling and analysing biolog-
ical networks. We now briefly review seven popular frameworks. For reviews of other
frameworks, we refer to [FH07, BL16].

Ordinary differential equations (ODEs) is a mathematical framework that has been
widely applied in modelling and analysing all kinds of biological networks, e.g., in gene

1.3 Modelling of Biological Networks 5

S C

P E

S + E C P + E

k1

k−1

k−1 + k2k 2 k1

k1

k−1

k2

dS

dt
= −k1SE + k−1C

dE

dt
= −k1SE + (k−1 + k2)C

dC

dt
= k1SE − (k−1 + k2)C

dP

dt
= k2C

Figure 1.1: An example of ODE models demonstrating enzyme catalysed reactions. Left
top: Enzyme catalysed reactions where E stands for enzyme, S stands for substrate, C
stands for complex, and P stands for product. Left below: The corresponding graph
showing the reactions. Right: The corresponding ODEs.

regulatory networks [CQZ12]. ODE models use rate equations to describe the reaction
rates of interactions in a biological network. Figure 1.1 shows an example of using
ODEs to describe enzyme catalysed reactions. The set of equations can be solved to re-
flect the concentration of molecular species over time. Using continuous time variables,
ODEs can capture time series information of a network and are suitable for quantitative
analysis. Another prominent advantage of ODEs is that they have profound mathemat-
ical roots which can be used for understanding the underlying networks and analysing
their properties such as robustness [FHL+04]. Moreover, there are rich softwares avail-
able for ODEs. These include the standard ODE tools like Matlab and Mathematica, as
well as the customised ones for biological networks like COPASI [HSG+06], CellDe-
signer [FMKT03], and CellWare [DMS+04]. Developing an ODE model requires infor-
mation of kinetic reaction rates, which describes the reactions and numerical values of
the kinetic parameters associated with the reactions [dJR06]. Although large amounts
of data of network interactions are revealed, the exact reaction rates information is un-
fortunately rarely available [IM04]. Therefore, modelling with ODEs faces the problem
of lacking biological information. In addition, although simple ODEs can be exactly
solved mathematically, it becomes too complex for large ODEs. Hence, ODEs are not
suitable for large networks [Bor05].

Bayesian networks model a network with two mathematical areas: probability and
graph theory [Pea14]. Given X = {x1, x2, · · · , xn}, the components (variables) of a
network, a Bayesian network models this network as a pair B = (G,Θ), where G is a
directed acyclic graph (DAG) whose nodes represent variables in X and Θ is a set of local
conditional probability distributions for each variable in X to qualify the network. A
Bayesian network represents a joint probability distribution, which can be decomposed
into a product of the local conditional probabilities with the following formula:

P{x1, x2, · · · , xn} = Πn
i=1P{xi|Pa(xi)},

where Pa(xi) is the values of the parents of xi. Figure 1.2 (left) shows an example of a
Bayesian network with four nodes. Since the graph in a Bayesian network is a DAG, the
Bayesian network approaches cannot model cyclic networks. To capture cyclic inter-
actions, Bayesian networks are extended to dynamic Bayesian networks. Essentially, a
dynamic Bayesian network represents the joint probability distribution over all possible

6 Chapter 1 Introduction

A B

C D

A B

C D

Figure 1.2: Left: An example of a Bayesian network consisting of four nodes. The
parents of node C are A and B; C is independent of D. Thus, P{C|A,B,D} =
P{C|A,B}. Right: An example of a Boolean network consisting of four nodes. An
arrow “→” represents activation while an arrow with a bar ending (“a”) represents inhi-
bition. Boolean functions are not shown in this figure. This network structure contains a
loop (A → C → B → A) while the Bayesian network on the left does not contain any
loop.

time series of variables in X . It is defined by a pair of Bayesian networks (B0, B1).
B0 works as an initial Bayesian network and it defines the joint distribution of the vari-
ables in X(0), where X(t) represents the variables in X at time step t and in this case
t = 0. B1 is a transition Bayesian network which specifies the transition probabilities
P{X(t)|X(t − 1)} for all t. Dynamic Bayesian networks can capture the time-series
data [OGP02] and can be used for inferring genetic regulatory networks from gene ex-
pression data [KIM03, ZC04]. However, the applications are limited for small size
networks due to the excessive computational cost [VCCW12].

Boolean networks were first introduced by Stuart Kaffman in 1969 as a class of simple
models for the analysis of the dynamical properties of gene regulatory networks [Kau69b],
where projection of gene states to an ON/OFF pattern of binary states was considered.
This model idea fits naturally with gene regulatory networks and signalling networks
where each component can represent active and inactive states. The relationship be-
tween different components are described with Boolean functions. We show in Fig-
ure 1.2 (right) an example BN with four nodes. The Boolean functions in this figure
are not shown, but the relationships between different nodes are reflected with arrows.
Although BNs are simple, they can provide insights into the dynamics of the modelled
biological networks. BNs have also been extended to probabilistic Boolean networks
(PBNs) in 2002 by Schmulevich et al. to deal with uncertainty [SD10, TMP+13]. Not
only can a PBN incorporate rule-based dependencies between genes and allow the sys-
tematic study of global network dynamics, but also it is capable of dealing with uncer-
tainty, which naturally occurs at different levels in the study of biological networks. The
limitations of PBNs are that they cannot capture the reaction details and time informa-
tion. Also, it is difficult to construct a large model from smaller blocks using Boolean
models [SHF07].

Petri nets were originally developed to model asynchronous distributed systems in
1962 [PR08]. A Petri net is a graph consisting of place nodes, transition nodes, and
edges. Places are usually drawn as circles and represent the resources of the network.
Transitions are usually drawn as boxes and represent the events that can change the state
of the resources. Each place can be marked by a number of tokens, which represent the
states of the place. An edge connecting a place to a transition shows that the transition
depends on the state of the place; an edge connecting a transition to a place shows that
the outcome of the transition will result in a change of the state of the place. An edge

1.3 Modelling of Biological Networks 7

•

••

A

B

C1

2

2 A
def= (α, 1) ↓ A

B
def= (α, 2) ↓ B

C
def= (α, 2) ↑ C

Figure 1.3: Left: An example of a Petri net describing the reaction A+ 2B → 2C. The
dots inside a place node are the marking tokens of that node. Node A is marked with
one token; node B is marked with two tokens; node C has no token. Right: An example
showing how the reaction A + 2B → 2C is described in Bio-PEPA. In this example,
α is a label for this reaction. In the first line, (α, 1) ↓ A means that A participates as a
reactant (↓) in this reaction with stoichiometry 1. The meanings of the remaining two
lines are similar to the first line.

can be labelled with a number to reflect the number of tokens required to “fire” the tran-
sition. Petri nets are visual and can be designed and analysed by a range of tools [FH07].
They have been applied to the analysis of metabolic networks [ZOS03, KJH04], gene
regulatory networks [SBSW06, KBSK09] and signalling networks [SHK06, LSG+06].
In addition to the standard Petri nets, there are several extended frameworks of Petri
nets providing more possibilities for modelling. For example, coloured Petri nets in-
troduce the distinction between tokens to allow the multiple possible values for each
place [Jen87]. Another example is the stochastic Petri nets, which add probabilities to
the different choices of transitions [BK96]. Similar to Boolean models, Petri nets are
also discrete models. The formulation of Petri nets is simple. However, comparing to
Boolean models, it is still complex [WMG08].

Process algebras (or process calculi) are a family of formal languages that provide for-
mal specifications of concurrent processes. They have been intensively applied for mod-
elling and analysing biological networks recently [PRSS01, CGH06, DPR08, LMP+14,
SNC+17]. They treat the components (e.g., molecules) of a network as “agent” or “pro-
cess”, and describe the interactions between components via reaction channels. Fig-
ure 1.3 (right) shows an example for describing a biological reaction with process al-
gebra Bio-PEPA [CH09]. One advantage of process algebras over BNs and Petri nets
is their compositionality. This provides means for modelling a network by composing
from its sub-components. A notable advantage of process algebras is their close rela-
tionship with the technique of model checking, which is a method for formally verifying
finite-state concurrent systems. Biological networks described with process algebras can
be directly analysed via model checking to verify certain properties, e.g., an analysis of
fibroblast growth factor signalling pathway with probabilistic model checking was pre-
sented in [HKN+08]. A recent review of applications of process algebras in biology can
be found in [GPPQ09]. One drawback of process algebras is that, they are often too ab-
stract and not much intuitive for modelling biological networks as they are not designed
to describe biological networks in the beginning. Therefore, additional extensions could
be considered for better support of modelling biological networks.

Statecharts was introduced by Harel [Har87] for modelling complex reactive systems.
It provides a natural way to model the dynamics of a biological network by specifying
the sequence of the states characterizing its behaviours [FH10]. We show in Figure 1.4
(left) an example of a statechart. Similar to process algebras, statecharts have the ad-

8 Chapter 1 Introduction

Figure 1.4: Left: An example of a statechart. The graph above the dashed line shows
that the presence of A and SA can work together to control the presence ofB. The graph
below the dashed line is the corresponding statechart of the graph above. The presence
of an element is represented as value 1 and the absence of an element is shown as value
0. This example is modified based on Figure 2 in [SN10]. Right: An example of a
hybrid automaton. It describes the changes of the concentration of x. The changes of x
is governed by either the equations in the box above or the equations in the box below.
The switch of the two boxes is the concentration of x itself.

vantage of compositionality and modularity. They offer a hierarchy structure to handle
networks with different levels of detail. Using a hierarchy of states with transitions,
events, and conditions, statecharts can describe state changes at a microlevel as well
as the state changes at a macro-level, which is a single state change caused by several
micro steps but can be described in a more abstract view of the system. Examples of
using statecharts to analyse biological networks can be found in [KCH01, CH07]. One
major disadvantage of statecharts lies in the fact that a distinct state requires the speci-
fication of all possible combination of parameters and this easily leads to an explosion
of the number of states [BL16]. Hence, it becomes unrealistic to determine the states
and manage the transitions between them when statecharts are used to model large and
complex systems [SN10].

Hybrid automata combine discrete and continuous variables into a single dynami-
cal framework [ACHH93]. It is quite natural to model a biological network as a hy-
brid model since many biological scenarios often involve both discrete and continuous
events. For example, the concentration of certain proteins often determines the expres-
sion of a gene, which in turns affect the dynamical change of the concentration of pro-
teins. An example demonstrating this process is shown in Figure 1.4 (right). Due to this
appealing feature, hybrid automata have been applied a lot in analysing biological net-
works, e.g., [GTT03, DFTdJV06, BCB+16]. The continuous part of a hybrid automaton
is often described with differential equations. As a result, exact quantitative data are
required in order to adjust the equations. The drawbacks of ODE models therefore also
exist for hybrid automata.

Each of these different frameworks has corresponding advantages and disadvantages.
Perhaps there is no perfect framework which bypasses others in all aspects. Selecting a
framework should be made in accordance with the actual usage. Our selection of frame-

1.4 Addressing Research Problems with Boolean Models 9

works follows two simple rules, i.e., suitable for long-run analysis and able to handle
large networks. Following the two rules, we first exclude fine-grained models which at-
tempt to model the precise details of the underlying network. Fine-grained models like
ODEs are able to reflect detailed information on a biological network; however their
applicability is severely hampered due to a number of reasons when it comes to the
modelling of large networks. For example, experimental data for large genetic systems
are often incomplete and hence it is not possible to provide the whole set of kinetic-like
weights for quantifying the relations between different elements. In addition, the stan-
dard differential equations model for a single elementary block of the network (e.g., a
gene) becomes prohibitively complex when applied to the whole network. Therefore,
utilising coarse-grained models, which focus on the wiring information of the underly-
ing networks, becomes the only feasible solution for large biological networks. In fact,
these coarse-grained formalisms have been proved to posses a lof of predictive power in
many systems biology studies [AO03], especially in the cases where the exact reaction
rates are not the main focus. For instance, the study in [LLL+04] shows that dynamical
attractors of the genetic network that controls the yeast cell cycle seem to depend on the
circuit wiring rather than the details of the kinetic constants. In this sense modelling
biological systems with more abstract formalisms that use a more high-level view has
certain unquestionable advantages. Among the coarse-grained models, Boolean models
are one of the “simplest” types of models as each element in such a model can have only
one of two states, i.e. ON or OFF, also referred to as 1 or 0 in a computational model, re-
spectively [HK09]. Other models like Petri nets are more flexible than Boolean models;
however, since our focus is long-run dynamics analysis, the simplest Boolean models
are already “complex” enough to provide insights into the long-run dynamics of bio-
logical networks [Bor05]. Hence, in this thesis, we focus on the framework of Boolean
models.

1.4 Addressing Research Problems with Boolean Models

After selecting the modelling framework, we now discuss how to handle the two research
problems under the framework of Boolean models.

1.4.1 Attractor Detection in Large Boolean Models

Although BNs and PBNs are all Boolean models, they should be distinguished in terms
of attractor detection. The definition of attractors described in Section 1.1 can be directly
applied to the framework of BNs. The attractors in PBNs, however, need to be redefined
due to the special dynamics of PBNs. Two types of PBNs are introduced in the literature
and we discuss the attractors for the two types separately. The first type comes from the
original definition of a PBN, which is known as an instantaneously random PBN. In an
instantaneously random PBN, a node may be associated with a set of functions and at any
time point one of the functions in the set is selected to determine the value of the node.
The other type, referred as a context-sensitive PBN, is used to capture the uncertainty
of latent factors outside a network model, whose behaviours influence regulation within
the network. A context-sensitive PBN consists of a list of constituent BNs, each known
as a context, and switches between these contexts in a stochastic way. At each time
step, a context-sensitive PBN can either remain in a context, or switch to a new context

10 Chapter 1 Introduction

with a probability and evolve accordingly. When a context-sensitive PBN is in a certain
context, i.e., a BN, it will eventually settle into one of the attractors of this context. Since
a context is usually kept for a period of time, the chances for a context-sensitive PBN to
evolve in an attractor of a context is still high in the long-run. Therefore, it is meaningful
to identify the attractors of the constituent BNs of a context-sensitive PBN. Hence, in
this thesis, the attractor detection in large Boolean models is performed in a BN, and in
each of the constituent BNs of a context-sensitive PBN.

In general, there are two updating schemes for Boolean models: synchronous and asyn-
chronous. In BNs with the synchronous updating scheme, the values of all the nodes are
updated simultaneously at each time step; while in BNs with the asynchronous updat-
ing scheme, the value of one randomly selected node is updated at each time step. The
two updating schemes correspond to different biological scenarios; hence both of them
should be handled. Since the two schemes pose different properties to a BN, we treat
the attractor detection in synchronous BNs and asynchronous BNs separately to gain
an optimal detection speed. As mentioned in Section 1.2, attractor detection in smaller
size networks can be easily handled with various methods. The challenge lies in large
networks where existing methods are hampered by the state space explosion problem.
Our solution for this challenge is to use the idea of “divide-and-conquer”. Based on
this idea, we design two decomposition methods: one for synchronous BNs and one for
asynchronous BNs. The two methods follow the same pattern for detecting attractors:
given a large BN, we divide it into several small sub-networks, detect attractors in sub-
networks and recover the attractors in the original network. However, they make use of
the different properties provided by the synchronous or asynchronous updating scheme
to reach an optimal detection speed for the two types of BNs.

1.4.2 Steady-state Probabilities Computation in Large Boolean Models.

From a mathematical point of view, the steady-state probabilities are only meaningful
in a network whose dynamics can be treated as an ergodic Markov chain. If a BN or
a PBN is incorporated with perturbations, it can evolve to any state from an arbitrary
state in the network. Therefore, the dynamics of such a network can be treated as an
ergodic Markov chain. We refer to Section 2.3 for a formal definition of BNs/PBNs
with perturbations and for their relationships with ergodic Markov chains. Due to this
mathematical view, we consider BNs or PBNs with perturbations when computing the
steady-state probabilities. For simplification, we will only mention PBNs in the rest of
this thesis when we discuss steady-state probabilities computation as BNs are special
cases of PBNs.

As discussed in Section 1.2, two issues need to be considered for efficiently computing
the steady-state probabilities in large Boolean models: one is to determine a suitable
method of estimating the probabilities via sampling finite trajectories, and the other is to
make the simulation as fast as possible. To address the first issue, we explore a method
called the two-state Markov chain approach [RL92]. This method has been proposed for
computing the steady-state probabilities in [SD10]. Its idea of abstracting a huge state
space into two meta states is exactly suitable for the purpose of steady-state probabili-
ties computation in large PBNs. However, there is an initialisation problem which may
lead to biased results of this method. Probably due to lack of statistical experiments,
this problem was not observed before. We identify the initialisation problem and pro-

1.5 Thesis Overview 11

pose several heuristics to avoid this problem. Moreover, we have made a comparative
study for comparing the efficiency of the two-state Markov chain approach with another
state-of-the-art method, i.e., the Skart method, in terms of computing steady-state prob-
abilities of a large PBN. We manage to handle the large memory requirement for the
Skart method and successfully apply it in computing the steady-state probabilities of a
large PBN. Our experiments show that the two-state Markov chain approach is better
than the Skart method in terms of efficiency.

We address the second issue with various techniques. Firstly, we apply the technique
called the Alias method [Wal77] to maximize the speed for selecting a context. The
alias method allows to make a selection of the context of a PBN within constant time,
irrespective of the number of contexts. Secondly, we consider parallel simulation tech-
niques with multiple cores. The current hardware techniques provide possibilities for
making calculations with multiple central processing units (CPUs) as well as multiple
graphical processing units (GPUs). To make use of these techniques in the computa-
tion of steady-state probabilities of a PBN, we design a method combining the two-state
Markov chain approach and the Gelman & Rubin method [GR92]. This combination
allows us to use samples obtained from different cores to calculate steady-state proba-
bilities. Thirdly, we focus on the structure of a PBN and make use of this to speedup
the simulation process. The developments in computer hardware provide not only more
CPU cores and GPU cores, but also more memory. This gives us the possibility to
use large memory for speeding up computations. By analysing the structure of a PBN,
we group and merge nodes, and restore them in different data structure. This process
requires additional memory usage, but can lead to faster simulation speed.

In addition to addressing the two research problems with theoretical algorithms and
methods, it is also vital to make them applicable. Hence, we design a software tool
called ASSA-PBN for modelling, simulating, and analysing PBNs. We integrate all
the techniques mentioned above in the tool. Moreover, we further implement several
in-depth analysis functions, e.g., parameter estimation of PBNs. We give an overview
of this thesis in the next section to explain how the research problems are addressed in
each chapter.

1.5 Thesis Overview

This thesis is composed of three main parts. Part I concentrates on the first research
problem and discusses computational techniques of attractor identification in both asyn-
chronous (Chapter 3) and synchronous networks (Chapter 4). Part II focuses on the sec-
ond research problem and discusses in Chapters 5, 6, and 7 several methods for efficient
steady-state probabilities computation. The last part presents in Chapter 8 a software
tool called ASSA-PBN which includes the techniques and algorithms discussed in the
first two parts for performing long-run analyses of PBNs. A detailed description of each
chapter is given below.

• Chapter 2. Preliminaries
In this chapter, we introduce fundamental concepts used throughout this thesis,
e.g., Boolean networks and probabilistic Boolean networks.

• Chapter 3. Attractor Detection in Asynchronous Networks
In this chapter, we discuss the problem of attractor detection in asynchronous

12 Chapter 1 Introduction

networks, where only one element in the network is updated at each time step.
The asynchronous network can either be an asynchronous BN or an asynchronous
context-sensitive PBN. We will introduce the concept of context-sensitive PBNs
later in Chapter 2.
This chapter is based on the work [MPQY18], which has been accepted in the
16th Asia Pacific Bioinformatics Conference (APBC’18).

• Chapter 4: Attractor Detection in Synchronous Networks
In this chapter, we focus on methods for attractor detection in synchronous net-
works, where the values of all the elements are updated synchronously. We pro-
pose a strongly connected component based decomposition method for attractor
detection and we prove its correctness.
This chapter is based on the work [YQPM16, MQPY17], which were respectively
published in the journal of Science China Information Science and in the proceed-
ings of the 3rd International Symposium on Dependable Software Engineering:
The Theories, Tools, and Applications (SETTA’17).

• Chapter 5. Efficient Steady-state Computation
Starting from this chapter, we deal with the second research problem. We discuss
several different methods for computing steady-state probabilities of a biological
network. Specifically, we focus on a method called the two-state Markov chain
approach [RL92]. We discuss situations that may lead to biased results obtained
with this method and we propose a remedy for it.
This chapter is based on the work [MPY17], which is published in the journal of
IEEE/ACM Transactions on Computational Biology and Bioinformatics.

• Chapter 6. Multiple-core Based Parallel Steady-state Computation
In this chapter, we discuss a multiple-core based parallel technique for speeding
up the steady-state probabilities computation. We propose to combine the two-
state Markov chain approach with the Gelman & Rubin method [GR92] for this
purpose. By doing this combination, we are able to use samples from different tra-
jectories to make the computation. Therefore, we can use multiple cores, which
can be either CPU cores or GPU cores. When it comes to GPU cores, we need
to take special care of the GPU memory usage. Special data structures and data
optimization methods are provided for fast operations in GPU cores.
This chapter is based on the work [MPY16d, MPY16c], which were respectively
published in the proceedings of the 31st ACM Symposium on Applied Computing
(SAC’16), and in the proceedings of the 2nd International Symposium on Depend-
able Software Engineering: The Theories, Tools, and Applications (SETTA’16).

• Chapter 7. Structure-based Parallel Steady-state Computation
In this chapter, we discuss a technique called structure-based parallelisation for
speeding up the steady-state probabilities computation. Instead of using more
cores, this technique uses more memory and applies the idea of gaining speed by
sacrificing memory.
This chapter is based on the work [MPY16b], which was published in the proceed-
ings of the 14th International Conference on Computational Methods in Systems
Biology (CMSB’16).

• Chapter 8. ASSA-PBN: a software tool for probabilistic Boolean networks.
In this chapter, we introduce the tool ASSA-PBN which is designed for approx-
imate steady-state analysis of probabilistic Boolean networks. The tool imple-
ments the above discussed methods and techniques and is able to perform both

1.5 Thesis Overview 13

attractor detection and steady-state probabilities computation. Moreover, the tool
provides several in-depth network analysis functions. As a case-study, we demon-
strate how parameter estimation can be performed using our tool ASSA-PBN.
This chapter is based on two published work and one under-review work submitted
to the journal of Transactions on Computational Biology and Bioinformatics. The
two published work are [MPY15, MPY16a], which were respectively published in
the proceedings of the 13th International Symposium on Automated Technology
for Verification and Analysis (ATVA’15), and in the proceedings of the 14th Inter-
national Conference on Computational Methods in Systems Biology (CMSB’16).

2

Preliminaries

To fully understand this thesis, some preliminary knowledge is required. In this chapter,
we give a brief introduction of it. We first describe the finite discrete-time Markov
chains (DTMCs). Then, we present Boolean networks (BNs) and probabilistic Boolean
networks (PBNs).

2.1 Finite discrete-time Markov chains (DTMCs)

Let S be a finite set of states. A (first-order) DTMC is an S-valued stochastic process
{Xt}t∈N with the property that the next state is independent of the past states given
the present state. Formally, P(Xt+1 = st+1 |Xt = st, Xt−1 = st−1, . . . , X0 = s0) =
P(Xt+1 = st+1 |Xt = st) for all st+1, st, . . . , s0 ∈ S. Here, we consider time-homogen-
ous Markov chains, i.e., chains where P(Xt+1 = s′ |Xt = s), denoted Ps,s′ , is inde-
pendent of t for any states s, s′ ∈ S. The transition matrix P = (Ps,s′)s,s′∈S satisfies
Ps,s′ > 0 and

∑
s′∈S Ps,s′ = 1 for all s ∈ S. Formally, the definition of a DTMC is given

below.

Definition 2.1.1 (Discrete-time Markov chain). A Discrete-time Markov chain D is a 3-
tuple 〈S, S0, P 〉 where S is a finite set of states, S0 ⊆ S is the initial set of states, and
P : S × S → [0, 1] is the transition probability matrix where Σs′∈SP (s, s′) = 1 for all
s ∈ S. When S = S0, we write 〈S, P 〉.

We denote by π a probability distribution on S. If π = π P , then π is a stationary
distribution of the DTMC (also referred to as a invariant distribution). A path of length
n is a sequence s1 → s2 → · · · → sn such that Psi,si+1 > 0 and si ∈ S for i ∈
{1, 2, . . . , n}. State q ∈ S is reachable from state p ∈ S if there exists a path such that
s1 = p and sn = q. A DTMC is irreducible if any two states are reachable from each
other. The period of a state is defined as the greatest common divisor of the lengths
of all paths that start and end in the state. A DTMC is aperiodic if all states in S are
of period 1. A finite state DTMC is called ergodic if it is irreducible and aperiodic.
By the famous ergodic theorem for DTMCs [Nor98], an ergodic chain has a unique
stationary distribution being its limiting distribution (also referred to as the steady-state
distribution) given by limn→∞ π0 P

n, where π0 is any initial probability distribution on
S. In consequence, the limiting distribution for an ergodic chain is independent of the
choice of π0. The steady-state distribution can be estimated from any initial distribution
by iteratively multiplying it by P .

The evolution of a first-order DTMC can be described by a stochastic recurrence se-
quence Xt+1 = φ(Xt, Ut+1), where {Ut}t∈N is an independent sequence of uniformly
distributed real random variables over [0, 1] and the transition function φ : S×[0, 1]→ S

15

16 Chapter 2 Preliminaries

satisfies the property that P(φ(s, U) = s′) = Ps,s′ for any states s, s′ ∈ S and for
any U , a real random variable uniformly distributed over [0, 1]. When S is partially
ordered and the transition function φ(·, u) is monotonic, then the chain is said to be
monotone [PW96].

If we ignore the transition probability matrix in a DTMC and concentrate on the transi-
tion relation between states, we have the concept of state transition system as follows:

Definition 2.1.2 (State transition system). A state transition system T is a 3-tuple 〈S, S0,
T 〉 where S is a finite set of states, S0 ⊆ S is the initial set of states, and T ⊆ S × S is
the transition relation. When S = S0, we write 〈S, T 〉.

In the state transition system, we define path and reachability as follows.

Definition 2.1.3 (Path and reachability). In a state transition system T = 〈S, S0, T 〉, a
path of length k (k ≥ 2) is a serial s1 → s2 → · · · → sk of states in S such that there
exists a transition between any consecutive two states xi and xi+1, where i ∈ [1, k − 1].
A state sj is reachable from si if there is a path from si to sj .

2.2 Boolean Networks

A Boolean network (BN) is composed of two elements: binary-valued nodes, which
represent elements of a biological system, and Boolean functions, which represent in-
teractions between the elements. The concept of BNs was first introduced in 1969 by
S. Kauffman for analysing the dynamical properties of GRNs [Kau69a], where each
gene was assumed to be in only one of two possible states: ON/OFF.

Definition 2.2.1 (Boolean network). A Boolean network G(V,f) consists of a set of
nodes V = {v1, v2, . . . , vn}, also referred to as genes, and a vector of Boolean functions
f = (f1, f2, . . . , fn), where fi is a predictor function associated with node vi (i =
1, 2, . . . , n). For each node vi, its predictor function fi is defined with respect to a subset
of nodes {vi1 , vi2 , . . . , vik(i)}, referred to as the set of parent nodes of vi, where k(i) is
the number of parent nodes and 1 ≤ i1 < i2 < · · · < ik(i) ≤ n. A state of the network is
given by a vector x = (x1, x2, . . . , xn) ∈ {0, 1}n, where xi ∈ {0, 1} is a value assigned
to node vi.

Since the nodes are binary, the state space of a BN is exponential in the number of
nodes. Starting from an initial state, the BN evolves in time by transiting from one state
to another. The state of the network at a discrete time point t (t = 0, 1, 2, . . .) is given
by a vector x(t) = (x1(t), x2(t), . . . , xn(t)), where xi(t) is a binary-valued variable that
determines the value of node vi at time point t. The value of node vi at time point t+ 1
is given by the predictor function fi applied to the values of the parent nodes of vi at
time t, i.e., xi(t + 1) = fi(xi1(t), xi2(t), . . . , xik(i)(t)). For simplicity, with slight abuse
of notation, we use fi(xi1 , xi2 , . . . , xik(i)) to denote the value of node vi at the next time
step. For any j ∈ [1, k(i)], node vij is called a parent node of vi and vi is called a child
node of vij .

In general, the Boolean predictor functions can be formed by combinations of any logi-
cal operators, e.g., logical AND ∧, OR ∨, and NEGATION ¬, applied to variables associ-
ated with the respective parent nodes. The BNs are divided into two types based on the
time evolution of their states, i.e., synchronous and asynchronous.

2.2 Boolean Networks 17

v3 v2

v1

(a) A BN with 3 nodes.

000 101 001 011

110 111 100 010

(b) Synchronous transition graph of the BN in Example 2.2.1.

Figure 2.1: The Boolean network in Example 2.2.1 and its state transition graph.

• Synchronous BNs.
In synchronous BNs, values of all the variables are updated simultaneously. The
transition relation of a synchronous BN is given by

T (x(t),x(t+ 1)) =
n∧
i=1

(
xi(t+ 1)↔ fi(xi1(t), xi2(t), · · · , xiki (t))

)
. (2.1)

It states that in every step, all the nodes are updated synchronously according to
their Boolean functions.

• Asynchronous BNs.
In asynchronous BNs, one variable at a time is randomly selected for update. The
transition relation of an asynchronous BN is given by

T (x(t),x(t+ 1)) = ∃i
(xi(t+ 1)↔ fi(xi1(t), xi2(t), · · · , xiki (t))

)
n∧

j=1,j 6=i
(xj(t+ 1)↔ xj(t))

 . (2.2)

It states that node vi is updated by its Boolean function and other nodes are kept
unchanged. Each node has a chance to be updated by its Boolean function, there-
fore there are n outgoing transitions in maximum from any state.

In many cases, a BN G(V,f) is studied as a state transition system. A BN can be easily
modelled as a state transition system: the set S is just the state space of the BN, so there
are 2n states for a BN with n nodes; the initial set of states S0 is the same as S; the
transition relation T is given by either Equation 2.1 (when the BN is synchronous) or
Equation 2.2 (when the BN is asynchronous); finally the label function L can be just a
function mapping s to its value.

Example 2.2.1. A synchronous BN with 3 nodes is shown in Figure 2.1a. Its Boolean
functions are given as: f1 = ¬(x1 ∧ x2), f2 = x1 ∧ ¬x2, and f3 = ¬x2. In Figure 2.1a,
the three circles v1, v2, and v3 represent the three nodes of the BN. The edges between
nodes represent the interactions between nodes. Applying the transition relation to each
of the states, we can get the corresponding state transition system. For better under-
standing, we demonstrate the state transition system as a state transition graph in this
thesis. The corresponding state transition graph of this example is shown in Figure 2.1b.

In the transition graph of Figure 2.1b, the three states (000), (1∗1)1 can be reached from
each other but no other state can be reached from any of them. This forms an attractor
of the BN. The formal definition of an attractor is given as follows.

1We use ∗ to denote that the bit can have value either 1 or 0, so (1∗1) actually denotes two states: 101
and 111.

18 Chapter 2 Preliminaries

0000

(a) A selfloop.

0000 0001

00110010

(b) A simple loop (type II).

0000 0001

10110010

(c) A simple loop (type III).

Figure 2.2: Three types of attractor systems in a synchronous BN.

0000

(a) A selfloop.

0000 0001

00110010

(b) A simple loop.

0000 0001

00110010

1001

1011

(c) A complex loop.

Figure 2.3: Three types of attractor systems in an asynchronous BN.

Definition 2.2.2 (Attractor of a BN). An attractor of a BN is a set of states satisfying
that any state in this set can be reached from any other state in this set and no state in
this set can reach any other state that is not in this set.

Example 2.2.2. The BN given in Example 2.2.1 has one attractor, i.e., {(000), (1 ∗ 1)}.

When analysing an attractor, we often need to identify transition relations between the
attractor states. We call an attractor together with its state transition relation as an at-
tractor system (AS). The states constituting an attractor are called attractor states. The
attractors of a BN characterise its long-run behaviour [SD10] and are of particular inter-
est due to their biological interpretation.

For synchronous BNs, each state of the network can only have at most one outgoing
transition. Therefore, the transition graph of an attractor in a synchronous BN is sim-
ply a loop. By detecting all the loops in a synchronous BN, one can identify all its
attractors. The attractor systems can be divided into three different types. Type I: self-
loops. An attractor composed of only one state as shown in Figure 2.2a. Type II: simple
loops where the Hamming distance between two consecutive states is 1 as shown in Fig-
ure 2.2b. Type III: simple loops where the maximum Hamming distance between two
consecutive states is greater than 1 as shown in Figure 2.2c.

For asynchronous BNs, a state may have multiple outgoing transitions. Therefore, an
attractor may not be a loop any more. The attractor systems in an asynchronous BN can
also be divided into three types. Type I: selfloops. This type of attractors is the same as
in a synchronous network. An example is shown in Figure 2.3a. Type II: simple loops.
This type of attractors is quite similar to the type II attractor in a synchronous network.
The maximum Hamming distance between two consecutive states is also 1 but there are
selfloops due to the asynchronous update mode. See Figure 2.3b for an example. Type
III: complex loops. This type of attractors only exists in asynchronous networks since
a state may have more than one outgoing transitions leading to two or more different
states. Figure 2.3c shows an example of this kind of loop.

A type I attractor or a type II attractor in a synchronous BN will be present as type

2.3 Probabilistic Boolean Networks (PBNs) 19

I attractor and type II attractor in its corresponding asynchronous BN and vice verse.
However, a type III attractor in a synchronous BN is not necessarily present in its corre-
sponding asynchronous BN and vice verse.

2.3 Probabilistic Boolean Networks (PBNs)

PBNs were introduced to reflect the indeterministic of a biological system [SDZ02b,
SDKZ02, SDZ02a], originally as a model for gene regulatory networks. It allows a
node to have more than one Boolean function and the value of a node is updated based
on a selected Boolean function each time. Formally, the definition of PBNs is given as:

Definition 2.3.1 (Probabilistic Boolean network). A PBN G(V,F) consists of a set of
binary-valued nodes V = {v1, v2, . . . , vn} and a list of sets F = (F1, F2, . . . , Fn). For
each i ∈ {1, 2, . . . , n} the set Fi = {f (i)

1 , f
(i)
2 , . . . , f

(i)
l(i)} is a collection of predictor

functions for node vi, where l(i) is the number of predictor functions for vi. Each f (i)
j ∈

Fi is a Boolean function defined with respect to a subset of nodes referred to as parent
nodes of f (i)

j . The union of all the parent nodes of f (i)
j ∈ Fi is the parent nodes of vi.

The above definition does not include probability distributions. Two different proba-
bility distributions will be introduced later on for two different types of PBNs. We
denote by xi(t) the value of node vi at time point t ∈ N. The state space of the PBN
is S = {0, 1}n and it is of size 2n. The state of the PBN at time t is determined by
x(t) = (x1(t), x2(t), . . . , xn(t)). The dynamics of the PBN is given by the sequence
(x(t))∞t=0. Each node xi has l(i) possible predictor functions. A realisation of a PBN
at a given time is a function vector where the ith function of the vector is selected from
the predictor functions of node xi. For a PBN with N realisations, there are N possible
network transition functions f1,f2, . . . ,fN of the form fk = (f (1)

k1 , f
(2)
k2 , . . . , f

(n)
kn

), k =
1, 2, . . . , N, 1 6 kj 6 l(j), f (j)

kj
∈ Fj, and j = 1, 2, . . . , n. Each network function fk

defines a constituent Boolean network, or a context, of the PBN.

At each time point of the PBN’s evolution, a decision is made whether to switch the
constituent network. This is modelled with a binary random variable ξ: if ξ = 0, then
the current constituent network is preserved; if ξ = 1, then a context is randomly se-
lected from all the constituent networks in accordance with the probability distribution
of f1,f2, . . . ,fN . Notice that this definition implies that there are two mutually exclu-
sive ways in which the context may remain unchanged: 1) either ξ = 0 or 2) ξ = 1 and
the current network is reselected. The functional switching probability q = Pr(ξ = 1) is
a system parameter. Two cases are distinguished in the literature: if q = 1, then a switch
is made at each updating epoch; if q < 1, then the PBN’s evolution in consecutive time
points proceeds in accordance with a given constituent BN until the random variable ξ
calls for a switch. If q = 1, as originally introduced in [SDKZ02], the PBN is said to be
instantaneously random; if q < 1, it is said to be context-sensitive. In this thesis, when
we consider an instantaneously random PBN, we restrict it to be an independent PBN
where predictor functions for different nodes are selected independently of each other;
while when we consider a context-sensitive PBN, the PBN is dependent by definition.

In instantaneously random PBNs, there is a probability distribution C(i) = (c(i)
1 , c

(i)
2 , . . . ,

c
(i)
l(i)) on each Fi ∈ F , where c(i)

j for j ∈ [1, l(i)] is the probability of selecting f (i)
j ∈ Fi

20 Chapter 2 Preliminaries

as the next predictor for vi and it holds that
∑l(i)
j=1 c

(i)
j = 1. A realisation selected at time t

is referred to asFt. Due to independence, the probability distribution on constituent BNs
is given by P(fk) = P(Ft = fk) = ∏n

i=1 c
(i)
ki

. In this way, the instantaneously random
PBN can be viewed as a time-homogeneous DTMC: the state space of the DTMC is S,
i.e., the state-space of the PBN; the transition probability between two states x and x′ is
given by Px,x′ = ∑N

k=1 1[fk(x)=x′]P(fk), where 1 is the indicator function.

In the context-sensitive PBNs, there is no probability distribution on each Fi ∈ F . In-
stead, there is a probability distributionD = (d1, d2, . . . , dN) on constituent BNs, where
dk for k ∈ [1, N] is the probability that context fk is selected when a switch of context is
made (ξ = 1). Let Ft be the context at time point t, then the probability that context fk
is selected at time point t+1 is that P(Ft = fk) = (1−q)1[F (t+1)=F (t)]+qdk. Therefore,
we cannot view the states of a context-sensitive PBN as a time-homogeneous DTMC.
However, if we combine the states of a context-sensitive PBN (represented by x) with
the contexts f in the PBN to form new states, we can view the new states represented
by (x,f) as a time-homogeneous DTMC.

Similarly to Boolean networks, there are also two updating schemes for PBNs: syn-
chronous and asynchronous. Therefore, PBNs can be divided into the following four
types.

• Instantaneously Random Synchronous PBNs.

In the instantaneously random synchronous PBNs, the transition from x(t) to
x(t+ 1) is conducted by randomly selecting a predictor function for each node vi
from Fi and by synchronously updating the node values in accordance with the se-
lected functions. A realisation selected at time t is referred to as Ft. The transition
relation of a instantaneously random synchronous PBN can then be denoted as

T (x(t),x(t+ 1)) = Ft(x(t)). (2.3)

• Instantaneously Random Asynchronous PBNs.
In the instantaneously random asynchronous PBNs, the transition from x(t) to
x(t+ 1) is conducted by randomly selecting a node vi, randomly selecting a pre-
dictor function for the node vi from Fi and updating the node value in accordance
with the selected function. Let fi(t) be the randomly selected function of the ran-
domly selected node vi at time point t and si(t) be the parent nodes of function
fi(t). The transition relation of an instantaneously random asynchronous PBN
can then be denoted as T (x(t),x(t+ 1)) =

(x1(t), x2(t), . . . , xi−1(t), fi(t)(si(t)), xi+1(t), . . . , xn(t)). (2.4)

• Context-sensitive Synchronous PBNs.
In the context-sensitive synchronous PBNs, the transition from x(t) to x(t+ 1) is
conducted by synchronously updating the node values in accordance with Boolean
functions of the current constituent BN which is either the same as its previous
context (with probability 1− q) or randomly selected from all the constituent BNs
(with probability q). Similarly to the instantaneously random synchronous PBNs,
we refer the context of Boolean functions governing the update of nodes values at
time t as Ft. Then the transition relation of a context-sensitive synchronous PBN
can be denoted using Equation 2.3 as well.

2.3 Probabilistic Boolean Networks (PBNs) 21

• Context-sensitive Asynchronous PBNs.
In the context-sensitive asynchronous PBNs, the transition from x(t) to x(t + 1)
is conducted by randomly selecting a node vi, and by updating the node value in
accordance with its Boolean function of the current constituent BN which is either
the same as its previous context (with probability 1−q) or randomly selected from
all the constituent BNs (with probability q). Let fi(t) be the Boolean function of
the randomly selected node vi in the current constituent BN at time point t and
si(t) be the parent nodes of function fi(t). The transition relation of a context-
sensitive asynchronous PBN can then be denoted using Equation 2.4 as well.

In a PBN with perturbations, a perturbation rate p ∈ (0, 1) is introduced and the dynam-
ics of a PBN is guided with either perturbations or predictor functions: at each time point
t, the value of each node vi is flipped with probability p; and if no flip happens, either
the value of each node vi is updated with selected predictor functions synchronously
in the synchronous update mode or the value of a randomly selected node is updated
with the selected predictor function in the asynchronous update mode. Let γ(t) =
(γ1(t), γ2(t), . . . , γn(t)) be a perturbation vector, where each element is a Bernoulli dis-
tributed random variable with parameter p, i.e., γi(t) ∈ {0, 1} and P(γi(t) = 1) = p
for all t and i ∈ {1, 2, . . . , n}. By extending Equation 2.3, the transition relation in
synchronous PBNs with perturbations is given by

T (x(t),x(t+ 1)) =

x(t)⊕ γ(t) if γ(t) 6= 0
Ft(x(t)) otherwise,

(2.5)

where ⊕ is the element-wise exclusive or operator for vectors. By extending Equa-
tion 2.4, the transition relation in asynchronous PBNs with perturbations is given as
T (x(t),x(t+ 1)) =x(t)⊕ γ(t) if γ(t) 6= 0

(x1(t), x2(t), . . . , xi−1(t), fi(t)(si(t)), xi+1(t), . . . , xn(t)) otherwise.
(2.6)

The perturbations, by the latter update Equations 2.5 and 2.6, allow the system to move
from any state to any other state in one single transition, hence render the underlying
Markov chain irreducible and aperiodic. Therefore, the dynamics of a PBN with per-
turbations can be viewed as an ergodic DTMC [SD10]. The transition matrix2 is given
by Px,x′ = (1 − p)n∑N

k=1 1[fk(x)=x′]P(fk) + (1 − (1 − p)n)pη(x,x′)(1 − p)n−η(x,x′),
where 1 is the indicator function and η(x,x′) is the Hamming distance between states
x,x′ ∈ S. According to the ergodic theory, adding perturbations to any PBN assures
that the long-run dynamics of the resulting PBN is governed by a unique limiting distri-
bution, convergence to which is independent of the choice of the initial state. However,
the perturbation probability value should be chosen carefully, not to dilute the behaviour
of the original PBN. In this way the ‘mathematical trick’, although introduces some
noise to the original system, allows to significantly simplify the analysis of the steady-
state behaviour.

The density of a PBN is measured with its function number and parent nodes number.
For a PBN G, its density is defined as D(G) = 1

n

∑NF
i=1 ω(i), where n is the number of

nodes in G, NF is the total number of predictor functions in G, and ω(i) is the number
of parent nodes for the ith predictor function.

2This is the transition matrix for instantaneously random PBNs. For context-sensitive PBNs, the
transition matrix is different since the state also includes the current context as mentioned above.

Part I

Attractor Detection

23

3

Attractor Detection in Asynchronous
Networks

3.1 Introduction

In this chapter, we consider attractor detection in asynchronous networks, in particu-
lar, asynchronous BNs without perturbations and asynchronous PBNs without pertur-
bations. Perturbations are not introduced since they will make the underlying Markov
chain of the network ergodic and hence no attractors exist any more. In a PBN without
perturbations, attractors exist in its constituent BNs and the network remains in an attrac-
tor as long as it does not switch the context. So when detecting attractors of a PBN, we in
fact detect the attractors of all its constituent BNs. Therefore, we will use asynchronous
BNs to discuss attractor detection in the remaining part of this chapter. Usually in an
instantaneously random PBN, the number of constituent BNs is relatively large and an
attractor has a high probability to be escaped since the probability for switching a con-
text is high. Hence, attractor detection is more performed on context-sensitive PBNs.

Attractor detection of a BN is non-trivial since attractors are determined based on the
BN’s states, the number of which is exponential in the number of nodes. In this chap-
ter, we tackle the challenge of attractor detection for asynchronous BNs, especially for
large ones, and we propose a strongly connected component (SCC) based decomposi-
tion method: decompose a BN into sub-networks called blocks according to the SCCs
in the BN and recover attractors of the original BN based on attractors of the blocks.
Since the decomposition is performed on the BN structure, not in the state space, the
decomposition time cost is linear in the number of nodes and the state space of each
block is exponentially smaller in comparison to that of the original BN. The asynchrony
poses two main challenges for the decomposition methods: one is to take care of the
dependency relations between different blocks; the other is to strictly comply with the
asynchronous updating scheme when recovering attractors from different blocks. To
overcome these difficulties, we order the blocks according to their dependency relations
and detect attractors of each block with consideration of the block that it depends on. In
this way, our method is top-down, starting with elementary blocks which do not depend
on others. The result of this chapter is arranged as follows. We review the related work
in attractor detection in Section 3.2. We prove that our proposed method can correctly
detect all the attractors of a BN (Section 3.3), and we implement it using efficient BDD
techniques (Section 3.4). Evaluation results show that our method can effectively detect
attractors of two real-life biological networks (Section 3.5).

25

26 Chapter 3 Attractor Detection in Asynchronous Networks

3.2 Related Work

A lot of efforts have been put in the development of attractor detection algorithms and
tools. The simplest way to detect attractors is to enumerate all the possible states and to
run simulation from each one until an attractor is reached [SG01]. This method ensures
that all the attractors are detected but it has exponential time complexity and its applica-
bility is highly restricted by the network size. Another approach is to take a sample from
the whole state space and simulate from it until an attractor is found [Luc02]. However,
this technique cannot guarantee finding all the attractors of a BN. Later, Irons proposed
a method by analysing partial states involving parts of the nodes [Iro06]. This method
can reduce the computational complexity of attractor detection from exponential time
to polynomial time; however, it is highly dependent on the topology of the underlying
network and the network size manageable by this method is restricted to 50.

Next, the efficiency and scalability of attractor detection techniques are further improved
with the integration of two techniques. This first technique is based on Binary De-
cision Diagram (BDD), a compact data structure for representing Boolean functions.
Algorithms proposed in [DTM05, GXMD07, GDCX+08] explore BDDs to encode the
Boolean functions in BNs, use BDD operations to capture the dynamics of the networks,
and to build their corresponding transition systems. The efficient operations of BDDs
are used to compute the forward and backward reachable states. Attractor detection
is then reduced to finding self-loops or simple cycles in the transition systems, which
highly relies on the computation of forward and backward reachable states. Garg et
al. proposed a method for detecting attractors for both synchronous and asynchronous
BNs [GXMD07]. Later in [GDCX+08], the method was further improved for attrac-
tor detection of asynchronous BNs. In a recent work [ZYL+13], Zheng et al. devel-
oped an algorithm based on reduced-order BDD (ROBDD) data structure, which further
speeds up the computation time of attractor detection. These BDD-based solutions only
work for GRNs of a hundred of nodes and suffer from the infamous state explosion prob-
lem, as the size of the BDD depends both on the regulatory functions and the number of
nodes in the GRNs.

The other technique represents attractor detection in BNs as a satisfiability (SAT) prob-
lem [DT11]. The main idea is inspired by SAT-based bounded model checking: the
transition relation of the GRN is unfolded into a bounded number of steps in order to
construct a propositional formula which encodes attractors and which is then solved by
a SAT solver. In every unfolding step a new variable is required to represent a state of
a node in the GRN. It is clear that the efficiency of these algorithms largely depends on
the number of unfolding steps required and the number of nodes in the GRN.

Recently, decomposition based algorithms have been developed for dealing with large
BNs. Zhao et at. proposed an aggregation algorithm to deal with large BNs. Their idea
is to decompose a large BN into several sub-networks and detect attractors of each sub-
network [ZKF13]. By merging the attractors of all the sub-networks, their algorithm can
reveal the attractors of the original BN. In [GYW+14], Guo et al. developed an SCC
(strongly connected component)-based decomposition method. Their method divides
a BN into several sub-networks according to the SCCs in the BN and assigns each sub-
network a credit. The attractor detection in each sub-network is performed one by one
according to their credits. Unlike the algorithm in [ZKF13], when detecting attractors of
a sub-network, the method of Guo et al. considers the attractor information of other sub-

3.3 An SCC-based Decomposition Method 27

networks whose credits are smaller. In this way, it reveals the attractors of the original
BN by detecting attractors of the last sub-network. However, it is worth to point out
that the algorithm designed by Guo in fact leads to wrong results in certain cases. An
example showing this error is demonstrated in Example 4.2.2 of Chapter 4.

Remark. The above mentioned methods are mainly designed for BNs with the syn-
chronous updating scheme. In synchronous BNs, an attractor is either a single state
selfloop or a cycle since there is exactly one outgoing transition for each state. Un-
der the asynchronous updating scheme, each state may have multiple outgoing tran-
sitions. Therefore, an attractor in general is a bottom strongly connected component
(BSCC) 1 in the corresponding state transition system. The potentially complex at-
tractor structure renders SAT-based methods ineffective as the respective SAT formulas
become prohibitively large. Besides, the decomposition methods [ZKF13, GYW+14,
YQPM16] are also prohibited by the asynchronous updating requirement. Moreover,
BDD-based methods face the state-space explosion problem even in the synchronous
updating scheme. In the asynchronous updating scheme, the problem gets even worse
as the number of edges in the state transition system increases multiple times.

3.3 An SCC-based Decomposition Method

In this section, we describe in details our SCC-based decomposition method for detect-
ing attractors of large asynchronous BNs and prove its correctness. The method consists
of three main steps. First, we divide a BN into sub-networks called blocks. This step
is performed based on the BN network structure and therefore it can be executed ef-
ficiently. Second, we detect attractors of each block. This step is performed on the
constructed state transition system of the blocks. Finally, we recover attractors of the
original BN by merging the detected attractors of the blocks.

3.3.1 Decomposing a BN into Blocks

We start a detailed presentation of our approach by giving the formal definition of
a block.

Definition 3.3.1 (Block). Given a BN G(V,f) with V = {v1, v2, . . . , vn} and f = {f1,
f2, . . . , fn}, a block B(V B,fB) is a subset of the network, where V B ⊆ V and fB

is a list of Boolean functions for nodes in V B: for any node vi ∈ V B, if B contains
all the parent nodes of vi, its Boolean function in B remains the same as in G, i.e., fi;
otherwise, the Boolean function is undetermined, meaning that additional information
is required to determine the value of vi in B. We call the nodes with undetermined
Boolean functions as undetermined nodes. We refer to a block as an elementary block if
it contains no undetermined nodes.

We consider asynchronous networks in this chapter and therefore a block is also under
the asynchronous updating scheme, i.e., only one node in the block can be updated at
any given time point no matter this node is undetermined or not.

We now introduce a method to construct blocks using SCC-based decomposition. For-
mally, the standard graph-theoretical definition of an SCC is as follows.

1It is also referred as loose attractor in the literature [WSA12].

28 Chapter 3 Attractor Detection in Asynchronous Networks

v1 v2

v3v4

v5 v6

v7v8

Σ1 Σ3

Σ2 Σ4

Figure 3.1: SCC decomposition of a BN.

00 01

10 11

(a) Transition graph of block B1.

100 101

110 111

(b) Fulfilment 1 of Example 3.3.2.

Figure 3.2: Two transition graphs.

Definition 3.3.2 (SCC). Let G be a directed graph and V be its vertices. A strongly
connected component (SCC) of G is a maximal set of vertices C ⊆ V such that for every
pair of vertices u and v in C, there is a directed path from u to v and vice versa.

We first decompose a given BN, its network structure, into SCCs. Figure 3.1 shows the
decomposition of a BN into four SCCs: Σ1, Σ2, Σ3, and Σ4. A node outside an SCC
that is a parent to a node in the SCC is referred to as a control node of this SCC. In
Figure 3.1, node v1 is a control node of Σ2 and Σ4; node v2 is a control node of Σ3; and
node v6 is a control node of Σ4. The SCC Σ1 does not have any control node.

Definition 3.3.3 (Parent SCC, Ancestor SCC). An SCC Σi is called a parent SCC (or
parent for short) of another SCC Σj if Σi contains at least one control node of Σj .
Denote P (Σi) the set of parent SCCs of Σi. An SCC Σk is called an ancestor SCC (or
ancestor for short) of an SCC Σj if and only if either (1) Σk is a parent of Σj or (2) Σk

is a parent of Σj’s ancestor. Denote Ω(Σj) the set of ancestor SCCs of Σj .

An SCC together with its control nodes forms a block. For example, in Figure 3.1, Σ2
and its control node v1 form one block B2. Σ1 itself is a block, denoted as B1, since
the SCC it contains does not have any control node. If a control node in a block Bi is
a determined node in another block Bj , block Bj is called a parent of block Bi and Bi

is a child of Bj . The concepts of parent and ancestor are naturally extended to blocks.

By adding directed edges from all parent blocks to all their child blocks, we form a di-
rected acyclic graph (DAG) of the blocks as the blocks are formed from SCCs. We
notice here that in our decomposition approach, as long as the block graph is guaranteed
to be a DAG, other strategies to form blocks can be used.

Two blocks can be merged into one larger block. For example, the above mentioned
two blocks B1 and B2 can be merged to form a larger block B1,2 which contains nodes
v1, v2, v3 and v4. In the merged block B1,2, there are no undetermined nodes since the
parent nodes of all the nodes in B1,2 are included in B1,2.

3.3 An SCC-based Decomposition Method 29

A state of a block is a binary vector of length equal to the size of the block which
determines the values of all the nodes in the block. In this thesis, we use a number of
operations on the states of a BN and its blocks. Their definitions are given below.

Definition 3.3.4 (Projection map, Compressed state, Mirror states). For a BN G and its
block B, where the set of nodes in B is V B = {v1, v2, . . . , vm} and the set of nodes in
G is V = {v1, v2, . . . , vm, vm+1, . . . , vn}, the projection map δB : X → XB is given by
x = (x1, x2, . . . , xm, xm+1, . . . , xn) 7→ δB(x) = (x1, x2, . . . , xm). For any set of states
S ⊆ X , we define δB(S) = {δB(x) : x ∈ S}. The projected state δB(x) is called
a compressed state of x. For any state xB ∈ XB, we define its set of mirror states in
G asMG(xB) = {x | δB(x) = xB}. For any set of states SB ⊆ XB, its set of mirror
states isMG(SB) = {x | δB(x) ∈ SB}.

The concept of the projection map can be extended to blocks. Given a block with nodes
V B = {v1, v2, . . . , vm}, let V B′ = {v1, v2, . . . , vj} ⊆ V B. We can define δB′ : XB →
XB′ as xB = (x1, x2, . . . , xm) 7→ δB′(xB) = (x1, x2, . . . , xj) and for a set of states
SB ⊆ XB, we define δB′(SB) = {δB′(xB) : xB ∈ SB}.

Definition 3.3.5 (Path, Hyper-path). Given a BN G of n nodes and its state space X =
{0, 1}n, a path of length k (k> 2) in G is a serial x1 → x2 → · · · → xk of states in
X such that there exists a transition between any consecutive two states xi and xi+1,
where i ∈ [1, k − 1]. A hyper-path of length k (k > 2) in G is a serial x1 99K x2 99K
· · · 99K xk of states inX such that at least one of the two conditions is satisfied: 1) there
is a transition from xi to xi+1, 2) xi = xi+1, where i ∈ [1, k − 1].

The concepts of a path and a hyper-path in a BN can be naturally extended to elementary
blocks. Notice that for any two consecutive states xi, xi+1 in a path x1 → x2 → · · · →
xk in a BN, k > 2 and i ∈ [1, k − 1], if the transition between these two states is
due to the updating of a node in an elementary block B, then there is a transition from
δB(xi) to δB(xi+1); otherwise, δB(xi) = δB(xi+1). Therefore, the projection of all
the states in the path x1 → x2 → · · · → xk on block B actually forms a hyper-path
δB(x1) 99K δB(x2) 99K · · · 99K δB(xk) in block B. The following lemma follows
immediately from the definitions of path and hyper-path.

Lemma 3.3.1. Let x1 99K x2 99K · · · 99K xk be a hyper-path in a BN of length k. At
least one of the two statements holds. 1) There is a path from x1 to xk in the BN and
this path contains all the states in the hyper-path. 2) x1 = x2 = · · · = xk.

3.3.2 Detecting Attractors in Blocks

An elementary block does not depend on any other block while a non-elementary block
does. Therefore, they should be treated separately. We first consider the case of elemen-
tary blocks. An elementary block is in fact a BN; therefore, the notion of attractors of
an elementary block is given by the definition of attractors of a BN. Next, we introduce
the following concept.

Definition 3.3.6 (Preservation of attractors). Given a BN G and an elementary block B
in G, let A = {A1, A2, . . . , Am} be the set of attractors of G and AB = {AB1 , AB2 , . . . ,
ABm′} be the set of attractors of B. We say that B preserves the attractors of G if for any
k ∈ [1,m], there is an attractor ABk′ ∈ AB such that δB(Ak) ⊆ ABk′ .

30 Chapter 3 Attractor Detection in Asynchronous Networks

Example 3.3.1. Consider the Boolean network G shown in Figure 3.1. The Boolean
functions of this network are given as follows:

f1 = x1 ∧ x2, f2 = x1 ∨ ¬x2,
f3 = ¬x4, f4 = x1 ∧ ¬x3,
f5 = x2 ∧ x6, f6 = x5,
f7 = (x1 ∨ x6) ∧ x8, f8 = x7 ∨ x8.

It has 10 attractors, i.e.,A = {{(0∗100000)}, {(0∗100001)}, {(11010000)}, {(1101001
1)}, {(11011100)}, {(11011111)}, {(11100000)}, {(11100011)}, {(11101100)}, {(1110
1111)}} (∗ means either 0 or 1). Nodes v1 and v2 form an elementary block B1.
Since B1 is an elementary block, it can be viewed as a BN. The transition graph of
this block is shown in Figure 3.2a. Its set of attractors is AB1 = {{(0∗)}, {(11)}}
(nodes are arranged as v1, v2). We have δB1({(0 ∗ 100000)}) = {(0∗)} ∈ AB1 and
δB1({(0 ∗ 100001)}) = {(0∗)} ∈ AB1 . For the remaining 8 attractors of G, their com-
pressed set of state is always {(11)}, which belongs to AB1 . Hence, block B1 preserves
the attractors of the original BN G.

With Definition 3.3.6, we have the following lemma and theorem.

Lemma 3.3.2. Given a BN G and an elementary block B in G, let Φ be the set of
attractor states of G and ΦB be the set of attractor states of B. If B preserves the
attractors of G, then Φ ⊆MG(ΦB).

Proof. LetA = {A1, A2, . . . , Am} be the set of attractors ofG andAB = {AB1 , AB2 , . . . ,
ABm′} be the set of attractors of B. Since B preserves the attractors of G, for any
k ∈ [1,m], there exists a k′ ∈ [1,m′] such that δB(Ak) ⊆ ABk′ . Therefore, δB(Φ) =
∪mi=1δB(Ai) ⊆ ∪m

′
i=1A

B
i = ΦB. By Definition 3.3.4, we have that Φ ⊆ MG(δB(Φ)).

Hence, Φ ⊆MG(ΦB).

Theorem 3.3.1. Given a BN G, let B be an elementary block in G. B preserves the
attractors of G.

Proof. Let A = {A1, A2, . . . , Am} be the set of attractors of G. For any i ∈ [1,m], let
L = x1 → x2 → · · · → xk be a path containing all the states in Ai and let x1 = xk.
According to Definition 3.3.5, δB(x1) 99K δB(x2) 99K · · · 99K δB(xk) is a hyper-path
in B. We denote this hyper-path as LB. Therefore, one of the following two conditions
must hold: 1) there exists a path L′ from δB(x1) to δB(xk) in B; 2) δB(x1) = δB(x2) =
· · · = δB(xk). Given that the choice of the attractor Ai is arbitrary, the claim holds if we
can prove that states in the hyper-path LB form an attractor of B under both conditions.
We will prove them one by one.

Condition 1: Given the arbitrary choice of the path, when the first condition holds, the
states in this path can reach each other. Now we only need to prove that the states in
this path cannot reach any other state that is not in this path. We prove by contradic-
tion. Assume a state δB(xi) in path L′ can reach state δB(x′i) by applying the Boolean
function of some node vp and δB(x′i) is not in L′. Hence there is a transition from xi
to x′i in G. Since L contains all the states in Ai and Ai is an attractor, necessarily x′i is
contained by L. Therefore, δB(x′i) is one of the states in the hyper-path LB. Accord-
ing to Lemma 3.3.1, all states in LB are contained by L′, in particular δB(x′i). This is
contradictory to the assumption. It follows that states of LB form an attractor of B.

3.3 An SCC-based Decomposition Method 31

Condition 2: This condition holds only when all transitions in path L are performed by
applying Boolean functions of nodes that are not in block B. For any j ∈ [1, k − 1], let
xj′ be any state reachable from xj by one transition. We have xj′ ∈ Ai and therefore
L contains xj′ . Hence LB contains δB(xj′) and δB(xj′) = δB(x1) = δB(x2) = · · · =
δB(xk). Given the choice of xj and xj′ is arbitrary, δB(A1) = {δB(x1)}, which is
a singleton attractor in B.

For an elementary block B in a BN G, the mirror states of its attractor states cover
all G’s attractor states according to Lemma 3.3.2 and Theorem 3.3.1. Therefore, by
searching from the mirror states only instead of the whole state space, we can detect all
the attractor states of G.

We now proceed to consider the case of non-elementary blocks. For an SCC Σj , if it has
no parent SCC, then this SCC forms an elementary block; if it has at least one parent,
then it must have an ancestor that has no parent, and all its ancestors Ω(Σj) together
can form an elementary block, which is also a BN. The SCC-based decomposition will
result in at least one elementary block and usually one or more non-elementary blocks.
Moreover, for each non-elementary block we can construct by merging all its predeces-
sor blocks a single parent elementary block. We detect the attractors of the elementary
blocks and use the detected attractors to guide the values of the control nodes of their
child blocks. The guidance is achieved by considering fulfilment of the dynamics of
a child block with respect to the attractors of its parent elementary block. In some cases,
a fulfilment of a block is simply obtained by assigning new Boolean functions to the
control nodes of the block. However, in many cases, it is not this simple and a fulfilment
of a block is obtained by explicitly constructing a transition system of this block cor-
responding to the considered attractor of the elementary parent block. Since the parent
block of a non-elementary block may have more than one attractor, a block may have
more than one fulfilment.

By the following two definitions, we explain in details what fulfilments are. We first in-
troduce the concept of crossability and cross operations in Definition 3.3.7. The concept
of crossability specifies a special relation between states of a non-elementary block and
of its parent blocks, while the cross operations are used for merging attractors of two
blocks when recovering the attractors of the original BN.

Definition 3.3.7 (Crossability, Cross operations). Let G be a BN and let Bi be a non-
elementary block in G with the set of nodes V Bi = {vp1 , vp2 , . . . , vps , vq1 , vq2 , . . . , vqt},
where qk (k ∈ [1, t]) are the indices of the control nodes also contained in Bi’s parent
block Bj and pk (k ∈ [1, s]) are the indices of the remaining nodes. We denote the set of
nodes in Bj as V Bj = {vq1 , vq2 , . . . , vqt , vr1 , vr2 , . . . , vru}, where rk (k ∈ [1, u]) are the
indices of the non-control nodes in Bj . Let further xBi = (x1, x2, . . . , xs, y

i
1, y

i
2, . . . , y

i
t)

be a state ofBi and xBj = (yj1, yj2, . . . , yjt , z1, z2, . . . , zu) be a state ofBj . States xBi and
xBj are said to be crossable, denoted as xBi C xBj , if the values of their common nodes
are the same, i.e., yik = yjk for all k ∈ [1, t]. The cross operation of two crossable states
xBi and xBj is defined as Π(xBi ,xBj) = (x1, x2, . . . , xs, y

i
1, y

i
2, . . . , y

i
t, z1, z2, . . . , zu).

The notion of crossability naturally extends to two elementary blocks; any two states of
any two elementary blocks are always crossable.

We say a set of states SBi ⊆ XBi and a set of states SBj ⊆ XBj are crossable, denoted
as SBi C SBj , if at least one of the sets is empty or the following two conditions hold:
1) for any state xBi ∈ SBi , there always exists a state xBj ∈ SBj such that xBi and

32 Chapter 3 Attractor Detection in Asynchronous Networks

xBj are crossable; 2) vice versa. The cross operation of two crossable non-empty sets of
states SBi and SBj are defined as Π(SBi , SBj) = {Π(xBi ,xBj) | xBi ∈ SBi ,xBj ∈ SBj
and xBi C xBj}. When one of the two sets is empty, the cross operation simply returns
the other set, i.e., Π(SBi , SBj) = SBi if SBj = ∅ and Π(SBi , SBj) = SBj if SBi = ∅.
Let SBi = {SBi | SBi ⊆ XBi} be a set of states set inBi and SBj = {SBj | SBj ⊆ XBj}
be a set of states set in Bj . We say SBi and SBj are crossable, denoted as SBi C SBj if
for any states set SBi ∈ SBi , there always exists a states set SBj ∈ SBj such that SBi
and SBj are crossable; 2) vice versa. The cross operation of two crossable sets of states
sets SBi and SBj are defined as Π(SBi ,SBj) = {Π(Si, Sj) | Si ∈ SBi , Sj ∈ SBj and
Si C Sj}.

The crossability is similar to the join operation in relational database. With the cross-
ability defined, the definition of a fulfilment is now given as follows.

Definition 3.3.8 (Fulfilment of a block). Let Bi be a non-elementary block formed by
merging an SCC with its control nodes. Let nodes u1, u2, . . . , ur be all the control nodes
of Bi which are also contained by its single and elementary parent block Bj (we can
always merge all Bi’s ancestor blocks to form Bj if Bi has more than one parent block
or has a non-elementary parent block). Let ABj1 , A

Bj
2 , . . . , A

Bj
t be the AS’ of Bj . For

any k ∈ [1, t], a fulfilment of block Bi with respect to ABjk is a state transition system
such that

1. a state of the system is a vector of the values of all the nodes in the block;
2. the state space of this fulfilment is crossable with ABjk ;
3. for any transition xBi → x̃Bi in this fulfilment, if this transition is caused by

a non-control node, the transition should be regulated by the Boolean function of
this node; if this transition is caused by the updating of a control node, one can
always find two states xBj and x̃Bj in ABjk such that there is a transition from xBj

to x̃Bj in ABjk , xBi C xBj and x̃Bi C x̃Bj ;
4. for any transition xBj → x̃Bj inABjk , one can always find a transition xBi → x̃Bi

in this fulfilment such that xBi C xBj and x̃Bi C x̃Bj .

Constructing fulfilments for a non-elementary block is the key process for obtaining its
attractors. For each fulfilment, the construction process requires the knowledge of all the
transitions in the corresponding attractor of the parent block. In Section 3.4, we explain
in details how to implement it with BDDs.

Example 3.3.2. Consider the BN shown in Figure 3.1. The network contains four SCCs
Σ1,Σ2,Σ3 and Σ4. For any Σi (i ∈ [1, 4]), we form a block Bi by merging Σi with
its control nodes. Block B1 is an elementary block and its transition graph is shown
in Figure 3.2a. Block B1 has two attractors, i.e., {(11)} and {(0∗)}. Regarding the
first attractor, block B3 has a fulfilment by setting node v2 to contain only the transition
{(1) → (1)}. Its transition graph is shown in Figure 3.2b. Regarding the second
attractor, blockB3 has a fulfilment by setting node v2 to contain the following transitions
{(0)→ (∗), (1)→ (∗)}. The transition graph of this fulfilment is shown in Figure 3.3.

Lemma 3.3.3. Let Bj be a single, elementary parent block of a non-elementary block
Bi in a BN G. Let ABj be an attractor of Bj and let ABi be an attractor in the fulfilment
of Bi with respect to ABj . Then ABi C ABj .

3.3 An SCC-based Decomposition Method 33

000 001

100 101

011 010

111 110

Figure 3.3: Fulfilment 2 of Example 3.3.2.

Proof. By the definition of fulfilment we have that for any state xBi ∈ ABi , there exists
a state xBj ∈ ABj such that xBj C xBi .
Let us denote the set of control nodes of Bi with Z, the set of the remaining nodes in
Bi with V , and use zv to represent a state of block Bi where z are the values for the
nodes in Z and v are the values for the nodes in V . Let LBj be a closed path, i.e., the
first and the last state are the same, in the transition system of Bj which contains all the
states in ABj . Let xBi be any state in ABi . Due to the asynchronous updating scheme
and the fact that the nodes in Z are independent of the nodes in V , one obtains that
zδV (xBi) ∈ ABi for any z ∈ δZ(ABj) = δZ(LBj). For this it is enough to observe that
any of these states can be reached from xBi by following the corresponding sequence
of transitions in the hyper-path obtained by projecting LBj on Z. In consequence, for
any state xBj ∈ ABj we have that xBj C δZ(xBj)δV (xBi) and δZ(xBj)δV (xBi) ∈ ABi .
Hence, ABi C ABj .

A fulfilment of a block takes care of the dynamics of the undetermined nodes and instan-
tiates a transition system of the block. Therefore, we can extend the attractor definition
to fulfilments and to non-elementary blocks as follows.

Definition 3.3.9 (Attractors of a non-elementary block). An attractor of a fulfilment
of a non-elementary block is a set of states satisfying that any state in this set can be
reached from any other state in this set and no state in this set can reach any other
state that is not in this set. The attractors of a non-elementary block is the union of the
attractors of all fulfilments of the block.

With the definition of attractors of non-elementary blocks, we can relax Definition 3.3.8
by allowing Bj to be a single and either elementary or non-elementary parent block
with known attractors. This is due to the fact that when forming the fulfilments of
a non-elementary block, we only need the attractors of its parent block that contains
all its control nodes, no matter whether this parent block is elementary or not. In other
words, computing attractors for non-elementary blocks requires the knowledge of the
attractors of its parent block that contains all its control nodes. Therefore, we need to
consider blocks in a specific order which guarantees that when computing attractors for
blockBi, the attractors of its parent block that contains allBi’s control nodes are already
available. To facilitate this, we introduce the concept of a credit as follows.

Definition 3.3.10 (Credit). Given a BN G, an elementary block Bi of G has a credit of
0, denoted as P(Bi) = 0. Let Bj be a non-elementary block and Bj1 , . . . , Bjp(j) be all

its parent blocks. The credit of Bj is P(Bj) = max
p(j)
k=1(P(Bjk)) + 1.

34 Chapter 3 Attractor Detection in Asynchronous Networks

3.3.3 Recovering Attractors of the Original BN

After identifying attractors for all the blocks, we need to recover attractors for the orig-
inal BN. This is achievable by the following theorem for recovering the attractors of
two blocks.

Theorem 3.3.2. Given a BN G with Bi and Bj being its two blocks, let ABi and ABj
be the set of attractors for Bi and Bj , respectively. Let Bi,j be the block got by merging
the nodes in Bi and Bj . If Bi and Bj are both elementary blocks or Bi is an elementary
and single parent block of Bj , then it holds that ABi C ABj and Π(ABi ,ABj) is the set
of attractors of Bi,j .

Proof. We first prove that ABi C ABj . If Bi and Bj are two elementary blocks, they
do not share common nodes. Then it holds by definition that ABi C ABj . Now, let Bi

be the only elementary parent block of Bj . By definition, the attractors of Bj is the
set of the attractors of all fulfilments of Bj . Due to this definition, for any attractor
ABi ∈ ABi , one can always find an attractor ABj ∈ ABj such that ABi C ABj . For this it
is enough to consider the fulfilment of Bj with respect to ABi and to take as ABj one of
the attractors of this fulfilment. By Lemma 3.3.3 we have thatABi C ABj . Further, again
by Lemma 3.3.3, for any attractor ABj ∈ ABj , there is an attractor ABi ∈ ABi such that
ABi C ABj , i.e., the one that gives rise to the fulfilment of which ABj is an attractor in
Bj . Therefore, ABi C ABj .
We now prove that Π(ABi ,ABj) is the set of attractors of Bi,j . This is equivalent to
showing the following two statements: 1) for any A ∈ Π(ABi ,ABj), A is an attractor of
Bi,j; 2) any attractor of Bi,j is contained in Π(ABi ,ABj). We prove them one by one.

Statement 1: Let A be any set of states in Π(ABi ,ABj). Then there exist ABi ∈ ABi
and ABj ∈ ABj such that A = Π(ABi , ABj) and ABi C ABj . We first prove that x =
Π(δBi(x), δBj(x)), where δBi(x) ∈ ABi and δBj(x) ∈ ABj , cannot reach any state that
is not in A by contradiction. Assume that x can reach a state y by one transition and
y /∈ A. Due to asynchronous updating mode, the transition from x to y is caused by
updating one node. There are three possibilities: 1) the updated node is in Bi and it is
not a control node of Bj; 2) the updated node is in Bj and it is not a control node; 3) the
updated node is a control node ofBj . In the first case, there is a transition from δBi(x) to
δBi(y) in the elementary block Bi and since δBi(x) belongs to attractor ABi , it follows
that δBi(y) ∈ ABi . In addition, we have δBj(y) = δBj(x). Then y = Π(δBi(y), δBj(x))
and y ∈ A. Similarly in the second case, there is a transition from δBj(x) to δBj(y)
within the attractor system ABj , so δBj(y) ∈ ABj and y = Π(δBi(x), δBj(y)) ∈ A.
In the third case, there is a transition from δBi(x) to δBi(y) in the elementary block Bi

and, as in the first case, we have that δBi(y) ∈ ABi . Since ABi C ABj , there exists
s ∈ ABj such that δBi(y) C s. Let us denote the set of control nodes of Bj with Z,
the set of the remaining nodes in Bj with V , and use zv to represent a state of block
Bj where z are the values for the nodes in Z and v are the values for the nodes in V .
Now, s = δZ(s)δV (s) and there is a path from δBj(x) to s in the attractor system ABj

as both states belong to ABj . Since at each step of this path the value of only a single
node is updated and the the control nodes in Z are updated independently of the nodes in
V , it follows that starting from δBj(x) and by following only the updates related to the
control nodes in Z in the path from δBj(x) to s, there is a path in the attractor system
ABj from δBj(x) to δZ(s)δV (x) = δBj(y). Hence, δBj(y) ∈ ABj and we have that

3.3 An SCC-based Decomposition Method 35

y = Π(δBi(y), δBj(y)) ∈ A. In all three cases we reach a contradiction.

We now show that for any two states a,x ∈ A = Π(ABi , ABj), x is reachable from a
only via states in A. We have δBi(a), δBi(x) ∈ ABi and there is a path LBi from δBi(a)
to δBi(x) in ABi . Similarly, there is a path LBj from δBj(a) to δBj(x) in the attractor
system of ABj . Following the same updating rules as in the path LBi , there is a path
L
Bi,j
1 in Bi,j from state a to state y such that δBi(y) = δBi(x) and the non-control nodes

of Bj in y have the same values as in a. The claim holds if we can prove that there is
a path LBj in the attractor system of ABj from state δBj(y) to δBj(x) since following
the same updating rules as in the path LBj , there is a path LBi,j2 in Bi,j from y to x and
hence x is reachable from a. We prove this in the following two cases. The first case
is when Bi and Bj are both elementary blocks. In this case, the merged block Bi,j is in
fact a BN and we have δBj(a) = δBj(y). Therefore, the path LBj is in fact LBj . We
now consider the second case where Bi is a parent of Bj . Using the notation introduced
above, we show that the state δBj(y) = δZ(y)δV (a) ∈ ABj . This follows from applying
the corresponding argumentation for node update possibilities one or three presented
above at each step of the path LBi . Now, since both δBj(y) and δBj(x) belong to ABj ,
there is a path from δBj(y) to δBj(x) in the attractor system of ABj . This path is exactly
the searched path LBj . Given the choice of a and x is arbitrary, we can claim that any
two states in A are reachable from each other. Moreover, since a state in A cannot reach
any state outside A as shown above, the two states in A are reachable from each other
via states only in A. Hence, Statement 1 follows.

Statement 2: We prove that Π(ABi ,ABj) contains all the attractors of Bi,j . Let ABi,j be
an attractor in Bi,j . Since the nodes in Bi are independent of the nodes in Bj , clearly
δBi(ABi,j) is an attractor in Bi. Therefore, δBi(ABi,j) ∈ ABi .
Let us consider the fulfilment of block Bj with respect to δBi(ABi,j). We proceed to
show that δBj(ABi,j) is an attractor of this fulfilment. Let us assume that there exists
x ∈ δBj(ABi,j) such that it can reach a state y /∈ δBj(ABi,j) by one transition in the
fulfilment. Let x̃ ∈ ABi,j be the corresponding state of x in ABi,j , i.e. δBj(x̃) = x.
It follows that there exists a state ỹ of Bi,j reachable from x̃ by one transition such
that δBj(ỹ) = y. In consequence, ỹ /∈ ABi,j and ABi,j cannot be an attractor. This
contradicts the original assumption.

Now we show that there is a path between any two states x and y of δBj(ABi,j) in the
fulfilment only via states in δBj(ABi,j). The existence of such path follows in a straight-
forward way from the fact that there exist two corresponding states x̃, ỹ in ABi,j such
that δBj(x̃) = x and δBj(ỹ) = y. In consequence, there is a path from one to the other
as both are in the attractor ABi,j . Projection of this path on Bj forms a hyper-path in
the fulfilment. By Lemma 3.3.1, y is reachable from x in the fulfilment and only via
states in δBj(ABi,j) as shown above. Hence, δBj(ABi,j) is an attractor of the considered
fulfilment, i.e. δBj(ABi,j) ∈ ABj .
Finally, it is straightforward to verify that δBi(ABi,j) C δBj(ABi,j). Therefore, A ∈
Π(ABi ,ABj), which concludes the proof of Statement 2 and the theorem.

Finally, from Theorem 3.3.2 we obtain the following corollary which states that for
specific configurations of blocks, certain orderings according to which the blocks are
merged are equivalent in terms of the resulting attractor set for the merged block.

36 Chapter 3 Attractor Detection in Asynchronous Networks

Corollary 3.3.1. Given a BNG withBi,Bj , andBk being its three blocks, letABi ,ABj ,
and ABk be the sets of attractors for blocks Bi, Bj , and Bk, respectively. If the three
blocks are all elementary blocks or Bi is an elementary block and it is the only parent
block of Bj and Bk, it holds that Π(Π(ABi ,ABj),ABk) = Π(Π(ABi ,ABk),ABj).

Proof. According to Theorem 3.3.2, Π(ABi ,ABj) is the set of attractors of Bi,j and
Π(ABi ,ABk) is the set of attractors ofBi,k. MergingBi withBj results in an elementary
block Bi,j , and merging Bi with Bk results in an elementary block Bi,k. Applying
Theorem 3.3.2 again, we get Π(Π(ABi ,ABj),ABk) is the set of attractors of Bi,j,k and
Π(Π(ABi ,ABk),ABj) is the set of attractors of Bi,k,j . SinceBi,j,k and Bi,k,j are actually
the same block, Π(Π(ABi ,ABj),ABk) = Π(Π(ABi ,ABk),ABj).

The above developed theoretical background with Theorem 3.3.2 being its core result,
allows us to design a new decomposition-based approach towards detection of attractors
in large asynchronous BNs. The idea is as follows. We divide a BN into blocks accord-
ing to the detected SCCs. We sort the blocks in ascending order based on their credits
and detect attractors of the ordered blocks one by one in an iterative way. According to
Theorem 3.3.2, we can perform a cross operation for any two elementary blocks (credits
0) or an elementary block (credit 0) with one of its child blocks (credit 1) which has
no other parent blocks to recover the attractors of the two merged blocks. The resulting
merged block will form a new elementary block, i.e., one with credit 0. By iteratively
performing the cross operation until a single elementary block containing all the nodes
of the BN is obtained, we can recover the attractors of the original BN. The details of
this new approach are discussed in the next section.

3.4 Implementation

In this section, we explain how we implement the above mentioned decomposition
method using BDDs. We first introduce the concept of BDDs and how to encode BNs in
BDDs in Section 3.4.1. We then introduce a BDD-based algorithm to detect attractors
for relatively small BNs in Section 3.4.2. and describe how our SCC-based decomposi-
tion method can be implemented using the BDD-based algorithm in Section 3.4.3.

3.4.1 Encoding BNs in BDDs

Binary decision diagrams (BDDs) were introduced to represent Boolean functions [Lee59,
Ake78]. A BDD consists of three types of nodes: a root node, (intermediate) decision
nodes, and two terminal nodes, i.e., 0-terminal and 1-terminal. It uses a decision node
to represent a variable of a Boolean function. Each decision node contains two outgo-
ing edges, representing the two possible values, i.e., 0 and 1, of the variable. A path
from the root node to the 1-terminal represents an assignment of values to the variables
that results in the true value of the Boolean function; while a path from the root node
to the 0-terminal represents an assignment of values to the variables that results in the
false value of the Boolean function. BDDs have the advantage of memory efficiency
and have been applied in model checking algorithms to alleviate the state space explo-
sion problem. A BN G(V,f) can be easily encoded in a BDD by modelling a BN as
an STS. Each variable in V can be represented by a binary BDD variable. By slight

3.4 Implementation 37

abuse of notation, we use V to denote the set of BDD variables. In order to encode
the transition relation, another set V ′ of BDD variables, which is a copy of V , is in-
troduced: V encodes the possible current states, i.e., x(t), and V ′ encodes the possible
next states, i.e., x(t + 1). Hence, the transition relation T can be viewed as a Boolean
function T f : 2|V |+|V ′| → {0, 1}, where values 1 and 0 indicate a valid and an invalid
transition, respectively. Our attractor detection algorithms also use two basis functions:
Image(X,T) = {s′ ∈ S | ∃s ∈ X such that (s, s′) ∈ T}, which returns the set of
target states that can be reached from any state in X ⊆ S with a single transition in
T ; Preimage(X,T) = {s′ ∈ S | ∃s ∈ X such that (s′, s) ∈ T}, which returns the set
of predecessor states that can reach a state in X with a single transition. To simplify
the presentation, we also define Preimagei(X,T) = Preimage(...(Preimage(X,T)))︸ ︷︷ ︸

i

with Preimage0(X,T) = X . Thus, the set of all states that can reach a state in X via

transitions in T is defined as a fix point Predecessors(X,T) =
n⋃
i=0

Preimagen(X,T)

such that Preimagen(X,T) = Preimagen+1(X,T). Given a set of states X ⊆ S, the
projection T |X of T on X is defined as T |X = {(s, s′) ∈ T | s ∈ X ∧ s′ ∈ X}.
The BDD b representing a state s = (x1, x2, . . . , xn) can be seen as a Boolean formula
g(b) = (v1 = x1)∧ (v2 = x2)∧ . . .∧ (vn = xn). Let g(b)−i = (v1 = x1)∧ . . .∧ (vi−1 =
xi−1) ∧ (vi+1 = xi+1) . . . ∧ (vn = xn) (1 ≤ i ≤ n). The existential abstraction of vi
from b produces a new BDD b|{vi} equivalent to the Boolean formula g(b)−i ∧ (vi =
xi∨vi = ¬xi). For our convenience, we say that node vi is set to value “-” by existential
abstraction and the new BDD can be written as g(b)−i ∧ (vi = “-”). The existential
abstraction can be applied to a set V ′ ⊆ V of nodes on a set of states S ′ ⊆ S, written
as S ′|V ′ . The intersection of two BDDs b1 and b2, written as b1 ∩ b2, is equivalent to the
Boolean formula g(b1) ∧ g(b2).

3.4.2 A BDD-based Attractor Detection Algorithm

Attractors of an asynchronous BN are in fact bottom strongly connected components
(BSCCs) in the state transition system of the BN. Thus, detecting attractors is the same
as detecting the BSCCs. Formally, the definition of BSCCs is given as follows.

Definition 3.4.1. A bottom strongly connected component (BSCC) is an SCC Σ such
that no state outside Σ is reachable from Σ.

We encode a BN with BDDs, and adapt the hybrid Tarjan algorithm described in Al-
gorithm 7 of [KPQ11] to detect BSCCs in the corresponding transition system of the
BN. Given a state transition system T = 〈S, S0, T 〉, our attractor detection algorithm
DETECT(T) in Algorithm 1 computes the set of BSCCs in T . If T is converted from
a BN G, then DETECT(T) computes all the attractors of G. The correctness of Algo-
rithm 1 is guaranteed by the following two propositions.

Proposition 3.4.1. The first SCC returned by the Tarjan’s algorithm is a BSCC.

Proposition 3.4.2. If a state that reaches a BSCC is located outside the BSCC, then this
state is not contained by any BSCC.

The first proposition can be deduced from the fact that the Tarjan’s algorithm is a depth-
first search. The second one comes from the definition of BSCCs, as no states inside

38 Chapter 3 Attractor Detection in Asynchronous Networks

Algorithm 1 Attractor detection using the hybrid Tarjan’s algorithm
1: procedure DETECT(T)
2: A := ∅; X := S; //S is from T
3: while X 6= ∅ do
4: Randomly pick a state s ∈ X;
5: Σ := HybridTarjan(s, T); //a variant of Tarjan’s algorithm
6: A := A ∪ Σ;
7: X := X\Predecessors(Σ, T);
8: end while
9: return A.

10: end procedure

a BSCC can lead to a state in any other BSCC. In Algorithm 1, the hybrid Tarjan algo-
rithm HybridTarjan(s, T) takes as input a starting state s and the transition relation
T . When it finds the first SCC Σ (also a BSCC), which is reached from s, it terminates
immediately and returns Σ.

With the use of BDD representation, DETECT(T) can deal with relatively small BNs
(e.g., a BN with tens of nodes) with small memory usage. Moreover, the computation of
SCCs can also benefit from the efficient BDD operations. However, real life biological
BNs usually contain hundreds of nodes and the state space is exponential in the num-
ber of nodes. Therefore, DETECT(T) would still suffer from the state space explosion
problem when dealing with large BNs. Thus for large BNs, we propose to use the SCC-
based decomposition method as described in Section 3.3. We now give the algorithm
for implementing this method in the following section.

3.4.3 An SCC-based Decomposition Algorithm

We describe the detection process in Algorithm 2. This algorithm takes a BN G and
its corresponding transition system T as inputs and outputs the set of attractors of G.
Lines 23-26 of this algorithm describe the process for detecting attractors of a non-
elementary block. The algorithm detects the attractors of all the fulfilments of the non-
elementary block and performs the union operation on the sets of detected attractors.
For this, if the non-elementary block has only one parent block, its attractors are already
computed as the blocks are considered in ascending order with respect to their credits
by the main for loop in Line 4. Otherwise, all the ancestor blocks are considered in
the for loop in Lines 14-21. By iteratively applying the cross operation in Line 17 to
the attractor sets of the ancestor blocks in ascending order, the attractors of a new block
formed by merging all the ancestor blocks are computed as assured by Theorem 3.3.2.
The new block is in fact an elementary block which is a single parent of the considered
non-elementary block. By considering blocks in ascending order, the order in which
blocks with the same credit are considered does not influence the final result due to
Corollary 3.3.1. The correctness of the algorithm is stated as Theorem 3.4.1.

Theorem 3.4.1. Algorithm 2 correctly identifies the set of attractors of a given BN G.

Proof. Algorithm 2 divides a BN into SCC blocks and detects attractors of each block.
Line 5 to 27 describe the process for detecting attractors of a block. The algorithm

3.4 Implementation 39

Algorithm 2 SCC-based decomposition algorithm
1: procedure SCC DETECT(G, T)
2: B := FORM BLOCK(G); A := ∅; Ba := ∅; k := size of B;
3: initialise A`; //A` is a dictionary storing the set of attractors for each block
4: for i := 1; i <= k; i+ + do
5: if Bi is an elementary block then
6: T Bi := transition system converted from Bi;
7: Ai := DETECT(T Bi);
8: else Ai := ∅;
9: if Bp

i is the only parent block of Bi then
10: Api := A`.getAtt(Bp

i); //obtain attractors of Bp
i

11: else Bp := {Bp
1 , B

p
2 , . . . , B

p
m} be the ancestor blocks

12: of Bi (ascending ordered);
13: Bc := Bp

1 ; //Bp is ordered based on credit
14: for j := 2; j <= m; j + + do
15: Bc,j := a new block containing nodes in Bc and Bp

j ;
16: if (Api := A`.getAtt(Bc,j)) == ∅ then
17: Api := Π(A`.getAtt(Bc),A`.getAtt(Bj));
18: A`.add(Bc,j,Api);
19: end if
20: Bc := Bc,j;
21: end for
22: end if
23: for A ∈ Api do
24: T Bi(A) := 〈SBi(A), TBi(A)〉; //obtain the fulfilment of Bi with A
25: Ai := Ai ∪ DETECT(T Bi(A));
26: end for
27: end if
28: A`.add(Bi,Ai); //the add operation will not add duplicated elements
29: if Ba! = ∅ then A = Π(Ai,A); Ba := Ba,i; A`.add(Ba,A);
30: else Ba := Bi

31: end if
32: end for
33: return A.
34: end procedure

35: procedure FORM BLOCK(G)
36: decompose G into SCCs and form blocks with SCCs and their control nodes;
37: sort the blocks in ascending order according to their credits;
38: B := (B1, . . . , Bk);
39: return B. //B is the list of blocks after ordering
40: end procedure

40 Chapter 3 Attractor Detection in Asynchronous Networks

000 010

001 011

100 101

110 111

Figure 3.4: Transition graphs of the two fulfilments for block B2.

distinguishes between two different types of blocks. The first type is an elementary
block. Since it is in fact a BN, the attractors of this type of block are directly detected
via Algorithm 1. The second type is a non-elementary block. The algorithm constructs
the fulfilments of this type of block, detects attractors of each fulfilment and merges
them as the attractors of the block. The algorithm takes special care of those blocks
with more than one parent blocks. It merges all the ancestor blocks of such a block
as its parent block. Since the ancestor blocks are in ascending operations based on
their credits, the cross operation in Line 18 will iteratively recover the attractors of the
parent block according to Theorem 3.3.2. Whenever the attractors of a block Bi are
detected, it performs a cross operation between block Bi and the elementary block Bc

formed by nodes in all previous blocks (Line 31). According to Theorem 3.3.2, the cross
operation will result in the attractors of the block formed by nodes in the two blocks.
Since Algorithm 2 iteratively performs this operation to all the blocks, it will recover
the attractors of the BN in the last iteration. Note that how to order two blocks with the
same credit does not affect the result of this algorithm, as proved in Corollary 3.3.1.

The algorithm stores all computed attractors for the original SCC blocks and all auxiliary
merged blocks in the dictionary structure A`. We use BDDs to encode transitions and
the fulfilments are performed via BDD operations directly. Given a BN G(V,f) with
n nodes, our implementation, which is based on the CUDD library [Som15], encodes
the whole network with 2n BDD variables. Each state in G is encoded by n BDD
variables, and a projection of a state on a subset of nodes V ′ ⊆ V is performed by
setting all BDD variables for nodes in V \V ′ to “-”, which represents that its value can
be either 0 or 1, and therefore, can be ignored. As a state for a block B is encoded by
|V B| BDD variables, the variables in V \V B are set to “-” in the BDD representation.
This way, after we verify that SBi and SBj are crossable, i.e., SBi C SBj , the cross
operation Π(SBi , SBj) is equivalent to the AND operation on two BDDs, i.e., bddSBi
and bddSBj encoding SBi and SBj , respectively. Formally, we have that Π(SBi , SBj) =
bddSBi ∩ bddSBj . Let T B = 〈SB, TB〉 be the transition system converted from block B,
and let V C be the set of control nodes in B. The set of states SB(A) of the fulfilment
of block B with respect to attractor A isMB(δC(A)) and the transition relation TB(A)
of the fulfilment is TB|SB(A). We continue to illustrate in the following example how
Algorithm 2 detects attractors.

Example 3.4.1. Consider the BN shown in Example 3.3.2 and its four blocks. Block
B1 is an elementary block and it has two attractors, i.e., A1 = {{(0∗)}, {(11)}}. To
detect the attractors of block B2, we first form fulfilments of B2 with respect to the
attractors of its parent block B1. B1 has two attractors so there are two fulfilments
for B2. The transition graphs of the two fulfilments are shown in Figure 3.4. We
get three attractors for block B2, i.e., A2 = {{(010)}, {(101)}, {(110)}}. Perform-
ing a cross operation, we get the attractors of the merged block B1,2, i.e., A1,2 =
Π(A1,A2) = {{(0 ∗ 10)}, {(1101)}, {(1110)}}. In Example 3.3.2, we have shown

3.5 Evaluation 41

0000

0010

0001

0011

1000 1001

1010 1011

1100 1101

1110 1111

Figure 3.5: Transition graphs of the three fulfilments for block B4.

the two fulfilments of B3 with respect to the two attractors of B1. Clearly, B3 has
three attractors, i.e., A3 = {{(∗00)}, {(100)}, {(111)}}. Merging B1,2 and B3, we
get the attractors of the merged block B1,2,3, i.e., A1,2,3 = Π(A1,2,A3) = {{(0 ∗ 10
00)}, {(110100)}, {(110111)}, {(111000)}, {(111011)}}. B4 has two parent blocks.
Therefore, we need to merge B4’s ancestors (B1 and B3) as its new parent block.
After merging, we get the attractors of the merged block as A1,3 = Π(A1,A3) =
{{(0 ∗ 00)}, {(1100)}, {(1111)}}. There are three attractors so there will be three ful-
filments for block B4. The transition graphs of the three fulfilments are shown in Fig-
ure 3.5. From the transition graphs, we easily get the attractors of B4, i.e., A4 =
{{(0000)}, {(0001)}, {(1000)}, {(1011)}, {(1100)}, {(1111)}}. Now the attractors for
all the blocks have been detected. We can then obtain the attractors of the BN by
applying one more cross operation, i.e., A = A1,2,3,4 = Π(A1,2,3,A4) = {{(0 ∗ 1
00000)}, {(0∗100001)}, {(11010000)}, {(11010011)}, {(11011100)}, {(11011111)}, {
(11100000)}, {(11100011)}, {(11101100)}, {(11101111)}}.

3.5 Evaluation

We have implemented the decomposition algorithm presented in Section 3.4 in the
model checker MCMAS [LQR15]. In this section, we demonstrate the efficiency of
our method using two real-life biological systems. One is a logical MAPK network
model of [GCBP+13] containing 53 nodes and the other is a Boolean network model of
apoptosis, originally presented in [SSV+09], containing 97 nodes. All the experiments
are conducted on a computer with an Intel Xeon W3520@2.67GHz CPU and 12GB
memory. Notice that we tried to apply genYsis [GXMD07] to these two systems, but it
failed in both cases to detect attractors within 5 hours.

MAPK network. Mitogen-activated protein kinases (MAPKs) are a family of ser-
ine/ threonine kinases that transduce biochemical signals from the cell membrane to
the nucleus in response to a wide range of stimuli, such as growth factors, hormones,
inflammatory cytokines and environmental stresses. Cascades of these kinases partici-
pate in multiple intracellular signalling pathways that control a wide range of cellular
processes, e.g. cell cycle machinery, differentiation, survival and apoptosis. MAPK
pathways are highly evolutionary conserved among all eukaryotic cells and allow the
cells to respond coordinately to multiple and diverse inputs. To date, three main path-
ways have been extensively studied: Extracellular Regulated Kinases (ERK), Jun NH2
Terminal Kinases (JNK), and p38 Kinases (p38), named after their specific MAPK ki-
nases involved. These pathways are characterised by enormous crass-talk with each
other, which gives rise to a complex network of molecular interactions [KN08]. Mal-
functioning of MAPK signalling mechanisms is often observed in cancer [DHRK07].
Therefore, a deeper comprehension of the MAPK pathways and their interactions is of

42 Chapter 3 Attractor Detection in Asynchronous Networks

utter importance to elucidate the roles of MAPKs in the development and progression of
cancer. This in turn is crucial for the development of new, effective therapeutic strate-
gies. In [GCBP+13] a predictive dynamical Boolean model of the MAPK network is
presented. It recapitulates observed responses of the MAPK network to characteristic
stimuli in selected urinary bladder cancers together with its specific contribution to cell
fate decision on proliferation, apoptosis, and growth arrest. For the wiring of the logical
model, we refer to [GCBP+13]. In our study we consider two mutants of the model:
one with EGFR over-expression and the other with FGFR3 activating mutation which
correspond to the r3 and r4 variants of [GCBP+13], respectively, and therefore we refer
to them as as MAPK r3 and MAPK r4. However, in contrast to the original variants r3
and r4, we do not set the values for the four stimuli nodes to 0 but perform the com-
putations for all 24 possible fixed sets of values for these nodes. For the remaining
nodes, all possible initial states are considered as in [GCBP+13]. In consequence, our
results for MAPK r3 and MAPK r4 include the attractors for variants r7, r13 and r8,
r14 of [GCBP+13], respectively. The structure of the network is shown in Figure 3.6.
The corresponding SCC structure of the mutant MAPK r3 is shown in Figure 3.7 and
Table 3.1. We compute the attractors of the MAPK r3 and MAPK r4 BNs using both
the BDD-based algorithm, i.e., Algorithm 1 and our decomposition algorithm, i.e., Al-
gorithm 2. The two algorithms compute the same attractors for the same network. We
show in the left part of Table 4.1 the number of attractors and the computational time
costs (in seconds) for both mutants. Besides, we show the speedups of Algorithm 2 with
respect to Algorithm 1.

Figure 3.6: Wiring of the MAPK logical model of [GCBP+13]. The diagram contains
three types of nodes: stimuli nodes (pink), signalling component nodes (gray) with high-
lighted MAPK protein nodes (light pink), and cell fate nodes (blue). Green arrows and
red blunt arrows represent positive and negative regulations, respectively. For detailed
information on the Boolean model of the MAPK network containing all modelling as-
sumptions and specification of the logical rules refer to [GCBP+13] and the supplemen-
tary material thereof.

3.5 Evaluation 43

1

0

2 4

3

6

5

7

8

9

10

11

12

14 13

15

16

17

Figure 3.7: The SCC structure of the MAPK network (mutant MAPK r3). Each node
represents an SCC. Model components contained in each SCC are listed in Table 3.1.
For each pair of a parent SCC and one of its child SCCs, a directed edge is drawn
pointing from the parent SCC to the child SCC. Node 12 is not connected to any other
node as EGFR is set to be always true and hence the influence from EGFR stimulus
(node 12) is cut. The SCC structure of mutant MAPK r4 is virtually the same; the only
difference is that model components contained in certain SCCs are slightly different:
EGFR is switched with FGFR3 and EGFR stimulus is switched with FGFR3 stimulus.

scc
nodes

scc
nodes

scc
nodes

scc
nodes

0 Apoptosis 4 p70 9 ATM 13 FGFR3 stimulus
1 BCL2 5 Growth Arrest 10 DNA damage 14 SMAD
2 FOXO3 6 p21 11 EGFR 15 TAK1
3 Proliferation 8 TAOK 12 EGFR stimulus 16 TGFBR
17 TGFR stimulus

7
AKT AP1 ATF2 CREB DUSP1 FGFR3 ELK1 ERK FOS FRS2 GAB1 GADD45
GRB2 JNK JUN MAP3K1 3 MAX MDM2 MEK1 2 MSK MTK1 MYC PDK1
PI3K PKC PLCG PPP2CA PTEN RAF RAS RSK SOS SPRY p14 p38 p53

Table 3.1: Nodes of the MAPK pathway (mutant r3) in SCCs as shown in Figure 3.7.

In our study we consider two mutants of the model: one with EGFR over-expression
and the other with FGFR3 activating mutation which correspond to the r3 and r4 vari-
ants of [GCBP+13], respectively, and therefore we refer to them as as MAPK r3 and
MAPK r4. However, in contrast to the original variants r3 and r4, we do not set the val-
ues for the four stimuli nodes to 0 but perform the computations for all 24 possible fixed

44 Chapter 3 Attractor Detection in Asynchronous Networks

Time(s)
Networks

#
attractors Algorithm 1 Algorithm 2

Speedup

MAPK r3 20 6.070 2.614 2.32
MAPK r4 24 11.674 1.949 5.99
apoptosis 1024 1633.970 103.856 15.73
apoptosis* 2048 8564.680 218.230 39.25

Table 3.2: Evaluation results on two real-life biological systems.

sets of values for these nodes. For the remaining nodes, all possible initial states are
considered as in [GCBP+13]. In consequence, our results for MAPK r3 and MAPK r4
include the attractors for variants r7, r13 and r8, r14 of [GCBP+13], respectively. We
compute the attractors of the MAPK r3 and MAPK r4 BNs using both the BDD-based
algorithm, i.e., Algorithm 1 and our decomposition algorithm, i.e., Algorithm 2. The
SCC structure of mutant MAPK r3 is shown in Figure 3.7 and the nodes in all the SCCs
are shown in Table 3.1. We show in the rows of networks MAPK r3 and MAPK r4 in
Table 3.2 the number of attractors and the computational time costs for both mutants.
Besides, we show the speedups of Algorithm 2 with respect to Algorithm 1. Notice
that our computations are performed for the full model presented in Figure 3.6 con-
trary to [GCBP+13], where various reduced models were used for the computations of
attractors due to their computation limit.

scc # nodes scc # nodes scc # nodes scc # nodes
0 apoptosis 16 C8a DISCa 2 32 IRS P2 47 UV
1 gelsolin 17 C8a DISCa 33 IRS 48 UV 2
2 C3a c IAP 18 proC8 34 IKKdeact 49 FASL
3 I kBb 19 p38 35 FLIP 50 PKA
4 CAD 20 ERK1o2 36 DISCa 2 51 cAMP
5 PARP 21 Ras 37 DISCa 52 AdCy
6 ICAD 22 Grb2 SOS 38 FADD 53 GR
7 JNK 23 Shc 39 Bid 54 Glucagon
8 C8a FLIP 24 Raf 40 housekeeping 55 Insulin

10 XIAP 25 MEK 41 FAS 2 56 smac mimetics
11 TRADD 26 Pak1 42 FAS 57 P
12 RIP 27 Rac 43 FASL 2 58 T2R
13 Bad 14 3 3 28 GSK 3 44 IL 1 59 T2RL
14 P14 3 3 29 Bad 45 TNFR 1
15 C8a 2 31 IR 46 TNF

9

Apaf 1 apopto A20 Bax Bcl xl BIR1 2 c IAP c IAP 2 complex1
comp1 IKKa cyt c C3ap20 C3ap20 2 C3a XIAP C8a comp2 C9a
FLIP 2 NIK RIP deubi smac smac XIAP tBid TRAF2 XIAP 2 IKKa
I kBa I kBe complex2 NF kB C8a C3ap17 C3ap17 2

30 IRS P PDK1 PKB PKC PIP3 PI3K C6

Table 3.3: Nodes of the apoptosis network in SCCs as shown in Figure 3.9.

Apoptosis network. Apoptosis is a process of programmed cell death and has been
linked to many diseases. It is often regulated by several signaling pathways extensively
linked by crosstalks. We take the apoptosis signalling network presented in [SSV+09]

3.5 Evaluation 45

in
su

lin

IR

P
I3

K

P
IP

3

P
D

K
1

R
a
c

P
a
k1

M
E
K

P
K

C

S
h
c G

rb
2

-S
O

S

R
a
s

E
R

K
 1

/2
p

3
8

IR
S

-P
2

IR
S

T
N

F

T
N

FR
-1

T
R

A
D

D

R
IP

T
R

A
F2

JN
K

R
a
f

P
K

B

G
S

K
-3

C
3

a
_c

_I
A

P

co
m

p
le

x
 1

co
m

p
le

x
 2

c8
a
-c

o
m

p
2

X
IA

P

N
IK

R
IP

-d
e
u
b

i

FA
D

D

p
ro

C
8

Fa
sL

Fa
s

D
IS

C
a

C
8

a
-D

IS
C

a

C
8

a

C
3

a
p

2
0

C
3

a
p

1
7

T
2

R
L

T
2

R P

FL
IP

sm
a
c-

X
IA

P

C
8

a
-F

LI
P

C
3

a
_X

IA
P

IK
K

-d
e
a
ct

B
id

tB
id

B
a
d

P
1

4
-3

-3
B

a
d

-1
4

-3
-3

B
IR

 1
-2

IL
-1

IK
K

a

A
2

0

B
cl

-x
l

B
a
x

sm
a
c

sm
a
c-

m
im

e
ti

cs
U

V
(1

)

N
F-

kB

I-
kB

a

I-
kB

b

I-
kB

e

A
p

a
f-

1

a
p

o
p

to

cy
t-

c

C
9

a

IC
A

D

C
A

D

g
e
ls

o
lin

P
A

R
P

a
p

o
p

to
si

s

c-
IA

P
_2

c-
IA

P

co
m

p
1

_I
K

K
a

C
3

a
p

1
7

_2

C
3

a
p

2
0

_2

C
8

a
_2C
8

a
-D

IS
C

a
_2

D
IS

C
a
_2

FL
IP

_2

Fa
s_

2

Fa
sL

_2
U

V
(2

)

X
IA

P
_2

h
o
u

se
ke

e
p

in
g

O
R

A
N

D

N
O

T

IR
S

-P

g
lu

ca
g

o
n

G
R

A
d

C
y

cA
M

P

P
K

A

C
6

A
ss

u
ra

n
ce

 o
f

n
o
n
-m

o
n
o
to

n
ic

it
y

R
e
p

re
se

n
ta

ti
o
n
 o

f
m

u
lt

i-
v
a
lu

e
 n

o
d

e
s:

0
0

1
0

0
1

1
1

0 1 2 2

Figure 3.8: The wiring of the multi-value logic model of apoptosis by Schlatter et
al. [SSV+09] recast into a binary Boolean network. For clarity of the diagram the nodes
I-kBa, I-kBb, and I-kBe have two positive inputs. The inputs are interpreted as con-
nected via ⊕ (logical OR).

46 Chapter 3 Attractor Detection in Asynchronous Networks

and recast it into the Boolean network framework: a BN model which compromise 97
nodes. In this network, there are 10 input nodes. One of them is a housekeeping node
which value is fixed to 1 and which is used to model constitutive activation of certain
nodes in the network. For the wiring of the BN model, see Figure 3.8. The SCC structure
of this network is shown in Figure 3.9 and the nodes in all SCCs are shown in Table 3.3.
Similar to the MAPK network, we compute the attractors of the apoptosis network with
both Algorithm 1 and Algorithm 2. The results are shown in the right part of Table 3.2.
Moreover, we also consider the network where the value of housekeeping is not fixed
and show the result in the row apoptosis*. When the housekeeping node is not fixed,
the state-space of the network is doubled. The results clearly indicate that our proposed
decomposition method provides better speedups with respect to Algorithm 1 for larger
models.

3.6 Discussions and Future Work

We have presented an SCC-based decomposition method for detecting attractors in large
asynchronous BNs, which often arise and are important in the holistic study of biolog-
ical systems. This problem is very challenging as the state space of such networks is
exponential in the number of nodes in the networks and therefore huge. Meanwhile,
asynchrony greatly increases the difficulty of attractor detection as the density of the
transition graph is inflated dramatically and the structure of attractors may be complex.
Our method performs SCC-based decomposition of the network structure of a give BN
to manage the cyclic dependencies among network nodes, computes the attractors of
each SCC, and finally recovers the attractors of the original BN by merging the detected
(partial) attractors. To the best of our knowledge, our method is the first scalable one able
to deal with large biological systems modelled as asynchronous BNs, thanks to its divide
and conquer strategy. We have prototyped our method and performed experiments with
two real biological networks. The obtained results are very promising.

We have observed that the network structure of BNs can vary quite a lot, which poten-
tially has impact on the performance of our proposed method. In principle, our method
works well on large networks which contain several relatively small SCCs. Each of the
two mutants of the MAPK network, however, contains one large SCC with 36 nodes and
17 SCCs each with one node only. Moreover, the large SCC is in the middle of the SCC
network structure (see Figure 3.7). This network structure in fact does not fit well with
our method. This explains why the speedups achieved for this network are less than 10.
Both the MAPK network and the apoptosis network contain many small SCCs with only
one node (see Figure 3.7 and Figure 3.9). One way to improve our method is to merge
these small SCCs into larger blocks so that there will be fewer iterations in the main
loop of Algorithm 1. Moreover, the single-node SCCs which do not have child SCCs
are in fact leaves and they can be removed to reduce the network size. When the attrac-
tors in the reduced network are detected, we can then recover the attractors in the whole
network.2 Such optimisations will be part of our future work. We will also apply our
method to other realistic large biological networks and we will develop optimisations
fitted towards different SCC network structures.

2This is in general related to network reduction techniques (e.g., see [SAA10]) which aim to simplify
the networks prior to dynamic analysis.

3.6 Discussions and Future Work 47

4 0

1
5

40

9

3
6

35

38

34

18

12
11

10

14

33 39

2
7

8

48

46

45
32

17
16

15
44

47
56

13

36
37

57

30

24

29
23

27
28

58

21

19
20

22
26

25

50

31

55

41
42

43
49

515253

54

59

Figure 3.9: The SCC structure of the apoptosis model. Each node represents an SCC in
the apoptosis model. The nodes contained in each SCC are listed in Table 3.3. For each
pair of a parent SCC and one of its child SCCs, a directed edge is added pointing from
the parent SCC to the child SCC.

4

Attractor Detection in Synchronous
Networks

4.1 Introduction

In this chapter, we consider attractor detection in synchronous networks. The networks
refer to synchronous BNs and synchronous context-sensitive PBNs and we will only
discuss synchronous BNs in the remaining part of this chapter for the reason of simpli-
fication.

In Section 3.2, we have reviewed the current status for attractor detection. Identification
attractors in large BNs still remains a problem. In this chapter, we propose a new decom-
position method for attractor detection in BNs, in particular, in large synchronous BNs,
where all the nodes are updated synchronously at each time point. Considering the fact
that a few decomposition methods have already been introduced, we explain our new
method by showing its main differences from the existing ones. First, our method care-
fully considers the semantics of synchronous BNs and thus it does not encounter a prob-
lem that the method proposed in [GYW+14] does. We explain this in more details in
Section 3.3. Second, our new method considers the dependency relation among different
sub-networks when detecting attractors of them while the previous method [YQPM16]
does not require this. We show with experimental results that this consideration can
significantly improve the performance of attractor detection in large BNs. Further, the
decomposition method in the previous chapter is designed for asynchronous networks
while here we extend it for synchronous networks. As a consequence, the key operation
fulfilment for the synchronous BNs is completely re-designed with respect to the one for
asynchronous BNs in the previous chapter. Last but not least, we provide a proof of the
correctness of our new method.

4.2 An SCC-based Decomposition Method

In this section, we describe in details our new SCC-based decomposition method for
detecting attractors of large synchronous BNs and we prove its correctness. The method
consists of three steps. First, we divide a BN into sub-networks called blocks and this
step is performed on the network structure, instead of the state transition system of the
network. Secondly, we detect attractors in each block. Lastly, we recover attractors of
the original BN based on attractors of the blocks. The three steps share some similarities
with those in Chapter 3; therefore, we will describe this method by comparing it with
the one in Chapter 3.

49

50 Chapter 4 Attractor Detection in Synchronous Networks

v1 v2

v3v4

v5 v6

v7v8

Σ1 Σ3

Σ2 Σ4

(a) SCC decomposition.

00 01

11 10

(b) Transition graph of block B1.

Figure 4.1: SCC decomposition and the transition graph of block B1.

4.2.1 Decomposition of a BN

We use the same definition of blocks as in Definition 3.3.1. But we consider synchronous
networks in this chapter and therefore a block is also under the synchronous updating
scheme, i.e., all the nodes in the block will be updated synchronously at each given time
point no matter this node is undetermined or not.

We now introduce a method to construct blocks, using SCC-based decomposition. The
definition of an SCC has been given in Definition 3.3.2. Moreover, we use the same
concept of control node, parent block , parent SCC, ancestor SCC, and the same way
for forming blocks as in Chapter 3. An example for decomposing a BN has been given
in Chapter 3. We now give another example, which we will use later in this chapter for
explaining our method. Figure 4.1a shows the decomposition of a BN into four SCCs:
Σ1, Σ2, Σ3, and Σ4. In this example, node v1 is a control node of Σ2 and Σ4; node v2 is
a control node of Σ3; and node v6 is a control node of Σ4. The SCC Σ1 does not have
any control node. Σ2 and its control node v1 form one block B2. Σ1 itself is a block,
denoted as B1, since the SCC it contains does not have any control node.

The state of a block in a synchronous network is slightly different from that of a block
in an asynchronous network. In a synchronous network, the state of a block includes
not only the values of nodes in this block, but also the values of nodes that in its an-
cestor blocks. Formally, a state of a block of a synchronous BN is a binary vector
(x1, · · · , xi, xj, · · · , xk) where (xj, · · · , xk) are the values of the nodes in the block and
(x1, · · · , xi) are the values of the nodes in its ancestor blocks. This difference will lead
to the difference of the definition for fulfilment in Definition 4.2.1, which is one of the
key differences between our decomposition methods for synchronous BNs and asyn-
chronous BNs. As in the previous chapter, we use a number of operations on the states
of a BN and its blocks and their definitions are the same. See Definition 3.3.4 and 3.3.5
for details.

4.2.2 Detection of Attractors in a Block

We now consider how to detect attractors in a block. We also consider elementary
blocks and non-elementary blocks separately. An elementary block does not depend
on any other block while a non-elementary block does. An elementary block is in fact
a BN; therefore, the definition of attractors in a BN can be directly taken to the concept
of an elementary block. We take the same definition for preservation of attractors as in
Definition 3.3.6.

4.2 An SCC-based Decomposition Method 51

01 10

00 11

(a) Transition graph of Block B1 in G1.

00 01

10 11

(b) Transition graph of the “fulfilment”.

Figure 4.2: Two transition graphs used in Example 4.2.1 and Example 4.2.2.

Example 4.2.1. Consider the BN G1 in Example 2.2.1. Its set of attractors is A =
{{(000), (1∗1)}}. Nodes v1 and v2 form an elementary blockB1. SinceB1 is an elemen-
tary block, it can be viewed as a BN. The transition graph of B1 is shown in Figure 4.2a.
Its set of attractors is AB1 = {{(00), (1∗)}} (nodes are arranged as v1, v2). We have
πB1({(000), (1 ∗ 1)}) = {(00), (1∗)} ∈ AB1 , i.e., block B1 preserves the attractors of
G1.

With Definition 3.3.6, we have the following lemma and theorem.

Lemma 4.2.1. Given a BN G and an elementary block B in G, let Φ be the set of
attractor states of G and ΦB be the set of attractor states of B. If B preserves the
attractors of G, then Φ ⊆MG(ΦB).

Proof. LetA = {A1, A2, . . . , Am} be the set of attractors ofG andAB = {AB1 , AB2 , . . . ,
ABm′} be the set of attractors of B. Since B preserves the attractors of G, for any
k ∈ [1,m], there exists a k′ ∈ [1,m′] such that πB(Ak) ⊆ ABk′ . Therefore, πB(Φ) =
∪mi=1πB(Ai) ⊆ ∪m

′
i=1A

B
i = ΦB. By Definition 3.3.4, we have that Φ ⊆ MG(πB(Φ)).

Hence, Φ ⊆MG(ΦB).

Theorem 4.2.1. Given a BN G, let B be an elementary block in G. B preserves the
attractors of G.

Proof. Let A = {A1, A2, . . . , Am} be the set of attractors of G. For any i ∈ [1,m], let
L = x1 → x2 → · · · → xk be a path containing all the states in Ai and let x1 = xk.
In fact, L is an attractor system of Ai. Therefore, πB(x1) → πB(x2) → · · · → πB(xk)
is a path in B. We denote this path as LB. Given that the choice of the attractor Ai is
arbitrary, the claim holds if we can prove that states in the path LB form an attractor
of B. Since x1 = xk, we have πB(x1) = πB(xk). The path LB is in fact a loop. As
B is a synchronous BN, the transitions in B are determined and thus starting from any
state in B, no state not in B is reachable. Therefore, the states in the path LB form
an attractor.

For an elementary block B, the mirror states of its attractor states cover all G’s attractor
states according to Lemma 4.2.1 and Theorem 4.2.1. Therefore, by searching from the
mirror states only instead of the whole state space, we can detect all the attractor states.

We now consider the case of non-elementary blocks. For an SCC Σj , if it has no parent
SCC, then this SCC can form an elementary block; if it has at least one parent, then it
must have an ancestor that has no parent, and all its ancestors Ω(Σj) together can form
an elementary block, which is also a BN. The SCC-based decomposition will usually
result in one or more non-elementary blocks.

52 Chapter 4 Attractor Detection in Synchronous Networks

After decomposing a BN into SCCs, there is at least one SCC with no control nodes.
Hence, there is at least one elementary block in every BN. Moreover, for each non-
elementary block we can construct, by merging all its predecessor blocks, a single parent
elementary block. We detect the attractors of the elementary blocks and use the detected
attractors to guide the values of the control nodes of their child blocks. The guidance
is achieved by considering fulfilment of the dynamics of a non-elementary block with
respect to the attractors of its parent elementary block, shortly referred to as fulfilment
of a non-elementary block. In some cases, a fulfilment of a non-elementary block can be
easily obtained by assigning new Boolean functions to the control nodes of the block.
However, in many cases, such simple assignments are not enough; instead, obtaining
a fulfilment of a non-elementary block requires explicitly constructing a transition sys-
tem of this block corresponding to the considered attractor of the elementary parent
block. Since the parent block of a non-elementary block may have more than one attrac-
tor, a non-elementary block may have more than one fulfilment.

Definition 4.2.1 (Fulfilment of a non-elementary block). Let Bi be a non-elementary
block formed by merging an SCC with its control nodes. Let nodes u1, u2, . . . , ur be
all the control nodes of Bi which are also contained by its elementary parent block Bj

(we can merge Bi’s ancestor blocks to form Bj if Bi has more than one parent block or
has a non-elementary parent block). Let ABj1 , A

Bj
2 , . . . , A

Bj
t be the AS’ of Bj . For any

k ∈ [1, t], a fulfilment of block Bi with respect to ABjk is a state transition system such
that

1. the state space is the maximal set of states of the merged block Bi,j that is cross-
able with ABjk ;

2. the transitions are as follows: for any transition xBj → x̃Bj in the attractor
system of ABjk , there is a transition xBi,j → x̃Bi,j in the fulfilment such that
xBi,j C xBj and x̃Bi,j C x̃Bj ; each transition in the fulfilment is caused by the
update of all nodes synchronously: the update of non-control nodes of Bi is regu-
lated by the Boolean functions of the nodes and the update of nodes in its parent
block Bj is regulated by the transitions of the attractor system of ABjk ;

In the fulfilment of a non-elementary block, it is not only the control nodes, but all the
nodes of its single elementary parent block that are considered. This allows to distin-
guish the potentially different states in which the values of control nodes are the same.
Without this, a state in the state transition graph of the fulfilment may have more than
one out-going transition, which is contrary to the fact that the out-going transition for a
state in a synchronous network is always determined. Although the definition of attrac-
tors can still be applied to such a transition graph, the attractor detection algorithms for
synchronous networks, e.g., SAT-based algorithms, may not work any more. Moreover,
the meaning of attractors in such a graph are not consistent with the synchronous se-
mantics and therefore the detected “attractors” may not be attractors of the synchronous
BN. Note that the decomposition method mentioned in [GYW+14] did not take care of
this and therefore produces incorrect results in certain cases. We now give an example
to illustrate one of such cases.

Example 4.2.2. Consider the BN in Example 2.2.1, which can be divided into two
blocks: block B1 with nodes v1, v2 and block B2 with nodes v2, v3. The transition graph
of B1 is shown in Figure 4.2a and its attractor is (00) → (10) → (11). If we do not
include the node v1 when forming the fulfilment of B2, we will get a transition graph as

4.2 An SCC-based Decomposition Method 53

0000 0100

0110 0001

0010 0111

0101 0011

(a) Fulfilment 1 of Example 4.2.3.

1100 1110

1111 1101

(b) Fulfilment 2 of Example 4.2.3.

Figure 4.3: Transition graphs of two fulfilments in Example 4.2.3.

shown in Figure 4.2b, which contains two states with two out-going transitions. This is
contrary to the synchronous semantics. Moreover, recovering attractors with the attrac-
tors in this graph will lead to a non-attractor state of the original BN, i.e., (001).

For asynchronous networks, however, such a distinction is not necessary since the situ-
ation of multiple out-going transitions is in consistent with the asynchronous updating
semantics. Definition 4.2.1 forms the basis for a key difference between this decompo-
sition method for synchronous BNs and the one for asynchronous BNs proposed in the
previous chapter.

Constructing fulfilments for a non-elementary block is a key process for obtaining its
attractors. For each fulfilment, the construction process requires the knowledge of all the
transitions in the corresponding attractor of its elementary parent block. In Section 4.3,
we explain in details how to implement it with BDDs. We now give an example for
constructing fulfilments.

Example 4.2.3. Consider the BN in Figure 4.1a. Its Boolean functions are given as
follows: 

f1 = x1 ∧ x2, f2 = x1 ∨ ¬x2,
f3 = ¬x4 ∧ x3, f4 = x1 ∨ x3,
f5 = x2 ∧ x6, f6 = x5 ∧ x6,
f7 = (x1 ∨ x6) ∧ x8, f8 = x7 ∨ x8.

(4.1)

The network contains four SCCs Σ1,Σ2,Σ3 and Σ4. For any Σi (i ∈ [1, 4]), we form
a block Bi by merging Σi with its control nodes. Block B1 is an elementary block and
its transition graph is shown in Figure 4.1b. Block B1 has two attractors, i.e., {(0∗)}
and {(11)}. Regarding the first attractor, block B3 has a fulfilment by setting the nodes
v1 and v2 (nodes from its parent block B1) to contain transitions {(00)→ (01), (01)→
(00)}. The transition graph of this fulfilment is shown in Figure 4.3a. Regarding the
second attractor, block B3 has a fulfilment by setting nodes v1 and v2 to contain only the
transition {(11)→ (11)}. Its transition graph is shown in Figure 4.3b.

Similar to the case of asynchronous BNs, a fulfilment of a non-elementary block in
synchronous BNs also provides a transition system of the block by taking care of the
dynamics of the undetermined nodes. Therefore, the attractor definition of fulfilments
and non-elementary blocks for asynchronous BNs in Definition 3.3.9 can be directly the
taken for synchronous BNs.

With the attractor definition in non-elementary blocks, we can extend Definition 4.2.1
by allowing Bj to be a non-elementary block as well. When forming the fulfilments of
a non-elementary block, we only need the attractors of its parent block that contains all
its control nodes, no matter whether this parent block is elementary or not. Observe that

54 Chapter 4 Attractor Detection in Synchronous Networks

using a non-elementary block as a parent block does not change the fact that the attractor
states of the parent block contain the values of all the nodes in the current block and all
its ancestor blocks.

Computing attractors for non-elementary blocks requires the knowledge of the attractors
of its parent blocks. Therefore, we need to order the blocks so that for any block Bi,
the attractors of its parent blocks are always detected before it. To do this, we use the
concept of a credit as defined in Definition 3.3.10.

4.2.3 Recovery of Attractors for the Original BN

After computing attractors for all the blocks, we need to recover attractors for the origi-
nal BN, with the help of the following theorem.

Theorem 4.2.2. LetG be a BN and letBi be one of its blocks. Denote Ω(Bi) as the block
formed by all Bi’s ancestor blocks and denote X (Bi) as the block formed by merging
Bi with Ω(Bi). X (Bi) is in fact an elementary block, which is also a BN. The attractors
of block Bi are in fact the attractors of X (Bi).

Proof. If Bi is an elementary block, Bi is the same as X (Bi) and the claim holds. We
now prove the case where Bi is a non-elementary block. This is equivalent to proving
the following two statements: 1) any attractor of Bi is an attractor in X (Bi); 2) any
attractor in X (Bi) is an attractor of Bi.

Statement 1: Let ABi be an attractor of Bi and let xBi1 → xBi2 → · · · → xBik be a path
LBi containing all the states in this attractor with xBi1 = xBik . For any state xBi` in this
path, xBi` is also a state in the block X (Bi) as xBi` is a vector formed by the values
of nodes in Bi and all its ancestors. In the transition xBi` → xBi`+1, the nodes in block
Bi are updated by their Boolean functions and the nodes that are not in Bi are updated
in accordance with the attractor that forms the corresponding fulfilment. Therefore, all
the nodes are in fact updated in accordance with their Boolean functions. Hence, such
a transition xBi` → xBi`+1 also exists in the block X (Bi). Path LBi is therefore a path in
X (Bi). Since xBi1 = xBik , states in the path LBi , i.e., states in the attractor ABi form an
attractor in X (Bi).

Statement 2: This can be proved iteratively. We first consider the case that the parent
block ofBi is an elementary block. LetAX (Bi) be an attractor ofX (Bi) and x1 → x2 →
· · · → xk be a path LX (Bi) containing all the states in this attractor and x1 = xk. Denote
Bi’s parent block asBj . SinceBj is an elementary block, πBj(x1)→ πBj(x2)→ · · · →
πBj(xk) is a path in Bj and πBj(x1) = πBj(xk). Therefore, states in this path form an
attractor, denoted as ABj . We consider the fulfilment of block Bi with respect to ABj .
For any ` ∈ [1, k], state x` in the path LX (Bi) is crossable with πBj(x`). Therefore,
x` is also a state in the fulfilment. Hence, AX (Bi) is also an attractor in the fulfilment
and the claim holds for this case. We now consider the case where Bj (the parent block
of Bi) is not an elementary block and the parent block of Bj is an elementary block.
We have that any attractor in X (Bj) is an attractor of Bj . Let AX (Bi) be an attractor of
X (Bi) and x1 → x2 → · · · → xk be a path LX (Bi) containning all the states in this
attractor and x1 = xk. Since X (Bj) is an elementary block, we have that πX (Bj)(x1)→
πX (Bj)(x2) → · · · → πX (Bj)(xk) is a path in X (Bj) and πX (Bj)(x1) = πX (Bj)(xk).
Therefore, states in this path form an attractor of X (Bj), which is also an attractor of

4.2 An SCC-based Decomposition Method 55

Bj , denoted as ABj . Regarding ABj , block Bi has a fulfilment. For any ` ∈ [1, k], state
x` in the path LX (Bi) is crossable with πBj(x`) (which is also πX (Bj)(x`)). Therefore,
x` is also a state in the fulfilment. Hence, AX (Bi) is also an attractor in the fulfilment.
Hence, the claim holds.

Theorem 4.2.3. Given a BN G, where Bi and Bj are its two blocks, letABi andABj be
the set of attractors for Bi and Bj , respectively. Let Bi,j be the block got by merging the
nodes in Bi and Bj . Denote the set of all attractor states of Bi,j as SBi,j . If Bi and Bj

are both elementary blocks, ABi C ABj and ∪A∈Π(ABi ,ABj)A = SBi,j .

Proof. Let Bi and Bj be two elementary blocks of G. If Bi and Bj do not have common
nodes, then it holds by definition that ABi C ABj . If they have common nodes, their
common nodes must form an elementary block. Denote this block as Bc. For any
attractor ABi ∈ ABi , πBc(ABi) is an attractor in Bc and ABi C πBc(ABi). Denote the
nodes in Bi but not in Bc as N . The nodes in N and their control nodes in Bc (if they
have) form a block BN . We have the following two claims. Claim I: For any attractor
ABc of Bc, there exists an attractor ABN in BN such that ABc C ABN . Claim II: For
any attractor ABc of Bc, there exists an attractor ABi ∈ ABi such that ABi C ABc . We
first prove Claim I. If block BN does not share nodes with Bc, Claim I holds according
to the definition of crossability. If block BN shares nodes with Bc, the fulfilments of
BN is constructed based on the attractors of Bc. According to Definition 4.2.1, for any
attractor ABc of Bc, a fulfilment will be constructed and the attractor of this fulfilment
is crossable with ABc , thus Claim I holds in this case as well. We continue to prove
Claim II. Denote the length of attractor ABc as `Bc and the length of attractor ABN as
`BN . Let xBc be a state in ABc and xBN be a state in ABN . Let x1 = Π(xBc ,xBN).
Let L be a path starting from state x1 and of length k = lcm(`Bc , `BN) + 1, where lcm
means the lowest common multiple. Since xBc is an attractor state, πBc(xk) = xBc .
Similarly, πBN (xk) = xBN . Hence, xk = Π(πBc(xk), πBN (xk)) = x1. Therefore,
states in L form an attractor of Bi. Hence the claim holds. Similarly, it holds that for
any attractor ABc of Bc, there exists an attractor ABj ∈ ABj such that ABj C ABc . Now,
let ABi be an attractor in ABi . Then, πBc(ABi) is an attractor in Bc and by the above,
there exists an attractor ABj ∈ ABj such that πBc(ABi) C ABj . Thus, ABi C ABj . By
similar argument, for any ABj ∈ ABj there exists ABi ∈ ABi such that ABj C ABi . In
consequence, ABi C ABj .
We now prove that ∪A∈Π(ABi ,ABj)A = SBi,j . Denote S = ∪A∈Π(ABi ,ABj)A. This is
equivalent to showing the following two statements: 1) for any state s ∈ S, s is in SBi,j ;
2) any state in SBi,j is contained in S. We prove them one by one.

Statement 1: Let A be any set of states in Π(ABi ,ABj). Then there exists ABi ∈ ABi
and ABj ∈ ABj such that A = Π(ABi , ABj) and ABi C ABj . Given the choice of A is
arbitrary, it is enough to show that any s ∈ A is an attractor state of Bi,j . It holds that
s = Π(πBi(s), πBj(s)), where πBi(s) ∈ ABi and πBj(s) ∈ ABj . Let lBi be the attractor
length of ABi and lBj be the attractor length of ABj . Further, let L = s1 → s2 → · · · →
sk be a path starting from state s, i.e., s1 = s, with k = lcm(lBi , lBj) + 1. Since both
Bi and Bj are elementary blocks, it holds that πBi(s1) → πBi(s2) → · · · → πBi(sk)
is a path in Bi and πBj(s1) → πBj(s2) → · · · → πBj(sk) is a path in Bj . Since
πBi(s1) = πBi(s), we have πBi(sk) = πBi(s). Similarly, we have πBj(sk) = πBj(s).
Then, sk = Π(πBi(sk), πBj(sk)) = Π(πBi(s), πBj(s)) = s. In consequence, s1 = s =
sk and the states in L form an attractor of Bi,j with s being one of its states.

56 Chapter 4 Attractor Detection in Synchronous Networks

Statement 2: Let s be a state in SBi,j and let A be the attractor of Bi,j containing state
s. Let L = s → s1 → s2 → · · · → sk → s be a path starting end ending with s. It
holds that πBi(s) → πBi(s1) → πBi(s2) → · · · → πBi(sk) → πBi(s) is an attractor
system in the elementary block Bi. Let us denote the attractor’s set of states as ABi . We
have that πBi(s) ∈ ABi . Similarly, πBj(s) belongs to an attractor of Bj , denoted as ABj .
Therefore, s = Π(πBi(s), πBj(s)) ∈ Π(ABi , ABj) ⊆ S. Given the arbitrary choice of s,
the claim holds.

The above developed theoretical background with Theorem 4.2.2 and Theorem 4.2.3
being its core result, allows us to design a new decomposition-based approach towards
detection of attractors in large synchronous BNs. The idea is as follows. We divide a BN
into blocks according to the detected SCCs. We sort the blocks in ascending order based
on their credits and detect attractors of the ordered blocks one by one in an iterative
way. We start from detecting attractors of elementary blocks (credit 0), and continue
to detect blocks with higher credits after constructing their fulfilments. According to
Theorem 4.2.2, by detecting the attractors of a block, we in fact obtain the attractors
of the block formed by the current block and all its ancestor blocks. Hence, after the
attractors of all the blocks have been detected, either we have obtained the attractors
of the original BN or we have obtained the attractors of several elementary blocks of
this BN. According to Theorem 4.2.3, we can perform a cross operation for any two
elementary blocks (credits 0) to recover the attractor states of the two merged blocks.
The resulting merged block will form a new elementary block, i.e., one with credit 0.
The attractors can be easily identified from the set of attractor states. By iteratively
performing the cross operation until a single elementary block containing all the nodes
of the BN is obtained, we can recover the attractors of the original BN. The details of
this new algorithm are discussed in the next section. In addition, we have the following
corollary which will be used in the next section.

Corollary 4.2.1. Given a BN G, where Bi and Bj are its two blocks, let ABi and ABj
be the set of attractors for Bi and Bj , respectively. Let Bi,j be the block got by merging
the nodes in Bi and Bj . Denote the set of attractor states of Bi,j as SBi,j . It holds that
ABi C ABj and ∪S∈Π(ABi ,ABj)S = SBi,j .

Proof. If Bi and Bj are both elementary blocks, the claim holds according to Theo-
rem 4.2.3. We now prove the general cases. Denote Ω(Bi) the block formed by all Bi’s
ancestor blocks and denote X (Bi) the block formed with Bi and Ω(Bi). Denote Ω(Bj)
the block formed by all Bj’s ancestor blocks and denote X (Bj) the block formed with
Bj and Ω(Bj). According to Theorem 4.2.2, the attractors of block Bi are in fact the
attractors of the elementary block X (Bi) and the attractors of block Bj are in fact the
attractors of the elementary block X (Bj). Since both X (Bi) and X (Bj) are elementary
blocks, the claim holds by Theorem 4.2.3.

4.3 A BDD-based Implementation

We describe the SCC-based attractor detection method in Algorithm 3. This algorithm
takes a BN G and its corresponding transition system T as inputs, and outputs the set
of attractors of G. In this algorithm, we denote by DETECT(T) a basic function for de-
tecting attractors of a given transition system T . Lines 24-27 of this algorithm describe

4.3 A BDD-based Implementation 57

Algorithm 3 SCC-based decomposition algorithm
1: procedure SCC DETECT(G, T)
2: B := FORM BLOCK(G); A := ∅; Ba := ∅; k := size of B;
3: initialise dictionary A`; //A` is stores the set of attractors for each block
4: for i := 1; i <= k; i+ + do
5: if Bi is an elementary block then
6: T Bi := transition system converted from Bi; //see Section 3.4.1
7: Ai := DETECT(T Bi); A`.add((Bi,Ai)); //for more details
8: else Ai := ∅;
9: if Bp

i is the only parent block of Bi then
10: Api := A`.getAtt(Bp

i); //obtain attractors of Bp
i

11: else Bp := {Bp
1 , B

p
2 , . . . , B

p
m} be the parent blocks of

12: Bi (ascending ordered);
13: Bc := Bp

1 ; //Bp is ordered based on credits
14: for j := 2; j <= m; j + + do
15: Bc,j := a new block containing nodes in Bc and Bp

j ;
16: if (Api := A`.getAtt(Bc,j)) == ∅ then
17: A := Π(A`.getAtt(Bc),A`.getAtt(Bj)); Api := D(A);
18: //D(A) returns all the attractors from attractor states sets A
19: A`.add(Bc,j,Api);
20: end if
21: Bc := Bc,j;
22: end for
23: end if
24: for A ∈ Api do
25: T Bi(A) := 〈SBi(A), TBi(A)〉; //obtain the fulfilment of Bi with A
26: Ai := Ai ∪ DETECT(T Bi(A));
27: end for
28: A`.add((Bi,Ai)); //the add operation will not add duplicated elements
29: A`.add((Bi,ancestors,Ai)); //Bi,ancestors is Bi and all its ancestor blocks
30: for any Bp ∈ {Bp

1 , B
p
2 , . . . , B

p
m} do //Bp

1 , B
p
2 , . . . , B

p
m are parent blocks

31: A`.add((Bi,p,Ai)); //of Bi

32: end for
33: end if
34: end for
35: for Bi ∈ B and Bi has no child block do
36: A = D(Π(A`.get(Bi),A));
37: end for
38: return A.
39: end procedure

40: procedure FORM BLOCK(G)
41: decompose G into SCCs and form blocks with SCCs and their control nodes;
42: sort the blocks in ascending order according to their credits;
43: B := (B1, . . . , Bk);
44: return B. //B is the list of blocks after ordering
45: end procedure

58 Chapter 4 Attractor Detection in Synchronous Networks

0100 0001 0111 0010

0000 0101 0011 0110

(a) Fulfilment 1 of B2.

1100 1110

1101 1111

(b) Fulfilment 2 of B2.

Figure 4.4: Two fulfilments used in Example 4.3.1.

the process for detecting attractors of a non-elementary block. The algorithm detects
the attractors of all the fulfilments of the non-elementary block and performs the union
operation of the detected attractors. For this, if the non-elementary block has only one
parent block, its attractors are already computed as the blocks are considered in ascend-
ing order with respect to their credits by the main for loop in line 4. Otherwise, all the
parent blocks are considered in the for loop in lines 14-22. By iteratively applying the
cross operation in line 17 to the attractor sets of the ancestor blocks in ascending order,
the attractor states of a new block formed by merging all the parent blocks are computed
as assured by Corollary 4.2.1. The attractors are then identified from the attractor states
with one more operation. The correctness of the algorithm is stated as Theorem 4.3.1.

Theorem 4.3.1. Algorithm 3 correctly identifies the set of attractors of a given BN G.

Proof. Algorithm 3 divides a BN into SCC blocks and detects attractors of each block.
Lines 5 to 33 describe the process for detecting attractors of a block. The algorithm
distinguishes between two different types of blocks. The first type is an elementary
block. Since it is in fact a BN, the attractors of this type of block are directly detected via
the basic attractor detection function DETECT(T). The second type is a non-elementary
block. The algorithm constructs the fulfilments of this type of block, detects attractors
of each fulfilment and merges them as the attractors of the block. The algorithm takes
special care of blocks with more than one parent block. It merges all the parent blocks
of such a block to form a single parent block. Since the parent blocks are considered in
ascending order operations with respect to their credits, the two operations in Line 17
will iteratively recover the attractors of the parent block according to Corollary 4.2.1.
After all attractors of the blocks have been detected, the algorithm performs several
cross and detect operations to recover the attractors of the original BN in Lines 35 to 37.
Since the attractors of all blocks are considered, it will finally recover the attractors of
the BN.

We continue to illustrate in Example 4.3.1 how Algorithm 3 detects attractors.

Example 4.3.1. Consider the BN shown in Example 4.2.3 and its four blocks. Block B1
is an elementary block and it has two attractors, i.e., A1 = {{(0∗)}, {(11)}}. To detect
the attractors of block B2, we first form fulfilments of B2 with the attractors of its parent
block B1. B1 has two attractors so there are two fulfilments for B2. The transition
graphs of the two fulfilments are shown in Figures 4.4a and 4.4b. We get two attractors
for blockB2, i.e.,A2 = {{(0∗00)}, {(1101)}}. Those two attractors are also attractors
for the merged block B1,2, i.e., A1,2 = A2. In Example 4.2.3, we have shown the two
fulfilments of B3 regarding the two attractors of B1. Clearly, B3 has two attractors, i.e.,
A3 = {{(0 ∗ 00)}, {(1100)}, {(1111)}}. B4 has two parent blocks. Therefore, we need
to merge the two parent blocks to form a single parent block. Since the attractors of

4.3 A BDD-based Implementation 59

010000 010010 010001 010011

000000 000010 000001 000011

(a) The first fulfilment of B4

110000 110011

110010 110001

(b) The second fulfilment of B4

111100 111111

111110 111101

(c) The third fulfilment of B4

Figure 4.5: Transition graphs of the three fulfilments for block B4.

the merged block B1,3 are the same as B3, we directly obtain the attractors of B1,3, i.e.,
A1,3 = A3 = {{(0 ∗ 00)}, {(1100)}, {(1111)}}. There are three attractors so there will
be three fulfilments for block B4. The transition graph of the three fulfilments are shown
in Figure 4.5. From the transition graphs, we easily get the attractors of B4, i.e., A4 =
{{(0 ∗ 0000)}, {(0 ∗ 0001)}, {(110000)}, {(110011)}, {(111100)}, {(111111)}}. Now
the attractors for all the blocks have been detected. We can now obtain all the attractors
of the BN by several cross operations. We start from the block with the largest credit, i.e.,
block B4. The attractors of B4 in fact cover blocks B1, B3 and B4. The remaining block
is B2. We perform a cross operation on A2 and A4 and based on the obtained result
we detect the attractors of the BN, i.e., A = D(Π(A2,A4) = {{(0 ∗ 000000)}, {(0 ∗
000001)}, {(11010011)}, {(11010000)}, {(11011111)}, {(11011100)}}.

4.3.1 An Optimisation

It often happens that a BN contains many leaf nodes that do not have any child node.
Each of the leaf nodes will be treated as an SCC in our algorithm and it is not worth
the effort to process an SCC with only one leaf node. Therefore, we treat leaf nodes in
a special way. Formally, leaf nodes are recursively defined as follows.

Definition 4.3.1. A node in a BN is a leaf node (or leaf for short) if and only if it is not
the only node in the BN and either (1) it has no child nodes except for itself or (2) it has
no other children after iteratively removing all its child nodes which are leaf nodes.

Algorithm 4 outlines the leaf-based decomposition approach for attractor detection. We
now show that Algorithm 4 can identify all attractor states of a given BN.

Theorem 4.3.2. Algorithm 4 correctly identifies all the attractor states of a given BN G.

Proof. BlockB formed in Line 2 is an elementary block. Algorithm 4 finds the attractor
states of B, denoted ΦB in Line 3. Since B is an elementary block, it preserves the
attractors of G by Theorem 4.2.1 and thus, by Lemma 4.2.1, it holds that MG(ΦB)

60 Chapter 4 Attractor Detection in Synchronous Networks

Algorithm 4 Leaf-based optimisation
1: procedure LEAF DETECT(G)
2: form an elementary block B by removing all the leaves of G;
3: AB := SCC DETECT (B); ΦB := ∪AB∈ABAB; //detect attractors of B
4: T := transition system of G with state space restricted toMG(ΦB);
5: A := DETECT (T);
6: return A.
7: end procedure

contains all the attractor states of G. Therefore, the basic attractor detection function
DETECT applied in Line 5 to the transition system of G restricted to the statesMG(ΦB)
identifies all the attractor states of G.

4.4 Experimental Results

We have implemented the decomposition algorithm presented in Section 4.3 in the
model checker MCMAS [LQR15]. In this section, we demonstrate the efficiency of
our method by comparing our method with the state-of-the-art decomposition method
mentioned in [YQPM16] which is also based on BDD implementation. We generate 33
random BN models with different number of nodes using the tool ASSA-PBN [MPY15,
MPY16b] and compare the performance of the two methods on these 33 models. All the
experiments are conducted on a computer with an Intel Xeon W3520@2.67GHz CPU
and 12GB memory.

We name our proposed decomposition method as M1 and the one in [YQPM16] as M2.
There are two possible implementations of the DETECT function used in Algorithm 3
as mentioned in [YQPM16]: monolithic and enumerative. We use the monolithic one
which is shown to be more suitable for small networks as the decomposed sub-networks
are relatively small. Since the method in [YQPM16] uses similar leaf reduction tech-
nique, we make comparisons on both the original models and the models whose leaves
are removed in order to eliminate the influence of leaf nodes. We set the expiration time
to 3 hours. Before removing leaf nodes, there are 11 cases that both methods fail to
process. Among the other 22 cases, our method is faster than M2 in 16 cases. After
removing leaf nodes, there are 5 cases that both methods fail to process. Among the
other 28 cases, our method is faster than M2 in 25 cases. We demonstrate the results
for 7 models in Table 4.1 and the remaining result can be found in [MPQY]. Since
our method considers the dependency relation between different blocks, the attractors
of all the blocks need to be computed; while method M2 can ignore the blocks with
only leaf nodes. Therefore, the performance of our method is more affected by the leaf
nodes. This is why our method is not significantly faster than M2 when leaf nodes are
not removed. Notably, after eliminating the influence of leaf nodes, our method is sig-
nificantly faster than M2. The “–” in Table 4.1 means the method fails to process the
model within 3 hours. The speedup is therefore not applicable (N/A) for this result. The
speedup is computed as tM2/tM1 , where tM1 is the time cost for M1 and tM2 is the time
cost for M2. All the time shown in Table 4.1 is in seconds. In general, we obtain a larger
speedup when the number of attractors is relatively small. This is due to that our method
takes the attractors of the parent block into account when forming a fulfilment of a non-

4.5 Conclusion and Future Work 61

original models models with leaves removedmodel
ID

#
nodes

non-
leaves

#
attractors tM2 [s] tM1 [s] Speedup tM2 [s] tM1 [s] Speedup

1 100 7 32 4.56 0.86 5.3 0.58 0.02 29.0
2 120 9 1 18.13 0.95 19.1 1.10 0.04 27.5
3 150 19 2 201.22 1.66 121.2 0.74 0.02 37.0
4 200 6 16 268.69 7.04 38.2 0.97 0.02 48.5
5 250 25 12 533.57 11.16 47.8 0.90 0.04 22.5
6 300 88 1 – – N/A 238.96 65.33 3.7
7 450 43 8 – 60.82 N/A 3704.33 0.17 21790.2

Table 4.1: Selected results for the performance comparison of methods M1 and M2.
elementary block and the number of fulfilments increases with the number of attractors.
Summarising, our new method shows a significant improvement on the state-of-the-art
decomposition method.

4.5 Conclusion and Future Work

We have introduced a new SCC-based decomposition method for attractor detection of
large synchronous BNs. Although our decomposition method shares similar ideas on
how to decompose a large network with existing decomposition methods, our method
differs from them in the key process and has significant advantages.

First, our method is designed for synchronous BNs, as a consequence the key process for
constructing fulfilments in our method is totally different from the one for asynchronous
BNs as described in the previous chapter, which is designed for asynchronous networks.
Secondly, our method considers the dependency relation among the sub-networks. The
method in [YQPM16] does not rely on this relation and only takes the detected attrac-
tors in sub-networks to restrict the initial states when recovering the attractors for the
original network. In this way, the decomposition method in [YQPM16] potentially can-
not scale up very well for large networks, as it still requires a BDD encoding of the
transition relation of the whole network. Experimental results show that our method
is significantly faster than the one proposed in [YQPM16]. Next, we have also shown
that the method proposed in [GYW+14] cannot compute correct results in certain cases.
Finally, we provide a proof of the correctness of our method in this work.

Our current implementation is based on BDDs. One future work is to use SAT-solvers
to implement the DETECT function as SAT-based methods are normally more efficient
in terms of attractor detection for synchronous BNs [DT11].

Part II

Steady-state Computation

63

5

Efficient Steady-state Computation

Starting from this chapter, we focus on the second research problem, i.e., how to com-
pute steady-state probabilities of a PBN efficiently, especially for the large ones. For
small networks with a few tens of nodes, numerical methods like the GaussSeidel method,
can quickly solve the problem of steady-state computation. However, these numerical
methods are prohibited when it comes to large networks with hundreds of nodes due to
the huge state-space. Monte Carlo simulation methods are in fact the only feasible ones.
Shmulevich et al. [SGH+03] proposed to use the two-state Markov chain approach for
analysing the steady-state dynamics of PBNs in 2003. However, since then it has not
been widely applied. In this chapter, we revive the two-state Markov chain approach by
demonstrating its usefulness for approximating steady-state probabilities of large PBNs.
The rest of this chapter is arranged as follows. In Section 5.1, we introduce the theory
of the two-state Markov chain approach. We identify an initialisation problem which
may lead to a biased result of the two-state Markov chain approach and propose sev-
eral heuristics for avoiding it in Section 5.2. Then we evaluate the performance of the
two-state Markov chain approach by comparing it with another statistical method called
Skart in Section 7.2 and provide a case study of this method on a real-life biological
network in Section 5.4. Lastly, we conclude this chapter and provide the deviations of
formulas used in this chapter.

5.1 The Two-state Markov Chain Approach

The two-state Markov chain approach [RL92] is a method for estimating the steady-
state probability of a subset of states of a DTMC. In this approach the state space of
an arbitrary DTMC is split into two disjoint sets, referred to as meta states. One of
the meta states, numbered 1, is the subset of interest and the other, numbered 0, is its
complement. The steady-state probability of meta state 1, denoted π1, can be estimated
by performing simulations of the original Markov chain. For this purpose a two-state
Markov chain abstraction of the original DTMC is considered. Let {Zt}t>0 be a family
of binary random variables, where Zt is the number of the meta state the original Markov
chain is in at time t. {Zt}t>0 is a binary (0-1) stochastic process, but in general it is not
a Markov chain. However, as argued in [RL92], a reasonable assumption is that the
dependency in {Zt}t>0 falls off rapidly with lag. Therefore, a new process {Z(k)

t }t>0,
where Z(k)

t = Z1+(t−1)k, will be approximately a first-order Markov chain for k large
enough. A procedure for determining appropriate k is given in [RL92]. The first-order
chain consists of the two meta states with transition probabilities α and β between them.
See Figure 5.1 for an illustration of the construction of this abstraction.

The steady-state probability estimate π̂1 is computed from a simulated trajectory of the

65

66 Chapter 5 Efficient Steady-state Computation

B

A D

E

C

0 1

(a) Original DTMC

0 1

↵

�

1��1�↵

(b) Two-state DTMC

Figure 5.1: Conceptual illustration of the idea of the two-state Markov chain construc-
tion. (a) The state space of the original discrete-time Markov chain is split into two meta
states: states A and B form meta state 0, while states D, C, and E form meta state 1.
The split of the state space into meta states is marked with dashed ellipses. (b) Project-
ing the behaviour of the original chain on the two meta states results in a binary (0-1)
stochastic process. After potential subsampling, it can be approximated as a first-order,
two-state Markov chain with the transition probabilities α and β set appropriately.

original DTMC. The key point is to determine the optimal length of the trajectory. Two
requirements are imposed. First, the abstraction of the DTMC, i.e., the two-state Markov
chain, should converge close to its steady-state distribution π = [π0 π1]. Formally, t
satisfying |P[Z(k)

t = i |Z(k)
0 = j] − πi| < ε for a given ε > 0 and all i, j ∈ {0, 1}

needs to be determined. t is the so-called ‘burn-in’ period and determines the part of the
trajectory of the two-state Markov chain that needs to be discarded. Second, the estimate
π̂1 is required to satisfy P[π1 − r 6 π̂1 6 π1 + r] > s, where r is the required precision
and s is a specified confidence level. This condition is used to determine the length of
the second part of the trajectory used to compute π̂1, i.e., the sample size. Now, the
total required trajectory length of the original DTMC is then given by M + N , where
M = 1 + (t− 1)k and N = 1 + (dn(α, β)e− 1)k, where t = dm(α, β)e. The functions
m and n depend on the transitions probabilities α and β and are given by

m(α, β) =
log

(
ε(α+β)

max(α,β)

)
log (|1− α− β|) (5.1)

and

n(α, β) = αβ(2− α− β)
(α + β)3

(
Φ−1(1

2(1 + s))
)2

r2 , (5.2)

where Φ−1 is the inverse of the standard normal cumulative distribution function. For
the completeness of the presentation, the detailed derivations of the expressions for m
and n are given in the Sections 5.6.1 and 5.6.2.

Since α and β are unknown, they need to be estimated. This is achieved iteratively in
the two-state Markov chain approach of [RL92]. It starts with sampling an arbitrary
initial length trajectory, which is then used for estimating the values of α and β. M and
N are calculated based on these estimates. Next, the trajectory is extended to reach the
required length, and α and β values are re-estimated. The new estimates are used to
re-calculate M and N . This process is iterated until M + N is smaller than the current
trajectory length. Finally, the resulting trajectory is used to estimate the steady-state
probability of meta state 1. For more details, see [RL92]. Notice however the small

5.2 Two-state Markov Chain Approach: The Initialisation Problem 67

oversights in the formulas for m (absolute value missing in the denominator) and n (the
inverse of Φ should be used) therein.

5.2 Two-state Markov Chain Approach: The Initialisation Problem

In this section, we first identify an initialisation problem of the original approach due to
the size of the initial sample, this particular problem can lead to biased results. We then
propose three heuristics to extend the approach for avoiding unfortunate initialisations.

Given good estimates of α and β, the theory of the two-state Markov chain approach pre-
sented above guarantees that the obtained value satisfies the imposed precision require-
ments. However, the method starts with generating a trajectory of the original DTMC
of an arbitrarily chosen initial length, i.e., M0 +N0 = 1 + (m0 − 1)k + 1 + (n0 − 1)k,
where m0 is the ‘burn-in’ period and n0 is the sample size of the two-state Markov
chain abstraction. An unfortunate choice may lead to initial estimates of α and β that
are biased and result in the new values of M and N such that M + N is either smaller
or not much larger than the initial M0 + N0. In the former case the algorithm stops
immediately with the biased values for α, β and, more importantly, with an estimate
for the steady-state probability that does not satisfy the precision requirements. The
second case may lead to the same problem. As an illustration we considered a two-
state Markov chain with α = 24

11873 (0.0020214) and β = 24
25 (0.96). The steady-state

probability distribution was [0.997899 0.002101]. With k = 1, ε = 10−6, r = 10−3,
s = 0.95, m0 = 5, and n0 = 1, 920 the first estimated values for α and β were 1

1918
(0.0005214) and 1, respectively. This subsequently led to M = 2 and N = 1, 999,
resulting in a request for the extension of the trajectory by 76. After the extension, the
new estimates for α and β were 1

1997 and 1, respectively. These estimates gave M = 2,
N = 1, 920, and the algorithm stopped. The estimated steady-state probability distribu-
tion was [0.99950 0.00050], which was outside the pre-specified precision interval given
by r. Independent 104 runs resulted in estimates of the steady-state probabilities that
were outside the pre-specified precision interval 10% of times. Given the rather large
number of repetitions, it can be concluded that the specified 95% confidence interval
was not reached.

The reason for the biased result is the unfortunate initial value for n0 and the fact that
the real value of α is small. In the initialisation phase the value of α is underestimated
and dn(α, β)e calculated based on the estimated values of α and β is almost the same as
n0. Hence, subsequent extension of the trajectory does not provide any improvement to
the underestimated value of α since the elongation is too short.

To identify and avoid some of such pitfalls, we consider a number of cases and formulate
some of the conditions in which the algorithm may fail to achieve the specified precision.
To start, let n0 be the initial size of the sample used for initial estimation of α and β.
Neither α nor β is zero. It might be the case that the initial sample size is not big enough
to provide non-zero estimates for both α and β. If this is the case, n0 is doubled and the
trajectory is elongated to collect a sample of required size. This is repeated iteratively
until non-zero estimates for α and β are obtained. In the continuation we assume that
n0 provides non-zero estimates for both α and β. Then, the smallest possible estimates
for both α and β are greater than 1

n0
.

For a moment, let us set an upper bound value for n0 to be 104. For most cases this

68 Chapter 5 Efficient Steady-state Computation

r 0.01 0.001 0.0001
s 0.9 0.95 0.975 0.9 0.95 0.975 0.9 0.95 0.975

n0 ∈ ∅ [2, 136] ∅ [2, 1161] [2, 1383] [2, 1582] [2, 11628] [2, 13857] [2, 15847]

Table 5.1: Ranges of integer values for n0 that do not satisfy the ‘critical’ condition
n(α, β) < 2n0 for the given values of r and s.

boundary value is reasonable. Notice however that this is the case only if the real values
of α and β are larger than 10−4. In general, the selection of a proper value for n0 heavily
depends on the real values of α and β, which are unknown a priori. From what was
stated above, it follows that both first estimates for α and β are greater than 10−4. The
following cases are possible.

(1) If both α and β are small, e.g., less than 0.1, then we have that 10−4 < α, β < 0.1
and n(α, β) > 72, 765 as can be seen by investigating the n(·, ·) function. In this case
the sample size is increased more than 7-fold which is reasonable since the two-state
Markov chain seems to be bad-mixing by the first estimates of the values for α and
β and the algorithm asks for a significant increase of the sample size. We therefore
conclude that the bad-mixing case is properly handled by the algorithm.

(2) Both first estimates of α and β are close to 1. If α, β ∈ [0.7, 0.98], the value of
n(α, β) is larger than 19, 000. If both α, β > 0.98, then the size of the sample drops, but
in this case the Markov chain is highly well-mixing and short trajectories are expected
to provide good estimates.

(3) The situation is somewhat different if one of the parameters is estimated to be small
and the other is close to 1 as in the example described above. The extension to the
trajectory is too small to significantly change the estimated value of the small parameter
and the algorithm halts.

Considering the above cases leads us to the observation that the following situation
needs to be treated with care: The estimated value for one of the parameters is close to
1
n0

, the value of the second parameter is close to 1, and n(α, β) is either smaller or not
significantly larger than n0.

First approach: pitfall avoidance. To avoid this situation, we determine n0 which in
principle could lead to inaccurate initial estimates of α or β and such that the next sample
size given by dn(α, β)ewould practically not allow for an improvement of the estimates.
As stated above, the ‘critical’ situation may take place when one of the parameters is
estimated to be very small, i.e., close to 1

n0
, and the increase in the sample size is not

significant enough to improve the estimate. If the initial estimate is very small, the
real value is most probably also small, but the estimate is not accurate. If the value
is underestimated to the lowest possible value, i.e., 1

n0
, on average the improvement

can take place only if the sample size is increased at least by n0. Therefore, with the
trade-off between the accuracy and efficiency of the method in mind, we propose the
sample size to be increased at least by n0. Then the ‘critical’ situation condition is
n(α, β) < 2n0. By analysing the function n(·, ·) as described in details in Section 5.6.4,
we can determine the values of n0 that are ‘safe’, i.e., which do not satisfy the ‘critical’
condition. We present them in Table 5.1 for a number of values for r and s.

Second approach: controlled initial estimation of α and β. The formula for n is
asymptotically valid provided that the values for α and β are known. However, these

5.2 Two-state Markov Chain Approach: The Initialisation Problem 69

values are not known a priori and they need to be estimated. Unfortunately, the original
approach does not provide any control over the quality of the initial estimate of the
values of these parameters. In certain situation, e.g., as in the case discussed above, the
lack of such control mechanism may lead to results with worse statistical confidence
level than the specified one given by s. In the discussed example s = 95%, but this
value was not reached in the performed experiment. In order to address this problem, we
propose to extend the initial phase of the two-state approach algorithm in the following
way. The algorithm samples a trajectory of the original DTMC and estimates the values
of α and β. We denote the estimates as α̂ and β̂, respectively. Next, the algorithm
computes the sample size required to reach the s confidence level that the true value of
min(α, β) is within a certain interval. For definiteness, we assume from now on that
α̂ < β̂, which suggests that min(α, β) = α. During the execution of the procedure
outlined in the following the inequality may be inverted. If this is the case, the algorithm
makes corresponding change in the consideration of α and β.

The aim is to have a good estimate for α. Notice that the smallest possible initial value
of α̂ isgreater than 1

n0
. We refer to 1

n0
as the resolution of estimation. Given the reso-

lution, one cannot distinguish between values of α in the interval (α̂ − 1
n0
, α̂ + 1

n0
). In

consequence, if α ∈ (α̂− 1
n0
, α̂ + 1

n0
), then the estimated value α̂ should be considered

as optimal. Hence, one could use this interval as the one which should contain the real
value with specified confidence level. Nevertheless, although the choice of this interval
usually leads to very good results, as experimentally verified, the results are obtained at
the cost of large samples which make the algorithm stop immediately after the initiali-
sation phase. Consequently, the computational burden is larger than would be required
by the original algorithm to reach the desired precision specified by r and s parameters
in most cases. In order to reduce this unnecessary overhead, we consider the interval
(α̂ − α̂

2 , α̂ + α̂
2), which is wider than the previous one whenever α̂ > 1

n0
and leads to

smaller sample sizes.

The two-state Markov chain consists of two states 0 and 1, i.e., the two meta states of
the original DTMC. We set α as the probability of making the transition from state 0 to
state 1 (denoted as 0 → 1). The estimate α̂ is computed as the ratio of the number of
transitions from state 0 to state 1 to the number of transition from state 0. Let n0,α be the
number of transitions in the sample starting from state 0. Let Xi, i = 1, 2, . . . , n0,α, be
a random variable defined as follows: Xi is 1 if ith transition from meta-state 0 is 0→ 1
and 0 otherwise.

Notice that state 0 is an accessible atom in the terminology of the theory of Markov
chains, i.e., the Markov chain regenerates after entering state 0, and hence the random
variables Xi, i = 1, 2, . . . , n0,α, are independent. They are Bernoulli distributed with
parameter α. The unbiased estimate of the population variance from the sample, de-
noted σ̂2, is given by σ̂2 = α̂ · (1 − α̂) · n0,α

n0,α−1 . Due to independence, σ̂2 is also
the asymptotic variance and, in consequence, the sample size that provides the spec-
ified confidence level for the estimate of the value of α is given by nα,s(α̂, n0,α) =

α̂ · (1 − α̂) · n0,α
n0,α−1 ·

(
Φ−1(1

2 (1+s))
α̂/2

)2
. The Markov chain is in state 0 with steady-state

probability β
α+β . Then, given that the chain reached the steady-state distribution, the

expected number of regenerations in a sample of size n is given by n·β
α+β . Therefore, the

sample size used to estimate the value of α with the specified confidence level s is given
by nα = α+β

β
· nα,s(α̂, n0,α). As the real values of α and β are unknown, the estimated

70 Chapter 5 Efficient Steady-state Computation

Computed confidence level Average sample size
Model

Original 2nd 3rd Original 2nd 3rd
PBN 1 88.3 96.7 95.5 9265 9040 9418
PBN 2 87.8 99.3 96.5 7731 13635 8201

Table 5.2: Performance of the second and third approaches.

values α̂ and β̂ can be used in the above formula. If the computed nα is bigger than
the current number of transitions n0,α, we extend the trajectory to reach nα transitions
from 0 to 1 and re-estimate the values for α and β using the extended trajectory. We
repeat this process until the computed nα value is smaller than the number of transitions
used to estimate α. In this way, good initial estimates for α and β are obtained and the
original two-state Markov chain approach using the formula for n(α, β) is run.

Third approach: simple heuristics. When performing the initial estimation of α and β,
we require both the count of transitions from state 0 to state 1 and the count of transitions
from meta-state 1 to state 0 be at least 3. If this condition is not satisfied, we proceed by
doubling the length of the trajectory. In this way the problem of reaching the resolution
boundary is avoided. Our experiments showed that this simple approach in many cases
led to good initial estimates of the α and β probabilities.

Discussions. The first approach provides us with safe initial starting points. As can be
seen in Table 5.1, there might however be no safe starting point in certain conditions.
Nevertheless, the first approach can be used in the initialisation phase of the other two
approaches. The second approach introduces a new iteration process to provide a good
estimate of α or β. The third one modifies the two-state Markov chain approach by
adding only one extra restriction and therefore is the most simple one. We have verified
with experiments that the last two approaches have the potential to make the two-state
Markov chain approach meet the predefined precision requirement even in the case of
an unlucky initial sample size. As a small example, we show in Table 5.2 the results for
verifying two PBNs each of eight nodes. For each of the PBNs, we compute the steady-
state probability for one subset of states using three different approaches: 1) the original
two-state Markov chain approach (columns ‘Original’), the proposed second approach
(columns ‘2nd’) and the proposed third approach (columns ‘3rd’). The precision and
confidence level are set to 0.001 and 0.95 respectively. We repeat the computation for
1000 times and count the percentage of times that the calculated result is within the pre-
cision requirement (shown in columns labelled ‘Computed confidence level’). As can be
seen in Table 5.2, the original two-state Markov chain approach fails to meet the confi-
dence level requirement while the both proposed approaches can meet the requirement.
Due to its simplicity, we use the third approach in the remaining of the paper.

5.3 Evaluation

In this section, we focus on verifying the performance of the two-state Markov chain
approach with another related method called the Skart method [TWLS08]. We use the
tool ASSA-PBN [MPY15, MPY16a] as the platform for this verification. ASSA-PBN
is a tool specially designed for steady-state analysis of large PBNs; it includes the two-
state Markov chain approach with the simple heuristics presented in Section 5.1 and

5.3 Evaluation 71

the Skart method. For the steady-state analysis of large PBNs, applications of these
two methods necessitate generation of trajectories of significant length. To make this
efficient, we applied the alias method [Wal77] to sample the consecutive trajectory state.
This enables ASSA-PBN, e.g, to simulate 12, 580 steps within 1s for a 2, 000 nodes
PBN, which is hundreds of times faster than the related tool optPBN [TMP+14].

In Section 5.3.1, we briefly describe the Skart method. We present an empirical com-
parison of the performance of these two methods in Section 5.3.2.

5.3.1 The Skart Method

We choose the Skart method [TWLS08] as a reference for the evaluation of the per-
formance of the two-state Markov chain approach. The Skart method is a successor
of ASAP3, WASSP, and SBatch methods, which are all based on the idea of batch
means [TWLS08]. It is a procedure for on-the-fly statistical analysis of the simulation
output, asymptotically generated in accordance with a steady-state distribution. Usually
it requires an initial sample of size smaller than other established simulation analysis
procedures [TWLS08]. Briefly, the algorithm partitions a long simulation trajectory
into batches, for each batch computes a mean and constructs an interval estimate us-
ing the batch means. Further, the interval estimate is used by Skart to decide whether
a steady state distribution is reached or more samples are required. For a more detailed
description of this method, see [TWLS08].

The Skart method differs in three key points with the two-state Markov chain approach.
First, it specifies the initial trajectory length to be at least 1, 280, while for the two-state
Markov chain approach this information is not provided. This difference, however, does
not change the fact that the two methods can provide the same accuracy guarantee pro-
viding that the unlucky choice of the initial trajectory length of the two-state Markov
chain approach is fixed as mentioned in the previous section. Second, the Skart method
applies the student distribution for skewness adjustment while the two-state approach
makes use of the normal distribution for confidence interval calculations. Thirdly, the
two-state Markov chain approach does not require to keep track of the simulated trajec-
tories; instead, the statistics (e.g., the α and β as in Figure 5.1) of the trajectories are
enough. the Skart method, however, requires to keep track of the simulated trajectories,
which consumes a large memory in the cases of large size trajectories.

5.3.2 Performance Evaluation

To compare the performance of the two methods, we randomly generated 882 different
PBNs using ASSA-PBN. ASSA-PBN can randomly generate a PBN which satisfies
structure requirements given in the form of five input parameters: the node number,
the minimum and the maximum number of predictor functions per node, finally the
minimum and maximum number of parent nodes for a predictor function. We generated
PBNs with node numbers from {15, 30, 80, 100, 150, 200, 300, 400, 500, 1000, 2000}. We
assigned the obtained PBNs into three different classes with respect to the density mea-
sure D: dense models with density 150–300, sparse models with density around 10,
and in-between models with density 50–100. The two-state Markov chain approach
and the Skart method were tested on these PBNs with precision r set to the values in
{10−2, 5× 10−3, 10−3, 5× 10−4, 10−4, 5× 10−5, 1× 10−5, 5× 10−6, 1× 10−6}. We set

72 Chapter 5 Efficient Steady-state Computation

k 0 5 10 15 20 25 30
tTS ≤ tSkart 69.03% 54.04% 40.06% 30.19% 25.24% 22.22% 20.18%
tSkart ≤ tTS 30.97% 19.32% 11.98% 8.27% 6.42% 5.39% 4.83%

Table 5.3: Performance comparison of the Skart and the two-state MC methods.

tTS ≤ tSkart tSkart ≤ tTS
k 0 5 10 15 20 25 0 5 10 15 20 25

node number -0.17 -0.15 -0.09 -0.01 0.04 0.09 0.17 0.20 0.21 0.27 0.25 0.28
precision 0.34 0.49 0.68 0.84 0.93 0.92 -0.34 -0.09 0.16 0.38 0.45 0.48
density -0.15 -0.19 -0.29 -0.41 -0.52 -0.53 0.15 0.11 -0.04 -0.15 -0.27 -0.37

Table 5.4: Logistic regression coefficient estimates for performance prediction.

precision 10−2 5× 10−3 10−3 5× 10−4 10−4 5× 10−5 10−5 5× 10−6 10−6

tTS ≤ tSkart 84% 76% 67% 64% 65% 59% 73% 75% 85%

Table 5.5: Performance of the two methods with respect to different precisions.

ε to 10−10 for the two-state Markov chain approach and s to 0.95 for both methods.

The experiments were performed on a HPC cluster, with CPU speed ranging between
2.2GHz and 3.07GHz. ASSA-PBN is implemented in Java and the initial and maxi-
mum Java virtual machine heap size were set to 503MB and 7.86GB, respectively. We
collected 5596 valid (precision being smaller than probability) results with the infor-
mation on the PBN node number, its density class, the precision value, the estimated
steady-state probabilities computed by the two methods, and their CPU time costs. The
steady-state probabilities computed by the two methods are comparable in all the cases
(data not shown in the paper). For each experimental result i, we compare the time costs
of the two methods. Let tTS(i) and tSkart(i) be the time cost for the two-state Markov
chain approach and the Skart method, respectively. We say that the two-state Markov
chain approach is by k per cent faster than the Skart method if (tSkart(i)−tTS(i))

tSkart(i)
> k

100 . The
definition for the Skart method to be faster than the two-state Markov chain approach
is symmetric. In Table 5.3 we show the percentage of cases in which the two-state ap-
proach was by k per cent faster than Skart and vice versa for different k. In general,
in nearly 70% of the results, the two-state Markov chain approach was faster than the
Skart method. The number of cases the two-state Markov chain approach was faster
than the Skart method is also larger than in the opposite case.

Next, we analyse the results with a machine learning technique, i.e., logistic regression,
in MATLAB. We use the node number, the precision, and the density class as features.
We label each result as 1 if the two-state Markov chain approach is by k per cent faster
than the Skart method and as 0 otherwise. We plot the receiver operating characteristic
(ROC) curve, which is commonly used to illustrate the performance of a binary classifier
against varying discrimination threshold and we give the computed area under the curve
(AUC) for different k in Figure 5.2a. When k > 15, the AUC value is over 0.7, which
means that the prediction is very good. In another word, for a given PBN and precision
requirement, we are able to predict whether the two-state Markov chain approach will
be by 15 per cent faster than the Skart method in a very high accuracy rate.

We show in Table 5.4 (left part) the regression coefficient estimates of the three features.

5.4 A Biological Case study 73

False Positve Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
P

o
si

ti
ve

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k=0, AUC=0.63048
k=5, AUC=0.63869
k=10, AUC=0.66778
k=15, AUC=0.73161
k=20, AUC=0.79117
k=25, AUC=0.79967

(a) ROC (tTS ≤ tSkart).

False Positve Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
P

o
si

ti
ve

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k=0, AUC=0.60574
k=5, AUC=0.59892
k=10, AUC=0.61393
k=15, AUC=0.69204
k=20, AUC=0.71729
k=25, AUC=0.70123

(b) ROC (tSkart ≤ tTS).

Figure 5.2: Prediction on the performance of the the Skart and the two-state MC meth-
ods.

Clearly, the precision plays an important role in the prediction since the absolute value is
always the largest. We further analyse how the performance of the two methods change
with precision and show in Table 5.5 the percentage of cases that the two-state Markov
chain approach is faster than the Skart method with respect to different precisions. The
two-state Markov chain approach has a larger chance to be faster than the Skart method
in all the studied precisions, especially when the precision r is low (e.g., 10−2) or very
high (e.g., equal to or less than 10−5). Notably, the chance that the two-state Markov
chain approach is faster than the Skart method becomes very large when the precision
is very high. This is due to the fact that the Skart method requires a large memory to
keep track of the large size trajectory when the precision is high. The CPU performance
drops when operating on a large memory; on the other hand, the Skart method may run
out of memory.

Moreover, we analyse the situation when the Skart method is by k per cent faster
than the two-state Markov chain approach. This time it becomes difficult to make
an accurate prediction as the largest AUC is only about 0.72 for k = 20 (see Fig-
ure 5.2b). Besides, the coefficient estimates in the right part of Table 5.4 also vary
a lot with k, and precision is not always the dominating factor. The detailed experi-
ment data can be obtained at http://satoss.uni.lu/software/ASSA-PBN/
benchmark/benchmark.xlsx.

From the above analysis, we conclude that the two-state Markov chain approach outper-
forms the Skart method (state-of-the-art) in analysing large PBNs, especially for com-
puting steady-state probabilities with very high precision.

5.4 A Biological Case study

In this case study, we perform a list of steady-state analysis which require the knowledge
of a few definitions. We give them in the following section.

http://satoss.uni.lu/software/ASSA-PBN/benchmark/benchmark.xlsx
http://satoss.uni.lu/software/ASSA-PBN/benchmark/benchmark.xlsx

74 Chapter 5 Efficient Steady-state Computation

5.4.1 Preliminaries of Steady-state Analysis

Within the framework of PBNs the concept of influences is defined; it formalizes the
impact of parents nodes on a target node and enables its quantification ([SDKZ02]).
The concept is based on the notion of a partial derivative of a Boolean function f with
respect to variable xj (1 ≤ j ≤ n):

∂f(x)
∂xj

= f(x(j,0))⊕ f(x(j,1)),

where ⊕ is addition modulo 2 (exclusive OR) and for l ∈ {0, 1}

x(j,l) = (x1, x2, . . . , xj−1, l, xj+1, . . . , xn).

The influence of node xj on function f is the expected value of the partial derivative with
respect to the probability distribution D(x):

Ij(f) = ED
[
∂f(x)
∂xj

]
= P

{
∂f(x)
∂xj

= 1
}

= P{f(x(j,0)) 6= f(x(j,1))}.

Let now Fi be the set of predictors for xi with corresponding probabilities c(i)
j for j =

1, . . . , l(i) and let Ik(f (i)
j) be the influence of node xk on the predictor function f (i)

j .
Then, the influence of node xk on node xi is defined as:

Ik(xi) =
l(i)∑
j=1

Ik(f (i)
j) · c(i)

j .

The long-term influences are the influences computed when the distribution D(x) is the
stead-state distribution of the PBN.

We define and consider in this study two types of long-run sensitivities.

Definition 5.4.1. The long-run sensitivity with respect to selection probability perturba-
tion is defined as

sc[c(i)
j = p] = ‖π̃[c(i)

j = p]− π‖l,
where ‖·‖l denotes the l-norm, π is the steady-state distribution of the original PBN, p ∈
[0, 1] is the new value for c(i)

j , and π̃[c(i)
j = p] is the steady-state probability distribution

of the PBN perturbed as follows. The jth selection probability for node xi is replaced
with c̃(i)

j = p and all c(i)
k selection probabilities for k ∈ I−j = {1, 2, . . . , j − 1, j +

1, . . . , l(i)} are replaced with

c̃
(i)
k = c

(i)
k + (c(i)

j − p) ·
c

(i)
k∑

l∈I−j c
(i)
l

,

The remaining selection probabilities of the original PBN are unchanged.

Definition 5.4.2. The long-run sensitivity with respect to permanent on/off perturbations
of a node xi as

sg[xi] = max{‖π̃[xi ≡ 0]− π‖l, ‖π̃[xi ≡ 1]− π‖l},

where π, π̃[xi ≡ 0], and π̃[xi ≡ 1] are the steady-state probability distributions of the
original PBN, of the original PBN with all f (i) ∈ Fi replaced by f̃ (i) ≡ 0, and all
f (i) ∈ Fi replaced by f̃ (i) ≡ 1, respectively.

5.4 A Biological Case study 75

Notice that the definition of long-run sensitivity with respect to permanent on/off pertur-
bations is similar but not equivalent to the definition of long-run sensitivity with respect
to 1-gene function perturbation of [SDKZ02].

5.4.2 An Apoptosis Network

In [SSV+09], a large-scale Boolean network of apoptosis (see Figure 3.8) in hepato-
cytes was introduced, where the assigned Boolean interactions for each molecule were
derived from literature study. In [TMP+14], the original multi-value Boolean model
was cast into the PBN framework: a binary PBN model, so-called ‘extended apoptosis
model’ which comprised 91 nodes (state-space of size 291) and 102 interactions was
constructed. In this extended version the possibility of activation of NF-κB through
Caspase 8 (C8*), as described in [TMP+14], was included. The model was fitted to
steady-state experimental data obtained in response to six different stimulations of the
input nodes, see [TMP+14] for details.

As can be seen from the wiring of the network, the activation of complex2 (co2) by
RIP-deubi can take place in two ways: 1) by a positive feedback loop from activated
C8* and P→ tBid→ Bax→ smac→ RIP-deubi→ co2→ C8*-co2→ C8*, and 2) by
the positive signal from UV-B irradiation (input nodes UV(1) or UV(2)) → Bax →
smac→ RIP-deubi→ co2. The former to be active requires the stimulation of the type
2 receptor (T2R). The latter way requires complex1 (co1) to be active, which cannot
happen without the stimulation of the TNF receptor-1. Therefore, RIP-deubi can activate
co2 only in the condition of co-stimulation by TNF and either UV(1) or UV(2). In
consequence, it was suggested in [TMP+14] that the interaction of activation of co2
via RIP-deubi is not relevant and could be removed from the model in the context of
modelling primary hepatocyte. However, due to the problem with efficient generation
of very long trajectories in optPBN toolbox, quantitative analysis was hindered and this
hypothesis could not be verified ([TMP+14]).

In this work, we take up this challenge and we quantitatively investigate the relevancy of
the interaction of activation of co2 via RIP-deubi. We perform an extensive analysis in
the context of co-stimulation by TNF and either UV(1) or UV(2): we compute long-term
influences of parent nodes on the co2 node and the long-run sensitivities with respect to
various perturbations related to specific predictor functions and their selection probabil-
ities. For this purpose we apply the two-state Markov chain approach as implemented
in our ASSA-PBN tool [MPY15] to compute the relevant steady-state probabilities for
the best-fit models described in [TMP+14]. Due to the efficient implementation, the
ASSA-PBN tool can easily deal with trajectories of length exceeding 2 × 109 for this
case study.

We consider 20 distinct parameter sets of [TMP+14] that resulted in the best fit of the
‘extended apoptosis model’ to the steady-state experimental data in six different stimu-
lation conditions. In [TMP+14], parameter estimation was performed with steady-state
measurements for the nodes apoptosis, C3ap17 or C3ap17 2 depending on the stimu-
lation condition considered, and NF-κB. The optimisation procedure used was Particle
Swarm and fit score function considered was the sum of squared errors of prediction
(SSE) and the sum was taken over the three nodes in the six stimulation conditions. We
took all the optimisation results from the three independent parameter estimation runs
of [TMP+14], each containing 7500 parameter sets. We sorted them increasingly with

76 Chapter 5 Efficient Steady-state Computation

TNF and UV(1) TNF and UV(2)
IRIP-deubi Ico1 IFADD IRIP-deubi Ico1 IFADD

Best fit 0.2614 0.9981 0.9935 0.2615 0.9980 0.9936
Min 0.0000 0.9979 0.9935 0.0000 0.9979 0.9936
Max 0.3145 0.9988 0.9944 0.3146 0.9990 0.9947
Mean 0.2087 0.9982 0.9937 0.2088 0.9982 0.9938
Std 0.0735 0.0002 0.0002 0.0735 0.0002 0.0003

Table 5.6: Long-term influences of RIP-duebi, co1, and FADD on co2 in the ‘extended
apoptosis model’ in [TMP+14] under the co-stimulation of both TNF and UV(1) or
UV(2).

respect to the cost function value obtained during optimisation, removed duplicates, and
finally took the first 20 best-fit parameter sets.

As mentioned above, we fix the experimental context to co-stimulation of TNF and
either UV(1) or UV(2). We note that originally in [SSV+09] UV-B irradiation conditions
were imposed via a multi-value input node UV which could take on three values, i.e.,
0 (no irradiation), 1 (300 J/m2 UV-B irradiation), and 2 (600 J/m2 UV-B irradiation).
In the model of [TMP+14], UV input node was refined as UV(1) and UV(2) in order to
cast the original model into the binary PBN framework. Therefore, we consider in our
study two cases: 1) co-stimulation of TNF and UV(1) and 2) co-stimulation of TNF and
UV(2). Node co2 has two independent predictor functions: co2 = co1 ∧ FADD or co2
= co1 ∧ FADD ∧ RIP-deubi. The selection probabilities are denoted as c(co2)

1 and c(co2)
2 ,

respectively. Their values have been optimised in [TMP+14].

We start with computing the influences with respect to the steady-state distribution,
i.e., the long-term influences on co2 of each of its parent nodes: RIP-deubi, co1, and
FADD, in accordance with the definition in Section 5.4.1. Notice that the computa-
tion of the three influences requires several joint steady-state probabilities to be esti-
mated with the two-state Markov chain approach, e.g., (co1=1,FADD=1,RIP-deubi=0)
or (co1=1,FADD=0). Each probability determines a specific split of the original Markov
chain. For example, in the case of the estimation of the joint steady-state probability for
(co1=1,FADD=0), the states of the underlying Markov chain of the apoptosis PBN model
in which co1=1 and FADD=0 constitute meta state 1 and all the remaining states form
meta state 0. Therefore, the estimation of influences is computationally demanding.
The summarised results for the 20 parameter sets are presented for the co-stimulation of
TNF and UV(1) or TNF and UV(2) in Table 5.6. They are consistent across the differ-
ent parameter sets and clearly indicate that the influence of RIP-deubi on co2 is small
compared to the influence of co1 or FADD on co2. However, the influence of RIP-deubi
is not negligible.

We take the analysis of the importance of the interaction between RIP-deubi and co2 fur-
ther and we compute various long-run sensitivities with respect to selection probability
perturbation. In particular, we perturb the selection probability c(co2)

2 by ±5%, i.e., we
set the new value by multiplying the original value by (1 ± 0.05), and compute in line
with Definition 5.4.1 how the joint steady-state distribution for (apoptosis,C3ap17,NF-
κB) differs from the non-perturbed one with respect to the l1 norm, i.e., || · ||1. We notice
that the computation of the full steady-state distribution for the considered PBN model
of apoptosis is practically intractable, i.e., it would require the estimation of 291 val-

5.4 A Biological Case study 77

TNF and UV(1) TNF and UV(2)
c

(co2)
2 +5% −5% = 0 +5% −5% = 0

Best fit 0.0003 0.0002 0.0011 0.0002 0.0004 0.0011
Min 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002
Max 0.0008 0.0008 0.0014 0.0012 0.0007 0.0013
Mean 0.0005 0.0005 0.0009 0.0004 0.0004 0.0009
Std 0.0001 0.0001 0.0003 0.0002 0.0001 0.0003

Table 5.7: Long-run sensitivities w.r.t selection probability perturbations.

RIP-deubi f. pert. Best fit Min Max Mean Std
TNF & UV(1) 0.3075 0.0130 0.3595 0.2089 0.0823
TNF & UV(2) 0.3097 0.0105 0.3612 0.2105 0.0827

Table 5.8: Long-run sensitivities w.r.t permanent on/off perturbations of RIP-deubi.

ues. Therefore, we restrict the computations to the estimation of eight joint steady-state
probabilities for all possible combinations of values for (apoptosis,C3ap17,NFκB), i.e.,
the experimentally measured nodes. Each estimation is obtained by a separate run of
the two-state Markov chain approach with the split into meta states determined by the
considered probability as explained above in the case of the computation of long-term
influences. To compare the estimated distributions we choose the l1 norm after [QD09],
where it is used in the computations of similar types of sensitivities for PBNs to these
defined in Section 5.4.1. Notice that the l1 norm of the difference of two probability
distributions on a finite sample space is twice the total variation distance. The latter is
a well-established metric for measuring the distance between probability distributions
defined as the maximum difference between the probabilities assigned to a single event
by the two distributions (see, e.g., [LPW09]). Additionally, we check the difference
when c

(co2)
2 is set to 0 (and, in consequence, c(co2)

1 is set to 1). The obtained results
for the 20 parameter sets in the conditions of co-stimulation of TNF and UV(1) and
co-stimulation of TNF and UV(2) are summarised in Table 5.7. In all these cases, the
sensitivities are very small. Therefore, the system turns to be insensitive to small per-
turbations of the value of c(co2)

2 . Also the complete removal of the second predictor
function for co2 does not cause any drastic changes in the joint steady-state distribution
for (apoptosis,C3ap17,NF-κB).

Finally, we compute the long-run sensitivity with respect to permanent on/off perturba-
tions of the node RIP-deubi in accordance with Definition 5.4.2. As before, we consider
the joint steady-state distributions for (apoptosis,C3ap17,NF-κB) and we choose the l1-
norm. The results, given in Table 5.8, show that in both variants of UV-B irradiation the
sensitivities are not negligible and the permanent on/off perturbations of RIP-deubi have
impact on the steady-state distribution.

To conclude, all the obtained results indicate that in the context of co-stimulation of TNF
and either UV(1) or UV(2) the interaction between RIP-deubi and co2 plays a certain
role. Although the elimination of the interaction does not invoke significant changes to
the considered joint steady-state distribution, the long-term influence of RIP-deubi on
co2 is not negligible and may be important for other nodes in the network.

78 Chapter 5 Efficient Steady-state Computation

5.5 Discussions and Conclusion

Most current tools for statistical model checking, a simulation-based approach using hy-
pothesis testing to infer whether a stochastic system satisfies a property, are restricted for
bounded properties which can be checked on finite executions of the system. Recently,
both the Skart method [Roh13] and the perfect simulation algorithm [EP09] have been
explored for statistical model checking of steady state and unbounded until properties.
The perfect simulation algorithm for sampling the steady-state of an ergodic DTMC is
based on the indigenous idea of the backward coupling scheme [PW96]. It allows to
draw independent samples which are distributed exactly in accordance with the steady-
state distribution of a DTMC. However, due to the nature of this method, each state in
the state space needs to be considered at each step of the coupling scheme. If a DTMC
is monotone, then it is possible to sample from the steady-state distribution by consid-
ering the maximal and minimal states only [PW96]. This was exploited in [EP09] for
model checking large queuing networks. Unfortunately, it is not applicable to PBNs
with perturbations. In consequence, the perfect simulation algorithm is only suited for
at most medium-size PBNs and large-size PBNs are out of its scope. Thus, we have
only compared the performance of the two-state Markov chain approach with the Skart
method.

Moreover, in this study we have identified a problem of generating biased results by the
original two-state Markov chain approach and have proposed three heuristics to avoid
wrong initialisation. Finally, we demonstrated the potential of the two-state Markov
chain approach on a study of a large, 91-node PBN model of apoptosis in hepatocytes.
The two-state Markov chain approach facilitated the quantitative analysis of the large
network and the investigation of a previously formulated hypothesis regarding the rel-
evance of the interaction of activation of co2 via RIP-deubi. In the future, we aim to
investigate the usage of the discussed statistical methods for approximate steady-state
analysis in a research project on systems biology, where we will apply them to develop
new techniques for minimal structural interventions to alter steady-state probabilities for
large regulatory networks.

5.6 Derivation of Formulas

5.6.1 Derivation of the Number of “Burn-in” Iterations

Let {Zt}t≥0 be a discrete-time two-state Markov chain as given in Figure 5.1b. Zt
has the value 0 or 1 if the system is in state 0 or state 1 at time n, respectively. The
transition probabilities satisfy 0 < α, β < 1 and the transition matrix for this chain has
the following form

P =
[

1− α α
β 1− β

]
.

Matrix P has two distinct eigenvalues: 1 and λ = (1− α− β). Notice that |λ| < 1.

The chain is ergodic and the unique steady-state distribution is π = [π0 π1] = [β
α+β

α
α+β].

Let Eπ(Zt) denote the expected value of Zt for any fixed t ≥ 0, with respect to the
steady-state distribution π. We have that Eπ(Zt) = α

α+β .

5.6 Derivation of Formulas 79

The m-step transition matrix can be written, as can be checked by induction, in the form

Pm =
[
π0 π1
π0 π1

]
+ λm

α + β
·
[
α −α
−β β

]
,

where λ is the second eigenvalue of P .

Suppose we require m to be such that the following condition is satisfied[
|P[Zm = 0 |Z0 = j]− π0 |
|P[Zm = 1 |Z0 = j]− π1 |

]
<

[
ε
ε

]
(5.3)

for some ε > 0. If e0 = [1 0] and e1 = [0 1], then for j ∈ {0, 1} we have that[
P[Zm = 0 |Z0 = j]
P[Zm = 1 |Z0 = j]

]
= (ejPm)T = (Pm)T(ej)T,

where T is the transposition operator. For any vector v = [v1 v2 . . . vn]T ∈ Rn we use
|v| to denote [|v1| |v2| . . . |vn|]T. Therefore, condition (5.3) can be rewritten as∣∣∣∣∣∣(Pm)T(ej)T −

[
π0
π1

] ∣∣∣∣∣∣ <
[
ε
ε

]
.

For j = 0 and j = 1 the above simplifies to∣∣∣∣∣∣ λm

α + β
·
[
α
−α

] ∣∣∣∣∣∣ <
[
ε
ε

]
and

∣∣∣∣∣∣ λm

α + β
·
[
−β
β

] ∣∣∣∣∣∣ <
[
ε
ε

]
,

respectively. Therefore, it is enough to consider the following two inequalities∣∣∣∣∣ λmαα + β

∣∣∣∣∣ < ε and
∣∣∣∣∣ λmβα + β

∣∣∣∣∣ < ε,

which, since α, β > 0, can be rewritten as

|λm| < ε(α + β)
α

and |λm| < ε(α + β)
β

.

Equivalently, m has to satisfy

|λm| < ε(α + β)
max(α, β) .

By the fact that |λm| = |λ|m this can be expressed as

|λ|m <
ε(α + β)

max(α, β) .

Then, by taking the logarithm to base 10 on both sides1, we have that

m · log (|λ|) < log
(
ε(α + β)

max(α, β)

)
and in consequence, since |λ| < 1 and log |λ| < 0,

m >
log

(
ε(α+β)

max(α,β)

)
log (|λ|) .

1In fact, by the formula for change of base for logarithms, the natural logarithm (ln), the logarithm to
base 2 (log2), or a logarithm to any other base could be used to calculate m instead of log. Notice that m
does not depend on the choice of the base of the logarithm!

80 Chapter 5 Efficient Steady-state Computation

5.6.2 Derivation of the Sample Size

By the Law of Large Numbers for irreducible positive recurrent Markov chains Zn →
π1 a. s. with n → ∞, where Zn = 1

n

∑n
t=1 Zt. Now, by a variant of the Central Limit

Theorem for non-independent random variables2, for n large, Zn is approximately nor-
mally distributed with mean π1 = α

α+β and asymptotic variance σ2
as = 1

n
αβ(2−α−β)

(α+β)3 , see
Section 5.6.3 for the derivation of the asymptotic variance. Let X be the standardised
Zn, i.e.,

X = Zn − π1

σas/
√
n
.

If follows that X is normally distributed with mean 0 and variance 1, i.e., X ∼ N(0, 1).

Now, we require n to be such that the condition P[π1−r ≤ Zn ≤ π1 +r] = s is satisfied
for some specified r and s. This condition can be rewritten as

P[−r ≤ Zn − π1 ≤ r] = s,

and further as

P[−r ·
√
n

σas
≤ Zn − π1

σas/
√
n
≤ r ·

√
n

σas
] = s,

which is

P[−r ·
√
n

σas
≤ X ≤ r ·

√
n

σas
] = s.

Since X ∼ N(0, 1) and N(0, 1) is symmetric around 0, it follows that

P[0 ≤ X ≤ r ·
√
n

σas
] = s

2

and

P[X ≤ r ·
√
n

σas
] = 1

2 + s

2 = 1
2(1 + s).

Let Φ(·) be the standard normal cumulative distribution function. Then the above can
be rewritten as

Φ(r ·
√
n

σas
) = 1

2(1 + s).

Therefore, if we denote the inverse of the standard normal cumulative distribution func-
tion with Φ−1(·), we have that

r ·
√
n

σas
= Φ−1(1

2(1 + s)).

In consequence,

n = σ2
as{
r

Φ−1(1
2 (1+s))

}2 =
αβ(2−α−β)

(α+β)3{
r

Φ−1(1
2 (1+s))

}2 .

2Notice that the random variables Zt, Zt+1 which values are consecutive states of a trajectory are
correlated and are not independent.

5.6 Derivation of Formulas 81

5.6.3 Derivation of the Asymptotic Variance

By the Central Limit Theorem for stationary stochastic processes3 √n(Zn − π1) d−→
N(0, σ2

as) as n→∞, where σ2
as is the so-called asymptotic variance given by

σ2
as = Varπ(Zj) + 2

∞∑
k=1

Covπ(Zj, Zj+k) (5.4)

and Varπ(·) and Covπ(·) denote the variance and covariance with respect to the steady-
state distribution π, respectively. We proceed to calculate σ2

as. First, observe that Eπ(ZnZn+1) =
α

α+β (1 − β): ZnZn+1 6= 0 if and only if the chain is state 1 at time n and remains in
1 at time n + 1, i.e., Zn = Zn+1 = 1. The probability of this event at steady state
is α

α+β (1 − β). Then, by the definition of covariance, we have that the steady-state
covariance between consecutive random variables of the two-state Markov chain, i.e.,
Covπ(Zn, Zn+1) is

Covπ(Zn, Zn+1) = Eπ [(Zn − Eπ(Zn))(Zn+1 − Eπ(Zn+1))]

= Eπ
[
(Zn −

α

α + β
)(Zn+1 −

α

α + β
)
]

= Eπ
[
ZnZn+1 −

α

α + β
(Zn + Zn+1) + α2

(α + β)2

]

= Eπ(ZnZn+1)− α

α + β
(Eπ(Zn) + Eπ(Zn+1)) + α2

(α + β)2

= α(1− β)
α + β

− 2 α2

(α + β)2 + α2

(α + β)2

= αβ(1− α− β)
(α + β)2 .

Further, we have that Varπ(Zn) = π0·π1 = αβ
(α+β)2 (variance of the Bernoulli distribution)

and it can be shown that Covπ(Zn, Zn+k) = (1 − α − β)k · Varπ(Zn) for any k ≥ 1.
Now, according to Equation (5.4), we have

σ2
as = Varπ(Xj) + 2

∞∑
k=1

Covπ(Xj, Xj+k)

= αβ

(α + β)2 + 2
∞∑
k=1

(1− α− β)k · αβ

(α + β)2

= αβ

(α + β)2 + 2αβ
(α + β)2 ·

∞∑
k=1

(1− α− β)k

= αβ

(α + β)2 + 2αβ
(α + β)2 ·

1− α− β
α + β

= αβ(2− α− β)
(α + β)3 .

In consequence, Zn is approximately normally distributed with mean α
α+β and variance

1
n
αβ(2−α−β)

(α+β)3 .

3After discarding the ‘burn-in’ part of the trajectory, we can assume that the Markov chain in a sta-
tionary stochastic process.

82 Chapter 5 Efficient Steady-state Computation

5.6.4 ‘Pitfall Avoidance’ Heuristic Method: Formula Derivations

We start with analysing the minimum values n(·, ·) can attain. The function is considered
on the domain D = (0, 1] × (0, 1] and, as mentioned before, the estimated values of α
and β are within the range [1

n0
, 1]. Computing the partial derivatives, equating them to

zero, and solving for α and β yields α = −β, which has no solution in the considered
domain. Hence, the function has neither local minimum nor maximum on D. Let us
fix β for a moment and consider n(α, β) as a function of α. We denote it as nβ(α). By
differentiating with respect to α, we obtain

∂

∂α
nβ (α) = 1

cr,s

β (α2 − β2 − 4α + 2 β)
(α + β)4 ,

where

cr,s = r2(
Φ−1

(
1
2(1 + s)

))2 .

By equating to zero and solving for α we get two solutions: α1 = 2 −
√
β2 − 2β + 4

and α2 = 2 +
√
β2 − 2β + 4. Since the second solution is always greater than 1 on the

(0, 1] interval, only the first solution is valid. The sign of the second derivative of nβ(α)
with respect to α at α1 is negative. This shows that for any fixed β, nβ(α) grows on the
interval [1

n0
, α1], attains its maximum at α1 and decreases on the interval [α1, 1]. Notice

that n is symmetric, i.e., n(α, β) = n(β, α). Thus the minimum value n could attain
for α and β estimated from a sample of size n0 is given by min

(
n
(

1
n0
, 1
n0

)
, n
(

1
n0
, 1
))

.
After evaluating n we get

n
(1
n0
,

1
n0

)
= n0 − 1

4 cr,s
and

n
(1
n0
, 1
)

= (n0 − 1) · n0

cr,s · (1 + n0)3 .

Now, to avoid the situation where the initial estimates of α and β lead to n(α, β) <
2n0, it is enough to make sure that given r and s the following condition is satisfied:
min(n(1

n0
, 1
n0

), n(1
n0
, 1)) > 2n0. This can be rewritten as


(8 cr,s − 1)n0 + 1 ≤ 0

2 cr,s n3
0 + 6 cr,s n2

0 + (6 cr,s − 1)n0 + 2 cr,s + 1 ≤ 0

Both inequalities can be solved analytically. Given that n0 > 0, the solution of the first
inequality is

{
n0 ∈ [− 1

8·cr,s−1 ,∞) cr,s <
1
8

n0 ∈ ∅ cr,s > 1
8 .

(5.5)

The solution of the second inequality is more complicated, but can be easily obtained
with computer algebra system software (e.g., MapleTM). In Table 5.1 we present some
solutions for a number of values for r and s.

6

Multiple-core Based Parallel Steady-state
Computation

As discussed in the previous chapter, statistical methods like the two-state Markov chain
approach requires simulating the PBN under study for a certain length and the simulation
speed is an important factor in the performance of these approaches. For large PBNs and
long trajectories, a slow simulation speed could render these methods infeasible as well.
A natural way to address this problem is to parallelise the simulation process. Recent
improvements in the computing power and the general purpose graphics processing units
(GPUs) enable the possibilities to massively parallelise this process. In this chapter, we
propose a trajectory-level parallelisation framework to accelerate the computation of
steady-state probabilities in large PBNs. This framework allows us to parallelise the
simulation process with either multiple central processing unit (CPU) cores or multiple
GPU cores. Parallelising with GPU cores requires special design of algorithms and/or
data structure in order to maximize the computation power of GPU cores. However,
these extra requirements usually lead to larger speedups since the number of available
GPU cores is much more than that of the CPU cores. Hence, we focus on GPUs and
explain how we apply the trajectory-level parallelisation framework with multiple GPU
cores in this chapter.

The architecture of a GPU is very different from that of a CPU and the performance
of a GPU-based program is highly related to how the synchronisation between cores
is processed and how memory access is managed. Our framework reduces the time-
consuming synchronisation cost by allowing each core to simulate one trajectory. Re-
garding the memory management, we contribute in four aspects. We first develop a dy-
namical data arrangement mechanism for handling different size PBNs with a GPU to
maximise the computation efficiency on a GPU for relatively small-size PBNs. We
then propose a specific way of storing predictor functions of a PBN and the state of the
PBN in the GPU memory to reduce the memory consumption and to improve the access
speed. Thirdly, we take special care of large and dense networks using our reorder-
and-split method so that our parallelisation framework can not only handle large and
dense network but also do it in an efficient way. Lastly, we develop a network reduction
technique which can significantly reduce the unnecessary memory usage as well as the
amount of required computations. We show with experiments that our GPU-accelerated
parallelisation gains a speedup of more than two orders of magnitudes.

83

84 Chapter 6 Multiple-core Based Parallel Steady-state Computation

Figure 6.1: Architecture of a GPU.

6.1 GPU Architecture

We review the basics of GPU architecture and its programming approach, i.e., common
unified device architecture (CUDA) released by NVIDIA.

At the physical hardware level, an NVIDIA GPU usually contains tens of streaming
multiprocessors (SMs, also abbreviated as MPs), each containing a fixed number of
streaming processors (SPs), fixed number of registers, and fast shared memory as illus-
trated in Figure 6.1, with N being the number of MPs.

Accessing registers and shared memory is fast, but the size of these two types of memory
is very limited. In addition, a large size global memory, a small size texture memory, and
constant memory are available outside the MPs. Global memory has a high bandwidth
(128 bytes in our GPU), but also a high latency. Accessing global memory is usually
orders of magnitude slower than accessing registers or shared memory. Constant mem-
ory and texture memory are memories of special type which can only store read-only
data. Accessing constant memory is most efficient if all threads are accessing exactly
the same data, while texture memory is better for dealing with random access. We refer
to registers and shared memory as fast memory; global memory as slow memory; and
constant memory and texture memory as special memory.

At the programming level, the programming interface CUDA is in fact an extension of
C/C++. A segment of code to be run in a GPU is put into a function called a kernel. The
kernels are then executed as a grid of blocks of threads. A thread is the finest granularity
in a GPU and each thread can be viewed as a copy of the kernel. A block is a group of
threads executed together in a batch. Each thread is executed in an SP and threads in
a block can only be executed in one MP. One MP, however, can launch several blocks
in parallel. Communications between threads in the same block are possible via shared
memory. NVIDIA GPUs use a processor architecture called single instruction multiple
thread (SIMT), i.e., a single instruction stream is executed via a group of 32 threads,
called a warp. Threads within a warp are bounded together, i.e., they always execute the

6.2 PBN Simulation in a GPU 85

same instruction. Therefore, branch divergence can occur within a warp: if one thread
within a warp moves to the ‘if’ branch of an ‘if-then-else’ sentence and the others choose
the ‘else’ branch, then actually all the 32 threads will “execute” both branches, i.e., the
thread moving to the ‘if’ branch will wait for other threads when they execute the ‘else’
branch and vice versa. If both branches are long, then the performance penalty is huge.
Therefore, branches should be avoided as much as possible in terms of performance.
Moreover, the data accessing pattern of the threads in a warp should be taken care of as
well. We consider the access pattern of shared memory and global memory in this work.
Accessing shared memory is most efficient if all threads in a warp are fetching data in the
same position or each thread is fetching data in a distinct position. Otherwise, the speed
of accessing shared memory is reduced by the so-called bank conflict. Accessing global
memory is most efficient if all threads in a warp are fetching data in a coalesced pattern,
i.e., all threads in a warp are reading data in adjacent locations in global memory. In
principle, the number of threads in a block should always be an integral multiple of the
warp size due to the SIMT architecture; and the number of blocks should be an integral
multiple of the number of MPs since each block can only be executed in one MP.

An important task for GPU programmer is to hide latency. This can be done via the
following four ways:

1. increase the number of active warps;
2. reduce the access to global memory by caching the frequently accessed data in

fast memory, or in constant memory or texture memory, if the access pattern is
suitable;

3. reduce bank conflict of shared memory access;
4. coalesce accesses to the global memory to use the bandwidth more efficiently.

However, the above four methods often compete with one another due to the restrictions
of the hardware resources. For example, using more shared memory would restrict the
number of active blocks and hence the number of active warps is limited. Therefore,
a trade-off between the use of fast memory and the number of threads has to be consid-
ered carefully. We discuss this problem and provide our solution to it in Section 6.2.2.

6.2 PBN Simulation in a GPU

In this section, we present how simulation of a PBN is performed in a GPU, while ad-
dressing the problems identified at the end of Section 6.1. More specifically, we discuss
in Subsections 6.2.1–6.2.3 how in general the simulation of a PBN can be performed
efficiently in a GPU; in Subsection 6.2.4, we take special care of large and dense PBNs,
and demonstrate our reorder-and-split method for handling the large memory required
in the dense network.

6.2.1 Trajectory-level Parallelisation

In general, there are two ways of parallelising the PBN simulation process. One way
is to update all nodes synchronously, i.e., each GPU thread only updates one node of
a PBN; the other way is to simulate multiple trajectories simultaneously. The first way
requires synchronisation among the threads, which is time-consuming in the current
GPU architecture. Besides, this way does not work for the asynchronous update mode

86 Chapter 6 Multiple-core Based Parallel Steady-state Computation

Algorithm 5 The Gelman & Rubin method
1: procedure GENERATECONVERGEDCHAINS(ω, ψ0)
2: ψ := ψ0;
3: Generate in parallel ω trajectories of length 2ψ;
4: repeat
5: chains(1. . .ω,1. . . 2ψ) := Extend all the ω trajectories to length 2ψ;
6: for i = 1..ω do
7: µi := mean of the last ψ values of chain i;
8: si := standard deviation of the last ψ values of chain i;
9: end for

10: µ := 1
ω

∑ω
i=1 µi;

11: B := ψ
ω−1

∑ω
i=1(µi − µ)2; W := 1

ω

∑ω
i=1 s

2
i ; //Between and within variance

12: σ̂2 := (1− 1
ψ

)W + 1
ψ
B; //The variance of the stationary distribution

13: R̂ :=
√
σ̂2/W ; //Compute the potential scale reduction factor

14: ψ := 2 · ψ;
15: until R̂ is close to 1
16: return (chains,ψ/2);
17: end procedure

since only one node is updated at each time point. Therefore, in our implementation,
we take the second way and simulate multiple trajectories concurrently. In order to use
samples from multiple trajectories to compute the steady-state probabilities of a PBN,
we propose to combine the Gelman & Rubin method [GR92] with the two-state Markov
chain approach [RL92, MPY17].

The Gelman & Rubin method [GR92] is an approach for monitoring the convergence of
multiple chains. It starts from simulating 2ψ steps of ω ≥ 2 independent Markov chains
in parallel. The first ψ steps of each chain, known as the ‘burn-in’ period, are discarded
from it. The last ψ elements of each chain are used to compute the within-chain (W)
and between-chain (B) variance, which are used to estimate the variance of the steady
state distribution (σ̂2). Next, the potential scale reduction factor R̂ is computed with σ̂2.
R̂ indicates the convergence to the steady state distribution. The chains are considered
as converged and the algorithm stops if R̂ is close to 1; otherwise, ψ is doubled, the
trajectories are extended, and R̂ is recomputed. We list the steps of this approach in
Algorithm 5. For further details of this method and the discussion on the choice of the
initial states for the ω chains we refer to [GR92].

Once convergence is reached, the second halves of the chains are merged into one sam-
ple, and the two-state Markov chain approach is applied to estimate the required sample
length L based on the merged sample. Since the convergence is assured, we propose
to skip the iterative computation of the ‘burn-in’ period in the two-state Markov chain
approach to maximise the speed-up. The stop criteria for the two-state Markov chain
approach becomes that the estimated sample length L is not bigger than the size of the
merged sample. If the stop criteria is not satisfied, the multiple chains are extended in
parallel to provide a sample of required length. We describe this process in Algorithm 6
and refer to [MPY16d] for a detailed description of this combination. Note that merging
is performed in a CPU and no synchronization is required. We show in Figure 6.2 the
workflow for computing steady-state probabilities based on trajectory-level parallelisa-

6.2 PBN Simulation in a GPU 87

Algorithm 6 The Parallelised two-state Markov chain approach
1: procedure ESTIMATEINPARALLEL(ω, ψ0, ε, r, s)
2: (chains, ψ) := generateConvergedChains(ω, ψ0);
3: n := 0; extend by := ψ; monitor := FALSE; ab sample := NULL;
4: repeat
5: repeat
6: chains := Extend in parallel each chain in chains by extend by;
7: sample := chains(1 . . . ω, (n+ ψ + 1) . . . (n+ ψ + extended by));
8: ab sample := abstract sample and combine with ab sample ;
9: n := n+ extend by; sample size := ω · n;

10: Estimate α, β from ab sample;
11: Compute N as n(α, β) in Equation 5.2;
12: extend by := d(sample size−N)/ωe;
13: until extend by < 0
14: ComputeM as m(α, β) in Equation 5.1;
15: if M ≥ ψ then
16: extend by := ψ −M; ψ :=M; monitor := TRUE;
17: end if
18: until monitor
19: Estimate the prob. of meta state 1 from ab sample;
20: end procedure

tion.

Each blue box represents a kernel to be parallelised in a GPU. The first and second blue
boxes perform the same task except that trajectories in the first blue box are abandoned
while those in the second blue box are stored in global memory. This is due to the re-
quirement of the Gelman & Rubin method [GR92] that only the second half samples are
used for computing steady-state probabilities. Based on the last k samples simulated in
the second blue box, the third blue box computes the meta state information required by
the two-state Markov chain approach [MPY17]. The two-state Markov chain approach
determines whether the samples are large enough based on the meta state information.
If not enough, the last, fourth kernel is called repeatedly to extend samples; otherwise,
the steady-state probability is computed.

The key part of the four kernels is the simulation process. We describe in Algorithm 7

Figure 6.2: Workflow of steady-state analysis using trajectory-level parallelisation.

88 Chapter 6 Multiple-core Based Parallel Steady-state Computation

the process for simulating one step of a PBN in a GPU. The four inputs of this algorithm
are respectively the number of nodes n, the Boolean functions F , the extra Boolean
functions extraF , and the current state S. The extra Boolean functions are generated
due to that we optimise the storage of Boolean functions and split them into two parts
in order to save memory (see Section 6.2.3 for details). Due to this optimisation, an ‘if’

Algorithm 7 Simulate one step of a PBN in a GPU
1: procedure SIMULATEONESTEP(n, F, extraF, p, S)
2: perturbed := false;
3: for (i := 0; i < n; i++) do
4: if rand() < p then perturbed := true; S[i/32] := S[i/32]⊕ (1� (i%32));
5: end if
6: end for
7: if perturbed then return S;
8: else
9: set array nextS to 0;

10: for (i := 0; i < n; i++) do
11: index := nextIndex(i);// Sample the Boolean function index for node i
12: compute the entry of the Boolean function based on index and S;
13: v := F [index];
14: if entry > 31 then //entry starts with 0
15: get index of the Boolean function in extraF ; //See Section 6.2.3
16: v := extraF [index]; entry := entry%32;
17: end if
18: v := v � entry; nextS[i/32] := nextS[i/32] | ((v&1)� (i%32));
19: end for
20: end if
21: S := nextS; return S.
22: end procedure

sentence (lines 14 to 17) has to be added. This ‘if’ sentence fetches the Boolean function
stored in the second part (extraF). The probability that this sentence is executed is very
small due to the way we split the Boolean functions and the time cost of executing this
sentence is also very small. Therefore, by paying a small penalty in terms of compu-
tational time, we are able to store Boolean functions in fast memory and in total gain
significant speedups.

6.2.2 Data Arrangement

As mentioned in Section 6.1, suitable strategy for hiding latency should be carefully
considered for a GPU program. Since the simulation process requires accessing the
PBN information (in a random way) in each simulation step and the latency cost for
frequently accessing data in slow memory is huge, caching these information in fast
and special memory results in a more efficient computation compared to allowing more
active warps. Therefore, we first try to arrange all frequently accessed data in fast and
special memory as much as possible; then, based on the remaining resources we cal-
culate the optimal number of threads and blocks to be launched. Since the size of fast
memory is limited and the memory required to store a PBN varies from PBN to PBN,

6.2 PBN Simulation in a GPU 89

data data type stored in
random number generator CUDA built in registers
node number integer constant memory
perturbation rate float constant memory
cumulative number of functions short array constant memory
selection probabilities of functions float array constant memory
indices of positive nodes integer array constant memory
indices of negative nodes integer array constant memory
cumulative number of parent nodes short array shared memory
Boolean functions integer array shared memory
indices for extra Boolean functions short array shared memory
parent nodes indices for each function short array shared/texture memory
current state integer array registers/global memory
next state integer array registers/global memory

Table 6.1: Frequently accessed data arrangement.

a suitable data arrangement policy is necessary. In this section, we discuss how we
dynamically arrange the data in different GPU memories for different PBNs.

In principle, frequently accessed data should be put in fast memory. We list all the
frequently used data and how we arrange them in GPU memories in Table 6.1. As
the size of the fast memory is limited and has different advantages for different data
accessing modes, we save different data in different memories. Namely, the read-only
data that are always or most likely accessed simultaneously by all threads in a warp, are
put in constant memory; other read-only data are put in shared memory if possible; and
the rest of the data are put in registers if possible. Since the memory required to store
the frequently used data varies a lot from PBN to PBN, we propose to use a dynamic
decision process to determine how to arrange some of the frequently accessed data, i.e.,
the data shown in the last four rows of Table 6.1. The dynamic process calculates the
memory required to store all the data for a given PBN and determines where to put them
based on their memory size. If the shared memory and registers are large enough, all
the data will be stored in these two fast memories. Otherwise, they will be placed in the
global memory. For the data stored in the global memory, we use two ways to speed
up their access. One way is to use texture memory to speed up the access for read-only
data, e.g., the parent node indices for each function. The other way is to optimise the
data structure to allow a coalesced accessing pattern, e.g., the current state. We explain
this in details in Section 6.2.3. This dynamical arrangement of data allows our program
to explore the computational power of a GPU as much as possible, leading to larger
speedups for relatively small sparse networks.

6.2.3 Data Optimisation

As mentioned in Section 6.1, a GPU usually has a very limited size of fast memory
and the latency can vary significantly depending on how the memory is accessed, e.g.,
accessing shared memory with or without bank conflict. Therefore, we optimise the data
structures for two important pieces of data, i.e., the Boolean functions (stored as truth
tables) and the states of a PBN, to save space and to maximise the access speed.

90 Chapter 6 Multiple-core Based Parallel Steady-state Computation

Figure 6.3: Demonstration of storing Boolean functions in integer arrays.

Optimisation on Boolean functions. A direct way to store a truth table is to use
a Boolean array, which consumes one byte to store each element. Accessing an ele-
ment of the truth table can be directly made by providing the index of the Boolean array.
Instead, we propose to use a primitive 32-bit integer (4 bytes) type to store the truth
table. Each bit of an integer stores one entry of the truth table and hence the memory
usage can be reduced by 8 in maximum: 4 bytes compared to 32 bytes of a Boolean
array. A 32-bit integer can store a truth table of at most 32 elements, corresponding to
a Boolean function with max. 5 parent nodes. Since for real biological systems the num-
ber of parent nodes is usually small [LHSYH06], in most cases one integer is enough
for storing the truth table of one Boolean function. In the case of a truth table with more
than 32 elements, additional integers are needed. In order to save memory and quickly
locate a specific truth table, we save the additional integers in a separate array. More
precisely, we use a 32-bit integer array F of length M to store the truth tables for all the
M Boolean functions and the ith (i ∈ [0,M − 1]) element of F stores only the first 32
elements of the ith truth table. If the ith truth table contains more than 32 elements, the
additional integers are stored in an extra integer array extraF . In addition, two index
arrays extraFIndex and cumExtraFIndex are needed to store the index of the ith truth
table in extraF . Each element of extraFIndex stores one index value of the truth table
which requires additional integers. The length of extraFIndex is at most M . Each ele-
ment of cumExtraFIndex stores the cumulative number of additional required integers
for all the truth tables whose indices are stored in extraFIndex .

As an example, we show how to store a truth table with 128 elements in Figure 6.3.
We assume that this 128-element truth table is the ith one among all M truth tables
and that it is the jth one among those m truth tables that require additional integers to
store. Therefore, its first 32 (0-31th) elements are stored in the ith element of F and its
index i is stored in the jth element of extraFIndex , denoted as ej . The jth element of
cumExtraFIndex , denoted as cj , stores the total number of additional integers required
to store the j − 1 truth tables whose indices are stored in the first j − 1 elements of
extraFIndex . Let cumExtraFIndex[j] = k. The kth, (k+1)th, and (k+2)th elements
of extraF store the 32-127th elements of the ith truth table. After storing the truth tables
in this way, accessing the tth element of the ith truth table can be performed in the
following way. When t ∈ [0, 31], F [i] directly provides the information and when
t ∈ [32, 127], three steps are required: 1) search the array extraFIndex to find the index
j such that extraFIndex [j] equals to i, 2) fetch the jth value of array cumFIndex and
let k = cumFIndex [j], 3) the integer extraF [k + (t − 32)%32] contains the required
information. Since in most cases the number of parent nodes is very limited, the array
extraFIndex is very small. Hence, the search of the index j in the first step can be

6.2 PBN Simulation in a GPU 91

S τ 0
0 τ 1

0
... τ 31

0
... τT−1

0 τ 0
1

... τT−1
1

... τ 0
`

... τT−1
`

threads in one warp 0 1 ... 31

... fetching values of the first 32 nodes
for threads 0-31 in one transaction

T consecutive integers

Figure 6.4: Storing states in one array and coalesced fetching for threads in one warp.

finished very quickly. In the rare case where the extraFIndex array would be large,
e.g., M is large and the length of extraFIndex would be close to M , it is preferable
to store extraFindex as an array of length M and let extraFindex [i] store the entry in
cumFIndex for the ith truth table so that the search phase of the first step is eliminated.
The required memory for storing this truth table is reduced from 128 bytes (stored as
Boolean arrays) to 20 bytes (6 integers to store the truth table and 2 shorts to store
the index). In addition to saving memory, the above optimisation can also reduce the
chances of bank conflict in shared memory due to the fact that accessing any entry
of a truth table is performed by fetching only one integer in array F in most cases.
Accessing the elements in extraFIndex requires additional memory fetching; however,
as mentioned before, the chance for such cases to happen is very small in a real-life PBN
and the gained memory space and improved data fetching pattern can compensate for
this penalty.

Optimisation on PBN states. The optimisation of the data structure for states is similar
to that for Boolean functions, i.e., states are stored as integers and each bit of an integer
represents the value of a node. Therefore, a PBN with n nodes requires dn/32e integers
(4 ∗ dn/32e bytes) to be stored, compared to n bytes when stored as a Boolean array.
During the simulation process, the current state and the next state of a PBN have to be
stored. As shown in Table 6.1, the states are put in registers whenever possible, i.e.,
when the number of nodes is smaller than 129. In the case of a PBN with nodes number
equal to or larger than 129, the global memory has to be used due to the limited register
size (shared memory are used to store other data and would not be large enough to store
states in this case). To reduce the frequency of accessing global memory, one register
(32 bits) is used to cache the integer that stores the values of 32 nodes. Updating of
the 32 node values is performed via the register and stored in the global memory with
a single access only once all the 32 node values are updated in the register. Moreover,
states for all the threads are stored in one large integer array S in the global memory and
we arrange the content of this array to allow for a coalesced accessing pattern. More
specifically, starting from the 0th integer, every consecutive T integers store the values
of 32 nodes in the T threads (assuming there are T threads in total). Figure 6.4 shows
how to store states of a PBN with n nodes for all the T threads in an integer array S
and how the 32 threads in the first warp fetch the first integer in a coalesced pattern. We
denote τ ji as the ith integer to store values of 32 nodes for thread j and let ` = dn/32e.
For threads in one warp, accessing the values of the same node can be performed via
fetching the adjacent integers in the array S. This results in a coalesced accessing pattern
of the global memory. Hence, all the 32 threads in one warp can fetch the data in a single
data transaction.

92 Chapter 6 Multiple-core Based Parallel Steady-state Computation

6.2.4 Node-reordering for Large and Dense Networks

The above mentioned data arrangements and optimisation methods work quite well if
the network is relatively sparse or small. However, when the network is both large and
dense, the space required for storing the Boolean functions becomes so huge that they
cannot be handled by the fast memories. Moreover, when the network is too dense, the
number of parent nodes for each Boolean function is very likely to exceed 5. As a result,
the Boolean function requires extra integers to be stored as discussed in Section 6.2.3,
leading to inefficient access of Boolean functions.

To overcome the above mentioned problem, we propose a reorder-and-split method to
handle the Boolean functions and their parent node indices for a large and dense net-
work. The method consists of the following two steps. First, we reorder the nodes in
an ascending order based on the number of their Boolean functions. Secondly, we split
the ordered nodes into two parts. This split is based on the available amount of shared
memory, i.e., the first part contains the first m nodes, where m is the maximum num-
ber of nodes whose Boolean functions and parent node indices can be stored in the fast
memory. By reordering the nodes, we put the nodes with fewer Boolean functions in the
fast memory. As a result, we can put more nodes in fast memory. Therefore, accessing
slow memory in each simulation step is reduced. By splitting, we maximise the usage
of the fast memory to store the Boolean functions so that the access to slow memory
is minimised. Besides, since the chance that a Boolean function may have more than
five parent nodes becomes higher in a dense network, it is very likely that extraF is
required to store a Boolean function if the Boolean functions are stored as discussed
in Section 6.2.3. As GPU instructions in a warp are performed simultaneously, even if
only one out of 32 threads is accessing the extraF , the other 31 threads have to wait
for this access. Therefore, the advantage for the optimisation of storing Boolean func-
tions in Section 6.2.3 disappears or even becomes a disadvantage. Instead of the above
optimisation, we propose to store a Boolean function in consecutive elements of the
same array when the elements of a Boolean function is more than 32. In this way, we
only need two arrays to store the Boolean function information: one array F to store the
Boolean functions and one array startIndexF to store the starting index of each Boolean
function.

6.3 Strongly Connected Component (SCC)-based Network Reduc-
tion

The set of states whose steady-state probability is to be computed is usually specified by
specifying the values for a subset of node, referred to as the nodes of interest. The values
of the remaining nodes are not considered when computing the steady-state probability.
If a non-interest node is not an ancestor node of any node of interest, then such a node
would not affect the values of the nodes of interest. We call such a node as an irrelevant
node. Removing the irrelevant nodes will not affect the computation of steady-state
probabilities if the perturbations of these irrelevant nodes are considered. In [MPY16b],
a leaf-based network reduction method was proposed to remove the irrelevant nodes
and hence to reduce the amount of computations required for PBN simulation. In this
section, we present a strongly connected component (SCC)-based network reduction
technique to improve the performance. Our method differs with the leaf-based network

6.3 Strongly Connected Component (SCC)-based Network Reduction 93

x1 x2

x3x4

x5 x6

x7x8

Σ1 Σ3

Σ2 Σ4

Figure 6.5: SCC-based network reduction.

reduction method by removing not only the leaf nodes, but also any other node that does
not affect the nodes of interest. In other words, our method can remove all the irrelevant
nodes. We first give the standard graph-theoretical definition of an SCC:

Definition 6.3.1 (SCC). Let G be a directed graph and V be its vertices. A strongly
connected component (SCC) of G is a maximal set of vertices C ⊆ V such that for every
pair of vertices u and v, there is a directed path from u to v and vice versa.

We take a PBN G and convert it, i.e., its network structure, to a graph G by taking
the nodes of G as the vertices in G and by drawing edges from the parent nodes to the
child nodes in each of the Boolean functions. We then detect SCCs for the graph G.
By treating the SCCs as new vertices, we obtain a new graph which is in fact a directed
acyclic graph (DAG). In this DAG, we keep only the following two types of SCCs: either
an SCC that contains nodes of interest or an SCC that is an ancestor of a first type SCC.
Nodes in the remaining SCCs are removed.

Example 6.3.1. Figure 6.5 shows the graph of a BN with 8 nodes x1, x2, . . . , x8. The BN
is decomposed into four SCCs Σ1,Σ2,Σ3, and Σ4. Assume only node x7 is of interest,
then the nodes in the SCC Σ2 and Σ3 can be removed since these two SCCs neither
contain the nodes of interest nor are ancestors of an SCC with nodes of interest. Notably,
the leaf-based network reduction method will not remove any node in this graph since
there is no leaf node in this graph.

Let us call the nodes removed by the above mentioned SCC-based network reduction
technique as redundant nodes. Since those redundant nodes do not affect the nodes of
interest, the simulation of the nodes of interest will not be affected in a PBN without
perturbations after applying this network reduction technique. In the case of a PBN with
perturbations, perturbations of the redundant nodes need to be considered. Updating
states with Boolean functions will only be performed when there is no perturbation in
both the redundant nodes and the non-redundant nodes. Perturbations of the redundant
nodes can be checked in constant time irrespective of the number of redundant nodes as
describe in Algorithm 9. The input p is the perturbation probability for each node and `
is the number of redundant nodes in the PBN. Then, the probability that no perturbation
happens in all the redundant nodes is given by t = (1 − p)`. With the consideration of
their perturbations, the redundant nodes can be removed without affecting the simula-
tion of the non-redundant nodes also in a PBN with perturbations. Since the redundant
nodes are not of interest, results of analyses performed on the simulated trajectories of
the reduced network, i.e., containing only non-redundant nodes, will be the same as
performed on trajectories of the original network, i.e., containing all the nodes.

94 Chapter 6 Multiple-core Based Parallel Steady-state Computation

Algorithm 8 Checking perturbations of redundant nodes in a PBN
1: procedure CHECKREDUNDANTNODES(p, `)
2: t = pow(1− p, `);
3: if rand() > t then return true;
4: else return false;
5: end if
6: end procedure

network size
100 200 300 400 500 600 700 800 900 1000

n
e
tw

o
rk

 d
e
n
si

ty

2

3

4

5

6

7

8

9

10

sp
e
e
d
u
p

101.805

173.792

245.602

404.871

Figure 6.6: Speedups of GPU-accelerated steady-state computation.

6.4 Evaluation

We evaluate our GPU-based parallelisation framework for computing steady-state prob-
abilities of PBNs on both randomly generated networks and on a real-life biological
network. The evaluation contains three parts. We first evaluate the performance of our
framework on randomly generated networks in Section 6.4.1. This evaluation includes
the performance for relatively sparse networks as well as dense networks. Then, we
demonstrate the performance of our SCC-based network reduction technique in Sec-
tion 6.4.2. Lastly, we evaluate our framework on a real-life biological network. All the
experiments are performed on high performance computing (HPC) machines, each of
which contains a CPU of Intel Xeon E5-2680 v3 @ 2.5 GHz and an NVIDIA Tesla K80
Graphic Card with 2496 cores @824MHz. The program is written in a combination of
both Java and C, and the initial and maximum Java virtual machine heap sizes are set
to 4GB and 11.82GB, respectively. The C language is used to program operations on
GPUs due to the fact that no suitable Java library is currently provided for programming
operations on NVIDIA GPUs. When launching the GPU kernels, the kernel configura-
tions (the number of threads and blocks) are dynamically determined as mentioned in
Section 6.2.2.

6.4 Evaluation 95

6.4.1 Randomly Generated Networks

We first evaluate our framework on relatively sparse networks. This evaluation is per-
formed on 380 PBNs, which are generated using the tool ASSA-PBN [MPY15, MPY16b].
The node numbers of these networks are form the set {100, 150, 200, 250, 300, 350, 400,
450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000}. For each of the 380 net-
works, we compute one steady-state probability using both the sequential two-state
Markov chain approach and our GPU-accelerated parallelisation framework. We set
the three precision requirements of the two-state Markov chain approach, i.e., the con-
fidence level s, the precision r, and the steady-state convergence parameter ε to 0.95,
5 × 10−5, and 10−10 respectively. The computation time limit is set to 10 hours. In the
end, we obtain 366 pairs of valid results. The 14 invalid pairs are due to the time out
of the sequential version of the two-state Markov chain approach (the parallel version is
not). Among the 366 results, 355 (96.99%) are comparable, i.e., the computed probabil-
ities satisfy the specified precision requirement. This result meets our confidence level
requirement.

We compute the speedups of the GPU-accelerated parallelisation framework with re-
spect to the sequential two-state Markov chain approach for those 366 valid results with
the formula speedup = spa/tpa

sse/tse
, where spa and tpa are respectively the sample size and

time cost of the parallelisation framework, and sse and tse are respectively the sample
size and time cost of the sequential approach. The speedups are ploted in Figure 6.6. As
can be seen from this figure, we obtain speedups approximately between 102- and 405-
fold. There are some small gaps in the densities of the generated networks, e.g., there are
no networks with density between 5 and 6. These gaps are due to the way the networks
are randomly generated, i.e., one cannot force the ASSA-PBN tool to generate a PBN
with a fixed density, but can only provide the following information to affect the density:
the number of nodes, the maximum (minimum) number of functions for each node, and
the maximum (minimum) number of parent nodes for each function. However, even
with the gaps, the tendency of the changes of speedups with respect to densities can be
well observed. In fact, this observation is similar to that for the network size. With the
network size decreasing and the density decreasing, our GPU-accelerated parallelisation
framework gains higher speedups. This is due to our dynamic way of arranging data for
different size PBNs: data for relatively small1 and sparse networks can be arranged in
the fast memory alone.

To present the details on the obtained results, we select 8 pairs among the 366 results
and show in Table 6.2 the computed probabilities, the sample size (in millions), and
the time cost (in seconds) for computing the steady-state probabilities using both the
sequential two-state Markov chain approach and the GPU-accelerated parallelisation
framework. Note that the results of the two methods are shown in columns titled “s.”
and “–”; the columns titled “+” are used for demonstrating results of the network re-
duction technique discussed in the next section. The speedup of the GPU-accelerated
parallelisation framework with respect to the sequential method is shown in the column
titled “–”. The two approaches generated comparable results using similar length of
samples while our GPU-accelerated parallelisation framework shows speedups of more
than two orders of magnitude. All detailed results for the 380 networks can be found at

1In fact all the networks used in this subsection should be called large-size PBNs since the state space
of the network with the smallest size has 2100 ≈ 1030 states.

96 Chapter 6 Multiple-core Based Parallel Steady-state Computation

den.
probability

sample size
(million) time (s) speedup#

node
#

re. s. – + s. – + s. – + – +
100 36 2.53 0.24409 0.24401 0.24407 350 367 367 2637.06 6.84 4.56 405 608
100 31 7.31 0.08831 0.08830 0.08830 150 152 151 939.70 4.24 2.89 224 328
400 131 7.14 0.20528 0.20528 0.20529 494 492 492 9825.44 62.89 38.75 155 252
400 148 2.75 0.12003 0.12002 0.12004 316 318 317 7615.72 26.77 15.26 286 501
700 231 7.08 0.13707 0.13708 0.13708 540 542 542 14758.95 120.60 80.18 123 185
700 269 2.64 0.05800 0.05794 0.05795 259 261 260 8567.52 39.27 22.59 220 381

1000 331 7.09 0.17795 0.17797 0.17797 988 998 993 28639.01 327.98 214.55 88 134
1000 388 2.73 0.14675 0.14673 0.14678 838 839 849 30626.44 184.44 108.24 166 287

Table 6.2: Speedups of GPU-accelerated steady-state computation of 8 randomly gen-
erated networks. “# re.” is short for the number of redundant nodes; “s.” is short for the
sequential two-state Markov chain approach; “–” means the GPU-accelerated parallel
approach without the network reduction technique applied; and “+” means the GPU-
accelerated parallel approach with the network reduction technique applied.

node density
probability

sample size
(million) time (s)

speedup
– + – + – +

500 16.93 0.10273 0.10279 325 325 486.11 80.26 6.05
600 16.71 0.08988 0.08992 312 313 611.92 94.27 6.50
700 16.26 0.13131 0.13127 528 528 1308.04 190.34 6.87
800 16.46 0.09157 0.09154 439 440 1440.05 185.13 7.81
900 16.39 0.12738 0.12737 665 665 2664.85 321.59 8.28

1000 16.87 0.16530 0.16528 934 932 4789.25 512.42 9.32

Table 6.3: Speedups of GPU-accelerated steady-state computation with the reorder-and-
split method applied. “+” means with the reorder-and split method applied; while “–”
menas without the method applied.

http://satoss.uni.lu/software/ASSA-PBN/benchmark/.

We continue to demonstrate the performance of our framework on large and dense net-
works. Using the tool ASSA-PBN, we generate 30 large and dense networks whose
nodes number are in the set {500, 600, 700, 800, 900, 1000}. In this evaluation, we com-
pare how our reorder-and-split method as discussed in Section 6.2.4 performs compared
to the cases when the reorder-and-split method is not applied. Therefore, for each of the
30 networks, we compute one steady-state probability using both the GPU-accelerated
parallelisation framework with and without the reorder-and-split method applied. The
three precision parameters were kept the same as in the previous evaluation. In the
end, we get a pair of valid results for each of the 30 networks. We select 6 out of
the 30 results and show them in Table 6.3. It is obvious from this table that apply-
ing our reorder-and-split method can improve the performance of the GPU-accelerated
parallelisation framework by several times. Moreover, the improved performance of
the reorder-and-split method increases with the number of nodes. This reflects the fact
that the advantages of our reorder-and-split method become more pronounced with the
network size increased.

http://satoss.uni.lu/software/ASSA-PBN/benchmark/

6.4 Evaluation 97

steady-
state probability

sample size
(million) time (s) speedup

R C F s. – + s. – + s. – + – +
0 1 1 0.003236 0.003237 0.003242 589.05 590.77 594.02 3866.04 9.28 5.89 417.81 661.98
1 1 1 0.990053 0.990046 0.990050 1809.27 1811.71 1811.44 11476.00 28.08 17.43 409.20 659.06
1 0 1 0.005592 0.005590 0.005586 1015.95 1021.07 1055.17 6662.26 15.89 10.13 421.47 682.98
1 1 0 0.001082 0.001080 0.001080 197.80 200.12 203.81 1281.45 3.27 1.96 396.60 673.29
* 1 1 0.993289 0.993288 0.993283 1222.83 1241.06 1235.52 7967.42 19.30 11.91 418.99 676.02
* 1 0 0.001082 0.001087 0.001090 197.29 206.37 201.08 1096.90 3.36 1.98 341.62 566.05
* 0 1 0.005614 0.005624 0.005619 1021.87 1039.35 1035.13 6725.25 16.17 9.95 422.98 684.60

Table 6.4: Speedups of GPU-accelerated steady-state computation of a real-life apopto-
sis network. “s.” represents the sequential two-state Markov chain approach; “–” rep-
resents the GPU-accelerated parallel approach without applying the network reduction
technique; and “+” represents the GPU-accelerated parallel approach with the network
reduction technique applied.

6.4.2 Performance of SCC-based Network Reduction

In this section, we evaluate the performance of our SCC-based network reduction tech-
nique. We use the 8 selected networks shown in Table 6.2 to perform this evalu-
ation. We calculate 8 steady-state probabilities of the 8 networks using the GPU-
accelerated parallelisation framework with the SCC-based network reduction technique
applied and show the results in columns with title “SCC.”. The speedup of the par-
allelisation framework with the SCC-based network reduction technique applied with
respect to the sequential two-state Markov chain approach is calculated based on the
formula speedupSCC = sSCC/tSCC

sse/tse
, where sSCC and tSCC are respectively the sample

size and time cost of the parallelisation framework with the SCC-based network reduc-
tion technique applied and sse and tse are respectively the sample size and time cost of
the sequential approach. The results in Table 6.2 show that, by applying our SCC-based
network reduction technique, the performance of our GPU-accelerated framework can
be further improved and the improvement strongly depends on the percentage of redun-
dant nodes.

6.4.3 An Apoptosis Network

We have analysed a PBN model of an apoptosis network using the sequential two-state
Markov chain approach in [MPY17]. The apoptosis network was originally published
in [SSV+09] as a BN model and cast into the PBN framework in [TMP+14]. The PBN
model (as shown in Figure 3.8) contains 91 nodes and 107 Boolean functions.

The selection probabilities of the Boolean functions were fitted to experimental data
in [TMP+14]. We took the 20 best fitted parameter sets and performed the influence
analyses for them. Although we managed to finish this analysis in an affordable amount
of time due to an efficient implementation of a sequential PBN simulator, the analysis
was still very expensive in terms of computation time since the required trajectories were
very long and we needed to compute steady-state probabilities for a number of different
states.

In this work, we re-perform part of the influence analyses from [MPY17] using our

98 Chapter 6 Multiple-core Based Parallel Steady-state Computation

GPU-accelerated parallel two-state Markov chain approach. In the influence analysis,
we consider the PBN with the best fitted values and we aim to compute the long-term in-
fluences on complex2 from each of its parent nodes: RIP-deubi, complex1, and FADD,
in accordance with the definition in [SDKZ02]. In order to compute this long-term
influence, seven different steady-state probabilities are required. We show in the first
column of Table 6.4 the values of the nodes of interest for seven steady-state probabili-
ties. The three numbers or “*” with two numbers respectively represent the values of the
three genes RIP-deubi, complex1, and FADD: 0 represents active; 1 represents inactive;
and “*” represents irrelevant. We compute the seven different steady-state probabili-
ties using three different methods: the sequential two-state Markov chain approach, the
GPU-accelerated parallelisation framework without the SCC-based network reduction
technique applied, and the GPU-accelerated parallelisation framework with the SCC-
based network reduction technique applied. In this network, there are 36 redundant
nodes for all the seven steady-state probabilities. We show in Table 6.4 the computed
steady-state probabilities, the sample size (in millions), the time cost (in seconds), and
the speedups we obtain for this computation. The confidence level s, precision r, and
the steady-state convergence parameter ε of this computation are set to 0.95, 5 × 10−6,
and 10−10 respectively. The density of the network is approximately 1.78. The three ap-
proaches compute comparable steady-state probabilities with similar trajectory lengths;
while our two GPU-accelerated parallelisation frameworks reduce the time cost by ap-
proximately 400 and 600 times, respectively. The total time cost for computing the seven
probabilities is reduced from about 11 hours to approximately 1.5 min. for the parallel
framework without the network reduction technique applied and to less than 1 min. for
the parallel framework with the network reduction technique applied.

6.5 Conclusion and Discussions

In this study, we have proposed a trajectory-level parallelisation framework to accelerate
the computation of steady-state probabilities for large PBNs with the use of GPUs. Our
work contributes in four aspects of maximising the performance of a GPU when comput-
ing the steady-state probabilities. First, we reduce the time consuming synchronisation
cost between GPU cores by allowing each core to simulate all nodes of one trajectory.
Secondly, we propose a dynamical data arrangement mechanism for handling different
size PBNs with a GPU. Specially, we take care of both large and dense networks and
develop a reorder-and-split method to handle it efficiently. Thirdly, we develop a spe-
cific way of storing predictor functions of a PBN and the state of the PBN in the GPU
memory to save space and to accelerate the memory access. Last but not least, we have
developed an SCC-based network reduction technique, leading to a great improvement
in the computation speed of steady-state probabilities. We show with experiments that
our GPU-based parallelisation gains a speedup of more than two orders of magnitudes.
Evaluation on a real-life apoptosis network shows that our GPU-based parallelisation
obtains a speedup of approximately 600 times.

In addition to multiple CPU or GPU cores, grid computing is another parallel technique
that worth to explore. Indeed, many national wide grid computing centres have been es-
tablished for this purpose, e.g., the CNGrid in China and the Grid5000 in France. Grid
computing uses computer resources from multiple locations to reach a common goal. It
can be seen as a special type of parallel computing, which relies on complete computers

6.5 Conclusion and Discussions 99

connected together to a single network with a conventional network interface like Eth-
ernet. This is different to parallel computing based on a conventional supercomputer,
e.g., the multiple CPU computer, as a supercomputer is in fact one machine. In the lit-
erature, Grid computing has been expoled for the purpose of parameter estimation with
PBNs [TMP+14]. Their parallel pipeline works in three steps: pre-processing, grid-
based execution and post-processing. The pre-processing is run on a single machine
and divides the parameter estimation task into sub-tasks. The sub-tasks can then be per-
formed in the grid computers. After the execution finishes in the second step, the results
are collected and processed in a single machine. There is a good potential to extend our
parallel framework for steady-state computation in grid computing as well. Since our
framework is based on trajectory-level parallelisation, the task of each machine in a grid
can be simulating one trajectory. The simulated trajectories can then be collected and
used for estimating the probabilities.

7

Structure-based Parallel Steady-state
Computation

In the previous chapter, we discussed how to speedup the simulation of a PBN with the
use of multiple cores. In this chapter, we continue to discuss the speedup techniques.
Instead of using multiple cores, we make use of memory and propose a structure-based
method to speed up the simulation process. The method is based on analysing the struc-
ture of a PBN and consists of two key ideas: first, it removes the unnecessary nodes
in the network to reduce its size; secondly, it divides the nodes into groups and per-
forms simulation for nodes in a group simultaneously. The grouping of nodes requires
additional memory usage but result in a much faster simulation speed. We show with ex-
periments that our structure-based method can significantly reduce the computation time
for approximate steady-state analyses of large PBNs. To the best of our knowledge, our
proposed method is the first one to apply structure-based analyses for speeding up the
simulation of a PBN.

7.1 Structure-based Parallelisation

The simulation method described in the above section requires to check perturbations,
make a selection and perform updating a node for n times in each step. In the case of
large PBNs and huge trajectory (sample) size, the simulation time cost can become pro-
hibitive. Intuitively, the simulation time can be reduced if the n-time operations can be
speeded up, for which we propose two solutions. One is to perform network reduction
such that the total number of nodes is reduced. The other is to perform node-grouping
in order to parallelise the process for checking perturbations, making selections, and up-
dating nodes. For the first solution, we analyse the PBN structure to identify those nodes
that can be removed and remove them to reduce the network size; while for the second
solution, we analyse the PBN structure to divide nodes into groups and perform the op-
erations for nodes in a group simultaneously. We combine the two solutions together
and refer to this simulation technique as structure-based parallelisation. We formalise
the two solutions in the following three steps: the first solution is described in Step 1
and the second solution is described in Steps 2 and 3.

Step 1. Remove unnecessary nodes from the PBN.
Step 2. Parallelise the perturbation process.
Step 3. Parallelise updating a PBN state with predictor functions.

We describe these three steps in the following subsections.

101

102 Chapter 7 Structure-based Parallel Steady-state Computation

Algorithm 9 Checking perturbations of leaf nodes in a PBN
1: procedure CHECKLEAFNODES(p, `)
2: t = pow(1− p, `); // The probability that no perturbation happens in leaves
3: if rand() > t then return true;
4: else return false;
5: end if
6: end procedure

7.1.1 Removing Unnecessary Nodes

We first identify those nodes that can be removed and perform network reduction. When
simulating a PBN without perturbations, if a node does not affect any other node in the
PBN, the states of all other nodes will not be affected after removing this node. If this
node is not of interest of the analysis, e.g., we are not interested in analysing its steady-
state, then this node is dispensable in a PBN without perturbations. We refer to such
a dispensable node as a leaf node in a PBN and define it as follow:

Definition 7.1.1 (Leaf node). A node in a PBN is a leaf node (or leaf for short) if and
only if either (1) it is not of interest and has no child nodes or (2) it is not of interest and
has no other children after iteratively removing all its child nodes which are leaf nodes.

According to the above definition, leaf nodes can be simply removed without affecting
the simulation of the remaining nodes in a PBN without perturbations. In the case of
a PBN with perturbations, perturbations in the leaf nodes need to be considered. Updat-
ing states with Boolean functions will only be performed when there is no perturbation
in both the leaf nodes and the non-leaf nodes. Perturbations of the leaf nodes can be
checked in constant time irrespective of the number of leaf nodes as describe in Algo-
rithm 9. The input p is the perturbation probability for each node and ` is the number
of leaf nodes in the PBN. Then, the probability that no perturbation happens in all the
leaf nodes is given by t = (1 − p)`. With the consideration of their perturbations, the
leaf nodes can be removed without affecting the simulation of the non-leaf nodes also
in a PBN with perturbations. Since the leaves are not of interest, results of analyses
performed on the simulated trajectories of the reduced network, i.e., containing only
non-leaf nodes, will be the same as performed on trajectories of the original network,
i.e., containing all the nodes.

7.1.2 Performing Perturbations in Parallel

The second step of our method speeds up the process of determining perturbations.
Normally, perturbations are checked for nodes one by one. In order to speed up the
simulation of a PBN, we perform perturbations for k nodes simultaneously instead of
one by one. For those k nodes, there are 2k different perturbation situations. We calcu-
late the probability for each situation and construct an alias table based on the resulting
distribution. With the alias table, we make a choice c among 2k choices and perturb the
corresponding nodes based on the choice. The choice c is an integer in [0, 2k) and for
the whole network the perturbation can then be performed k nodes by k nodes using the
logical bitwise exclusive or operation, denoted | . To save memory, the alias table can be
reused for all the groups since the perturbation probability p for each node is the same.

7.1 Structure-based Parallelisation 103

It might happen that the number of nodes in the last perturbation round will be less than
k nodes. Assume there is k′ nodes in the last round and k′ < k. For those k′ nodes,
we can reuse the same alias table to make the selection in order to save memory. After
getting the choice c, we perform c = c&m, where & is a bitwise and operation and m is
a mask constructed by setting the first k′ bits of m’s binary representation to 1 and the
remaining bits to 0.

Theorem 7.1.1. The above process for determining perturbations for the last k′ nodes
guarantees that the probability for each of the k′ nodes to be perturbed is still p.

Proof. Without loss of generality, we assume that in the last k′ nodes, t nodes should
be perturbed and the positions of the t nodes are fixed. The probability for those t
fixed nodes to be perturbed is pt(1 − p)k′−t. When we make a selection from the alias
table for k nodes, there are 2k−k′ different choices corresponding to the case that t fixed
position nodes in the last k′ nodes are perturbed. The sum of the probabilities of the
2k−k′ different choices is [pt(1−p)k′−t] ·∑k−k′

i=0 pi(1−p)k−k′−i = pt(1−p)k′−t.

We present the procedures for constructing groups and performing perturbations based
on the groups in Algorithm 10, where n is the given number of nodes,1 k is the maximum
number of nodes that can be perturbed simultaneously and s is the PBN’s current state
which is represented by an integer. To obtain more balanced groups, k can be decreased
in line 2. As perturbing one node equals to flipping one bit of s, perturbing nodes in
a group is performed via a logical bitwise exclusive or operation, denoted⊕ (see line 13
of Algorithm 10). Perturbing k nodes simultaneously requires 2k double numbers to
store the probabilities of 2k different choices. The size of k is therefore restricted by the
available memory.2

7.1.3 Updating Nodes in Parallel

The last step to speed up PBN simulation is to update a number of nodes simultaneously
in accordance with their predictor functions. For this step, we need an initialisation
process to divide the n nodes into m groups and construct combined predictor functions
for each group. After this initialisation, we can select a combined predictor function for
each group based on a sampled random number and apply this combined function to
update the nodes in the group simultaneously.

We first describe how predictor functions of two nodes are combined. The combi-
nation of functions for more than two nodes can be performed iteratively. Let xα
and xβ be the two nodes to be considered. Their predictor functions are denoted as
Fα = {f (α)

1 , f
(α)
2 , . . . , f

(α)
`(α)} and Fβ = {f (β)

1 , f
(β)
2 , . . . , f

(β)
`(β)}. Further, the correspond-

ing selection probability distributions are denoted as Cα = {c(α)
1 , c

(α)
2 , . . . , cα`(α)} and

Cβ = {c(β)
1 , c

(β)
2 , . . . , cβ`(β)}. After the grouping, due to the assumed independence,

the number of combined predictor functions is `(α) ∗ `(β). We denote the set of com-
bined predictor functions as F̄αβ = {f (α)

1 · f (β)
1 , f

(α)
1 · f (β)

2 , . . . , f
(α)
`(α) · f

(β)
`(β)}, where for

1In our methods, it is clear that Step 2 and Step 3 are independent of Step 1. Thus, we consistently use
n to denote the number of nodes in a PBN.

2 For the experiments, we set k to 16 and k could be bigger as long as the memory allows. However,
a larger k requires larger table to store the 2k probabilities and the performance of a CPU drops when
accessing an element of a much larger table due to the large cache miss rate.

104 Chapter 7 Structure-based Parallel Steady-state Computation

Algorithm 10 The group perturbation algorithm
1: procedure PREPAREPERTURBATION(n, k)
2: g = dn/ke; k = dn/ge; k′ = n− k ∗ (g − 1);
3: construct the alias table Ap; mask = 0; i = 0;
4: repeat mask = mask | (1 << i); i+ +;
5: until i = k′;
6: return [Ap,mask];
7: end procedure
8: procedure PERTURBATION(Ap,mask, s)
9: perturbed = false;

10: for (i = 0; i < g; i+ +) do
11: c = Next(Ap); //Next(Ap) returns a random integer based on Ap

12: if c 6= 0 then
13: s = s⊕ (c << (i ∗ k)); //Shift c to flip only the bits (nodes)
14: perturbed = true; // of the current group
15: end if
16: end for
17: c = Next(Ap) & mask;
18: if c 6= 0 then
19: s = s⊕ (c << (i ∗ k)); perturbed = true;
20: end if
21: return [s, perturbed];
22: end procedure

i ∈ [1, `(α)] and j ∈ [1, `(β)], f (α)
i · f (β)

j is a combined predictor function that takes
the input nodes of functions f (α)

i and f (β)
j as its input and combines the Boolean output

of functions f (α)
i and f (β)

j into integers as output. The combined integers range in [0, 3]
and their 2-bit binary representations (from right to left) represent the values of nodes
xα and xβ . The selection probability for function f (α)

i · f (β)
j is c(α)

i ∗ c
(β)
j . It holds that∑`(α)

i=1
∑`(β)
j=1 c

(α)
i ∗ c

(β)
j = 1. With the selection probabilities, we can compute the alias

table for each group so that the selection of combined predictor function in each group
can be performed in constant time.

We now describe how to divide the nodes into groups. Our aim is to have as few groups
as possible so that the updating of all the nodes can be finished in as few rounds as pos-
sible. However, fewer groups lead to many more nodes in a group, which will result in
a huge number of combined predictor functions in the group. Therefore, the number of
groups has to been chosen properly so that the number of groups is as small as possible,
while the combined predictor functions can be stored within the memory limit of the
computer performing the simulation. Besides, nodes with only one predictor function
should be considered separately since selections of predictor functions for those nodes
are not needed. In the rest of this section, we first formulate the problem for dividing
nodes with more than one predictor function and give our solution afterwards; then we
discuss how to treat nodes with only one predictor function.

Problem formulation. Let S be a list of n items {µ1, µ2, . . . , µn}. For i ∈ [1, n],
item µi represents a node in a PBN with n nodes. Its weight is assigned by a function
ω(µi), which returns the number of predictor functions of node µi. We aim to find

7.1 Structure-based Parallelisation 105

Algorithm 11 The greedy algorithm
1: procedure FINDPARTITIONS(S,m)
2: sort S with descending orders based on the weights of items in S;
3: initialise A, an array of m lists; // Initially, each A[i] is an empty list
4: for (j = 0; j < S.size(); j + +) do //S.size() returns the number of items in S
5: among the m elements of A, // The weight of A[i] is wi = ∏

µj∈A[i] ω(µj)
6: find the one with the smallest weight and add S[j] to it;
7: end for
8: return A;
9: end procedure

a minimum integer m to distribute the nodes into m groups such that the sum of the
combined predictor functions numbers of the m groups will not exceed a memory limit
θ. This is equivalent to finding a minimum m and an m-partition S1, S2, . . . , Sm of S,
i.e., S = S1 ∪ S2 ∪ · · · ∪ Sm and Sk ∩ S` = ∅ for k, ` ∈ {1, 2, . . . ,m}, such that∑m
i=1

(∏
µj∈Si ω(µj)

)
≤ θ.

Solution. The problem in fact has two outputs: an integer m and an m-partition. We
first try to estimate a potential value of m, i.e., the lower bound of m that could lead to
an m-partition of S which satisfies

∑m
i=1

(∏
µj∈Si ω(µj)

)
≤ θ. With this estimate, we

then try to find an m-partition satisfying the above requirements.

Denote the weight of a sub-list Si as wi, where wi = ∏
µj∈Si ω(µj). The inequality in the

problem description can be rewritten as
∑m
i=1wi ≤ θ. We first compute the minimum

value of m̂, denoted as m̂min, satisfying the following inequality:

m̂ · m̂

√√√√ n∏
i=1

ω(µi) ≤ θ. (7.1)

Theorem 7.1.2. m̂min is the lower bound onm that allows a partition to satisfy
∑m
i=1wi ≤

θ.

Proof. We proceed by showing that for any k ∈ {1, 2, . . . , m̂min − 1}, m̂min − k will
make the inequality unsatisfied, i.e.,

∑m̂min−k
i=1 w

′
i > θ, where w′i is the weight of the ith

sub-list in an arbitrary partition of S into m̂min−k sub-lists. Since m̂min is the minimum
value of m̂ that satisfies Inequality (7.1), we have (m̂min−k) · (m̂min−k)

√∏n
i=1 ω(µi) > θ.

Hence,

(m̂min − k) · (m̂min−k)

√√√√m̂min−k∏
i=1

w
′
i > θ. (7.2)

Based on the inequality relating arithmetic and geometric means, we have

m̂min−k∑
i=1

w
′

i ≥ (m̂min − k) · (m̂min−k)

√√√√m̂min−k∏
i=1

w
′
i. (7.3)

Combining Inequality (7.2) with Inequality (7.3) gives
∑m̂min−k
i=1 w

′
i > θ.

Starting from the lower bound, we try to find a partition of S into m sub-lists that sat-
isfies

∑m
i=1wi ≤ θ. Since the arithmetic and geometric means of non-negative real

106 Chapter 7 Structure-based Parallel Steady-state Computation

Algorithm 12 Partition n nodes into groups.
1: procedure PARTITION(G, θ)
2: compute lists S and S ′ based on G; // S ′ contains nodes with 1 function
3: compute the lower bound m̂ according to Inequality (7.1); m = m̂;
4: repeat
5: A1 = FINDPARTITIONS(S,m);
6: sum = ∑m

i=1

(∏
µj∈A1[i] ω(µj)

)
; // Compute the sum of weights

7: m = m+ 1;
8: until sum < θ;
9: divide S ′ into A2; // Using modified Algorithm 11: in each iteration, a node is

10: // put in a list which shares most common parent nodes with this node
11: merge A1 and A2 into A;
12: return A;
13: end procedure

numbers are equal if and only if every number is the same, we get the heuristic that the
weight of the m sub-lists should be as equal as possible so that the sum of the weights
is as small as possible. Our problem then becomes similar to the NP-hard multi-way
number partition problem: to divide a given set of integers into a collection of subsets,
so that the sum of the numbers in each subset are as nearly equal as possible. We adapt
the greedy algorithm (see Algorithm 11 for details) for solving the multi-way number
partition problem, by modifying the sum to multiplication, in order to solve our partition
problem.3 If the m-partition we find satisfies the requirement

∑m
i=1 wi ≤ θ, then we get

a solution to our problem. Otherwise, we need to increase m by one and try to find
a new m-partition. We repeat this process until the condition

∑m
i=1wi ≤ θ is satisfied.

The whole partition process for all the nodes is described in Algorithm 12.

Nodes with only one predictor function are treated in line 10. We divide such nodes into
groups based on their parent nodes, i.e., we put nodes sharing the most common parents
into the same group. In this way, the combined predictor function size can be as small as
possible such that the limited memory can handle more nodes in a group. The number
of nodes in a group is also restricted by the combined predictor function size, i.e., the
number of parent nodes in this group.4 The partition is performed with an algorithm
similar to Algorithm 11. The difference is that in each iteration we always add a node
into a group which shares most common parent nodes with this node.

7.1.4 The New Simulation Method

We describe our new method for simulating PBNs in Algorithm 13. The procedure
PREPARATION describes the whole preparation process of the three steps (network re-
duction for Step 1, and node-grouping for Step 2 and Step 3). The three inputs of the
procedure PREPARATION are the PBN network G, the memory limit θ, and the maxi-

3 There exist other algorithms to solve the multi-way number partition problem and we choose the
greedy algorithm for its efficiency.

4 In our experiments, the maximum number of parent nodes in one group is set to 18. Similar to the
value of k in Step 2, the number can be larger as long as the memory can handle. However, the penalty
from large cache miss rate will diminish the benefits by having fewer groups when the number of parent
nodes is too large.

7.2 Evaluation 107

mum number k of nodes that can be put in a group for perturbation. The PREPARATION

procedure performs network reduction and node grouping. The reduced network and the
grouped nodes information are then provided for the PARALLELSIMULATION procedure
via seven parameters: Ap and mask are the alias table and mask used for performing
perturbations of non-leaf nodes as explained in Algorithm 10; l is the number of leaf
nodes; p is the perturbation rate; A is an array containing the alias tables for predictor
functions in all groups; F is an array containing predictor functions of all groups; and
cum is an array storing the cumulative number of nodes in each group, i.e., cum[0] = 0
and cum[i] = ∑i−1

j=0 τj for i ∈ [1,m], where m is the number of groups and τj is the
number of nodes in group j. Procedure PARALLELSIMULATION simulates one step of
a PBN by first checking perturbation and then updating PBNs with combined predictor
functions. Perturbations for leaf nodes and non-leaf nodes have been explained in Algo-
rithms 9 and 10. We now explain how nodes in a group are simultaneously updated with
combined predictor function. It is performed via the following three steps: 1) a random
combined predictor function is selected from F based on the alias table A; 2) the output
of the combined predictor function is obtained according to the current state s; 3) the
nodes in this group are updated based on the output of the combined predictor function.
To save memory, states are stored as integers and updating a group of nodes is imple-
mented via a logical bitwise or operation. To guarantee that the update is performed
on the required nodes, a shift operation is needed on the output of the selected function
(line 22). The number of bits to be shifted for the current group is in fact the cumulative
number of nodes of all its previous groups, which is stored in the array cum.

7.2 Evaluation

The evaluation of our new simulation method is performed on both randomly generated
networks and a real-life biological network. All the experiments are performed on high
performance computing (HPC) machines, each of which contains a CPU of Intel Xeon
X5675 @ 3.07 GHz. The program is written in Java and the initial and maximum Java
virtual machine heap size is set to 4GB and 5.89GB, respectively.

7.2.1 Randomly Generated Networks

With the evaluation on randomly generated networks, we aim not only to show the
efficiency of our method, but also to answer how much speedup our method is likely
to provide for a given PBN.

The first step of our new simulation method performs a network reduction technique,
which is different from the node-grouping techniques in the later two steps. There-
fore, we evaluate the contribution of the first step and the other two steps to the perfor-
mance of our new simulation method separately. We consider the original simulation
method as the reference method and we name it Methodref . The simulation method
applying the network reduction technique is referred to as Methodreduction and the sim-
ulation method applying both the network reduction and node-grouping techniques as
Methodnew. Methodreduction and Methodnew require pre-processing of the PBN under
study, which leads to a certain computational overhead. However, the proportion of the
pre-processing time in the whole computation decreases with the increase of the sample

108 Chapter 7 Structure-based Parallel Steady-state Computation

Algorithm 13 Structure-based PBN simulation.
1: procedure PREPARATION(G, θ, k)
2: perform network reduction for G and store the reduced network in G′;
3: get the number of nodes n and perturbation probability p from G;
4: get the number of nodes n′ from G′; ` = n− n′;
5: [Ap,mask] =PREPAREPERTURBATION(n′, k);
6: PA =PARTITION(G′, θ);
7: for each group in PA, compute its combined functions and put them as a list in
8: array F ,and compute its alias table in array A;
9: compute cum as cum[0] = 0 and cum[i] = ∑i−1

j=0 τj for i ∈ [1,m], where m is
10: the number of groups in PA and τj is the number of nodes in group j;
11: return [Ap,mask, `, p,A, F, cum];
12: end procedure
13: procedure PARALLELSIMULATION(Ap,mask,A, F, cum, `, p, s)
14: [s, perturbed] =PERTURBATION(Ap,mask, s); // Perturb by group
15: if perturbed || CHECKLEAFNODES(p, `) then // Check perturbations of leaves
16: return s;
17: else s′ = 0; count = size(A); // size(A) is the # of elements in array A
18: for (i = 0; i < count− 1; i+ +) do
19: index = Next(A[i]); // Select a random integer
20: f = F [i].get(index); // Obtain the predictor function at the given index
21: v = f [s]; // f [s] returns the integer output of f based on state s
22: s′ = s′ | (v << cum[i]); // Bit shift v to update only nodes in
23: end for // the current group
24: end if
25: return s′;
26: end procedure

size. In our evaluation, we first focus on comparisons without taking pre-processing
into account to evaluate the maximum potential performance of our new simulation
method; we then show how different sample sizes will affect the performance when
pre-processing is considered.

How does our method perform? Intuitively, the speedup due to the network reduction
technique is influenced by how much a network can be reduced and the performance of
node-grouping is influenced by both the density and size of a given network. Hence, the
evaluation is performed on a large number of randomly generated PBNs covering dif-
ferent types of networks. In total, we use 2307 randomly generated PBNs with different
percentages of leaves ranging between 0% and 90%; different densities ranging between
1 and 8.1; and different network sizes from the set {20, 50, 100, 150, 200, 250, 300, 350,
400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000}. The networks are gen-
erated randomly using the tool ASSA-PBN [MPY15], by providing the following infor-
mation: the number of nodes, the maximum (minimum) number of predictor functions
for the nodes, and the maximum (minimum) number of parent nodes for the predictor
functions. Thus, the generation of these networks’ density and percentage of leaves can-
not be fully controlled. In other words, density and percentage of leaves for these 2307
PBNs are not uniformly distributed. We simulate 400 million steps for each of the 2307
PBNs with the three different simulation methods and compare their time costs. For the

7.2 Evaluation 109

(a) Simulation time of Methodreduction over
simulation time of Methodref .

(b) Simulation time of Methodnew over sim-
ulation time of Methodreduction.

Figure 7.1: Speedups obtained with network reduction and node-grouping techniques.
The pre-processing time is excluded from the analysis.

network reduction technique the speedups are calculated as the ratio between the time
of Methodreduction and the time of Methodref , where the pre-processing time of the
former method is excluded. The obtained speedups are between 1.00 and 10.90. For
node-grouping, the speedups are calculated as the ratio between the time of Methodnew
and the time of Methodreduction without considering the required pre-processing times.
We have obtained speedups between 1.56 and 4.99. We plot in Figure 7.1 the speedups
of the network reduction and node-grouping techniques with respect to their related pa-
rameters. For the speedups achieved with network reduction, the related parameters are
the percentage of leaves and the density. In fact, there is little influence from density
to the speedup resulting from network reduction as the speedups do not change much
with the different densities (see Figure 7.1a). The determinant factor is the percentage
of leaves. The more leaves a PBN has, the more speedup we can obtain for the network.
For the speedups obtained from node-grouping, the related parameters are the density
and the network size after network reduction, i.e., the number of non-leave nodes. Based
on Figure 7.1b, the speedup with node-grouping is mainly determined by the network
density: a smaller network density could result in a larger speedup contributed from the
node-grouping technique. This is mainly due to the fact that sparse network has a rela-
tively small number of predictor functions in each node and therefore, the nodes will be
partitioned into fewer groups. Moreover, while the performance of network reduction
is largely influenced by the percentage of leaves, the node-grouping technique tends to
provide a rather stable speedup. Even for large dense networks, the technique can reduce
the time cost almost by half.

The combination of these two techniques results in speedups (time of Methodnew over
time ofMethodref) between 1.74 and 41.92. We plot in Figure 7.2 the speedups in terms
of the percentage of leaves and density. The figure shows a very good performance of
our new method on sparse networks with large percentage of leaves.

What is the influence of sample size? We continue to evaluate the influence of sam-
ple size on our proposed new PBN simulation method. The pre-processing time for
the network reduction step is relatively very small. Therefore, our evaluation focuses
on the influence of the total pre-processing time of all the three steps on the speedup of
Methodnew with respect toMethodref . We select 9 representative PBNs from the above
2307 PBNs, with respect to their densities, percentages of leaves and the speedups we

110 Chapter 7 Structure-based Parallel Steady-state Computation

Figure 7.2: Speedups of Methodnew with respect to Methodref .

speedup with different
sample sizes (million)

network
#

size
percentage
of leaves

density
average
p.-p.

time (s) 1 10 100 400
1 900 1.11 6.72 28.12 0.65 1.49 1.71 1.73
2 950 0.84 6.96 32.35 0.59 1.47 1.73 1.75
3 1000 0.30 7.00 33.72 0.58 1.45 1.71 1.73
4 600 67.83 4.25 162.21 0.13 1.08 4.51 6.89
5 800 68.38 3.94 43.17 0.66 3.05 6.75 7.69
6 900 68.00 3.89 36.58 0.69 3.56 6.90 7.70
7 450 89.78 1.60 0.23 21.44 37.59 41.62 41.84
8 550 88.55 1.72 0.24 20.26 35.94 36.47 36.62
9 1000 89.10 1.75 1.08 10.04 31.83 35.09 37.19

Table 7.1: Influence of sample sizes on the speedups of Methodnew with respect to
Methodref . In the fifth column, p.-p. is short for pre-processing and the time unit is
second.

have obtained. We simulate the 9 PBNs for different sample sizes using bothMethodref
and Methodnew. We show the average pre-processing time of Methodnew and the ob-
tained speedups with Methodnew (taking into account pre-processing time costs) with
different sample sizes in Table 7.1. As expected, with the increase of the sample size,
the influence of pre-processing time becomes smaller and the speedup increases. In fact,
in some cases, the pre-processing time is relatively so small that its influence becomes
negligible, e.g., for networks 7 and 8, where the sample size is equal or greater than 100
million. Moreover, often with a sample size larger than 10 million, the effort spent in
pre-processing can be compensated by the saved sampling time (simulation speedup).

Performance prediction. To predict the speedup of our method for a given network, we
apply regression techniques on the results of the 2307 PBNs to fit a prediction model.
We use the normalised percentage of leaves and the network density as the predictor
variables and the speedup of Methodnew with respect to Methodref as the response
variable in the regression model. We do not consider network size as based on the
plotted figures it does not directly affect the speedup. In the end, we obtain a polynomial

7.2 Evaluation 111

Methodref Methodnew
sample size

(million)
time
(m)

probability
p.-p.

time (s)
sample size

(million)
total time

(m)
probability speedup

1 147.50 9.51 0.003243 4.57 147.82 1.05 0.003236 9.09
2 452.35 28.65 0.990049 3.10 452.25 2.79 0.990058 10.28
3 253.85 14.88 0.005583 3.42 253.99 1.74 0.005587 8.54
4 49.52 2.96 0.001087 3.38 50.39 0.36 0.001078 8.31
5 315.06 17.73 0.993293 4.40 305.43 2.05 0.993298 8.39
6 62.22 3.69 0.001088 3.13 50.28 0.39 0.001087 7.67
7 255.88 16.74 0.005621 4.01 256.61 1.70 0.005623 9.88

Table 7.2: Performance of Methodref and Methodnew on an apoptosis network.

regression model shown in Equation (7.4), which can fit 90.9% of the data:

y = b1 + b2 ∗ x1 + b3 ∗ x2
1 + b4 ∗ x2 + b5 ∗ x2

2, (7.4)

where [b1, b2, b3, b4, b5] = [2.89, 2.71, 2.40,−1.65, 0.71], y represents the speedup, x1
represents the percentage of leaves and x2 represents the network density. The result of
a 10-fold cross-validation of this model supports this prediction rate. Hence, we believe
this model does not overfit the given data. Based on this model, we can predict how
much speedup is likely to be obtained with our proposed method for a given PBN.

7.2.2 An Apoptosis Network

In this section, we evaluate our method on a real-life biological network, i.e., an apop-
tosis network of 91 nodes [SSV+09]. This network has a density of 1.78 and 37.5%
of the nodes are leaves, which is suitable for applying our method to gain speedups.
The network has been analysed in [MPY17]. In one of the analyses, i.e., the long-term
influences [SDKZ02] on complex2 from each of its parent nodes: RIP-deubi, com-
plex1, and FADD, seven steady-state probabilities of the network need to be computed.
In this evaluation, we compute the seven steady-state probabilities using our proposed
structure-based simulation method (Methodnew) and compare it with the original simu-
lation method (Methodref). The precision and confidence level of all the computations,
as required by the two-state Markov chain approach [RL92], are set to 10−5 and 0.95,
respectively. The results of this computation are shown in Table 7.2. The computed
probabilities using both methods are comparable, i.e., for the same set of states, the
differences of the computed probabilities are within the precision requirements. The
sample sizes required by both methods for computing the same steady-state probabil-
ities are very close to each other. Note that the speedups are computed based on the
accurate data, which are slightly different from the truncated and rounded data shown in
Table 7.2. We have obtained speedups (Methodnew with respect toMethodref) between
7.67 and 10.28 for computing those seven probabilities. In total, the time cost is reduced
from 1.5 hours to about 10 minutes.

112 Chapter 7 Structure-based Parallel Steady-state Computation

7.3 Conclusion

We propose a structure-based method for speeding up simulations of PBNs. Using net-
work reduction and node-grouping techniques, our method can significantly improve
the simulation speed of PBNs. We show with experiments that our method is especially
efficient in the case of analysing sparse networks with a large number of leaf nodes.

The node-grouping technique gains speedups by using more memory. Theoretically, as
long as the memory can handle, the group number can be made as small as possible.
However, this causes two issues in practice. First, the pre-processing time increases
dramatically with the group number decreasing. Second, the performance of the method
drops a lot when operating on large memories due to the increase of cache miss rate.
Therefore, in our experiments we do not explore all the available memory to maximise
the groups. Reducing the pre-processing time cost and the cache miss rate would be two
future works to further improve the performance of our method. We plan to apply our
method for the analysis of real-life large biological networks.

Part III

The Tool for Steady-state Analysis

113

8

ASSA-PBN: a Software Tool for
Probabilistic Boolean Networks

After providing the theoretical solutions for the two research problems in Chapters 3-
7, we now present ASSA-PBN, a toolbox in which we have implemented the above
discussed algorithms and heuristics. ASSA-PBN is a software toolbox designed for
modelling, simulation and analysis of PBNs. For modelling, ASSA-PBN has provided
a high-level PBN description file which can easily modelling a real-life biological net-
work. Besides, it also supports loading and saving PBNs in Matlab-PBN-toolbox for-
mat. In addition, users can generate random PBNs according to their requirements. In
terms of simulation, ASSA-PBN provides an efficient simulator, which can overcome
the network size limitation. The analyser module of ASSA-PBN provides steady-state
probability computation, parameter estimation, long-run influence analysis, long-run
sensitivity analysis, and computation and visualisation of one-parameter profile likeli-
hoods to explore the characteristics of PBNs. Computation of steady-state probabilities
plays a major role among all the analysis methods, since it is the basis of other meth-
ods. In particular, ASSA-PBN implements numerical methods for exact analysis of
small PBNs and statistical methods for approximate analysis of large PBNs. The cur-
rent version supports three different statistical methods, i.e. the perfect simulation al-
gorithm [VM04], the two-state Markov chain approach [RL92, MPY17], and the Skart
method [TWLS08]. To speed up the computation process, additionally ASSA-PBN
provides three parallel techniques: structure-based parallelisation, CPU-based paralleli-
sation and GPU-based parallelisation. This makes ASSA-PBN capable of handling
the steady-state computations that require generation of long trajectories consisting of
billions of states. Experimental results show that ASSA-PBN is capable of analysing
PBNs with thousands of nodes.

The usability of existing methods/tools for PBNs, such as optPBN [TMP+14] and the
BN/PBN Toolbox for MATLABr created by Lähdesmäki and Shmulevich [LS09], is
restricted by the network size. For instance, optPBN can only analyse parts of the 96-
node PBN due to its computational efficiency issues, leaving some hypotheses regarding
the network characteristics unverified [TMP+14]. The PBN Matlab toolbox applies nu-
merical methods for computing steady-state probabilities for PBNs (see more detailed
discussions in Section 8.4), which are not scalable and are impracticable for the anal-
ysis of large biological networks. ASSA-PBN [MPY17, MPY15] is however, capable
of solving these problems with several efficient methods for analysing large PBNs as
discussed in previous chapters.

115

116 Chapter 8 ASSA-PBN: a Software Tool for Probabilistic Boolean Networks

Figure 8.1: Interface after loading a PBN into ASSA-PBN.

8.1 Toolbox Architecture

ASSA-PBN provides both a graphical user interface (GUI) and a command line inter-
face. As shown in Figure 8.1, the interface is divided into three parts: the menu bar,
three panels and the status bar. The panels are used to display PBN specification and the
results of simulation and analysis.

The architecture of ASSA-PBN consists of three main modules, i.e. a modeller, a sim-
ulator, and an analyser, as shown in Figure 8.2. The three modules allow users to con-
struct, simulate and analyse a PBN model, respectively.

Figure 8.2: The architecture of ASSA-PBN.

The main function of the modeller is to load a PBN model from a given input file and
to create its internal representation in memory or to save a PBN model in an output file.
In addition, the modeller facilitates the generation of a random PBN in accordance with
a user’s requirements. ASSA-PBN supports the loading and saving of PBN models in
either the ASSA-PBN format or the BN/PBN Toolbox format.

The simulator produces trajectories (also called samples) of the loaded/generated PBN.
Since this process is not based on the transition matrix of the loaded PBN, it does not
suffer from the state-space explosion problem even for large PBNs. The produced tra-

8.2 Modeller 117

jectories are presented to the modeller and/or serve as input for further analysis.

The analyser provides several functionalities for analysis of PBNs. Its core function is
the computation of the steady-state probability of a subset of states which is specified in
a property file. The computation can be performed in either a numerical manner, suitable
for small PBNs, or in a statistical manner, appropriate for large PBNs. The numerical
methods are based on the state transition matrix supplied by the modeller; while the
statistical methods take as input trajectories produced by the simulator. The statistical
methods operate in an iterative way and extensions of the trajectories are requested from
the simulator in each iteration until the sample size is large enough to obtain results
satisfying the specified precision requirements.

Steady-state probabilities can be utilised by the analyser to estimate selection probabil-
ity parameters of a PBN model to make it fit experimental steady-state measurements.
Optimised parameter values are further returned to the modeller. Moreover, the analyser
facilitates the evaluation of long-run influences and sensitivities of the PBN. The analy-
sis results can be used to verify and optimise the original model. The details of the three
modules are described in the next three sections.

8.2 Modeller

The modeller of ASSA-PBN provides two ways for model construction: loading a PBN
from a model definition file or generating a random PBN (e.g., for benchmarking and
testing purposes) complying with users’ requirements [MPY15].

Users can load a PBN from a file either in ASSA-PBN model definition format or
BN/PBN Toolbox format. The ASSA-PBN model definition file provides various in-
formation on a PBN , including the update mode, the number of nodes, the Boolean
functions for each node, the selection probability for each predictor function and the
perturbation rate. ASSA-PBN supports the synchronous update mode and six types of
asynchronous update modes. A predictor function can be specified in two ways: either
in the form of a truth table or with a high-level PBN definition format, where the predic-
tor function is given as its semantic logical formula. The latter makes the node update
semantics more explicit and evident. The GUI of ASSA-PBN also provides means to
explore and inspect the information on predictor functions, which allows users to check
the details of the model structure and semantics.

Figure 8.1 demonstrates the interface showing that a PBN has been loaded into ASSA-
PBN. The top-left panel displays general information on the loaded PBN, including its
number of nodes, network density, updating mode, perturbation rate, and details on its
predictor functions. The function details are shown as a tree structure in the panel. After
selecting a predictor function, its truth table is shown in the bottom panel. The top-right
panel additionally contains information on the the PBN model loading time.

When generating a random model, users provide the node number as well as some op-
tional parameters including the maximum (minimum) number of predictor functions for
nodes, the maximum (minimum) number of parent nodes for the predictor functions and
modify the default value for the perturbation rate.

Additionally, ASSA-PBN allows the user to disable perturbations for specified nodes.
This feature is needed for the modelling of cellular systems where environmental con-

118 Chapter 8 ASSA-PBN: a Software Tool for Probabilistic Boolean Networks

ditions are kept constant, i.e. model input nodes should have fixed values, or modelling
of mutants where certain nodes are inactivated or over-activated. This feature should
however be used with care as it may render the PBN’s underlying DTMC to become
non-ergodic.

ASSA-PBN stores the PBN model in memory with use of dedicated data structures
which facilitate efficient simulation.

8.3 Simulator

At present, statistical approaches are practically the only viable option for the analysis
of long-run dynamics of large PBNs due to the infamous state space explosion problem.
Such methods however necessitate generation of long trajectories. Therefore, the sim-
ulator module is designed to efficiently produce trajectories with the given initial states
(either provided by the user or randomly set by ASSA-PBN).

The simulation can be performed with a number of different update modes supported
by ASSA-PBN , including synchronous, asynchronous ROG, asynchronous RMG and
other asynchronous modes. When simulating the next state of a PBN, the simulator
first checks whether perturbation should be applied. If yes, the simulator updates the
current state according to the perturbation. Otherwise, the simulator updates the state
of certain nodes following the update mode. For the synchronous update mode, every
node in the PBN is updated: a predictor function of each node is chosen according to
its selection probability and the state of the node is updated with the chosen predictor
function. For the asynchronous update mode, depending on which submode is chosen,
the states of randomly selected nodes are updated. Notice that the state transition matrix
is not needed in the simulation process, which makes ASSA-PBN capable of managing
large PBNs. The visualisation of the simulation result is supported in ASSA-PBN.
Time-course evolution of the values of selected nodes can be displayed.

Figure 8.3 shows the simulator interface. Users can set trajectory length and the initial
state. For example, for a three-node PBN the initial state (x2 = 0, x1 = 1, x0 = 1) can
be set by typing the space-delimited sequence 0 1 1 in the ‘Initial State’ field. If the
checkboxes for update modes are left unchecked, the update mode defined in the defini-
tion file is used. By checking the ‘Show the simulation graph’ box, a graph view of the
simulation results is shown in a separate window once a trajectory has been generated.

As mentioned above, the analysis of the long-run dynamics of large PBNs often re-
quires generation of long trajectories. Therefore, efficiency of the simulation is crucial
to enable the analysis of large biological networks in a reasonable computational time.
To achieve this goal, ASSA-PBN offers several ways to speed up the simulation, in-
cluding the alias method [Wal77], the multiple-core based parallelisation technique (see
Chapter 6), and the structure-based parallelisation technique (see Chapter 7). Note that
the structure-based parallelisation technique only works for synchronous PBNs and cur-
rently the GPU-based parallelisation technique is only implemented for synchronous
PBNs as well.

The consecutive state is obtained by applying properly selected predictor functions to
each of the nodes in a PBN. For efficiency reasons, the selection is performed with the
alias method. The simulator of ASSA-PBN provides two modes: the global alias mode

8.4 Analyser 119

Figure 8.3: Interface of the simulator window in ASSA-PBN.

and the local alias mode. In the global mode, a single alias table for the joint probability
distribution on the all combinations of predictor functions for all PBN nodes is built.
In the local mode, individual alias tables for the distributions on predictor functions
for each node are constructed. In both cases it is implicitly assumed that the predictor
functions for individual nodes are selected independently of each other. In the global
mode, two random numbers are needed to perform predictor functions selection for all
the nodes at once, while in the local mode the number of random numbers needed is
twice the number of nodes. Compared to the local mode, the simulation with the global
mode is faster, but more expensive in terms of memory usage for storage of the large
alias table. As a consequence, in general the local mode is recommended for large
networks.

Currently, the parallel techniques are only available for the analyser module of ASSA-
PBN. Since the computation of steady-state probabilities usually requires long trajec-
tories, the main purpose of the three parallel techniques is to speed up the simulation
process greatly. The simulator module is mainly used to generate short trajectories for
users to visualise the simulation result and check the correctness of the PBN.

8.4 Analyser

The analyser of ASSA-PBN provides four main functionalities: computation of steady-
state probabilities for specified subsets of states, computation of long-run influences and
various types of long-run sensitivities, parameter estimation, and computation and visu-
alisation of one-parameter profile likelihoods. Computation of steady-state probabilities
forms the basis for the other three tasks. The computed steady-state probabilities and
the long-run influences/sensitivities provide insight into the characteristics of a given
PBN model, which in turn helps to gain a better understanding of the biological sys-
tem under study. Parameter estimation optimises the values of estimated parameters
of the constructed PBN model to fit steady-state experimental measurements. Finally,
one-parameter profile likelihoods provide insight into the structural and practical identi-
fiability of considered model parameters.

120 Chapter 8 ASSA-PBN: a Software Tool for Probabilistic Boolean Networks

8.4.1 Computation of Steady-state Probabilities

In the following, we first describe a few methods that ASSA-PBN implements for com-
puting steady-state probabilities of PBNs. Then, we briefly present three parallel tech-
niques that were recently developed to improve the efficiency of such computations.

Implemented methods. The analyser of ASSA-PBN provides two iterative numerical
methods for exact, up to a pre-specified convergence criterion and numerical precision,
computation of the steady-state distributions of PBNs, namely the Jacobi method and
the Gauss-Seidel method. Moreover, the analyser provides three statistical methods for
computation of steady-state probabilities: the perfect simulation algorithm [PW96], the
Skart method [TWLS08], and the two-state Markov chain approach [RL92]. Starting
from a random initial distribution on the state space of a PBN, iterative numerical meth-
ods compute the steady-state distribution by iteratively performing matrix-vector mul-
tiplication with use of the state transition matrix. Once the required accuracy threshold
is reached, the iterative process terminates and the final steady-state probability distri-
bution is returned. Since iterative numerical methods are based on the state transition
matrix, they are expensive both in term of memory and computational time consump-
tion, hence applicable only to small-size PBNs (often with less than 20 nodes).

The perfect simulation algorithm [PW96] draws independent samples which are dis-
tributed exactly in accordance with the steady-state distribution of a DTMC. In conse-
quence, it avoids problems related to the convergence to the steady-state distribution
or non-zero correlation between consecutive states in a trajectory. The current imple-
mentation is in-line with the ‘Functional backward-coupling simulation with aliasing’
algorithm provided in [VM04]. This algorithm shortens the average coupling time sig-
nificantly when only a subset of states is of interest. Nevertheless, due to the nature of
this method, each state of the state space needs to be considered at each step of the cou-
pling scheme. Therefore, this approach only suits medium-size PBNs and large PBNs
are out of its scope. Unfortunately, since PBNs with perturbations are non-monotone
systems, the very efficient monotone version of perfect simulation [EP09], in which
only a small subset of the whole state space needs to be considered, is of no use in this
context.

We refer to Chapter 5 for detailed description of the Skart method and the two-state
Markov chain approach.

Parallel computation. To produce trajectories of large synchronous PBNs, the simu-
lator of ASSA-PBN needs to check perturbations, select Boolean functions, and per-
form state update for n nodes in each step. The simulation time cost can be prohibitive
in the case of large PBNs and huge trajectory (sample) size. Therefore, two different
techniques to speed up the generation of very long trajectories were proposed and im-
plemented in ASSA-PBN. We refer to Chapters 6 and 7 for detailed description of the
two techniques.

Figure 8.4 shows the interface for computing steady-state probabilities with the two-
state Markov chain approach in ASSA-PBN. The precision and confidence level are
two required parameters of the two-state Markov chain approach. The steady-state con-
vergence parameter ε is in the current implementation fixed to 1010. If “Global Alias”
is checked, the simulation will be performed with the global alias mode as described
in Section 8.3. Checking this box could potentially increase the speed of the two-state

8.4 Analyser 121

Figure 8.4: Interface of computing steady-state probabilities with the two-state Markov
chain approach in ASSA-PBN.

Markov chain approach at the cost of higher memory consumption. “Properties” field
allows to provide a file with the specification of a subset of states for which the steady-
state probability is to be computed. The four radio selections are used to specify how
the simulation should be performed: either in a sequential way or with the use of one
of the two different parallel techniques mentioned above. Note that the multiple-core
based parallel technique is further divided into two: CPU-based parallel and GPU-based
parallel. If “CPU-based parallel” is selected, the gray text field “# cores” will become
available and filled with the number of cores on the computer used.

8.4.2 Parameter Estimation

A common task for building a model for a real-life biological system is to optimise the
parameters of the model to make it fit experimental data. The analyser provides the
parameter estimation functionality to support this task for PBN models. A few algo-
rithms [KE95, MMB03] have been proposed in the literature for parameter estimation
of biological systems. ASSA-PBN implements the particle swarm optimisation (PSO)
and differential evolution (DE) algorithms to optimise the specified parameters of PBN
models.

PSO is an iterative method to optimise parameters of a model. The set of parameters to
be optimised is called a particle. PSO solves the optimisation problem by moving a pop-
ulation of candidate particles around in the search space and by updating the position
and speed of the particles according to the considered fitness function. In ASSA-PBN,
we use the mean square error (MSE), i.e. MSE(θ) = 1

m·d · (
∑m
k=1

∑d
l=1(yk,l− ŷk,l(θ))2)

as the fitness function, where yk,l denotes m steady-state measurements for various mu-
tants of the model for each observable l, i.e. specific subset of states, and ŷk,l is the l-th
observable’s steady-state probability predicted by the mutant model k with parameters
θ. In each iteration, all positions and speed of the particles are updated and verified ac-
cording to the fitness function. The particle that has the minimum fitness function value
is regarded as the optimal particle. Particle values are updated based on the current val-
ues and the current best optimal particle values so that each particle is moving towards
the direction of the current best optimal particle.

122 Chapter 8 ASSA-PBN: a Software Tool for Probabilistic Boolean Networks

Figure 8.5: Interface of parameter estimation in ASSA-PBN.

DE is a population-based method introduced by Storn and Price in 1996 [Sto96, SP97].
It is developed to optimise real parameters by maintaining a population of candidate so-
lutions that undergo iterations of mutation, recombination and selection. The mutations
and recombinations expand the search space by creating new candidate solutions based
on the weighted difference between two randomly selected population members added
to a third population member. The selection process then keeps the solutions that result
in better finesses. In conjunction with the selection, the mutation and recombination
self-organise the sampling of the problem space, bounding the search space to known
areas of interest.

Note that both PSO and DE are commonly known as meta-heuristics and are capable of
exploring a large searching space. However, meta-heuristics such as PSO and DE do not
guarantee that an optimal solution is ever found.

The parameter estimation interface is shown in Figure 8.5. The parameter estimation
method drop-down list provides two available parameter estimation methods: PSO and
DE. If the option “Start from random points” is selected, the parameter estimation will
start from randomly generated parameter values. Otherwise, it will use the parameters
specified in the first PBN model file (usually all the mutant PBN models should have the
same parameter values for the same nodes). The option “Adaptive update particle” is
specific to the PSO method. If its checked, PSO will use the adaptive update method to
calculate the next position. We refer to [AM11] for more details on the adaptive update
method. If the option “Allow parallel evaluation” is checked, the parameter estimation
method will be run in parallel, which means that in each iteration x particles will be
evaluated in parallel, where x is the number of cores. If the option “Plot fitted versus
measured value” is checked, the parameter estimation result plot will be presented in
a new window to the user at the end of the estimation. Once the parameter estimation

8.4 Analyser 123

Figure 8.6: The fitness heat map presented after performing parameter estimation in
ASSA-PBN.

procedure is finished, a fitness heat map is shown as illustrated in Figure 8.6. The heat
map is a graphical representation of the fraction each squared error contributes to the
fitness function. The columns represent PBN models under different experimental con-
ditions or model mutants and the rows represent different subsets of states for which
the steady-state probabilities are computed and compared with experimental measure-
ments. The vertical colour bar on the right provides a mapping between a colour and
corresponding range of percentage values.

8.4.3 Long-run Influence and Sensitivity

In a GRN, it is often important to distinguish which parent gene plays a major role in
regulating a target gene. To explore the long-run characteristics of the GRNs, analyser
of ASSA-PBN facilitates the computation of long-run influences and sensitivities The
long-run influences include the long-run influence of a gene on a specified predictor
function and the long-run influence of a gene on another gene. The long-run sensitivities
include the average long-run sensitivity of a node, the average long-run sensitivity of
a predictor function, the long-run sensitivity of a gene with respect to one-bit function
perturbation, and the long-run sensitivity of a gene with respect to selection probability
perturbation.

The computations of long-run influences and sensitivities are based on the computations
of several steady-state probabilities. Note that ASSA-PBN does not store the generated
trajectory for the sake of memory saving. Instead, ASSA-PBN verifies whether the
next sampled state of the PBN belongs to the set of states of interest and stores this
information only. Therefore, a new trajectory is required when computing the steady-
state probability for a new set of states of interest. ASSA-PBN implements computation
of steady-state probabilities of several sets of states in parallel with the two-state Markov
chain approach [MPY16d], allowing the reuse of a generated trajectory. The crucial
idea is that each time the next state of the PBN is generated, it is processed for all state
sets of interest simultaneously. Different sets require trajectories of different lengths
and the lengths are determined dynamically through an iterative process. Whenever the
trajectory is long enough for obtaining the steady-state probability estimate for a certain
set of states, the estimate is computed and the set will not be considered in subsequent
iterations.

124 Chapter 8 ASSA-PBN: a Software Tool for Probabilistic Boolean Networks

(a) Long-run influence of a gene on an-
other gene interface

(b) Average long-run sensitivity of
a node/predictor function interface

Figure 8.7: Interface of long-run analyses in ASSA-PBN.

Figure 8.8: Plot of a profile likelihood computed in ASSA-PBN.

Figure 8.7a and Figure 8.7b show the interfaces of long-run influence of a gene on
another gene and Average long-run sensitivity of a node/predictor function, respectively.
The first two elements of the interfaces allow to specify the details of the analysis to be
performed while the other three parameters, i.e. the method, the precision, and the
confidence level, govern the computation of the required steady-state probabilities.

8.4.4 Towards Parameter Identifiability Analysis

In the current version ASSA-PBN implements the first part of the general approach
of [RKM+09] to analyse arbitrary models for structural and practical identifiability. The
approach is based on the concept of profile likelihood (PL). In this approach the fit of
a model to experimental data is measured by an objective function which is the weighted
sum of squared residuals

χ2(θ) =
m∑
k=1

d∑
l=1

(yk,l − ŷk,l(θ)
σk,l

)2
(8.1)

where θ is a vector of model parameter values, yk,l denotesm steady-state measurements
for individual mutants of the model for each observable l, ŷk,l(θ) is the l-th observable

8.5 Multiple Probabilities Problem 125

as predicted by the mutant model k with parameter values θ, and σk,l are the corre-
sponding measurement errors. It is further assumed that the parameters are estimated
to find θ̂ = arg min[χ2(θ)]. It can be shown that for normally distributed observational
noise this corresponds to the maximum likelihood estimate (MLE) of θ as in this case
χ2(θ) = constant− 2 · log(L(θ)), where L(θ) is the likelihood. In [RKM+09], the finite
sample confidence intervals are considered, so called likelihood-based confidence inter-
vals, defined by a confidence region {θ | χ2(θ) − χ2(θ̂) < ∆α} with ∆α = χ2(α, df)
whose borders represent confidence intervals [ME95]. In the formula above ∆α is the
α quantile of the χ2-distribution with df degrees of freedom and represents with df = 1
and df = dim(θ) pointwise and simultaneous, respectively, confidence intervals with
confidence level α.

A parameter θi is said to be identifiable, if the confidence interval [σ−i , σ+
i] of its es-

timate θ̂i is finite. Two types of parameter non-identifiability are commonly consid-
ered. Structural non-identifiability arises from a redundant parametrisation manifested
as a functional relation between ambiguous parameters that represents a manifold with
constant χ2 value in parameter space. A structural non-identifiability is related to model
structure independent of experimental data. For a single parameter it is indicated by
flat profile likelihood. Structurally identifiable parameter may still be practically non-
identifiable, second type of non-identifiability, due to the amount and quality of experi-
mental data. By the definition of [RKM+09], a parameter is practically non-identifiable
if the likelihood-based confidence region is infinitely extended, i.e. the increase in χ2

stays below the threshold ∆α, in the increasing and/or decreasing direction of θi al-
though the likelihood has a unique minimum for this parameter.

The identification of potential structural or practical non-identifiability is based on the
exploration of the parameter space in the direction of the least increase in χ2. For
this purpose the profile likelihood χ2

PL is calculated for each parameter individually as
χ2

PL(θi) = minθj 6=i [χ2
PL] by re-optimisation of χ2 with respect to all other parameters, for

each value of θi.

Current version of ASSA-PBN facilitates the computation and visualisation of the pro-
file likelihood for a specified parameter. However, since information on measurement
errors is not considered in the current version, all σk,l are set to 1 and the finite likelihood-
based confidence intervals are not computed. The still missing elements are planned to
be implemented in the next releases of ASSA-PBN. An example of a profile likelihood
plot computed in ASSA-PBN is shown Figure 8.8.

8.5 Multiple Probabilities Problem

The functionalities provided by the analyser usually rely on the computation of several
steady-state probabilities. For example, in the example figure for parameter estimation
(Figure 8.5), the tool needs to compute 18 steady-state probabilities in each of the iter-
ations. Those computations are performed via statistical methods and the precision for
each of the computed probabilities is guaranteed by one of the previously mentioned
statistical methods, e.g., the two-state Markov chain approach. However, when we are
computing the 18 steady-state probabilities (properties) in each iteration, the chance that
one of the 18 computed results does not meet the pre-defined precision requirement is
increased compared to the case that only one probability is computed. Let r be the pre-

126 Chapter 8 ASSA-PBN: a Software Tool for Probabilistic Boolean Networks

cision and α be the confidence level for approximating the steady-state probability of
a set of states of a PBN with the two-state Markov chain approach. When computing
m probabilities with the above precision requirement, the probability that at least one
result does not meet the requirement is 1−(1−α)m. This issue is known as the multiple
comparisons problem in statistics [Jr.81, Ben10]. In our tool, we use the Bonferroni cor-
rection [Dun58, Dun61] to counteract this issue. Instead of computing the probability at
a confidence level of α, the Bonferroni correction requires a confidence level of α/m.
By providing a smaller confidence level α/m, it guarantees that the probability that at
least one computed result does not meet the requirement is still smaller than α when m
results are computed.

9

Conclusion and Future Work

9.1 Conclusion

This thesis studies the problem of dealing with the computational complexity of analysing
long-run dynamics of large biological networks. This type of analysis is crucial in many
contexts, e.g., in identifying cellular functional states. When the network is not very
large, their dynamics can be analysed easily with several different methods. However,
it often arises in the study of biological systems that the network to be analysed is so
huge that the utilization of traditional methods is essentially prohibited. We take on this
challenge in this thesis and propose several methods to handle the long-run dynamics
analysis for large networks.

Fine-grained formalisms can easily result in a prohibitively complex model when used
for modelling large networks; therefore, coarse-grained frameworks remain the only fea-
sible solution for large networks. We focus on probabilistic Boolean networks (PBNs)
as formal models of biological networks. PBNs focus on the wiring of a network while
ignoring the reaction rate; they not only facilitate the modelling of large biological net-
works, but also can capture the important long-run dynamics of the modelled networks.

Within the PBN framework, we formulate two research problems with regard to the
long-run dynamics analysis. The first is how to detect attractors in a large BN or in
each of the constitute BNs of a large PBN effectively; and the second is how to compute
steady-state probabilities of a large PBN efficiently.

With regard to the first research problem, we contribute by providing a decomposition
method for efficiently identifying attractors in large BNs. This decomposition method
works for both synchronous and asynchronous networks. The idea is to decompose
a large BN into small sub-networks, detect attractors in the sub-networks, and recover
attractors of the original network using attractors in the sub-networks. We prove that our
decomposition method can correctly identify all the attractors of a BN. Our experimental
results show that the proposed method is significantly faster than the state-of-the-art
method. Detailed information on this method is presented in Chapters 3 and 4.

With regard to the second research problem, we contribute in two ways. First, we iden-
tify a potential problem in a well-known method called the two-state Markov chain
approach and propose some heuristics to avoid it (in Chapter 5). Secondly, we propose
several algorithms for improving the efficiency of computing steady-state probabilities
of a large PBN. These algorithms include the multiple-core (CPU or GPU) based paral-
lel steady-state computation as discussed in Chapter 6 and the structure-based parallel
steady-state computation as discussed in Chapter 7.

Moreover, with the efficient steady-state computation algorithms, we are able to per-
form parameter estimation of large PBNs. Notably, we take special care of the precision

127

128 Chapter 9 Conclusion and Future Work

for estimating multiple steady-state probabilities when performing parameter estima-
tion. We have implemented the above mentioned methods and algorithms in our tool
ASSA-PBN. A detailed introduction to the tool, including a case-study demonstrating
parameter estimation of a PBN, is provided in Chapter 8.

9.2 Future Work

There are a few interesting related research problems worth investigating, but they are
not discussed in our thesis. We present here two of them.

9.2.1 Controllability of BNs

While identifying attractors of a network can be used directly for characterisation of
a disease, it does not tell us how to cure the disease. To reach this goal, we need to
switch from a diseased status to a healthy status. In mathematical terms, this corre-
sponds to moving from one attractor to another in a PBN. This task is related to the
problem of controllability of complex biological networks. The ability to control a bio-
logical system is the ultimate proof of our understanding of it [LSB11]. Controllability
has attracted much interest due to practical applications such as stem cell reprogram-
ming [GMNF14, PT10, You11] and the above mentioned search for therapeutic meth-
ods [AZH09, BGL11, WAJ+13].

The control of a BN can be though of driving the system from an initial state to any
desired final state within limited time by application of suitable binary inputs. This
process is usually referred as external control. Given two states from two different
attractors, it is theoretically very easy to transition from one to the other by perturbing
individual nodes. However, in practice, not all the nodes can be perturbed/controled due
to real-world limitations [MSL+11]. It is more likely that the use of certain drugs will
allow the activation or deactivation of only a few selected nodes. Therefore, it is essential
to identify a minimum number of nodes sufficient to force the switch from one attractor
to another in a BN. A number of computational complexity results have been achieved in
the literature for reaching the goal of external control, e.g., [AHCN07, VFC+08]. Since
the computational complexity in these cases is double exponential, the existing external
control methods can only be applied to BNs with tens of nodes.

Our proposed work for identifying attractors in a decompositional way can be further
extended to solve the controllability problem. In particular, it can solve the problem of
target control [GLDB14], which aims for identifying a set of nodes which can drive the
network from a source attractor to a target attractor. To reach the goal of target control,
it is enough to control certain nodes such that the state of the system moves into one of
the states in the basin of the target attractor. We are then guaranteed that the system will
eventually evolve to the target attractor by its own dynamics. However, computing the
basin of the target attractor will be intractable in the cases of large BNs. To overcome
this, the idea of decomposition becomes essential. We decompose the original network
into sub-networks based on the decomposition method as proposed in Chapters 3 and 4;
the computation of the basin then becomes feasible since the number of nodes in each
sub-network is usually significantly reduced. After identifying the nodes to be controlled
in each sub-network, we can then recover the nodes to be controlled in the original

9.2 Future Work 129

network. It is worth mentioning that this idea and the research work presented in this
thesis have lead to a new research project: Scalable External Control of Probabilistic
Boolean Networks, which is funded by the University of Luxembourg (reference UL-
IRP-2015).

9.2.2 Decomposition of BNs

When we discuss the decomposition method in Chapters 3 and 4, we decompose a BN
according to the SCCs in the BN structure. In this way, we are guaranteed that there
are no feedback loops between different sub-networks. Hence, the attractors in each
sub-network will not break the attractor structure in the original network. However, this
also poses a limitation to this method, i.e., when there is a huge SCC in the network, the
decomposition becomes meaningless since one of the sub-networks is still too large due
to the huge SCC. The SCC-based decomposition does not necessary have to be the only
way for decomposing a BN. Other ways for decomposing will also work as long as the
decomposed sub-networks can preserve the attractor structure of the original BN (see
Definition 3.3.6 in Chapter 3 for the concept of preservation of attractors).

A potential direction is to consider the conditions of multistationarity and periodicity in
sub-networks [TK01]. The multistationarity and periodicity came from a conjecture of
René Thomas in the 1980s [Tho81], which stated the following two rules:

1. the presence of a positive circuit in the interaction graph (i.e., a circuit containing
an even number of inhibitions) is a necessary condition for the presence of several
stable states in the dynamics;

2. the presence of a negative circuit in the interaction graph is a necessary condition
for the presence of an attractive cycle in the dynamics.

This conjecture was later proved in differential frameworks [PMO95, Gou98, Sou03], in
Boolean frameworks [RR06, RRT08], and in more general discrete frameworks [RC07].
The conjecture can be applied in two ways to solve the above mentioned issue. First,
we may find a new way for decomposing a BN such that the preservation of attractors
may be reached by satisfying the multistationarity and periodicity conditions between
sub-networks, i.e, a single sub-network may drop the preservation, but combination
of several sub-networks can recover the preservation. Secondly, we may reduce the
complexity of a network by removing several positive feedbacks at the cost of losing
the singleton attractors according to the first rule. However, this does not mean that
we cannot identify the singleton attractors. Since identification of singleton attractors
is much easier than that of cyclic ones, we can identify the singleton attractors of the
original network separately in a very efficient way.

Bibliography

[ACHH93] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid au-
tomata: An algorithmic approach to the specification and verification of
hybrid systems. In Hybrid systems, volume 736 of Lecture Notes in Com-
puter Science, pages 209–229. Springer, 1993.

[AHCN07] T. Akutsu, M. Hayashida, W.-K. Ching, and M. K. Ng. Control of Boolean
networks: Hardness results and algorithms for tree structured networks.
Journal of Theoretical Biology, 244(4):670–679, 2007.

[Ake78] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
100(6):509–516, 1978.

[AM11] A. Alfi and H. Modares. System identification and control using adap-
tive particle swarm optimization. Applied Mathematical Modelling,
35(3):1210–1221, 2011.

[Ana17] Clarivate Analytics. Metacore. https://clarivate.com/
products/metacore/, 2017.

[AO03] R. Albert and H. G. Othmer. The topology of the regulatory interactions
predicts the expression pattern of the segment polarity genes in Drosophila
melanogaster. Journal of Theoretical Biology, 223(1):1–18, 2003.

[AZH09] C. Auffray, C. Zhu, and L. Hood. Systems medicine: The future of medi-
cal genomics and healthcare. Genome Medicine, 1(1):2, 2009.

[BCB+16] J. Behaegel, J.-P. Comet, G. Bernot, E. Cornillon, and F. Delaunay. A
hybrid model of cell cycle in mammals. Journal of bioinformatics and
computational biology, 14(01):1640001, 2016.

[Ben10] Y. Benjamini. Simultaneous and selective inference: Current successes
and future challenges. Biometrical Journal, 52(6):708–721, 2010.

[BGL11] A. Barabási, N. Gulbahce, and J. Loscalzo. Network medicine: A
network-based approach to human disease. Nature Reviews Genetics,
12(1):56, 2011.

[BK96] F. Bause and P. Kritzinger. Stochastic petri nets. Verlag Vieweg, Wies-
baden, 26, 1996.

[BL16] E. Bartocci and P. Lió. Computational modeling, formal analysis, and
tools for systems biology. PLoS computational biology, 12(1):e1004591,
2016.

131

https://clarivate.com/products/metacore/
https://clarivate.com/products/metacore/

132 Bibliography

[BMW06] N. Black, S. Moore, and E. W. Weisstein. Gauss-seidel method. From
MathWorld-A Wolfram Web Resource, 2006. http://mathworld.
wolfram.com/Gauss-SeidelMethod.html.

[BMW14] N. Black, S. Moore, and E. W. Weisstein. Jacobi method. From
MathWorld–A Wolfram Web Resource, 2014. http://mathworld.
wolfram.com/JacobiMethod.html.

[Bor05] S. Bornholdt. Less is more in modeling large genetic networks. Science,
310(5747):449–451, 2005.

[CGH06] M. Calder, S. Gilmore, and J.. Hillston. Modelling the influence of
RKIP on the ERK signalling pathway using the stochastic process algebra
PEPA. Lecture Notes in Computer Science, 4230:1–23, 2006.

[CH07] I. R. Cohen and D. Harel. Explaining a complex living system: dynam-
ics, multi-scaling and emergence. Journal of the royal society interface,
4(13):175–182, 2007.

[CH09] F. Ciocchetta and J. Hillston. Bio-PEPA: A framework for the mod-
elling and analysis of biological systems. Theoretical Computer Science,
410(33-34):3065–3084, 2009.

[CQZ12] J. Cao, X. Qi, and H. Zhao. Modeling gene regulation networks using
ordinary differential equations. Next Generation Microarray Bioinfor-
matics: Methods and Protocols, pages 185–197, 2012.

[DFTdJV06] S. Drulhe, G. Ferrari-Trecate, H. de Jong, and A. Viari. Reconstruction
of switching thresholds in piecewise-affine models of genetic regulatory
networks. In International Workshop on Hybrid Systems: Computation
and Control, pages 184–199. Springer, 2006.

[DHRK07] A. S. Dhillon, S. Hagan, O. Rath, and W. Kolch. MAP kinase signalling
pathways in cancer. Oncogene, 26:3279–3290, 2007.

[dJR06] H. de Jong and D. Ropers. Strategies for dealing with incomplete infor-
mation in the modeling of molecular interaction networks. Briefings in
bioinformatics, 7(4):354–363, 2006.

[DMS+04] P. Dhar, T. C. Meng, S. Somani, L. Ye, A. Sairam, M. Chitre, Z. Hao, and
K. Sakharkar. Cellwarea multi-algorithmic software for computational
systems biology. Bioinformatics, 20(8):1319–1321, 2004.

[DPR08] L. Dematté, C. Priami, and A. Romanel. The Beta Workbench: a com-
putational tool to study the dynamics of biological systems. Briefings in
Bioinformatics, 9(5):437–449, 2008.

[DT11] E. Dubrova and M. Teslenko. A SAT-based algorithm for finding attrac-
tors in synchronous Boolean networks. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 8(5):1393–1399, 2011.

http://mathworld.wolfram.com/Gauss-SeidelMethod.html
http://mathworld.wolfram.com/Gauss-SeidelMethod.html
http://mathworld.wolfram.com/JacobiMethod.html
http://mathworld.wolfram.com/JacobiMethod.html

Bibliography 133

[DTM05] E. Dubrova, M. Teslenko, and A. Martinelli. Kauffman networks: Analy-
sis and applications. In Proc. 2005 IEEE/ACM International Conference
on Computer-Aided Design, pages 479–484. IEEE CS, 2005.

[Dun58] O. J. Dunn. Estimation of the means of dependent variables. The Annals
of Mathematical Statistics, pages 1095–1111, 1958.

[Dun61] O. J. Dunn. Multiple comparisons among means. Journal of the American
Statistical Association, 56(293):52–64, 1961.

[EP09] D. El Rabih and N. Pekergin. Statistical model checking using perfect
simulation. In Proc. 7th Symposium on Automated Technology for Verifi-
cation and Analysis, volume 5799 of LNCS, pages 120–134, 2009.

[FH07] J. Fisher and T. A. Henzinger. Executable cell biology. Nature Biotech-
nology, 25(11):1239–1249, 2007.

[FH10] J. Fisher and D. Harel. On Statecharts for Biology. Jones & Bartlett
Publishers, 2010.

[FHL+04] A. Finkelstein, J. Hetherington, L. Li, O. Margoninski, P. Saffrey, R. Sey-
mour, and A. Warner. Computational challenges of systems biology. Com-
puter, 37(5):26–33, 2004.

[FMKT03] A. Funahashi, M. Morohashi, H. Kitano, and N. Tanimura. Celldesigner:
a process diagram editor for gene-regulatory and biochemical networks.
Biosilico, 1(5):159–162, 2003.

[Gat10] D. Gatherer. So what do we really mean when we say that systems biology
is holistic? BMC Systems Biology, 4(1):22, 2010.

[GCBP+13] L. Grieco, L. Calzone, I. Bernard-Pierrot, F. Radvanyi, B. Kahn-Perles,
and D. Thieffry. Integrative modelling of the influence of MAPK
network on cancer cell fate decision. PLOS Computational Biology,
9(10):e1003286, 2013.

[GDCX+08] A. Garg, A. Di Cara, I. Xenarios, L. Mendoza, and G. De Micheli. Syn-
chronous versus asynchronous modeling of gene regulatory networks.
Bioinformatics, 24(17):1917–1925, 2008.

[GLDB14] J. Gao, Y.-Y. Liu, R. M. D’Souza, and A.-L. Barabási. Target control of
complex networks. Nature Communications, 5:5415, 2014.

[GMNF14] E. Garreta, E. Melo, D. Navajas, and R. Farr. Low oxygen tension en-
hances the generation of lung progenitor cells from mouse embryonic and
induced pluripotent stem cells. Physiological Reports, 2(2), 2014.

[Gou98] J. L. Gouzé. Positive and negative circuits in dynamical systems. Journal
of Biological Systems, 6(01):11–15, 1998.

[GPPQ09] M. L. Guerriero, D. Prandi, C. Priami, and P. Quaglia. Process calculi
abstractions for biology. Algorithmic Bioprocesses, pages 463–486, 2009.

134 Bibliography

[GR92] A. Gelman and D. B. Rubin. Inference from iterative simulation using
multiple sequences. Statistical Science, 7(4):457–472, 1992.

[GTT03] R. Ghosh, A. Tiwari, and C. Tomlin. Automated symbolic reachability
analysis; with application to delta-notch signaling automata. Hybrid Sys-
tems: Computation and Control, pages 233–248, 2003.

[GXMD07] A. Garg, L. Xenarios, L. Mendoza, and G. DeMicheli. An efficient
method for dynamic analysis of gene regulatory networks and in silico
gene perturbation experiments. In Proc. 11th Annual Conference on
Research in Computational Molecular Biology, volume 4453 of LNCS,
pages 62–76. Springer, 2007.

[GYW+14] W. Guo, G. Yang, W. Wu, L. He, and M. Sun. A parallel attractor finding
algorithm based on Boolean satisfiability for genetic regulatory networks.
PLOS ONE, 9(4):e94258, 2014.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science
of computer programming, 8(3):231–274, 1987.

[HK09] A. P. Heath and L. E. Kavraki. Computational challenges in systems bi-
ology. Computer Science Review, 3(1):1–17, 2009.

[HKN+08] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn.
Probabilistic model checking of complex biological pathways. Theoreti-
cal Computer Science, 391(3):239–257, 2008.

[Hop08] A. L. Hopkins. Network pharmacology: The next paradigm in drug dis-
covery. Nature Chemical Biology, 4(11):682–690, 2008.

[HSG+06] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal,
L. Xu, P. Mendes, and U. Kummer. COPASI: a COmplex PAthway SIm-
ulator. Bioinformatics, 22(24):30673074, 2006.

[Hua99] Sui Huang. Gene expression profiling, genetic networks, and cellular
states: An integrating concept for tumorigenesis and drug discovery. Jour-
nal of Molecular Medicine, 77(6):469–480, 1999.

[Hua01] Sui Huang. Genomics, complexity and drug discovery: Insights from
Boolean network models of cellular regulation. Pharmacogenomics,
2(3):203–222, 2001.

[IGH01] T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life:
Systems biology. Annual Review of Genomics and Human Genetics,
2(1):343–372, 2001.

[IM04] N. T. Ingolia and A. W. Murray. The ups and downs of modeling the cell
cycle. Current Biology, 14(18):R771–R777, 2004.

[Iro06] D. J. Irons. Improving the efficiency of attractor cycle identification
in Boolean networks. Physica D: Nonlinear Phenomena, 217(1):7–21,
2006.

Bibliography 135

[Jen87] K. Jensen. Coloured petri nets. In Petri nets: central models and their
properties, pages 248–299. Springer, 1987.

[Jr.81] R. G. Miller Jr. Simultaneous Statistical Inference. Springer, New York,
NY, 1981.

[Kau69a] S. A. Kauffman. Homeostasis and differentiation in random genetic con-
trol networks. Nature, 224:177–178, 1969.

[Kau69b] S. A. Kauffman. Metabolic stability and epigenesis in randomly con-
structed genetic nets. Journal of Theoretical Biology, 22(3):437–467,
1969.

[Kau93] S. A. Kauffman. The Origins of Order: Self-Organization and Selection
in Evolution. Oxford University Press, 1993.

[KBS15] H. Klarner, A. Bockmayr, and H. Siebert. Computing maximal and mini-
mal trap spaces of Boolean networks. Natural Computing, 14(4):535–544,
2015.

[KBSK09] J. Kielbassa, R. Bortfeldt, S. Schuster, and I. Koch. Modeling of the
U1 snRNP assembly pathway in alternative splicing in human cells using
Petri nets. Computational biology and chemistry, 33(1):46–61, 2009.

[KCH01] N. Kam, I. R. Cohen, and D. Harel. The immune system as a reactive
system: Modeling T-cell activation with statecharts. In Proc. Human-
Centric Computing Languages and Environments, pages 15–22. IEEE,
2001.

[KE95] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. IEEE
International Conference on Neural Networks, pages 1942–1948, 1995.

[KIM03] S. Y. Kim, S. Imoto, and S. Miyano. Inferring gene networks from time
series microarray data using dynamic Bayesian networks. Briefings in
bioinformatics, 4(3):228–235, 2003.

[Kit02] H. Kitano. Computational systems biology. Nature, 420(6912):206–210,
2002.

[KJH04] I. Koch, B. H. Junker, and M. Heiner. Application of Petri net theory for
modelling and validation of the sucrose breakdown pathway in the potato
tuber. Bioinformatics, 21(7):1219–1226, 2004.

[KN08] M. Krishna and H. Narang. The complexity of mitogen-activated protein
kinases (MAPKs) made simple. Cellular and Molecular Life Sciences,
65(22):3525–3544, 2008.

[KPQ11] M. Kwiatkowska, D. Parker, and H. Qu. Incremental quantitative verifica-
tion for Markov decision processes. In Proc. 41st IEEE/IFIP International
Conference on Dependable Systems & Networks, pages 359–370. IEEE,
2011.

136 Bibliography

[Lee59] C.-Y. Lee. Representation of switching circuits by binary-decision pro-
grams. Bell System Technical Journal, 38(4):985–999, 1959.

[LHSYH06] H. Lähdesmäki, S. Hautaniemi, I. Shmulevich, and O. Yli-Harja. Rela-
tionships between probabilistic Boolean networks and dynamic Bayesian
networks as models of gene regulatory networks. Signal Processing,
86(4):814–834, 2006.

[LLL+04] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang. The yeast cell-cycle
network is robustly designed. Proceedings of the National Academy of
Sciences of the United States of America, 101(14):4781–4786, 2004.

[LMP+14] R. Lintott, S. McMahon, K. Prise, C. Addie-Lagorio, and C. Shankland.
Using process algebra to model radiation induced bystander effects. In
Proc. 12th International Conference on Computational Methods in Sys-
tems Biology, pages 196–210. Springer, 2014.

[LPW09] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing
Times. American Mathematical Society, 2009.

[LQR15] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: An open-source model
checker for the verification of multi-agent systems. International Journal
on Software Tools for Technology Transfer, 2015.

[LS09] H. Lähdesmäki and I. Shmulevich. BN/PBN Toolbox. http://
code.google.com/p/pbn-matlab-toolbox, 2009. Accessed
2017 March 24.

[LSB11] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabasi. Controllability of complex
networks. Nature, 473(7346):167–173, 05 2011.

[LSG+06] C. Li, S. Suzuki, Q.W. Ge, M. Nakata, H. Matsuno, and S. Miyano. Struc-
tural modeling and analysis of signaling pathways based on Petri nets.
Journal of bioinformatics and computational biology, 4(05):1119–1140,
2006.

[Luc02] R. Luc. Dynamics of Boolean networks controlled by biologically mean-
ingful functions. Journal of Theoretical Biology, 218(3):331–341, 2002.

[ME95] W. Q. Meeker and L. A. Escobar. Teaching about approximate confidence
regions based on maximum likelihood estimation. The American Statisti-
cian, 49(1):48–53, 1995.

[MMB03] C. G Moles, P. Mendes, and J. R. Banga. Parameter estimation in
biochemical pathways: A comparison of global optimization methods.
Genome Research, 13(11):2467–2474, 2003.

[MML09] B. D. MacArthur, A. Ma’ayan, and I. R. Lemischka. Systems biology
of stem cell fate and cellular reprogramming. Nature Reviews Molecular
Cell Biology, 10(10):672–681, 2009.

http://code.google.com/p/pbn-matlab-toolbox
http://code.google.com/p/pbn-matlab-toolbox

Bibliography 137

[MPQY] A. Mizera, J. Pang, H. Qu, and Q. Yuan. Benchmark Boolean
networks. http://satoss.uni.lu/software/ASSA-PBN/
benchmark/attractor_syn.xlsx.

[MPQY18] A. Mizera, J. Pang, H. Qu, and Q. Yuan. Taming asynchrony for attractor
detection in large Boolean networks. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics (Special issue of 16th Asia Pacific
Bioinformatics Conference - APBC’18), 2018.

[MPY15] A. Mizera, J. Pang, and Q. Yuan. ASSA-PBN: An approximate steady-
state analyser of probabilistic Boolean networks. In Proc. 13th Interna-
tional Symposium on Automated Technology for Verification and Analysis,
volume 9364 of LNCS, pages 214–220. Springer, 2015.

[MPY16a] A. Mizera, J. Pang, and Q. Yuan. ASSA-PBN 2.0: A software tool for
probabilistic Boolean networks. In Proc. 14th International Conference
on Computational Methods in Systems Biology, volume 9859 of LNCS,
pages 309–315. Springer, 2016.

[MPY16b] A. Mizera, J. Pang, and Q. Yuan. Fast simulation of probabilistic Boolean
networks. In Proc. 14th International Conference on Computational
Methods in Systems Biology, volume 9859 of LNCS, pages 216–231.
Springer, 2016.

[MPY16c] A. Mizera, J. Pang, and Q. Yuan. GPU-accelerated steady-state computa-
tion of large probabilistic Boolean networks. In Proc. 2nd International
Symposium on Dependable Software Engineering: Theories, Tools, and
Applications, volume 9984 of LNCS, pages 50–66. Springer, 2016.

[MPY16d] A. Mizera, J. Pang, and Q. Yuan. Parallel approximate steady-state anal-
ysis of large probabilistic Boolean networks. In Proc. 31st ACM Sympo-
sium on Applied Computing, pages 1–8, 2016.

[MPY17] A. Mizera, J. Pang, and Q. Yuan. Reviving the two-state markov chain
approach. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 2017.

[MQPY17] A. Mizera, H. Qu, J. Pang, and Q. Yuan. A new decomposition method
for attractor detection in large synchronous Boolean networks. In Proc.
3rd International Symposium on Dependable Software Engineering: The-
ories, Tools, and Applications, 2017.

[MSL+11] F.-J. Müller, A. Schuppert, Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási.
Few inputs can reprogram biological networks/liu et al. reply. Nature,
478(7369):E4, 2011.

[Nor98] J. R. Norris. Markov Chains. Cambridge University Press, 1998.

[NRTC11] A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya. Dynamically consistent
reduction of logical regulatory graphs. Theoretical Computer Science,
412(21):2207–2218, 2011.

http://satoss.uni.lu/software/ASSA-PBN/benchmark/attractor_syn.xlsx
http://satoss.uni.lu/software/ASSA-PBN/benchmark/attractor_syn.xlsx

138 Bibliography

[OALH06] J. P. Overington, B. Al-Lazikani, and A. L. Hopkins. How many drug
targets are there? Nature Reviews Drug Discovery, 5(12):993–996, 2006.

[OGP02] I. M. Ong, J. D. Glasner, and D. Page. Modelling regulatory path-
ways in E. coli from time series expression profiles. Bioinformatics,
18(suppl 1):S241–S248, 2002.

[Pea14] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plau-
sible inference. Morgan Kaufmann, 2014.

[PMO95] E. Plahte, T. Mestl, and S. W. Omholt. Feedback loops, stability and
multistationarity in dynamical systems. Journal of Biological Systems,
3(02):409–413, 1995.

[PR08] C. A. Petri and W. Reisig. Petri net. Scholarpedia, 3(4):6477, 2008.
revision #91646.

[PRSS01] C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of
a stochastic name-passing calculus to representation and simulation of
molecular processes. Information processing letters, 80(1):25–31, 2001.

[PT10] M. F. Pera and P. P. Tam. Extrinsic regulation of pluripotent stem cells.
Nature, 465(7299):713, 2010.

[PW96] J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov
chains and applications to statistical mechanics. Random Structures &
Algorithms, 9(1):223–252, 1996.

[QD09] X. Qian and E. R. Dougherty. On the long-run sensitivity of probabilis-
tic Boolean networks. Journal of Theoretical Biology, 257(4):560–577,
2009.

[RC07] A. Richard and J.-P. Comet. Necessary conditions for multistationarity
in discrete dynamical systems. Discrete Applied Mathematics, 155:2403–
2413, 2007.

[RKM+09] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingm-
ller, and J. Timmer. Structural and practical identifiability analysis of
partially observed dynamical models by exploiting the profile likelihood.
Bioinformatics, 25(15):1923–1929, 2009.

[RL92] A. E. Raftery and S. Lewis. How many iterations in the Gibbs sampler?
Bayesian Statistics, 4:763–773, 1992.

[Roh13] C. Rohr. Simulative model checking of steady state and time-unbounded
temporal operators. Transactions on Petri Nets and Other Models of Con-
currency, 8:142–158, 2013.

[RR06] É. Remy and P. Ruet. On differentiation and homeostatic behaviours of
Boolean dynamical systems. Transactions Computational Systems Biol-
ogy VIII, 4230:153–162, 2006.

Bibliography 139

[RRT08] É. Remy, P. Ruet, and D. Thieffry. Graphic requirements for multistability
and attractive cycles in a Boolean dynamical framework. Advances in
Applied Mathematics, 41(3):335–350, 2008.

[SAA10] A. Saadatpour, I. Albert, and R. Albert. Attractor analysis of asyn-
chronous Boolean models of signal transduction networks. Journal of
Theoretical Biology, 266:641–656, 2010.

[SBSW06] L. J. Steggles, R. Banks, O. Shaw, and A. Wipat. Qualitatively modelling
and analysing genetic regulatory networks: a petri net approach. Bioin-
formatics, 23(3):336–343, 2006.

[SD10] I. Shmulevich and E. R. Dougherty. Probabilistic Boolean Networks: The
Modeling and Control of Gene Regulatory Networks. SIAM Press, 2010.

[SDKZ02] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic
Boolean networks: A rule-based uncertainty model for gene regulatory
networks. Bioinformatics, 18(2):261–274, 2002.

[SDZ02a] I. Shmulevich, E. R. Dougherty, and W. Zhang. Control of stationary
behavior in probabilistic Boolean networks by means of structural inter-
vention. Journal of Biological Systems, 10(04):431–445, 2002.

[SDZ02b] I. Shmulevich, E. R. Dougherty, and W. Zhang. From Boolean to proba-
bilistic Boolean networks as models of genetic regulatory networks. Pro-
ceedings of the IEEE, 90(11):1778–1792, 2002.

[SG01] R. Somogyi and L. D. Greller. The dynamics of molecular networks: Ap-
plications to therapeutic discovery. Drug Discovery Today, 6(24):1267–
1277, 2001.

[SGH+03] I. Shmulevich, I. Gluhovsky, R. F. Hashimoto, E. R. Dougherty, and
W. Zhang. Steady-state analysis of genetic regulatory networks mod-
elled by probabilistic Boolean networks. Comparative and Functional
Genomics, 4(6):601–608, 2003.

[SHF07] M. A. Schaub, T. A. Henzinger, and J. Fisher. Qualitative networks: a
symbolic approach to analyze biological signaling networks. BMC sys-
tems biology, 1(1):4, 2007.

[Shi09] Y. Shinya. Elite and stochastic models for induced pluripotent stem cell
generation. Nature, 460(7251):49, 2009.

[SHK06] A. Sackmann, M. Heiner, and I. Koch. Application of Petri net based
analysis techniques to signal transduction pathways. BMC bioinformatics,
7(1):482, 2006.

[SN10] Y.-J. Shin and M. Nourani. Statecharts for gene network modeling. PLoS
One, 5(2):e9376, 2010.

[SNC+17] E. Scott, J. Nicol, J. Coulter, A. Hoyle, and C. Shankland. Process algebra
with layers: Multi-scale integration modelling applied to cancer therapy
(forthcoming). In Proc. 13th International Conference on Computational
Intelligence methods for Bioinformatics and Biostatistics. Springer, 2017.

140 Bibliography

[Som15] F. Somenzi. CUDD: CU decision diagram package - release 2.5.1. http:
//vlsi.colorado.edu/˜fabio/CUDD/, 2015.

[Sou03] C. Soulé. Graphic requirements for multistationarity. ComPlexUs,
1(3):123–133, 2003.

[SP97] R. Storn and K. Price. Differential evolution–a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of Global Op-
timization, 11(4):341–359, 1997.

[SSV+09] R. Schlatter, K. Schmich, I. A. Vizcarra, P. Scheurich, T. Sauter,
C. Borner, M. Ederer, I. Merfort, and O. Sawodny. ON/OFF and be-
yond - a boolean model of apoptosis. PLOS Computational Biology,
5(12):e1000595, 2009.

[Sto96] R. Storn. On the usage of differential evolution for function optimization.
In Proc. Biennial Conference of the North American Fuzzy Information
Processing Society, pages 519–523, 1996.

[SVA05] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of
stochastic systems. In Proc. 17th Conference on Computer Aided Verifi-
cation, volume 3576 of LNCS, pages 266–280. Springer, 2005.

[Tho81] R. Thomas. On the relation between the logical structure of systems and
their ability to generate multiple steady states or sustained oscillations.
Springer series in Synergetics, 9:180–193, 1981.

[TK01] R. Thomas and M. Kaufman. Multistationarity, the basis of cell differ-
entiation and memory. ii. logical analysis of regulatory networks in terms
of feedback circuits. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 11(1):180–195, 2001.

[TMD+11] K. Tun, M. Menghini, L. D’Andrea, P. Dhar, H. Tanaka, and A. Giu-
liani. Why so few drug targets: A mathematical explanation? Current
Computer-aided Drug Design, 7(3):206–213, 2011.

[TMP+13] P. Trairatphisan, A. Mizera, J. Pang, A.-A. Tantar, J. Schneider, and
T. Sauter. Recent development and biomedical applications of probabilis-
tic Boolean networks. Cell Communication and Signaling, 11:46, 2013.

[TMP+14] P. Trairatphisan, A. Mizera, J. Pang, A.-A. Tantar, and T. Sauter. optPBN:
An optimisation toolbox for probabilistic Boolean networks. PLOS ONE,
9(7):e98001, 2014.

[TWLS08] A. Tafazzoli, J. R. Wilson, E. K. Lada, and N. M. Steiger. Skart: A
skewness- and autoregression-adjusted batch-means procedure for simu-
lation analysis. In Proc. 2008 Winter Simulation Conference, pages 387–
395, 2008.

[VCCW12] N. X. Vinh, M. Chetty, R. Coppel, and P. P. Wangikar. Gene regula-
tory network modeling via global optimization of high-order Dynamic
bayesian network. BMC bioinformatics, 13(1):131, 2012.

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

Bibliography 141

[VFC+08] G. Vahedi, B. Faryabi, J.-F. Chamberland, A. Datta, and E. R. Dougherty.
Intervention in gene regulatory networks via a stationary mean-first-
passage-time control policy. IEEE Transactions on Biomedical Engineer-
ing, 55(10):2319–2331, 2008.

[VM04] J.-M. Vincent and C. Marchand. On the exact simulation of functionals of
stationary Markov chains. Linear Algebra and its Applications., 385:285–
310, 2004.

[Wad57] C. H. Waddington. The strategy of the genes. George Allen & Unwin,
London, 1957.

[WAJ+13] O. Wolkenhauer, C. Auffray, R. Jaster, G. Steinhoff, and O. Dammann.
The road from systems biology to systems medicine. Pediatric Research,
73(2):502–7, 2013.

[Wal77] A. J. Walker. An efficient method for generating discrete random variables
with general distributions. ACM Transactions on Mathematical Software,
3(3):253–256, 1977.

[WMG08] S. Watterson, S. Marshall, and P. Ghazal. Logic models of pathway biol-
ogy. Drug discovery today, 13(9):447–456, 2008.

[WSA12] R.-S. Wang, A. Saadatpour, and R. Albert. Boolean modeling in systems
biology: An overview of methodology and applications. Physical Biology,
9(5):055001, 2012.

[You11] R. A. Young. Control of the embryonic stem cell state. Cell, 144(6):940–
954, 2011.

[YQPM16] Q. Yuan, H. Qu, J. Pang, and A. Mizera. Improving BDD-based attractor
detection for synchronous Boolean networks. Science China Information
Sciences, 59(8):080101, 2016.

[YS02] H. L. S. Younes and R. G. Simmons. Probabilistic verification of dis-
crete event systems using acceptance sampling. In Proc. 14th Conference
on Computer Aided Verification, volume 2404 of LNCS, pages 223–235.
Springer, 2002.

[ZC04] M. Zou and S. D. Conzen. A new dynamic Bayesian network (DBN)
approach for identifying gene regulatory networks from time course mi-
croarray data. Bioinformatics, 21(1):71–79, 2004.

[ZKF13] Y. Zhao, J. Kim, and M. Filippone. Aggregation algorithm towards large-
scale Boolean network analysis. IEEE Transactions on Automatic Con-
trol, 58(8):1976–1985, 2013.

[ZOS03] I. Zevedei-Oancea and S. Schuster. Topological analysis of metabolic
networks based on Petri net theory. In silico biology, 3(3):323–345, 2003.

[ZYL+13] D. Zheng, G. Yang, X. Li, Z. Wang, F. Liu, and L. He. An efficient algo-
rithm for computing attractors of synchronous and asynchronous Boolean
networks. PLOS ONE, 8(4):e60593, 2013.

Curriculum Vitae

2014 – 2018 Ph.D. student, University of Luxembourg.
2009 – 2012 Master of Computer Science, Shandong University, China.
2010 – 2011 Master of Computer Science, University of Luxembourg.
2005 – 2009 Bachelor of Software Engineering, Shandong University, China

Born on December 28, 1986, Shandong, China.

143

	Introduction
	Attractors in Systems Biology
	Research Problems
	Modelling of Biological Networks
	Addressing Research Problems with Boolean Models
	Attractor Detection in Large Boolean Models
	Steady-state Probabilities Computation in Large Boolean Models.

	Thesis Overview

	Preliminaries
	Finite discrete-time Markov chains (DTMCs)
	Boolean Networks
	Probabilistic Boolean Networks (PBNs)

	I Attractor Detection
	Attractor Detection in Asynchronous Networks
	Introduction
	Related Work
	An SCC-based Decomposition Method
	Decomposing a BN into Blocks
	Detecting Attractors in Blocks
	Recovering Attractors of the Original BN

	Implementation
	Encoding BNs in BDDs
	A BDD-based Attractor Detection Algorithm
	An SCC-based Decomposition Algorithm

	Evaluation
	Discussions and Future Work

	Attractor Detection in Synchronous Networks
	Introduction
	An SCC-based Decomposition Method
	Decomposition of a BN
	Detection of Attractors in a Block
	Recovery of Attractors for the Original BN

	A BDD-based Implementation
	An Optimisation

	Experimental Results
	Conclusion and Future Work

	II Steady-state Computation
	Efficient Steady-state Computation
	The Two-state Markov Chain Approach
	Two-state Markov Chain Approach: The Initialisation Problem
	Evaluation
	The Skart Method
	Performance Evaluation

	A Biological Case study
	Preliminaries of Steady-state Analysis
	An Apoptosis Network

	Discussions and Conclusion
	Derivation of Formulas
	Derivation of the Number of ``Burn-in'' Iterations
	Derivation of the Sample Size
	Derivation of the Asymptotic Variance
	`Pitfall Avoidance' Heuristic Method: Formula Derivations

	Multiple-core Based Parallel Steady-state Computation
	GPU Architecture
	PBN Simulation in a GPU
	Trajectory-level Parallelisation
	Data Arrangement
	Data Optimisation
	Node-reordering for Large and Dense Networks

	Strongly Connected Component (SCC)-based Network Reduction
	Evaluation
	Randomly Generated Networks
	Performance of SCC-based Network Reduction
	An Apoptosis Network

	Conclusion and Discussions

	Structure-based Parallel Steady-state Computation
	Structure-based Parallelisation
	Removing Unnecessary Nodes
	Performing Perturbations in Parallel
	Updating Nodes in Parallel
	The New Simulation Method

	Evaluation
	Randomly Generated Networks
	An Apoptosis Network

	Conclusion

	III The Tool for Steady-state Analysis
	ASSA-PBN: a Software Tool for Probabilistic Boolean Networks
	Toolbox Architecture
	Modeller
	Simulator
	Analyser
	Computation of Steady-state Probabilities
	Parameter Estimation
	Long-run Influence and Sensitivity
	Towards Parameter Identifiability Analysis

	Multiple Probabilities Problem

	Conclusion and Future Work
	Conclusion
	Future Work
	Controllability of BNs
	Decomposition of BNs

	Bibliography
	Curriculum Vitae

