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Abstract—The mixed-criticality toolbox promises system
architects a powerful framework for consolidating real-time
tasks with different safety properties on a single computing
platform. Thanks to the research efforts in the mixed-criticality
field, guarantees provided to the highest criticality level are well
understood. However, lower-criticality job execution depends
on the condition that all high-criticality jobs complete within
their more optimistic low-criticality execution time bounds.
Otherwise, no guarantees are made. In this paper, we add to the
mixed-criticality toolbox by providing a probabilistic analysis
method for low-criticality tasks. While deterministic models
reduce task behavior to constant numbers, probabilistic analysis
captures varying runtime behavior. We introduce a novel
algorithmic approach for probabilistic timing analysis, which we
call symbolic scheduling. For restricted task sets, we also present
an analytical solution. We use this method to calculate per-job
success probabilities for low-criticality tasks, in order to quantify,
how low-criticality tasks behave in case of high-criticality jobs
overrunning their optimistic low-criticality reservation.

I. INTRODUCTION

Mixed-criticality systems [1] promise size, weight and power
savings by consolidating safety-critical tasks with different certi-
fication requirements on a single computing platform. Examples
can be found in many traditional and emerging application
scenarios. To formalize such systems and to reason about their
behavioral properties, mixed-criticality was invented. It allows
designers to rank tasks by criticality levels, which expresses
the confidence in task parameters such as worst-case execution
times and also indicates, which tasks to drop in case a subset
of these task parameters are violated at runtime. Highly critical
tasks with high parameter confidence can then be isolated
from lower-criticality tasks with relaxed parameter confidence.
System designers can use this formalism to meet two otherwise
competing goals: criticality levels provide the separation
needed for safe operation, while the admission of low-criticality
tasks according to more optimistic task parameters provides
the resource sharing needed for efficient operation.

A large body of research has explored many aspects of
the mixed-criticality toolbox [2]. In this paper, we contribute
new analysis results for the following mixed-criticality
scheduling discipline: When a high-criticality job overruns
its more optimistic low-criticality execution time bound,
all low-criticality tasks drop in priority, so any task with
higher criticality takes precedence. Demoting the priority of
low-criticality tasks constitutes a straightforward extension of

the classical Adaptive Mixed-Criticality (AMC) [3] scheduling
discipline, which drops low-criticality jobs altogether after an
execution time overrun of a high-criticality job.

Classical mixed-criticality scheduling is based on
deterministic worst-case assumptions, which are pessimistic,
because at runtime job parameters are rarely constant, but
follow a distribution. We present a probabilistic analysis
method to capture such varying job behavior. Our task model
expresses job execution using a pWCET distribution. We
describe the task model in Section III.

In this paper, we make the following contributions:
1) We present an algorithmic approach for probabilistic

timing analysis of per-job behavior in mixed-criticality
systems, which we call symbolic scheduling (Section IV).
For restricted task sets with criticality-monotonic priority
assignment and harmonic periods, we also present an
analytical solution (Section V).

2) We use this analysis to quantify how low-criticality
tasks behave in case of high-criticality jobs overrunning
their optimistic low-criticality reservation. We calculate
probabilities p for jobs of low-criticality tasks meeting their
deadline when the system operates in high criticality mode.

In Section VI, we evaluate our analysis using randomly
generated task sets. We show that our probabilistic analysis
can quantify the low-criticality task execution. These success
probabilities can, for example, be used for a more permissive
admission test that requires only a given percentage q of jobs
to succeed in low criticality mode.

II. RELATED WORK

Lehoczky [4] was first to characterize execution times as
random variables and to describe them through probability
density functions. However, as realized by Griffin and Burns [5],
modern processor architectures often violate the independence
assumptions required for scheduling based on probabilistic exe-
cution times to remain mathematically tractable. Recent works
on probabilistic worst-case execution times (pWCET) [6], [7],
[8], [9], [10], [11], [12] thus describe the confidence in WCET
estimates of a task as the exceedance probability derived from
the generalized extreme-value distribution of observed maxima.

Different methods to derive probabilistic representations of
execution time have been explored. For example, Yue et al. [13]
present a technique based on random sampling for determining
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pWCETs. Iverson et al. [14] suggest a purely statistical
analysis, whereas David and Puaut [15] propose a combined
static and measurement-based analysis.

Statistical and probabilistic techniques have been used
for real-time analysis in the past. Atlas and Bestavros [16]
calculate task success rates when exact execution times are
known at the release instant. Guo et al. [17] perform admission
tests under given failure probabilities. Hamann et al. [18],
[19] extend imprecise computations [20] to derive budgets for
optional parts that guarantee a certain completion probability.

Recent work on probabilistic mixed-criticality analysis by
Maxim et al. [21] calculates worst-case response times (WCRT)
for static and adaptive mixed-criticality scheduling based on
critical instant analysis. However, WCRT alone is an inadequate
quality metric for a mixed-criticality schedule. After a criticality
switch to high-criticality mode, the low-criticality job following
the critical instant may never execute, whereas all following
jobs of the same task could always be successful. Therefore, a
success probability based on WCRT is arbitrarily pessimistic.

Our work extends this analysis by calculating success
probabilities for every job individually and aggregating them to
a per-task value that is less pessimistic. We propose symbolic
scheduling, which can be viewed as a specialized form of
probabilistic model checking.

III. TASK MODEL

In his seminal work, Vestal proposed to describe tasks
with different certification requirements through vectors of
increasingly pessimistic scheduling parameters [1]. Admission
and scheduling must ensure that a higher-criticality task
failing to meet the more optimistic requirements from a lower
certification level can still meet its deadline when it adheres
to the more pessimistic parameters at its high certification
level. Baruah et al. coined the term certification-cognizant
scheduling [22] for this interpretation of the mixed-criticality
framework. Our paper follows this interpretation.

In the standard deterministic model, a task τ “

pT,D,L,C p`qq is assumed strictly periodic with period T , a
relative deadline D, a criticality level L and a worst-case execu-
tion time (WCET) Cp`q for each criticality level ` ď L. These
WCETs must satisfy Cp`1q ď Cp`2q for `1 ď `2. Our analysis
does not restrict the number of criticality levels or the relation
of T and D, so D ě T is possible. To simplify the presentation,
we only discuss the dual criticality case, with the two criticality
levels named LO and HI . Other research also considers
criticality-dependent interrelease times [23] or deadlines [24].
We limit ourselves to criticality-dependent execution times.

We extend the standard task model to a probabilistic one
similar to Maxim et al. [21]. In addition to the above parameters,
each task is described by a probabilistic worst case execution
time (pWCET) X . The CDF of this random variable describes
the probability for a job to not exceed a given execution time
bound, which allows us to compute probabilistic guarantees
for low-criticality jobs. We write X “ r2 : 0.8, 5 : 0.2s, e.g.,
meaning that with a probability of 0.8 the job will have

finished executing until 2 time units, and with a probability
of 0.2 it may exceed 2 time units and take up to 5 time units.

We assume an active enforcement of execution times by the
runtime system. Whenever an execution time bound or deadline
is reached, the system aborts jobs or drops them in priority.
Whenever a LO-criticality job executes beyond CpLOq, it
is aborted. CpHIq is therefore not meaningful for LO-jobs.
Whenever a HI-criticality job exceeds its CpLOq execution
time, the system switches to HI-criticality mode. We call this
situation criticality miss. As part of this mode switch, the prior-
ities of all current and future LO-jobs are changed such that all
HI jobs dominate all LO-jobs. We allow switching back from
HI mode to LO mode only at a simultaneous release instant
at the beginning of a hyperperiod. Protocols allowing earlier
recovery have been presented [25], but are not considered here.

IV. SYMBOLIC SCHEDULING

We propose the concept of symbolic scheduling, which
we present here and which we have implemented1. Symbolic
scheduling draws on ideas from actual runtime scheduling,
in that it tracks runs of jobs along a time axis to figure out
which meet their deadline. Unlike a scheduler, though, it does
not observe concrete execution times, but it keeps track of
possible executions and their probabilities.

Given a set of tasks as described in Section III, there is
a conceptually simple but computationally expensive way
to analyze the behavior of each job: Try every possible
combination of execution times, and keep track of the
respective probabilities. This leads to a tree, where each path
from the root to a leaf is a possible execution trace of the
system, and each node branches into as many subtrees as the
respective job has possible values for its execution. The obvious
disadvantage is that this tree will grow huge, and that many
paths through it will be equivalent for practical purposes. Such
equivalent paths may differ in execution times, but agree in
the succession of jobs and them finishing before their deadline.
Symbolic scheduling takes advantage of these equivalences
by trying to merge branches that only differ in timings, but
not in the jobs’ order and success. More precisely, it does not
branch unless there is an immediate and important difference.
However, depending on taskset parameters our current
implementation can take multiple hours to produce a result.

A. Example

Consider the following example with two tasks:

τ1 : T “ D “ 8, X “ r2 : 0.8, 5 : 0.2s

τ2 : T “ D “ 16, X “ r1 : 0.6, 11 : 0.4s

We ignore criticality for now, so we can ignore L and C. The
two Jobs of task τ1 that run in the first hyperperiod are called
J11 and J12, the job of τ2 is called J21.

Assuming EDF scheduling, the symbolic scheduler starts at
time t “ 0 and first select job J11. Since it is a job of the task
of highest priority, it will run until completion at either time

1https://github.com/mkuettler/symbolic-scheduler
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Figure 1. Event tree for the example in IV-A

2 or 5. Note that these two cases only differ in their time of
occurrence and probability — the ready jobs and completed jobs
are exactly the same. Thus we do not want to distinguish these
cases as different timelines, because the full combinatorial tree
that would ensue is prohibitively huge. Instead, the symbolic
scheduler represents the current time using (partial) distribu-
tions: after scheduling J11 we are at time t “ r2 : 0.8, 5 : 0.2s.
These distributions describe the probability of the currently
investigated situation. Note that the accumulated probability
of such a partial distribution can be less than 1.

Next, job J21 runs. The total runtime of these first two jobs
can be 3, 6, 13, or 16. Only the first two results are possible
times for J21 to complete, because J12 becomes ready at time
8 and will interrupt J21 if it is still running. Thus, the symbolic
scheduler needs to branch into two different possible timelines.

Like before, we do not want to branch needlessly. We only
need to distinguish whether J21 finishes before J12 arrives. If it
does — i.e., when J21 executes only for 1 time unit — we are at
time t “ r3 : 0.48, 6 : 0.12s, with J12 as the only job left. The
scheduler will wait until the arrival of J12 at 8, which leaves us
at t “ r8 : 0.6s, since the total probability is 0.6 “ 0.48`0.12.
Then J12 can run, and finishes at t “ r10 : 0.48, 13 : 0.12s.
This trace corresponds to the topmost branches in Figure 1.

If J21 does not finish before J12 arrives, it is interrupted
at t “ r8 : 0.4s, because J12 has higher priority. But J21 is
not done yet and still remains in the list of ready jobs. It
ran for r6 : 0.8, 3 : 0.2s time units already, so the remaining
time is r5 : 0.8, 8 : 0.2s. Now J12 runs to completion at
t “ r10 : 0.32, 13 : 0.08s. After that the remaining part of J21
is scheduled, and runs until r15 : 0.256, 18 : 0.128, 21 : 0.016s.
But since the deadline of J21 is at 16, the job will finish
successfully with a probability of 0.256, and miss its deadline
with probability 0.128 ` 0.016 “ 0.144. This simplified
example illustrates the main concept of symbolic scheduling. To
give a formal description we need to introduce some notation.

B. Notation

Let d, d1, d2 be potentially partial distributions, and x be
a number.
‚ d1 ` d2 denotes the convolution of d1 and d2.
‚ d è x is the part of d that lies to the left of x, including
x. Conversely, d é x is the part of d that lies to the right
of x, excluding x.

‚ sumpdq denotes the total probability of all values of d. Thus
sumpdq “ sumpd è xq ` sumpd é xq for all d and x.

‚ d1 Y d2 is defined to be the distribution that contains all
the points in d1 and d2, with their respective probabilities.

Algorithm 1 Symbolic Scheduling without criticality misses

1 function sym_sched(t, jobs) {
2 J = next_job(jobs)
3 if J is None: return
4 t = t � J.release
5 s = next_sched_event(jobs)
6 t1 = (t + J.X) è s
7 t2 = (t + J.X) é s
8 if not empty(t1) {
9 J.success += sum(t1)

10 new_jobs = jobs.remove(J)
11 sym_sched(t1, new_jobs)
12 }
13 if not empty(t2) {
14 diff = sum(t2)-sum(t é s)
15 t_next = (t é s) Y [s: diff]
16 new_jobs = jobs.remove(J)
17 if s ‰ J.deadline {
18 elapsed = (s-time) � 0
19 J.X = (J.X - elapsed) é 0
20 J.X = normalize(J.X)
21 new_jobs.insert(J)
22 }
23 sym_sched(t_next, new_jobs)
24 }
25 }

Hence sumpd1 Y d2q “ sumpd1q ` sumpd2q, which must
be ď 1 for this operation to make sense.

‚ d� x :“ pd é xq Y rx : sumpd è xqs
With this notation, we can formally describe symbolic schedul-
ing for the simplified scenario where criticality misses do not
change job priorities, i.e., priorities are criticality monotonic.
The general formulation is more complex and due to spatial
constraints, we refer the reader to our technical report [26].

C. Simplified Formal Description

Let t be the current time distribution, and J the next job,
i.e., the ready job with the highest priority. Let s be the time
of the next scheduling event, i.e., either the deadline of J or
the release of a job with higher priority. Note that s is not
a distribution, but a scalar value. To calculate the next time
point tnext, there are two cases to consider:
‚ J finishes before s: tnext “ pt`XpJqq è s.
‚ J does not finish before s. Intuitively, tnext should be
rs : sumppt`XpJqq é sqs, like in the example above. But
that only works if t ď s (i.e. t é s is empty), otherwise the
next time point would lie in the past. Branching into two
different timelines would be an option, but for performance
reasons we want to reduce branches. Instead, we can handle
this case as follows:

tnext “ t é sY
“

s : sum
`

pt`XpJqq é s
˘

´ sumpt é sq
‰

.

In this case J is not done, so unless s is its deadline it must
be kept in the list of ready jobs. But to account for the time it
did run, its remaining execution time must be set to pXpJq´
pps´ tq� 0qq é 0, normalized to total probability of 1.

The algorithm is shown in Algorithm 1. Starting at t “ 0, it
selects the ready job with the highest priority, and, for each of
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Als deutlich aufwendiger erweist sich der entgegengesetzte Fall, daß die Perioden aller L-Tasks 
höchstens gleich h sind. Die Erfolgswahrscheinlichkeit eines Jobs einer L-Task (kurz: eines L-Jobs) 
hängt offenbar von der Lage dieses Jobs in der Hyperperiode der betrachteten Taskmenge ab. Wir 
bezeichnen diese Lage als Phase � und beginnen die Zählung mit 0 (dies vereinfacht die Indizie-
rung in den späteren Formeln). Phase f eines Jobs der L-Task Tm+j beginnt also mit dessen Release-
Zeit (Periodenanfang) f� am+j und endet mit seiner Deadline (Periodenende) (f + 1)�am+j (s. Abb. 1 
mit zwei H-Tasks T1, T2 und einer L-Task T3 sowie  a1 = 2,  a2 = 12,  a3 = 4).  

 

  

 

 

Abb. 1. Jobphasen einer L-Task und Restlaufzeit       des H-Jobs von T2 am Beginn von Phase 1 der 
L-Task  

 
Entscheidend für die Berechnung der Erfolgswahrscheinlichkeiten der L-Jobs ist die Ermittlung 
einerseits des Zeitbedarfs aller H-Tasks während einer Phase, andererseits der Restlaufzeiten der 
Jobs derjenigen H-Tasks, deren Perioden länger sind als die des aktuell betrachteten L-Jobs und die 
damit bei früherem Beginn in dessen Periode hineinreichen (s. Abb. 1); man beachte, daß selbstver-
ständlich auch jede solche Restlaufzeit eine Zufallsgröße ist und damit eine Realisierung (ein kon-
kreter Job) bereits in Phase 1 enden oder auch gänzlich wegfallen kann. Wir beginnen wieder mit 
dem einfacheren Fall, daß das System nur eine einzige L-Task (neben mehreren H-Tasks) enthält. 
Es sei also  

2. am+1 < h,  n = 1  
Abb. 2 zeigt beispielhaft die allgemeine Situation und illustriert das Vorgehen. Zu berechnen sind 
die Gesamtrechenzeit aller H-Tasks während einer Phase der L-Task sowie die jeweils verbleiben-
den Restlaufzeiten der H-Jobs am Beginn der folgenden Phase, woraus dann die Erfolgswahr-
scheinlichkeiten der L-Jobs folgen. Die Berechnungen nehmen wir in „Schedule-Scheiben“  mit der 
Länge am+1 vor. Wir ermitteln dazu stufenweise folgende Größen (s. Abb. 2): 
� Z Zeitbedarf aller H-Tasks ohne Restlaufzeit während Phase f der L-Task Tm+1  
� Zif Zeitbedarf aller H-Tasks T1,…,Ti während Phase f   
� Rif Restlaufzeit des aktuellen Jobs von Ti am Beginn von Phase f von Tm+1   
� pf Erfolgswahrscheinlichkeit für einen Job von Tm+1 in Phase f.  
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Figure 2. Job Phases and Remaining Execution Time

the two cases, updates the time and ready list, and repeats. In a
general mixed-critically system there is one additional case to
consider: A job may trigger a critically miss, i.e., it may overrun
its CpLOq, thus causing the system to switch to HI-mode. This
situation can be covered by a third branch to be followed and
analyzed. We present more details in the technical report [26].

V. ANALYTICAL SOLUTION

For determining per-job success probabilities analytically,
we first restrict the task model to allow reasonable calculation
effort and formula complexity. We consider systems with
implicit deadlines and harmonic periods, consisting of m
HI-tasks τi and n LO-tasks τm`j . The scheduling algorithm
uses criticality-monotonic priority assignment: Tasks are
assigned a static priority, such that all HI-tasks dominate
all LO-tasks, thus forming two priority bands. Within each
band, rate monotonic priority assignment is used. A criticality
miss is thus inconsequential. The typical approach to switch
back from HI to LO-mode at processor idle time results in
LO-jobs always being executed as soon as the processor is
done executing HI jobs.

Due to limited space, we again only sketch the central case,
which would entail further special cases described in the techni-
cal report [26]. The central case is characterized by all LO-tasks
having period lengths at most the length of the hyperperiod
of the HI-tasks, hence Tm`n ď Tm. Clearly, the success
probability pj of a job of task τm`j depends on its position
within this hyperperiod. We call this position the job’s phase
ϕ, counting from 0 as shown in Figure 2 for two HI-tasks τ1,
τ2 and one LO-task τ3, as well as T1 “ 2, T2 “ 12, T3 “ 4.

Crucial for determining pj is the calculation of the time
demanded by all HI-tasks within one phase as well as the
remaining execution times of those HI jobs, whose period
exceeds that of the currently considered LO job. According to
Figure 2, those HI jobs start earlier, but extend into the phase
of the considered LO job. Any such remaining execution
time is also a random variable, so a concrete realization may
already finish in phase ϕ “ 1.

Analyzing the highest priority LO-task τm`1 is comparably
simple: The calculation is performed in schedule slices of
length Tm`1. Unfortunately, applying the same idea to all
lower priority LO-tasks is dangerously misleading, because
remaining execution times or remaining processor capacity
across multiple phases are not stochastically independent. A
formal description must be based on conditional probabilities,
which can be calculated by distinction of multiple cases.

Similar to the symbolic scheduler, we employ event trees to
solve this problem. We continue in two steps.

In step one, we construct the event tree Ã0 describing all
HI-tasks in schedule slices of length Tm`1. Nodes of this
tree are random variables A with the intuitive meaning ‘total
execution time of all HI-tasks minus period length’. Formally,
the semantics is as follows: For A “ a with a ě 0, the highest
priority LO-task receives a processor capacity of a within the
respective phase and no remaining execution time of HI-jobs
occurs. In case a ă 0, the processor is completely occupied by
the HI-tasks, which further contribute a remaining execution
time of ´a. Edges within the tree are annotated with the
probabilities of the respective case.

We denote the resulting random variables Ar1...rϕ
0ϕ , with

ϕ being the phase of τm`1 and r1, . . . , rϕ the remaining
execution times occurring up until this phase. We call this
sequence the history H of A0ϕ. For the HI-tasks within phase
ϕ “ 0 of τm`1 we have A00 “ Tm`1 ´

řn
i“1Xi, which

determines the root node of the event tree. For the general case
we observe that a remaining execution time r ă Tm`1 leaves us
with a remaining processor capacity of Tm`1´ r. This amount
is reduced by the time demand of all HI-jobs that are released
at the beginning of this phase. This conclusion also applies
to r ě Tm`1, which can anyways lead to further remaining
execution time which is carried onward into the next phase.

Lemma. After execution of all HI-jobs, the highest
priority LO-task receives processor capacity in phase
ϕ “ 0, . . . , Tm{Tm`1 depending on remaining execution times
r1, . . . rϕ´1, r of the preceding phases:

A
r1...rϕ´1r
0ϕ “ A

r1...rϕ´10
0ϕ ´ r with

A
r1...rϕ´10
0ϕ “ Tm`1 ´

ÿ

i:
ϕTm`1

Ti
PN

Xi

In the second step, we calculate the corresponding random
variables for all other LO-tasks, resulting in success probabili-
ties for each LO-job. We begin with the case of A00 assuming
a negative value, meaning that the CPU is already fully loaded
with an available capacity of 0. The first job of LO-task τm`1 is
therefore not running, thus having success probability p10 “ 0.
Remaining execution times represented by A00 remain un-
changed. In the other case, the value a of A00´Xm`1 describes,
whether the LO-job is successful (a ě 0) or unsuccessful
(a ă 0). Unsuccessful execution does not add to the value
of p10 and no more processor time is available. Hence, those
values are replaced with 0. Because LO-jobs are discarded
at the end of their period, they do not contribute remaining
execution time and the event tree Ã0 remains unchanged. To
consider cases with remaining execution being carried into the
current phase, the event tree needs to be transformed for the
highest-priority LO-task and aggregation for all lower-priority
LO-tasks as well as modification of node random variables are
required. We summarize those consequences in the following:
‚ For a discrete random variable Z with negative values,

we form a partial distribution: Let Zp0q be the partial
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distribution containing all non-negative values of Z. Further,
let Zprq for r ą 0 be the partial distribution solely containing
the value r if Z contains the value ´r. In both cases, the
respective probabilities are copied from Z unchanged.

‚ The tree Ã0 is transformed into the tree A0 by splitting
the root node A00 into nodes A00prq, analogously for all
non-root nodes.

‚ For the highest-priority LO-task τm`1, partial distributions
are calculated:

BH
1ϕprq “ AH

0ϕprq ´Xm`1

Summation leads to the success probability of a LO-job in
phase ϕ. Now BH

1ϕprq is transformed into the final partial
distribution AH

1ϕprq by replacing negative values in BH
1ϕprq

with 0 and accumulating the accompanying probabilities.
We end up with a tree A1, which is structurally identical
to A0, but the distributions kept at the nodes have changed.
For every phase of τm`1 we receive a probability based
on the corresponding history H . Determining the success
probabilities p1ϕ requires weighing those values with the
product of the probabilities along the path from the root node
to the considered leaf node.

For all further LO-tasks, we can continue in the same
manner. The stochastic independence of execution times in
successive phases is guaranteed by the separation into distinct
cases in the event tree. Therefore, connected random variables
can be added, causing related phases of A1 to be aggregated,
which leads to a new tree A2.

For a generalized formulation, let qHjϕprq be the probability
along the path from the root of the tree Aj to the considered
leaf node and let the parameter r of AH

jϕprq be called the
state of the job. Then:

Proposition. In case Tm`n ď Tm, the success probability
pHjϕprq of a job from LO-task τm`j in state r within phase ϕ
and with history H for ϕ “ 0, . . . , Tm{Tm`j´1, j “ 1, . . . , n is

pHjϕprq “ PrpBH
jϕprq ě 0q

with
BH

1ϕprq “ AH
0ϕprq ´Xm`1,

BH
jϕprq “

qj
ÿ

k“0

AH
j,qjϕ`kprq ´Xm`j ,

for qj “ Tm`j{Tm`j´1.

The final success probability of a job from LO-task τm`j in
phase ϕ follows:

pjϕ “
ÿ

H,r

qHjϕprq ¨ p
H
jϕprq.

Further,
AH

jϕprq “

qj
ÿ

k“0

AH
j,qjϕ`kprq´Xm`j

(operator ´ denotes non-negative subtraction).

An aggregated success probability pj for LO-task τm`j

can be given as

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

utilization

pr
ob

ab
ili

ty

Figure 3. Average job success probability (red) and first job success
probability (blue) for RMS in bands
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Figure 4. Average job success probability (red) and first job success
probability (blue) for EDF

pj “
1

Tm{Tm`j

Tm{Tm`j´1
ÿ

ϕ“0

pjϕ

using the assumption that phases occur uniformly distributed.

VI. EVALUATION

In this section we show preliminary results of our per-job
analysis of LO-tasks in mixed criticality systems. We determine
success probabilities of LO-job execution. We compare our
analysis results to critical instant response time analysis.

A. Task Generation

We chose D “ T from a list of 7 values that roughly follow
a log-uniform distribution between 15 and 1000. CpLOq is
determined from a utilization generated by the UUnifast algo-
rithm [27]. We vary the total utilization (see below). Tasksets
have two criticality levels LO and HI , the chance for a task to
have HI criticality is 50%. In this case CpHIq “ 1.6CpLOq.

The pWCET distribution of each task can take values
between 0.6CpLOq and CpLOq (for LO-tasks) or CpHIq
(for HI-tasks). Values are uniformly spaced with a distance
of 0.2CpLOq, thus there are 3 values in LO-task distributions
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and 6 values in HI-task distributions. The corresponding
probabilities start at 0.5 for 0.6CpLOq and are halved at each
step except the last (so that the sum is 1). This way the pWCET
distributions approximates an exponential tail distribution.

B. Results

For each utilization in 0.1, 0.2, . . . , 0.9 we generated 100
tasksets. They were scheduled twice, once with criticality-
monotonic priorities and rate-monotonic ordering within each
criticality band (Figure 3), and once with bands determined by
the system criticality level (jobs of at least that criticality in the
upper, all other in the lower band) and EDF priorities within the
bands (Figure 4). In both figures, red marks denote aggregate
task success probabilities, i.e., the average success probability
across all jobs of a task, and blue marks denote the success prob-
ability at the critical instant (at time 0 in these examples). Marks
are transparent to illustrate their distribution, crosses show the
average within each column. Only LO jobs were considered in
both plots, as high jobs must always finish in a valid schedule.

In Figure 3, where priorities are static, critical instant
probabilities are a — sometimes very pessimistic — lower
bound of the average probability. When priorities depend on
the system criticality however, as in Figure 4, the critical
instant with standard criticality does not provide a lower bound.

VII. CONCLUSION

In this work, we propose a new method for probabilistic
analysis of low-criticality tasks. We implement our approach
using symbolic scheduling. For restricted task sets, we also
present an analytical solution. We use our analysis to show
first results on success probabilities of low-criticality tasks
after a criticality miss. We believe our analysis provides a
useful new tool to designers of mixed-criticality systems.
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