
Improving Security for Time-Triggered Real-Time
Systems against Timing Inference Based Attacks by

Schedule Obfuscation
Kristin Krüger, Gerhard Fohler

Technische Universität Kaiserslautern, Germany
{krueger, fohler}@eit.uni-kl.de

Marcus Völp
SnT - Université du Luxembourg

marcus.voelp@uni.lu

Abstract—Covert timing channels in real-time systems allow
adversaries to not only exfiltrate application secrets but also to
mount timing inference based attacks. Much effort has been put
into improving real-time system predictability with the additional
benefit of reducing the former class of confidentiality attacks.
However, the more predictable the system behaves, the easier tim-
ing inference based attacks become. Time-triggered scheduling
is particularly vulnerable to these types of attacks due to offline
constructed tables that are scheduled with clock synchronization
and OS-timer predictability. In this paper, we obfuscate time-
triggered scheduling to complicate timing inference based attacks
while maintaining strong protection against exfiltration attacks.

I. APPLICATION DOMAIN & CHALLENGE

Time-triggered (TT) real-time systems [1] are often used
in safety-critical environments where they provide highly
predictable scheduling behavior to meet stringent timing con-
straints. While online scheduling provides predictability, i.e,
guarantees that deadlines will be met, but not exact times
of execution, TT systems provide determinism, i.e., given
schedule and time, the task executing is known. Leaking
the scheduling information of safety-critical tasks enables
adversaries to mount targeted attacks misusing this knowledge
to defy detection and jeopardize the timeliness and thereby the
safety that these tasks contribute to. Security is thus of high
concern for safety-critical systems.

Having compromised a large enough set of non real-time or
low safety-critical tasks, an attacker can make use of leaked
scheduling-related information to fine-tune its behavior such
that the set generates maximum interference on subsequently
executing victims. For example, to stay undetected, an ad-
versary could continue normal operation of its compromised
tasks up to the point when one of its tasks is executed
immediately before a safety-critical task. At this time the
compromised task exploits all of its accessible memory to
create a cache and memory access pattern that maximizes
cache-related delays of the safety-critical task. Naturally, tools
analyzing only the legitimate task behavior to determine cache-
related preemption delays are blind to such malicious behavior.
Short of anticipating maximum preemption delays for all tasks,
TT schedules remain susceptible to such attacks. Furthermore,
due to its predictability, TT scheduling is inherently vulnerable
to timing inference based attacks [2].

In this work, we show how we can use an offline constructed
TT schedule to impede timing inference based attacks.

II. MOTIVATION

Research on security in the real-time domain, especially
for TT systems, is still in its infancy [3]. Meanwhile, TT
real-time systems are used in safety-critical environments.
Covert timing channels in these systems risk leakage of
critical information which threatens safe system operation.
According to [4], the assignment of scheduling priorities and
the preemptiveness property of tasks may already produce a
covert timing channel. An adversary in the system can use
covert timing channels to exfiltrate information and infer when
a victim runs and later use this information for more targeted
system manipulation. The typical multi-vendor development
approach for complex real-time systems can grant adversaries
access through vulnerabilities in the software of one of the
vendors before shipping or later during deployment. Thorough
code analysis to remove all vulnerabilities [5] remains a myth
because of the sheer code size and the complexity of real-
time systems. Furthermore, common scheduling algorithms
like Rate Monotonic or Earliest Deadline First impose an order
on jobs, which improves system predictability and, however,
eases timing inference based attacks. TT scheduling is even
more predictable as it uses an offline defined scheduling table.
The transformation of security requirements into scheduling
constraints is not always possible for real-time systems and the
performance overhead can render security solutions infeasible
[6].

We propose an extension to TT scheduling which imposes
a random order on jobs and transforms security requirements
into scheduling constraints at a low expected runtime overhead
while still guaranteeing the original real-time constraints.
Randomizing job execution order reduces the likelihood of
targeted manipulation hitting their victims, even if sufficient
information about job scheduling parameters is leaked. Repli-
cating and scheduling the jobs of each replica in a different
random order further reduces the residual risk of attacks being
effective because manipulations must now hit a majority of
replicas to be successful.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/145232876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

III. PROBLEM STATEMENT

We assume a TT real-time system with an offline con-
structed schedule, e.g., in the form of a table. The global clock
is considered adequately protected, i.e., not compromisable. It
is a very important resource in TT systems. An adversary has
infiltrated the system at the task level and tries to collect timing
information of the system through scheduling covert-channels
[7] to coordinate subsequent attacks. TT schedules are fixed
and thus easier to predict. We extend offline constructed TT
schedules to obfuscate the schedule and thus impede timing
inference based attacks that require exact knowledge when
victims run.

IV. PROPOSED APPROACH AND PRELIMINARY RESULTS

Schedules for TT systems are typically constructed by an
offline scheduler [8] which resolves the real-time constraints to
be represented in a scheduling table. Our approach analyzes
this scheduling table offline and maps timing constraints of
jobs onto execution windows. Execution windows are time
intervals defined by the earliest start time of a job as start
and its deadline as the end. Slot shifting [9] is a real-time
scheduling algorithm which guarantees job execution within
its execution window based on scheduling tables. Therefore,
we chose to integrate our idea with slot shifting.

A. Background

Slot shifting uses a discrete time model [10], where the
time interval which separates two successive events (i.e. the
granularity of the system) is called a slot [11]. Slot shifting
consists of an offline and an online phase. In the offline phase,
the TT schedule is analyzed to determine available leeway in
the schedule. In order to track the available leeway of jobs in
each execution window, a capacity interval is created for each
distinct deadline in the system. Jobs with the same deadline
belong to the same interval. The start of a capacity interval
Ij , start(Ij), is defined as the maximum of the earliest start
time est(Ij) among its jobs τi and the end of the previous
capacity interval, see Equations 1 and 2 below.

est(Ij) = min(est(τi))∀τi ∈ Ij (1)

start(Ij) = max(end(Ij−1), est(Ij)) (2)

The end of the capacity interval is marked by the deadline.
Figure 1 shows an example job set derived from an offline
schedule with earliest start times esti, worst case execution
times Ci and deadlines di.

τ1
0

τ1
1

τ2
2

τ2
3

τ2
4

τ3
5

τ3
6 7

? ? ?

6 6
� -I1 � -I2 �-I3 τi esti Ci di

τ1 0 2 3
τ2 0 3 6
τ3 3 2 7

Fig. 1: Job set and intervals derived from offline schedule (left)

Three distinct deadlines exist for that job set, thus three
capacity intervals have to be created. Starting at time 0, the first
interval I1 starts at 0 and ends at the deadline of its assigned

job τ1, which is 3. The next interval shares the same earliest
start time, but according to Equation 2, the capacity interval
is not allowed to start before the end of the previous interval.
Thus, I2 starts at 3 and ends at the deadline of its assigned job
τ2, which is 6. Interval I3 is created accordingly. The resulting
capacity intervals are shown in Figure 1.

The spare capacity sc(Ij) of a capacity interval Ij is equal
to the amount of free slots in Ij . It is defined as the interval
length minus the worst case execution times Ci of all its jobs
τi and minus slots borrowed from the succeeding interval, see
Equation 3 below.

sc(Ij) = |Ij | −
∑
τi∈Ij

Ci +min(sc(Ij+1), 0) (3)

Spare capacities are calculated starting at the last capacity
interval. Borrowing occurs in some corner cases, when the
current capacity interval provides not enough slots to accom-
modate all its jobs, which results in a negative spare capacity.
Capacity intervals with a negative spare capacity borrow the
needed amount of slots from the preceding interval. Negative
spare capacities do not equal infeasibility in the scheduling
sense. Spare capacities are an abstract way to track “free”
slots in a capacity interval.

After all spare capacities have been calculated, the first
capacity interval has a non-negative spare capacity provided
the task set is feasible, i.e. its utilization is equal to or less
than one. Positive spare capacities can be seen as the amount
of unused resources and leeway [9] of an interval which can
be given to other tasks with overlapping execution windows.
Note that capacity intervals do not overlap, while execution
windows may.

B. Schedule Obfuscation

At runtime, at the beginning of each slot, the online
scheduler is invoked to select the next job. Here we apply
our approach to obfuscate the TT schedule. We apply a new
scheduling algorithm which selects the next job of the tasks in
the ready queue at random. Each job has the same probability
of getting chosen for this slot. At the same time, we guarantee
timing constraints by running an online acceptance test after
a job was chosen. If the job passes the acceptance test, its
execution will not cause another job to miss its deadline and
it is allowed to run. If it fails the acceptance test, another job
of the tasks in the ready queue is chosen until a job passes
the acceptance test.

Originally, the online acceptance test in slot shifting is used
to integrate aperiodic, i.e., event-triggered tasks into a pure TT
system. For now, we do not consider aperiodic tasks in the
system, but we integrate a modified version of the acceptance
test within our scheduler to enforce timing constraints. Our
job acceptance test recalculates the remaining spare capacity
in the current capacity interval, as if the randomly chosen job
would have been executed. As long as the spare capacity of
the current capacity interval remains non-negative, the chosen
job is allowed to execute. Otherwise, only a job belonging to
the current capacity interval will be accepted.

2

In order to recalculate spare capacities, we consider three
different cases. In the first case, no job was executed. The
processor ran idle and the spare capacity of the current
capacity interval is decreased by one. In the second case, a
job belonging to the current capacity interval was executed,
which means the spare capacity of the current capacity interval
does not change. In the third case, a job not belonging to the
current capacity interval was executed, i.e. prior to its own
capacity interval, and thus the spare capacity of the current
capacity interval is decreased by one. If this job belonged to
a capacity interval borrowing slots from the current capacity
interval, the spare capacity of the borrowing capacity interval
is increased by one and, as a result, the spare capacity of the
current capacity interval is increased by one too, as it lends
one slot less to another capacity interval.

C. Example

We will show how the scheduler works for our example
jobset in Figure 1. First, we have to calculate the initial spare
capacities of the capacity intervals. Starting at the last capacity
interval, I3, its spare capacity is the difference between the
interval length of 1 and the WCET of its assigned job τ3,
which results in a spare capacity of -1. I2 has an interval length
of 3, from which the WCET of τ2 and the slots borrowed by
the preceding interval I3 are substracted, which results in a
spare capacity of -1, too. The spare capacity of I1 is calculated
accordingly. Table I shows these spare capacities at time t=0.

time t 0 1 2 3 4 5 6
sc(I1) 0 0 0 0 0 0 0
sc(I2) -1 -1 0 0 0 0 0
sc(I3) -1 -1 -1 0 0 0 0

TABLE I: Spare capacities of I1, I2 and I3 over time

At runtime, the scheduler randomly picks τ1 for the first slot
from the list of ready jobs τ1 and τ2. The online acceptance
check precalculates the spare capacity for the next slot. As τ1
executes within its own interval, the spare capacities do not
change and τ1 is allowed to execute. τ2 gets randomly chosen
for the next slot and the check is invoked once more. τ2 does
not execute within its own capacity interval, therefore sc(I1)
is reduced by one. Meanwhile, the capacity interval of τ2, I2,
borrows one slot from I1, which means its own spare capacity
sc(I2) is increased by one. Thus, it needs to borrow one slot
less from I1 and therefore sc(I1) is increased by one, too. In
summary, sc(I1) stays at 0, sc(I2) is increased by one and τ2 is
accepted for the second slot. If the scheduler would choose τ2
again for the third slot, sc(I1) would become negative. Thus,
τ2 is rejected and τ1 is allowed to run instead and finishes at
its deadline. At time 3, τ3 becomes active. Further scheduling
decisions and spare capacity updates are reflected in Figure 2
and Table I.

Combining TT scheduling with our schedule obfuscation
method, we impede online predictions about the schedule.
Offline predictions are not possible, because the scheduler
randomly decides on the next job at runtime. Furthermore,
TT scheduling inherently confines application-level leakage

τ1
0

τ2
1

τ1
2

τ3
3

τ2
4

τ2
5

τ3
6 7

? ? ?

6 6
� -I1 � -I2 �-I3

Fig. 2: Randomized schedule

to shared resources which are held across slots [12]. An
investigation of leakage countermeasures for such resources
is out of the scope of this paper. While randomization does
not allow slot-level determinism typical for TT systems, the
acceptance test still allows for execution window determinism
[13].

V. ENVISIONED SOLUTION

We propose an extension to time-triggered scheduling which
strengthens system security against timing inference based
attacks. Randomized job selection impedes predictions of the
schedule while an online acceptance check guarantees real-
time constraints. Execution windows of jobs can be tailored
to meet flexibility or determinism requirements, if needed. For
example, decreasing the execution window size forces a job
to be executed within a smaller time frame and reduces jitter.

For future work, we intend to measure the runtime overhead
and evaluate our approach against statistical timing analysis.

REFERENCES

[1] H. Kopetz and G. Grünsteidl, “TTP-a protocol for fault-tolerant real-time
systems,” Computer, vol. 27, no. 1, pp. 14–23, Jan 1994.

[2] M. K. Yoon, S. Mohan, C. Y. Chen, and L. Sha, “TaskShuffler:
A Schedule Randomization Protocol for Obfuscation against Timing
Inference Attacks in Real-Time Systems,” in 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), April 2016.

[3] A. R. Wasicek, “Security in Time-Triggered Systems,” Ph.D. disserta-
tion, Technische Universität Wien, 2011.

[4] J. Son and J. Alves-Foss, “Covert Timing Channel Analysis of Rate
Monotonic Real-Time Scheduling Algorithm in MLS Systems,” in 2006
IEEE Information Assurance Workshop, June 2006, pp. 361–368.

[5] C.-Y. Chen, A. Ghassami, S. Nagy, M.-K. Yoon, S. Mohan, N. Kiyavash,
R. B. Bobba, and R. Pellizzoni, “Schedule-Based Side-Channel Attack
in Fixed-Priority Real-time Systems,” University of Illinois, Tech. Rep.,
2015.

[6] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. B. Bobba, “Integrating
security constraints into fixed priority real-time schedulers,” Real-Time
Systems, pp. 1–31, 2016.

[7] P. K. Boucher, R. K. Clark, I. B. Greenberg, E. D. Jensen, and D. M.
Wells, Toward a Multilevel-Secure, Best-Effort Real-Time Scheduler.
Vienna: Springer Vienna, 1995, pp. 49–68.

[8] S. S. Craciunas and R. S. Oliver, “SMT-based Task- and Network-level
Static Schedule Generation for Time-Triggered Networked Systems,”
in Proceedings of the 22Nd International Conference on Real-Time
Networks and Systems, ser. RTNS ’14. New York, NY, USA: ACM,
2014, pp. 45:45–45:54.

[9] G. Fohler, “Joint scheduling of distributed complex periodic and hard
aperiodic tasks in statically scheduled systems,” in Proceedings 16th
IEEE Real-Time Systems Symposium, Dec 1995, pp. 152–161.

[10] H. Kopetz, “Sparse time versus dense time in distributed real-time
systems,” in [1992] Proceedings of the 12th International Conference
on Distributed Computing Systems, Jun 1992, pp. 460–467.

[11] S. Schorr, “Adaptive Real-Time Scheduling and Resource Management
on Multicore Architectures,” Ph.D. dissertation, Technical University of
Kaiserslautern, March 2015.

[12] M. Völp, B. Engel, C. J. Hamann, and H. Härtig, “On confidentiality-
preserving real-time locking protocols,” in IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), April 2013.

[13] G. Fohler, Advances in Real-Time Systems, Chapter Predictably Flexible
Real-time Scheduling, S. Chakraborty, Ed. SPRINGER, 2012.

3

