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Abstract— During the robotic capture of a target object
on orbit, accidental contacts may happen. During contacts,
momentum is transferred to the system, causing a drift of
the space robot in the inertial space. When no remediation
is taken, the arm might converge to singularity or workspace
limit within seconds, compromising the capture operation. This
article presents a method to control the end-effector while
simultaneously extracting any accumulated momentum in the
system to cancel the drift. A feature of the method is that
external actuators are only used for the momentum extraction
and not to counterbalance the manipulator control forces. The
control is validated with experiments using a Hardware-In-the-
Loop (HIL) robotic simulator composed of a 7DOF (Degrees
Of Freedom) arm mounted on a 6DOF moving base.

I. INTRODUCTION

The future use of space robots will require efficient
coordination of the manipulator and satellite motion. In a
space robot, the coupled dynamic behavior between the
arm and the satellite on which the manipulator is mounted
imposes great challenges from the point of view of the
control of the motion. Several control strategies have been
investigated in the past years to tackle this problem. They
can be mainly divided in two categories: the free-floating
strategies, in which the satellite actuators are turned off
to save fuel, and the actuated-base strategies, in which the
actuators are used to accomplish additional tasks. In the first
category, the dynamics can be reduced using the conservation
of momentum [1]. Based on this, while the end effector is
commanded to reach a desired location, the base is left free
to move. While the free-floating techniques avoid the use of
satellite thrusters, saving precious fuel, some drawbacks limit
their applicability to full on-orbit operations. When linear
and angular momenta are nonzero, e.g. after contacts or
under the effect of orbital disturbances, the space robot drifts
in the inertial system [2]. Although free-floating controllers
have been proposed for those situations [3], [4], [5], the end-
effector convergence in the inertial space can be ensured
only for a limited time, before reaching a singularity or
the workspace limit [6]. This situation is exemplified in
Fig.1. In [6], the external actuators are used to remove the
linear momentum drift, fixing the relative end-effector/base
position. However, the effects of the angular momentum drift
are not taken into account and this may lead to reaching
workspace limits or singularity. Additionally, trying to rigidly
control the base position [6], or even the orientation [7] could
lead to excessive thrusters usage. In fact, the task of rigidly
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Fig. 1. Snapshot sequence of a free-floating robot in response to an
accidental contact. The satellite starts to drift, the robot reaches a singular
configuration and the capture operation is compromised.

fixing the base alters considerably the natural floating-base
behavior of the system and may be too demanding for the
satellite actuators, leading to saturation and/or excessive fuel
consumption. When only the drift removal is of interest, a
better solution would be to leave the base floating and use
the thrusters only to extract the accumulated momentum from
the system. With this approach, the system could be brought
to rest by applying only the minimal amount of satellite
actuation corresponding to the accumulated momentum.

In this paper, a method is proposed to control the end
effector in the inertial frame while simultaneously extracting
any accumulated momentum in the system. A feature of the
method is that external actuators are only used for the mo-
mentum extraction and not to counterbalance the manipulator
control forces. For this purpose, the idea already present in
the literature of an internal/external motion decomposition is
further developed to systematically assign the end effector
task only to internal forces. The control is validated with
experiments using a HIL facility consisting of a redundant
torque-controlled robot mounted on a full 3D satellite robotic
simulator. The main contributions of the paper are:

1) The derivation of an internal/external force decomposi-
tion for the end effector.

2) The derivation of a momentum dumping1 control as an
alternative fuel efficient strategy for the control of space
robots subject to external interactions.

3) Validating, to the best of our knowledge for the first
time, a space robot controller using a torque-controlled
robot and a full 3D robotic simulator.

1In the astronautical literature, the term “dumping“ refers to the
extraction of the momentum accumulated in momentum storage devices.
Here it is more generally used to refer to the extraction of momentum from
the whole multibody system, i.e. also including the arm.
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The paper is organized as follows. In Sect. II we prelimi-
nary introduce the scenario and the main dynamics formula-
tion. In Sect. III the external/internal motion decomposition
is addressed. In Sect. IV the momentum dumping control is
derived. Sect. V presents the experimental results. Finally,
the conclusions are given in Sect. VI.

II. PRELIMINARIES

A. Problem statement

A serial-link space robot composed of n + 1 bodies is
considered, where n is the number of joints of the arm.
The satellite base is fully actuated in translation and rotation
by means of an external generalized force fb ∈ R6. No
environmental forces are considered during the motion, since
they are orders of magnitude less than the driving torques
τ ∈ Rn acting at the manipulator joints.

The operational scenario is that of capturing a target object
in presence of initial momenta. This may be the post-contact
situation after an accidental impact with the target or a
nominal capture situation under the accumulated effect of
orbital disturbances. Assuming the target object is stationary
in the inertial space, the robot end-effector is commanded to
reach a desired position and orientation in the inertial space.

B. Space robot dynamics and main notation

We call B the body frame of the satellite around its CoM
(Center of Mass), E the end-effector frame and T a target
frame fixed in the inertial space which defines the desired
EE (End-Effector) pose. Additionally, a frame C is placed
on the CoM of the whole system always parallel to T . Let
us indicate with the symbol νx ∈ R6 the inertial velocity of
a general body frame X expressed in the body frame and
with the symbol fx ∈ R6 the generalized force acting on
the body, also expressed in the body frame. The dynamics
of the space robot is described by the equation [8]:

M(q)v̇ +C(q,v)v = f . (1)

The symbols used here are defined as follows: M ∈
R(6+n)×(6+n) inertia matrix of the space robot; C ∈
R(6+n)×(6+n) Coriolis and centrifugal matrix; q ∈ Q joint
angles2; q̇ ∈ Rn joint velocities; v ∈ R6+n generalized
velocities

[
νTb q̇T

]T
; νb ∈ R6 base velocity; f ∈ R6+n

generalized forces
[
fTb τT

]T
. Writing the symmetric iner-

tia matrix in block diagonal form, it is

M =

[
Mb Mbm

MT
bm Mm

]
, (2)

where Mb ∈ R6×6 is the inertia matrix of the whole system
around B, Mbm ∈ R6×n is the coupling submatrix and
Mm ∈ Rn×n is the inertia matrix of the manipulator.
The end-effector velocity νe ∈ R6 is given by

νe = Jv =
[
Jb Jm

]
v, (3)

2Q = S1 × · · · × S1︸ ︷︷ ︸
n

and S1 is the unit circle.

with Jb ∈ R6×6,Jm ∈ R6×n. Let us now indicate with
h ∈ R6 the generalized momentum of the whole system, i.e.
the sum of the momenta of each body, around the frame C.
The momentum can be expressed as a linear combination of
the generalized velocities v through L ∈ R6×(6+n), as [1]

h = Lv =
[
A−TMb A−TMbm

]
v, (4)

where A is the transformation matrix from the frame C to
the frame B, defined as

A =

[
Rcb [pcb]

∧Rcb

0 Rcb

]
. (5)

pxy ∈ R3 and Rxy ∈ R3×3 generically indicate respectively
the position vector and the rotation matrix from a frame
X to a frame Y . The operator [ · ]∧ indicates the skew-
symmetric matrix of the vector argument. Defining a local
set of coordinates [9] x̃e ∈ R6 for the position and rotation
from the frame T to the frame E , it is possible3 to express
A as A(q, x̃e).
In the following section it will be shown how it is possible
to decompose the dynamics (1) in external and internal
components. The decomposition will be addressed in the end
effector space to allow the derivation of Cartesian controllers.

III. INTERNAL AND EXTERNAL MOTION DECOMPOSITION

The motion of a floating multibody system can be decom-
posed into an internal motion due to the joints and an external
motion as a whole object floating in the inertial space.
In joint space, the decomposition can be obtained using the
momentum (4). In this case, the kinetic energy can be written
as [10]

T =
1

2
q̇TM∗

mq̇︸ ︷︷ ︸
Tint

+
1

2
hTM−1

c h︸ ︷︷ ︸
Text

, (6)

where M∗
m = Mm − MT

bmM
−1
b Mbm is the reduced

manipulator inertia and Mc = A−TMbA
−1 is the inertia

of the whole system around C. In the following it will be
shown how a similar decoupled form of the energy can be
obtained for the end effector space, i.e.

T =
1

2
νTe,intMeνe,int︸ ︷︷ ︸

Tint

+
1

2
hTM−1

c h︸ ︷︷ ︸
Text

, (7)

where νe,int is an end-effector internal velocity and Me

is the inertia associated to the internal energy. First, a
precise definition for νe,int is given. Second, the proposed[
hT νTe,int

]T
decomposition is applied on the dynamics

(1) to define an end-effector internal force fe,int, and its
advantageous properties are analyzed.

3In fact, Rcb = Rtb = Rte(x̃e)Reb(q) and pcb =
−Rcb(q, x̃e)pbc(q).



A. End-effector internal velocity

The absolute motion νe of the end-effector frame can be
considered as the superposition of an internal end-effector
motion νe,int and an external global motion of the system
due to the momentum. Based on that, when the external
motion is zero, the absolute end-effector motion νe must
coincide with the internal one νe,int. Thus, we define νe,int
such that:

h = 0 ⇐⇒ νe = νe,int, (8)

i.e. the end-effector velocity must reduce to the internal
velocity when the momentum is zero.
To find the expression of νe,int, we rewrite νe in terms of
momentum. Removing the base velocity from (3) using (4),
the end effector velocity νe is rewritten as

νe = J∗mq̇ + JbM
−1
b ATh, (9)

where J∗m = Jm−JbM−1
b Mbm ∈ R6×n is the well-known

generalized Jacobian of the end effector.
From (9) it is straightforward to see that J∗mq̇ is the internal
end effector velocity in the sense of (8). On the other hand,
the second term in (9) is the part of end effector motion due
to the global motion of the system. Therefore, we define:

νe,int , J
∗
mq̇. (10)

From now on, let us consider for the sake of simplicity
and without loss of generality the case of nonredundant
manipulator, i.e. n = 6. For a redundant manipulator all
the results can be extended using an orthogonal nullspace
decomposition, as done in [5]. When J∗m is nonsingular,
using the inverse of (10) it is easy to verify that the energy
decoupling (7) holds and Me =

(
J∗mM

−1
m J∗Tm

)−1
.

B. Internal/external force decomposition

Based on the concept of end effector internal velocity,
the dynamics (1) can be decomposed into an internal and
an external part. To do so, a transformation matrix Γ ∈
R12×(6+n) is defined as[

h
νe,int

]
=

[
A−TMb A−TMbm

0 J∗m

]
︸ ︷︷ ︸

Γ

[
νb
q̇

]
, (11)

where (4) and (10) have been used. The generalized forces
f transform as [

fb
τ

]
= ΓT

[
ah
fe,int

]
, (12)

where ah,fe,int ∈ R6 are the new control inputs, dual
respectively to h and νe,int. The equation of motion (1)
can be transformed to the new state using a congruent
coordinate transformation [11]. Assuming a nonsingular J∗m
it is possible to invert (11) and transform (1) as:[
M−1

c 0
0 Me

] [
ḣ

ν̇e,int

]
+

[
Ch −CT

eh

Ceh Ce

] [
h

νe,int

]
=

[
ah
fe,int

]
(13)

A first observation is that in (13) the momentum h is
inertially decoupled from the end effector motion, as a
consequence of the energy decoupling (7).
Secondly, the usual skew-symmetry property holds4:

νTe,int

(
Ṁe − 2Ce

)
νe,int = 0, ∀νe,int ∈ R6. (14)

The equation (13) can be further simplified considering that
the Coriolis/centrifugal acceleration (see the Appendix) can
be shown to be identically zero for the momentum, obtaining

M−1
c ḣ = ah, (15a)

Meν̇e,int +Ceνe,int +Cehh = fe,int. (15b)

Notice that in the form (15), the momentum is totally de-
coupled from the internal end-effector motion. This leads to
the main result of the proposed decomposition: by exploiting
this decoupled structure is possible to design controllers in a
cascade fashion, using ah for the stabilization of the external
motion (15a) and fe,int to design the control of the end
effector. The advantage of doing so is that, the commanded
action to the thrusters will not be affected by the input fe,int
used to stabilize the end-effector task. This can be seen from
the triangular structure of the actuation matrix (12), which
can be written explicitly as[

fb
τ

]
=

[
MbA

−1 0
MT

bmA
−1 J∗Tm

] [
ah
fe,int

]
. (16)

This triangular structure is specific of the proposed force
decomposition and does not hold when the absolute force
fe dual to νe, is used instead of fe,int.
The details of this control concept will be shown in the next
section, in which the decoupled structure of the dynamics
(15) is exploited to design the end effector control of a
space robot with simultaneous dumping of the accumulated
momentum.

IV. END EFFECTOR CONTROL AND MOMENTUM DUMPING

The control task is to command the end effector frame E
to a desired pose T in the inertial space. We require the task
be accomplished only by internal actuators. Therefore, the
end effector controller is defined as:

fe,int = −JTx̃eνeKex̃e −Deνe, (17)

where Ke ∈ R6×6 is a symmetric positive definite stiffness
matrix, De ∈ R6×6 is a positive definite damping matrix and
Jx̃eνe ∈ R6×6 is the so-called representation Jacobian of the
set of coordinates x̃e, which relates the time derivative of
the coordinates to the end effector body velocity, as

˙̃xe = Jx̃eνeνe. (18)

Here, a quaternion-based representation [9] is chosen, for
which

x̃e =

[
pet
2ε

]
Jx̃eνe =

[
E 0
0 ηE − [ε]∧

]
(19)

4The skew-simmetry holds [8] for M ,C in (1), it holds also for the
transformed matrices [9, Lemma 3.2] in (13) and every submatrix.



where η ∈ R, ε ∈ R3 are respectively the scalar and vector
part of the quaternion extracted from Ret and E ∈ R3×3

is the identity matrix. An additional task of momentum
dumping is achieved by external actuators through

ah = −M−1
c Dhh, (20)

where Dh ∈ R6×6 is a positive definite momentum gain
matrix [10].

The resulting closed-loop dynamics is obtained inserting
(9),(17), (20) into (15), inserting (9), (10) into (18), and
inverting (10), as:

ḣ+Dhh = 0, (21a)

Meν̇e,int +Ceνe,int +Deνe,int + JTx̃eνeKex̃e =

= −
(
Ceh +DeJbM

−1
b AT

)
h,

(21b)

˙̃xe = Jx̃eνeνe,int + Jx̃eνeJbM
−1
b ATh, (21c)

q̇ = J∗−1m νe,int, (21d)

where the state is z =
[
hT νTe,int x̃Te qT

]T ∈ D, with
D = R18×Q. Notice that the momentum is totally decoupled
from the rest of the system and it has a linear first-order
dynamics.
The stability of the closed-loop (21) is addressed in the
following. Let us firstly define a region Ω which excludes
the singularities of the generalized Jacobian J∗m(q)

Ω = {z ∈ D : σmin (J∗m(q)) > 0} , (22)

where σmin(� · �) is the minimum singular value of the
matrix � · �. In the region Ω the Jacobian J∗m is well-
defined together with the dynamics matrices Me, Ce, Ceh.

Proposition IV.1. The set of equilibria z0 = {z ∈ Ω : h =
νe,int = x̃e = 0} is asymptotically stable.

Proof. z0 is compact because Q is compact. Then, the sta-
bility can be addressed in two steps using a cascade approach
[12], showing first the asymptotic stability of the momentum
(21a) and then that of the robot subsystem (21b),(21c),(21d)
when h = 0.

1) Since (21a) is a linear first-order dynamics, it is asymp-
totic stable having chosen Dh positive definite.

2) In the subset h = 0 the stability of (21b),(21c)(21d)
can be addressed using the Lyapunov function

V =
1

2
νTe,intMeνe,int +

1

2
x̃TeKex̃e > 0, (23)

which is always defined in Ω. The time derivative along
system trajectories is

V̇ = νTe,intMeν̇e,int +
1

2
νTe,intṀeνe,int+

+ νTe,intJ
T
x̃eνeKex̃e =

1

2
νTe,int

(
Ṁe − 2Ce

)
νe,int+

− νTe,intDeνe,int = −νTe,intDeνe,int ≤ 0, (24)

where (14) has been used. Applying LaSalle x̃e → 0 is
obtained, thus proving the asymptotic stability.

From 1) and 2) then follows [12] the asymptotic stability of
the closed-loop (21).

A. Controller discussion

It is relevant to analyze the final expression of the control
actuation command, to remark the main advantage of the
proposed internal/external decomposition and to gain further
insight into the controller behavior.
The final expression of the control actuation command is
obtained transforming back the controller given by (17), (20)
through (12), as

fb =−ATDhh, (25a)

τ =− J∗Tm
(
JTx̃eνeKex̃e +Deνe

)
−MbmM

−1
b ATDhh.

(25b)

First, notice that the external actuator fb is only used to
extract the momentum from the system and not to counterbal-
ance any manipulator motion. This is the main advantage of
the proposed ah,fe,int decomposition and has a paramount
importance for space robots, for which the external actuation
is provided by nonrenewable energy sources like thrusters.

Second, notice that when the momentum is zero it follows
fb → 0 and the proposed controller converges to the
conventional free-floating generalized Jacobian control [1]:

τ = −J∗Tm
(
JTx̃eνeKex̃e +Deνe

)
. (26)

In conclusion, with the proposed controller all the operations
will be performed in free-floating mode and the thrusters will
be activated automatically only in case of external interac-
tions, thus limiting the fuel consumption to the minimum
needed. As a conclusive remark, notice the in the singularity
of J∗m the controller (25) does not fail computationally but
an end effector task lying along a singular direction would
result in zero torque and would not be executed [7].

V. EXPERIMENTAL VALIDATION

The proposed control methods are validated on the OOS-
Sim (On-Orbit Servicing Simulator) HIL facility at DLR
[13] (see Fig. 1). The OOS-SIM is a robotic simulator for
space robots, which enables the testing of space manipu-
lators on-ground before their actual deployment on-orbit.
The test manipulator is mounted on a simulator manipulator
in a micro-macro configuration. The simulator manipulator
reproduces the satellite’s dynamics based on a real-time
model integration. The microgravity conditions in the test
arm are replicated by actively compensating the joint gravity
torques based on an identified model. The test manipulator
is a KUKA KR4+ lightweight robot with seven degrees-
of-freedom. This arm is equipped with torque sensors and
can be controlled both in position and torque. The simulator
manipulator is a KUKA KR120 industrial robot, which is
controlled in position and has no torque sensing.
The concept of the dynamics simulation is based on the
integration of the first equation in (1) with the addition of a
contact force fe,ext ∈ R6 on the end-effector:

Mbν̇b = −Mbmq̈msr−Cbνb−Cbmq̇msr+fb+JTb fe,ext,
(27)



where q̇msr and q̈msr are respectively the joint velocity
and acceleration, obtained differentiating the measured joint
angles qmsr of the test arm. fe,ext can be measured using a
6DOF force-torque sensor on the EE, or reconstructed using
joint measurements of the test arm. In this paper, the second
strategy has been used5. With this system, the dynamics
can therefore be simulated taking into account real sensor
noise, time delay, control discretization, model uncertainties
and unmodelled dynamics of the test manipulator. On the
other hand, the satellite dynamics is based on a model,
whose parameters can be adapted depending on the specific
scenario. In the present work, the satellite parameters used
for the control and for the simulation are m = 150 kg,
Ix = 21.8 kgm2, Iy = 15.0 kgm2, Iz = 18.88 kgm2. The
robot parameters used for control have been obtained by
fixed-base identification.

A. Experimental results

To show the effectiveness of the momentum dumping
approach, experiments are conducted where the end effector
is commanded in presence of an accumulated momentum.
In the experiments, the momentum is induced in the system
by an external contact on the end effector. The contacts are
provided manually using a rod. The aim is to show that the
end effector absolute pose is successfully regulated around
a constant desired position, while the momentum is dumped
from the system.
The gains used for the end effector stiffness are ke,trasl =
1000 N m−1, ke,rot = 70 N m rad−1. The end effector
damping gains have been designed using the method in [9].
For the momentum gains dh,trasl = 20.28 s−1, dh,rot =
16 m2s−1rad−1 are used. To show the need of a momentum
dumping, we firstly analyze the system response in case of
classical free-floating approach (26) and outline the main
problem. After, we repeat the same experiment with the
momentum-dumping control (25).

In Fig. 1, a snapshot sequence is shown for the free-
floating robot in response to an accidental contact. It can
be observed in Fig. 1 that the induced momentum leads to
a drift of the whole system in the inertial space. The drift
can be noticed also in Fig. 2, which shows that the base
(yaw, pitch and roll) angles and the end effector position
continue to grow after the contact. The end effector drift is
related to the fact that the arm stretches in the attempt to hold
the desired inertial position until a singularity is inevitably
reached, compromising the end effector task.
To solve this problem, the impulse experiment is repeated
with the proposed momentum dumping control. Fig. 3 shows
the main results in terms of momentum, base attitude and end
effector position. Fig. 3 shows that the momentum induced
by the contact is successfully extracted from the system by
the proposed momentum dumping control. Accordingly, the
base drift is successfully stopped and the base pitch angle

5Notice that the external force is used here only as a mean to inject
momentum into the system and is deactivated directly after the contact. No
exact reconstruction is needed in the present work and the controller does
not require any external force measurement.

−20

0

20

S
a

te
lli

te
 a

n
g

le
s

  
  

  
  

[d
e

g
]

 

 

φ
x

φ
y

φ
z

0 5 10 15 20
−20

0

20

Time [s]

E
E

 p
o

si
tio

n
 

  
  

  
[c

m
]

 

 

x

y

z

0

1

2

  
  

  
M

o
m

e
n

tu
m

 

 [
kg

 m
/s

, 
kg

 r
a

d
/s

]

  

 

h
tras

h
rot

Fig. 2. Time response for free-floating control.
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Fig. 3. Time response for momentum-dumping control.

converges to ≈ −1.5 deg. The end effector converges to
the desired position with a precision of 1 mm. This steady-
state error is explained by the residual static friction in the
joints, which acts as an external disturbance when the robot is
commanded in torque mode. Finally, the satellite commanded
forces and torques are shown in Fig. 4. The plot shows
that the momentum-dumping is automatically activated as
soon as the contact excites the momentum. The command
signal is relatively noisy, due to the momentum computation.
However, the noise is filtered out by the low-pass nature of
the satellite and no relevant noise oscillations are visible in
the base angles in Fig. 3. In conclusion, the experiments
confirmed the effectiveness of the proposed control method.
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B. Comments on the applicability

The controller (25) requires feedback of x̃e, q̇,h. In the
experiment x̃e is obtained from the forward kinematics of
simulator and test arms. h is computed by (4), using the
inertia model and a measurement of RT ,B and νb, extracting
the former from the forward kinematics of the simulator
arm and obtaining the latter by differentiation. In space,
x̃e could be measured by end effector cameras, the angular
part of νb can be measured by gyros, while the linear part
could be reconstructed by fusion of base-mounted cameras
(or LIDARs) and accelerometers. Although the experiment
showed good robustness to noise in the momentum, higher
noise levels in the linear velocity are to be expected in space,
since it is difficult to measure the linear velocity on orbit. An
activation threshold for the dumping task ah in (20) would
be needed in the practice based on the noise levels of the
velocity estimation.

Regarding the actuators, it has been assumed that the
commanded base force fb ∈ R6 is actuated perfectly.
However, in practice the minimum actuatable force would
be limited by the minimum switching time of the thrusters’
valves, thus the momentum could be dumped up to the
actuator resolution. Due to the residual momentum, the base
would then slowly drift in a free-floating fashion. Notice
however that this residual drift would be notably less than the
original accumulated momentum (e.g. due to an accidental
impact), thus representing a valid improvement over a free-
floating-only strategy. A possible remediation to this small
drift could be to command the additional task of forcing the
base to stay within a box in the inertial space or to absorb
small momentum quantities into the wheels, if available.

VI. CONCLUSIONS AND FUTURE WORKS

The inertial drift of a space robot in presence of ac-
cumulated momentum was addressed. Thanks to an inter-
nal/external motion decomposition, a Momentum Dumping
Control has been derived to regulate a desired end-effector
inertial pose while simultaneously extracting the momentum
from the system. A feature of the proposed controller is that
all robotic operations are performed in free-floating mode
and the thrusters are activated automatically only in case of
external interactions, thus limiting the fuel consumption to
the minimum needed. The validity and applicability of the
control method have been assessed with experiments.
Future works may further investigate the performance of the
controller under noisy momentum measurements and thrust
discretization effects.

APPENDIX

MOMENTUM CONSTRAINT

According to the Newton’s third law, only external forces
do change the total momentum of the system. Therefore,
projecting the base external force fb around C, it must be

ḣ = A−Tfb. (28)

Let us now rederive ḣ taking the time derivative of (4), as

ḣ = L̇v +Lv̇ =
(
L̇−LM−1C

)
v +LM−1f , (29)

where (1) was used. By algebraic manipulation it can be
shown that LM−1f = A−Tfb, thus (29) reduces to

ḣ =
(
L̇−LM−1C

)
v +A−Tfb. (30)

Comparing (28) and (30) for all v ∈ R6+n and fb ∈ R6, a
constraint for the motion is then obtained as [10](

L̇−LM−1C
)
v = 0. (31)

Thanks to the constraint (31) it can be conclusively shown
that the Coriolis/centrifugal acceleration terms are identically
zero for the momentum equation in (13) . This is obtained
computing the first row of C, which leads to:[
Ch −CT

eh

] [ h
νe,int

]
= −M−1

c

(
L̇−LM−1C

)
v = 0,

(32)
where (31) has been applied.
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