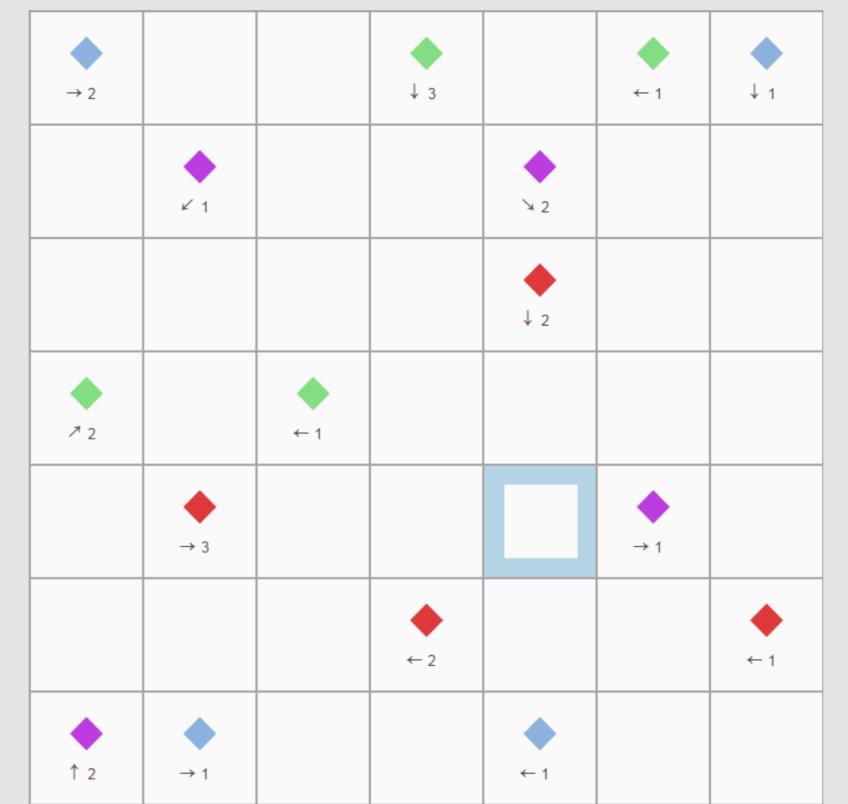


K. Gayraud, C. Hasse, H. Eißfeldt & S. Pannasch:


Investigating gaze-controlled input in a cognitive selection test

Background

- Growing interest in using eye tracking to enhance safety and efficiency in the field of aviation (Glaholt, 2014; Ohneiser, Jauer, Gürlük & Uebbing-Rumke, 2016)
- Development of the Eye Movement Conflict Detection Test to investigate the potential role that eye tracking play in the selection process for pilots and air traffic controllers

Eye Movement Conflict Detection Test

• Task: Detect conflict between aircraft in a given airspace as fast and as accurately as possible

Results

- Gaze-based field selection with keystroke confirmation leads to a higher input success rate
- Participants assessed accuracy problems as the main reason for input problems, although in ~ 45% of the cases their "dwell time 2" on the target field was too short
- The very low amount of unintentional input confirmations indicates that the challenge of differentiating eye

Figure 1: Air traffic controller, tower Munich

Research Objectives

- Investigate the application of gazecontrolled input in a cognitive selection test
- Replace mouse input with gaze commands in order to remove the need for eye movements that follow the mouse cursor during analysis

Method

Figure 3: Example task of the Eye Movement **Conflict Detection Test**

Gaze-controlled input

- Eye movements related to the search task are differentiated from fixations as commands (Midas touch problem):
 - Command 1: Select conflict field using gaze, indicated by a color change from the border to the middle of the respective field
 - Command 2: Input confirmation using gaze or keystroke, indicated by a permanent color change

movements between scanning and input commands was addressed adequately

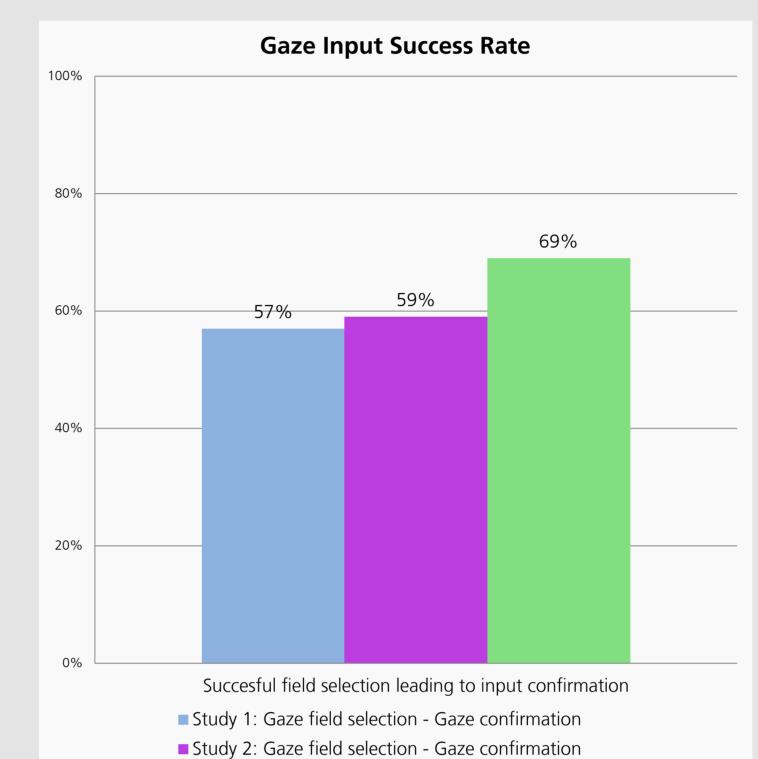
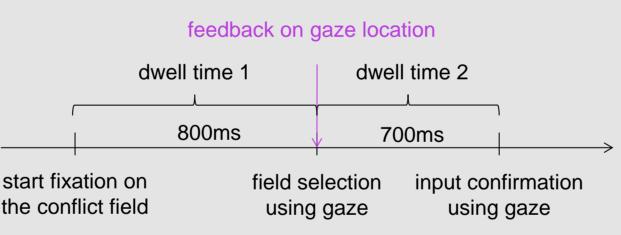


Figure 4: Gaze input success rate

Discussion

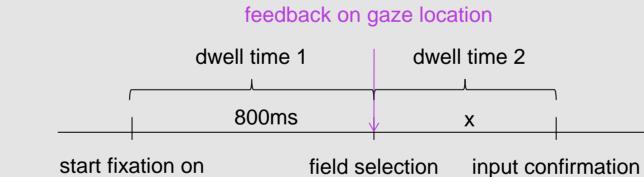
Study 2: Gaze field selection - Keystroke confirmation

Eye Tracking Equipment


- The EyeFollower of LC Technologies
- NYAN software

Sample

- Study 1: N=6
- Study 2: N=7
- Air traffic control applicants, DLR staff



Gaze field selection – Gaze confirmation

Gaze field selection – Keystroke confirmation

using keystroke

Procedure

the conflict field

 Neutral text on aviation (eye adaption phase) \rightarrow 13-point calibration \rightarrow device input instruction & practice \rightarrow task instruction & practice \rightarrow 20 test tasks

using gaze

- Participants preferred to work with gaze input, although they sometimes felt frustrated with unsuccessful gaze commands
- Improvements in gaze input reliability should be made before being applied in a cognitive selection test

Next Steps

- Use the mouse as an input device in • the next study
- Investigate if eye movements indicate psychological test performance

References

Photos: DFS Deutsche Flugsicherung GmbH, https://www.dfs.de/dfs_homepage/de/Presse/Mediath ek/

Glaholt, M. G., 2014, Eye tracking in the cockpit: A review of the relationships between eye movements and the aviator's cognitive state, Scientific Report No. DRDC–RDDC-2014-R153, Defence Research and Development Canada (DRD C), Toronto, CA.

Figure 2: Tower Munich

Measurements

- Field selections, input confirmations \bullet
- Feedback from subjects

Ohneiser, Oliver und Jauer, Malte-Levin und Gürlük, Hejar und Uebbing-Rumke, Maria (2016) TriControl – A Multimodal Air Traffic Controller Working Position. The Sixth SESAR Innovation Days, 08.-10. Nov. 2016, Delft, Niederlande.

Contact: Katja Gayraud

German Aerospace Center (DLR) | Aviation and Space Psychology Hamburg | Germany E-Mail: katja.gayraud@dlr.de

