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Summary 

Today, the world’s surface is strongly influenced by human activities and thus the present-

day geological era has been termed the Anthropocene. One of the strongest anthropogenic 

drivers is land use influencing habitats and species worldwide. Additionally, global climate 

is shaped by human activities, and since climatic conditions have strong effects on the 

distribution and fitness of organisms, this is the also one of the most important 

anthropogenic impacts on ecosystems. Hence, both factors affect diversity of species and 

habitats, but also ecosystem functioning and services. 

Analysing species diversity is a well-established method to draw conclusions on ecosystem 

functioning, because the stability of ecosystems increases with species richness and 

abundance. It is also possible to measure species’ responses in ecosystems, using functional 

diversity as a predictor. Species traits are features or measurable properties that may be 

related to the effect or response of a species in an ecosystem (e.g. nutrition specialisation or 

distribution) and play an important role to determine functional diversity. In this thesis, I 

analyse and combine the effects of land use and temperature on arthropods in general but 

also on moths as a case study, which is an unattended but diverse taxonomic group. I 

consider different levels as (1) Arthropod communities in general, (2) moths as a functional 

group, (3) morphological variability of single species, and (4) physiological variability of 

single individuals and show how specialists and generalists differ in their response and 

effect traits and how these differences have effects on the different levels. 

Main parts of this thesis were performed in the Biodiversity-Exploratories, a research 

platform that focuses on effects of land-use intensity on biodiversity and ecological 

processes in forests and grasslands in three different regions in Germany 

The first study focussed on beech herbivory affected by harvesting intensity and beech 

dominance. For this purpose, we determined leaf damage and collected Arthropod 

herbivores in three different regions distributed across Germany. The results suggest a 

general negative effect of intensive land-use on forest herbivores and the strongest negative 

effect appeared early in the growing season. For the second and third study, we collected 

more than 5000 moths from the same three regions, and focussed on grasslands. We 

determined 461 different species, assigned several interspecific life-history traits (describing 
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specialisation on resources or reproductive strategies), and additionally measured 

morphological traits (body mass and wing area) of more than 2000 individuals. In the 

second study, we analysed the effect of land-use intensity (as grazing, mowing and 

fertilisation) on species diversity and trait composition in moth communities. With 

increasing land-use intensity, a general decrease of species diversity across all regions was 

apparent, but also a shift to generalised species, which leads to functional homogenisation in 

ecosystems. Mowing had the strongest negative effect. The third study focused on 

intraspecific effects based on morphological changes with increasing land-use intensity. We 

found several species that benefit from the application of fertilisers due to an increasing 

body mass, which enhances reproduction success of insects. Such species are mostly 

generalists, but were still not able to increase their abundance in stronger managed habitats 

in contrast to other species. In the fourth study, we analysed transpiration and metabolic rate 

from 557 different arthropod individuals of forest and grassland sites. For this I developed a 

simple and effective method to measure water loss of several samples within a short period, 

which we describe in detail in this chapter. Specimen from grassland sites, representing arid 

habitats in contrast to forests, show generally lower water loss rates. These species 

developed strategies decreasing cuticular transpiration, resulting in a higher effect of 

respiratory transpiration on total water loss. In the fifth study, we kept caterpillars of 30 

species in different temperature treatments analysing the survival and growth rate in 

response to the surrounding temperature. Additionally we measured transpiration and 

metabolic rate. All species showed in general a lower survival rate and increasing growth, 

transpiration and metabolic rate with higher temperature and especially specialists face a 

higher risk from increasing temperature. 

Hence, this thesis shows similar effects of land use and climate change, as both drivers lead 

to a general loss of diversity and a shift towards more generalistic communities. 

Communities of specialists are, however, important to decrease homogenisation and thus 

receive ecosystem functions. These results provide important information for national and 

international policies and to support the development of sustainable land-use methods and to 

reduce climate change.  
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Zusammenfassung 

Unser Planet ist durch menschliche Einflüsse so stark geprägt, dass die aktuelle geologische 

Ära auch als Anthropozän bezeichnet wird. Durch ihren weltweiten Einfluss auf 

Lebensräume und Arten, gilt Landnutzung in diesem Zusammenhang als einer der stärksten 

anthropogenen Faktoren. Auch das Weltklima wird hauptsächlich durch den Menschen 

geprägt und da klimatische Bedingungen einen starken Einfluss auf die Verbreitung und 

Fitness von Organismen haben, gilt auch Klimawandel als einer der wichtigsten Faktoren 

durch den Menschen auf Ökosysteme. Beide Faktoren haben einen starken Einfluss auf die 

Diversität von Arten und Habitaten, aber auch auf Ökosystemfunktionen und 

Dienstleistungen.  

Die Stabilität eines Ökosystems steigt mit der Anzahl der darin lebenden Arten und 

Individuen. Die Untersuchung der Diversität von Arten ist eine sehr etablierte Methode, um 

Rückschlüsse auf Ökosystemfunktionen zu ziehen. Analysen funktioneller Diversität 

ermöglichen, die Reaktionen und Eigenschaften der Arten im Ökosystem zu messen. Die 

Eigenschaft einer Art (engl. „species trait“) beschreibt dabei Merkmale, die mit dem 

Einfluss dieser Art auf das Ökosystem in Verbindung stehen (bspw. 

Nahrungsspezialisierung oder Verbreitung). Sie spielt eine wichtige Rolle für die 

Vorhersagbarkeit funktioneller Diversität. In dieser Arbeit analysiere und vergleiche ich die 

Effekte von Landnutzung und Temperatur auf Arthropoden im Allgemeinen, aber auch auf 

Nachtfalter als Fallbeispiel, da sie eine oft vernachlässigte und dennoch sehr diverse 

taxonomische Gruppe darstellen. Ich betrachte verschiedene Ebenen, wie (1) die 

Gemeinschaft von Arthropoden im Allgemeinen, (2) Nachtfalter als funktionelle Gruppe, 

(3) morphologische Veränderungen einzelner Nachtfalterarten, und (4) physiologische 

Veränderungen einzelner Individuen von Nachtfaltern. Außerdem zeige ich, wie sich 

Spezialisten und Generalisten in ihren Reaktionen und Eigenschaften unterscheiden und 

welchen Effekt diese Unterschiede auf den verschiedenen Ebenen haben. Wesentliche 

Abschnitte dieser Arbeit wurden im Rahmen der Biodiversitäts-Exploratorien durchgeführt, 

ein Projekt in dem Wissenschaftler den Einfluss von Landnutzung auf Diversität und 

Ökosystemprozesse in Wäldern und im Grünland in drei Regionen innerhalb Deutschlands 

untersuchen. 

Die erste Studie konzentriert sich auf den Effekt von Holzernte und dem relativen 

Buchenanteil zu anderen Baumarten in Wäldern auf Herbivore (Pflanzenfresser) von 
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Buchen. Wir haben in drei verschiedenen Regionen in Deutschland den Blattschaden von 

Buchen bestimmt und pflanzenfressende Arthropoden gesammelt. Die Ergebnisse zeigten 

einen allgemeinen negativen Effekt intensiver Landnutzung auf waldlebende Herbivore, der 

zu Beginn der Vegetationsperiode am stärksten war. Für die zweite und dritte Studie haben 

wir über 5000 Nachtfalter im Grünland der gleichen drei Gebiete gesammelt. Wir haben 461 

verschiedene Arten bestimmt und ihnen Eigenschaften zugeordnet, welche die Fitness 

(bspw. Spezialisierung von Ressourcen oder Strategien der Reproduktion) der Arten 

beschreiben (engl. „Life-history taits“). Zusätzlich haben wir morphologische Eigenschaften 

(Körpergewicht und Flügelfläche) von über 2000 Individuen gemessen. In der zweiten 

Studie haben wir den Effekt von Landnutzung (Beweidung, Mahd und Düngung) auf die 

Diversität und Eigenschaften der Gemeinschaften untersucht. Mit steigender Landnutzung 

(besonders durch Zunahme der Mahd) nahm die Diversität der Arten ab. Zusätzlich nahm 

der relative Anteil von Generalisten zu, was zu funktioneller Homogenisierung in 

Ökosystem führt. Die dritte Studie hat sich auf intraspezifische morphologische 

Veränderungen mit steigender Landnutzung konzentriert. Wir haben einige Arten gefunden, 

die von zunehmender Düngung profitieren. Sie zeigten eine Zunahme ihrer Körpergröße 

was den Reproduktionserfolg erhöht. Diese Arten waren größtenteils Generalisten und 

haben sich im Vergleich zu den anderen Arten nicht besser auf stark genutzten Flächen 

etablieren können. In der vierten Studie untersuchten wir die Transpiration und den 

Metabolismus von 557 Arthropoden von Wald- und Grünlandflächen. Hierfür habe ich eine 

einfache und dennoch effektive Methode entwickelt und detailliert beschrieben, welche 

Wasserverlustraten mehrerer Proben in kurzer Zeit messen kann. Grünland stellt ein 

vergleichsweises arides Habitat dar und dessen Arthropoden wiesen generell niedrigere 

Wasserverlustraten auf, als Waldarthropoden. Sie reduzierten ihre kutikuläre Transpiration, 

wodurch sich der relative Anteil der respiratorischen Transpiration erhöht hat. Für die fünfte 

Studie haben wir Raupen von 30 verschiedenen Arten bei unterschiedlich temperierten 

Bedingungen gehalten, ihre Überlebens- und Wachstumsrate in Abhängigkeit zur 

Temperatur untersucht, sowie deren Transpiration und Metabolismus gemessen. Alle Arten 

zeigten eine niedrigere Überlebensrate und eine erhöhte Wachstumsrate sowie einen 

Anstieg von Transpiration und Metabolismus mit steigenden Temperaturen. Vor allem 

Spezialisten zeigten ein stärkeres Aussterberisiko mit einem Temperaturanstieg. 

Meine Studien zeigen ähnliche Effekte von Landnutzung und Klimawandel auf 

Ökosysteme. Beide Faktoren führen zu einem generellen Diversitätsverlust und einer 
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Verschiebung zu generalistischen Gemeinschaften. Allerdings sind spezialisierte 

Gemeinschaften wichtig, um Homogenisierung zu reduzieren und Ökosystemfunktion stabil 

zu halten. Die Ergebnisse liefern somit wichtige Informationen für nationale und 

internationale Strategien um die Entwicklung nachhaltiger Landnutzung zu unterstützen und 

den Klimahandel zu reduzieren.   
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Glossary of important terms 

Community: An assemblage of species interacting in the same area and in a particular time. 

Homogenisation: A process by which species immigration and extinction increase the 

taxonomic or functional similarity between habitats. 

Ecosystem functioning: Multiple biological, geochemical or physical ecosystem processes 

(e.g. soil retention, pollination, resource consumption) that reflect the performance of an 

ecosystem. 

Ecosystem services: Anthropogenic benefits of ecosystems (e.g. food production). 

Functional performance: The rate of an ecological process. 

Functional traits: Features or measurable properties of an organism, and are usually 

described by physiological processes (e.g. photosynthesis), life-history processes (e.g. 

reproduction), morphology (e.g. body size), individual fitness or performance measures 

(Violle et al. 2007). 

Generalists: Species, which are able to use a variety of resources or to develop on different 

environmental conditions. 

Specialists: Species, which persist only in a narrow range of environmental conditions. 
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CHAPTER 1 

General Introduction  



General Introduction 

 14 

What is biodiversity? 

Biodiversity is often described as the number of species and their proportionate abundance 

in a defined geographic area (species diversity), also called α-diversity. Genetic biodiversity 

describes the genetic variance within a species. On a broader scale, β-diversity describes the 

diversity between ecosystems and γ-diversity the diversity of habitats and populations 

across a landscape (Whittaker 1972; Fig. 1.1). Species diversity is threatened by several 

factors that also lead to a loss of ecological functions and services (Sala et al. 2000). In 

contrast to the diversity of species, functional diversity measures the complementarity and 

redundancy of species based on their traits, e.g. nutrition specialisation or distribution (Diaz 

and Cabido 2001; Petchey and Gaston 2006). Functional diversity is tightly related to 

species diversity, even if the slope of this relationship depends on the degree of disturbance. 

Moderately disturbed communities contain most functional groups and species, and thus 

show the weakest relation, which leads to a heterogeneous species diversity within different 

functional groups (Biswas and Mallik 2011).  

Functional traits have strong effects on ecosystem functioning and thus measuring 

functional diversity is an effective method considering the effect of biodiversity on 

ecosystems (Diaz et al. 2006). 

γ-diversity  

β-diversity  

α-diversity  

α-diversity  

α-diversity  

α-diversity  

Fig. 1.1: Differences of α-, β- and γ-diversity. 



  Chapter 1 

 15 

Functional traits and environmental filtering 

Species traits are features or measurable properties, and are usually described by the 

morphology, physiology or phenology of an organism (Violle et al. 2007), for example 

body size, growth rate, or the ability to perform an ecological process. Life-history traits 

describe the fitness of an organism (e.g. feeding-niche breadth, distribution, and voltinism). 

The approach to classify organisms in functional groups is not new (Weiher et al. 1999). 

But as studies about functional ecology have increasingly emerged in the last two decades 

(Diaz and Cabido 2001; Violle et al. 2007), the role of functional traits in determining 

ecosystem processes becomes particularly relevant. Here, two of the main questions of 

functional diversity studies are (1) how environmental change affects species composition, 

and (2) how species influence ecosystem functioning (processes that regulate the flux of 

energy, e.g. nutrient cycling or decomposition) (Hooper et al. 2000)? As I mainly consider 

environmental filtering, this thesis focuses the first question. 

As species have different requirements for successful reproduction, environmental 

conditions can act as a filter on community composition. For example, species without frost 

tolerance cannot develop in habitats where temperatures might fall below zero degrees 

Celsius. In grassland Heteroptera, body size decreases and traits associated with dispersal 

ability increase with increasing land-use intensity (Simons et al. 2016). Environmental 

gradients can additionally filter traits differently between taxa. Birkhofer et al. (2017) found 

out that Araneae and Auchenorrhyncha are more mobile with increasing land-use intensity, 

while Chilopoda and Heteroptera show converse responses. For this reason, it is important 

to analyse the effects of environmental filtering in different taxonomic groups. 

Thus, we consider anthropogenic activities as environmental filters and analyse the effect on 

trait composition in moth communities with a focus on traits associated with the degree of 

specialisation. We want to identify processes selecting for specialist or generalists and how 

these selections play a role on community and physiologic levels. 

Differences between specialists and generalists 

Amongst other properties, functional traits characterise the degree of specialisation of a 

species, described by its niche breath. For example, some herbivore species feed only on 

plant species within one genus, whereas others can feed on a variety of different plant taxa. 
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Multivoltine species (with more than one generation per year) are more generalistic than 

univoltine (one generation per year) or semivoltine species (one generation in at least two 

years), because they often have a broader phenological niche. The global distribution can 

also describe the degree of specialisation as well as the climatic niche, at which a species 

occurs. 

In general, specialists face a higher risk of extinction due to environmental change. On the 

one hand, generalists are more tolerant and can adapt better to different environmental 

conditions (Gaston et al. 1997). On the other hand, specialists perform better under their 

optimal conditions than generalists (the ‘jack-of-all-trades is master of none’ hypothesis; 

Levins 1968). This means that generalists occur comparatively more often in changing and 

disturbed environments, whereas rare specialists prefer stable environments (Devictor et al. 

2008; Rainio and Niemela 2003; Rossetti et al. 2017). Thus, the degree of disturbance has a 

strong effect on species composition in regard to the degree of specialisation. This effect 

leads to biotic homogenisation, a process that reduces the compositional variation among 

communities (a decreasing β-diversity) and leads to taxonomic and functional depletion 

(Mouillot et al. 2013; Olden et al. 2004), which has been observed for a majority of 

taxonomic groups (Baiser et al. 2012). 

Diversity increases the performance and stability of ecosystems, 

and provides ecosystem functioning and services 

Ecosystem services are benefits that ecosystems provide for humanity. They are directly 

linked to biodiversity (Cardinale et al. 2012) and can be classified into four categories 

(Wallace 2007): provisioning (food and wood production), regulating (pollination, erosion, 

flood regulation), cultural (spiritual, educational, recreational), and supporting services 

(nutrient cycling, photosynthesis).  

It is important for human wellbeing to protect ecosystems and to understand the mechanism 

of biodiversity, functional performance, stability and environmental filtering. Functional 

performance can be described as the rate of an ecological process, e.g. resource 

consumption and depends on biodiversity (Naeem et al. 1994). However, high functional 

performance can either be achieved by several equally productive species, but also by a 

single dominant species (Grime 1998). The stability of ecosystems is driven by its diversity, 

but also by higher abundance and asynchrony across species (Blüthgen et al. 2016; Figge 



  Chapter 1 

 17 

2004; Kühsel and Blüthgen 2015; Schindler et al. 2010; Tilman et al. 1998; Yachi and 

Loreau 1999). For example, the portfolio effect implies that the dynamic of an ecosystem is 

often less variable and thus more stable than the dynamic of each single species occurring in 

this ecosystem (Yachi and Loreau 1999). Cardinale et al. (2012) reviewed the impact of 

biodiversity on ecosystem functioning and services, and summarised six consensus 

statements: (1) biodiversity increases the efficiency of communities to convert resources 

into biomass. (2) Biodiversity leads to stability of ecosystem functioning over a long term. 

(3) The responses of different ecosystem processes on biodiversity are nonlinear and as 

biodiversity decreases the change of ecosystem processes increases. (4) Key species in 

species rich communities lead to higher productivity. (5) Diversity loss across trophic levels 

has larger effects than diversity loss in one level. (6) Functional traits have strong effects on 

the productivity of ecosystem functioning. 

Consequently, a high spatio-temporal variety and diversity of species and ecological 

functions (e.g. pollination) stabilise the performance of ecosystems. However, several 

reviews reported a global decline of biodiversity in terrestrial and aquatic ecosystems for 

centuries (Butchart et al. 2010; De'ath et al. 2012; Dirzo and Raven 2003; Dudgeon et al. 

2006), known as the sixth wave of extinction (Barnosky et al. 2011). Here, human activities 

prevail as one of the main drivers of this loss due to direct and indirect effects (Gren et al. 

2016; Sala and Knowlton 2006). According to a ranking of the importance of drivers 

changing biodiversity until 2100 developed by Sala et al. (2000), land use and climate 

change will have the largest effect on terrestrial ecosystems, followed by nitrogen 

decomposition, biotic exchange and elevated carbon dioxide concentration We thus analyse 

the consequences of land-use intensity and climate change to see and possible correlations 

of these effects on ecosystems. 

Land use as an environmental filter 

During the last centuries, anthropogenic processes have changed the global land cover 

massively (Ramankutty and Foley 1999). One method to measure the human impact in 

ecosystem processes is the ‘human appropriation of net primary production’ (HANPP). It 

describes the difference between the total net primary production and the net primary 

production remaining after removal via human activities (Haberl et al. 2001). Human 

activities remove up to 25 % of the global net primary production, mostly through 

harvesting (Haberl et al. 2007).  
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Forests cover approximately 30 % of the global land cover, and more than half of this area 

belongs to only five countries (the Russian Federation, Brazil, Canada, the United States of 

America and China; FAO 2010). The conservation of forests is of great importance due to 

their ability to conserve water and soil, control desertification and flood risk, and protect 

coast strips (Bradshaw et al. 2007; Bruijnzeel 2004; Graham 2004; Oyama and Nobre 

2003). In 2010, almost 50 % of the total carbon stock is stored in world’s forests, which is 

about 289 gigatonnes (FAO 2010; Malhi and Grace 2000). The forest area, which is 

annually transformed to agricultural land decreased in the last centuries, but still amounts to 

about 13 million ha per year (FAO 2010). In contrast, grassland areas expanded from 

500 million ha to 3.3 billion ha in the last 300 years (Klein Goldewijk and Ramankutty 

2004).  

The strongest anthropogenic land-cover change is still located in tropical areas. The patterns 

of land-cover change, however, are similar in Europe. Nevertheless, this trend changed 

during recent years as well; cropland declined between 1990 and 2006 whereas grasslands, 

forests and urban areas are increasing (Kuemmerle et al. 2016). In Germany, 13 % of the 

total grassland area was converted between 1991 and 2013 (Umweltbundesamt 2015). Mean 

land allocation of the European Union suggests similar distributions on a larger scale, as in 

Germany and forest cover constitutes 38 % and grassland cover 16 % (Statistisches-

Bundesamt 2016).  

Especially, harvesting intensity in forests and mowing events in grasslands go along with a 

high degree of disturbance and they mostly decrease the occurrence and diversity of 

arthropods (Gossner et al. 2014b; Humbert et al. 2010; Savilaakso et al. 2009; Schowalter 

Fig. 1.2: Land allocation in Germany 
(Source: Statistisches-Bundesamt 2016). 
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1995). Nevertheless, management strategies in forests and grasslands differ massively in 

their degree of disturbance. Today, only 32 % of Germany is covered with forests 

(Statistisches-Bundesamt 2016), even if they are considered to be the most natural habitats 

(Fig. 1.2). Thus, before silviculture started in the Middle Ages, 100 % of Germany was 

covered with forests (Küster 2001; Wulf et al. 2010). Nevertheless, total forest cover 

increased again during the last decades and the amount of matured forests became more 

dominant since the new millennium started (BMEL 2016). Since the late seventies, 

multifunctional strategies enforced to enhance sustainable silviculture and today forests are 

mainly extensively managed (Höltermann and Oesten 2001). Large-area clear-cuttings do 

not occur, timber harvesting removes nutrients only partly, and forest are usually not 

fertilised (BMEL 2016). Hence, between 2000 and 2014 the amount of PEFC (Programme 

for the Endorsement of Forest Certification) certified forests increased from 27.3 % to 

66.4 % (Umweltbundesamt 2015). In contrast, grasslands constitute no permanent existing 

natural landscapes in Germany, as they should be managed much more radically to avoid 

succession (Gaisler et al. 2004; Moog et al. 2002). Mowing events remove almost 100 % of 

the above ground plant biomass and thus rapidly change the whole landscape. Mowing is 

often coupled with fertilisation (Blüthgen et al. 2016), which enables a faster plant-biomass 

production and thus facilitates several mowing events per year (Rose et al. 2012), but a 

surplus can also lead to eutrophication (Hautier et al. 2014). In contrast, grazing represents 

an extensive component of land use, but pastures also produce less plant biomass than 

fertilized hay meadows (Zhou et al. 2006). Nevertheless, the amount of intensively used hay 

meadows is still increased in Germany to enhance crop output and quality, and the total 

amount of grassland cover decreases (BfN 2014; Umweltbundesamt 2015).  

A general negative effect of land-use intensity in grassland and forest sites has been 

reported for several taxa of plants and animals (Chaudhary et al. 2016; Kay et al. 2017; 

Martinez-Jauregui et al. 2016; Paillet et al. 2010; Socher et al. 2012; Weiner et al. 2014). 

Grazing and mowing in grassland and harvesting in forests leads to disturbance events in 

ecosystems. As already mentioned, the degree of disturbance plays an important role on the 

effect on biodiversity. The intermediate disturbance hypothesis is the most widespread 

hypothesis, explaining the effect of disturbance: undisturbed habitats usually lead to a 

disequilibrium of species, because a few species benefit more of the environmental 

conditions compared to the majority. Soon after a disturbance event, new species have the 

opportunity to colonize open niches. As long as disturbance events are still infrequent, the 
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time of colonization is, however, short and only those species that can quickly develop, will 

colonize the habitat. Increasing number of disturbance events facilitates the time of 

colonization and competition, which leads to an equilibrium of species and an increase of 

biodiversity. If the frequency of disturbance events is too high, biodiversity will decrease, 

because only the most resistant species can survive and will eliminate the rest (Connell 

1978). This means that extensive management strategies in grassland and forest sites could 

actually favour biodiversity. Studies confirming this effect on animals, however, are rare 

(but see Uchida and Ushimaru 2014). This suggests that most land-use management exceeds 

the amount that is beneficial for biodiversity. In this thesis, I investigate this assumption. 

Biodiversity research in the Biodiversity-Exploratories 

Main parts of this thesis were performed in the framework of the Biodiversity-Exploratories 

(hereafter: BE). This interdisciplinary research consortium was founded in 2006 to 

investigate changes of biodiversity and their impact on ecological processes. The main 

questions of the BE are: How does the biodiversity of different taxa or levels relate to each 

other (e.g. plant diversity on herbivore diversity)? What is the role of biodiversity in 

ecosystem processes? And how does land-use intensification influence biodiversity and 

ecosystem processes? 

The BE are three long term and large-scale areas across Germany (Fig. 1.3). ‘Schorfheide-

Chorin’ is dominated by glacially formed lowland in the northern part of Germany. The 

altitude is between 2 and 139 m a.s.l. and the annual precipitation is about 520-580 mm. 

Almost half of the area in this lake district is dominated by forest sites (mainly dry bilberry-

pine-forest). The ‘Hainich-Dün’ region with its national park is in central Germany between 

285-550 m a.s.l. and has an annual precipitation of 630 to 800 mm. The national park was 

founded in 1997 and is characterized by an unmanaged mixed beech forest, whereas the 

surrounding landscape is dominated by agricultural land. The ‘Schwäbische Alb’ is in the 

centre of a calcareous mountain range in south Germany. The region is dominated by a 

patchwork of grassland and forest sites. The altitude is between 460-860 m a.s.l. and the 

annual precipitation is 800-930 mm.  

The three BE can also be considered as a gradient across Germany, with increasing altitude 

and precipitation from north to south. Along this gradient it is possible to analyse patterns 

on a large scale. In each exploratory, study sites were chosen in the forest and in the 
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grassland (50 sites each) that represent the complete land-use gradient within the 

corresponding region. Depending on the extent and main focus of fieldwork activities, it is 

possible to use a subset of nine sites per region and habitat type (27 grassland and forest 

sites each) that show the same land-use gradient and are investigated more intensely by the 

research group. In contrast to several studies about heterogeneous land-use effects, the BE 

thus provides a representative and replicable land-use gradient. 

Climate change and its consequences 

In contrast to land use affecting ecosystems directly, anthropogenic activities can 

additionally have an indirect effect via climate change. The earth’s surface temperature 

increased during the last three decades continuously and was warmer than any decade since 

1850. Between 1980 and 2012 the average temperature increased by 0.85 °C and during the 

last century the global mean sea level rose by 0.19 metres. Since 1750 anthropogenic carbon 

dioxide emission amounts to 2040 gigatonnes CO2, of which 40% are atmospheric. The 

remaining carbon dioxide is accumulated in plants, soil and in the ocean. Furthermore, the 

number of extreme events (heat waves, heavy precipitation events, droughts, cyclones, 

wildfires) has increased. It is uncontroversial that human activities are one of the main 

drivers and it is predicted that this will continue for 

the next decades. Representative Concentration 

Pathways (RCP’s) are based on different scenarios of 

future anthropogenic emission, driven by climate 

policy, population size, and lifestyle. Depending on 

the RCP scenarios, global surface temperature will on 

average increase about 2 °C until 2100 (IPCC 2014). 

Temperature is the main climatic driver in terrestrial 

ecosystems and has a strong effect on the occurrence, 

phenology, and metabolism of organisms (Chown 

2002; Forrest 2016; Kühsel and Blüthgen 2015). 

Global warming act as an environmental filter on 

communities that change their species composition as 

species will be able to emigrate poleward or to higher 

altitudes depending on their dispersal ability 

Fig 1.3: Location of the three 
Exploratories Schorfheide-Chorin, 
Hainich-Dün and Schwäbische Alb 
distributed across Germany (source: 
BEO). 
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(Hickling et al. 2006; Regniere et al. 2012), or occur earlier in the season (Fitter and Fitter 

2002 for plants; Forister and Shapiro 2003 for butterflies). In general, metabolic processes, 

such as respiration, increase exponentially with temperature (Brown et al. 2004). 

Temperature has a stronger effect on the growth and development of ectothermic insects 

than on endothermic mammals (Bale et al. 2002), which makes them particularly 

dependent. We thus investigated water loss and transpiration rate of arthropod communities 

in response to climatic conditions in their habitat, and analysed development and fitness rate 

of moth larvae exposed to higher temperatures. 

Lepidoptera can be considered as a model group for arthropods 

Due to their ecological relevance and variance, moths can be considered as model 

organisms for studies of conservation, ecology, and evolution (Boggs et al. 2003) and main 

parts of this thesis were performed on moths. Lepidoptera are the second largest animal 

order, comprising about 160,000 species in 124 families (Coleoptera contain about 400,000 

species) (Kristensen et al. 2007). They are divided into three not taxonomic groups: 

Butterflies and skippers are monophyletic groups, whereas moths are paraphyletic. The 

latter contains about 85 % of all Lepidoptera and is traditionally divided into macromoths 

and micromoths. In contrast to butterflies and skippers, moths are usually nocturnal and 

males often have feathery antennas. They are highly variable in size, morphology, 

phenology, and degree of specialisation. For example, wing length ranges from 2.5 mm 

(Stigmella maya) to 300 mm (Attacus atlas). Some species are widely distributed, for 

example the codling moth (Cydia pomonella), that occurs on all continents except 

Antarctica and Greenland (Kumar et al. 2015). 

Moths have a substantial impact on other organisms, because of their role as food resource. 

Imagoes make up a substantial part of the diet of many bat species and for example the blue 

tit alone eats 150 trillion caterpillars per year in Great Britain (Fox et al. 2006). 

Additionally, caterpillars as the larval stage are usually phytophagous and thus provide 

ecological important services, like nutrient recycling. Some species like the gypsy moth 

(Lymantria dispar) are well known as pests in agriculture and forest systems. This species 

can consume nearly 100 % of available host plants during outbreak events (Kosola et al. 

2001). Moths additionally use a scarcely used niche as nocturnal pollinators, as most 

pollinators are usually diurnal.  
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Research objectives 

In this thesis I evaluate direct (land use) and indirect (climate change) anthropogenic effects 

on arthropods and especially moths as a model organism on different levels. Hence, the 

main aims are: 

I. How do Arthropod communities, functional traits and the degree of specialisation 

respond on land use and climate change? 

II. Does intraspecific trait variation differ with increasing land use and climate change? 

III. Which physiologic processes can affect these responses to land use and climate 

change and how do generalists and specialists differ? 

Structure of this thesis 

Chapter 2: Tree species composition and harvest intensity affect herbivore density and 

leaf damage on beech, Fagus sylvatica, in different landscape contexts 

Increasing forest management is characterised by harvesting intensity and the amount of 

native tree species that decreases relatively due to the plantation of conifers. The effect of 

these components on herbivores, that provide an important ecosystem process are not 

completely understood, because studies usually focus either on a single aspect of forest 

management, or analyse this effect only on a local scale. We focussed on the effect of tree 

species composition and harvesting intensity on herbivore arthropods in German forests. We 

mainly analysed herbivore induced leaf damage and the density of leaf related herbivores 

across different height levels in beech trees.  

Chapter 3: Diversity and trait composition of moths respond to land-use 

intensification in grasslands: generalists replace specialists 

To analyse effects of land-use to herbivores in detail, we started focusing on moths as model 

organisms. Here, we analysed how the diversity and occurrence of 178 grassland moth 

species is influenced by land-use intensity in general, and by its components grazing, 

mowing and fertilisation in detail. We additionally observed possible shifts of life-history 

traits across a land-use gradient. 
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Chapter 4: Intraspecific trait variation and responses to land use: body mass and wing 

loading in grassland moth communities 

As chapter 3 focuses on interspecific variability of moths, we investigated their intraspecific 

plasticity in chapter 4. In this study, we measured body weight and wing length of the same 

individuals from chapter 3 and additionally calculated its wing loading, a proxy for flight 

ability. We analysed how these intraspecific morphological traits vary across the land-use 

gradient and whether patterns correlate with the occurrence of species according to land use. 

We also investigated how morphological changes of species correlated with the degree of 

specialisation. 

Chapter 5: An efficient method to measure water loss in arthropods: desiccation 

adaptation hypothesis re-examined 

Due to increasing global temperatures, insects face a higher risk of desiccation and need to 

develop strategies to avoid water loss. On a global scale, species from xeric habitats have 

lower transpiration rates (cuticular and metabolic), than those from mesic habitats. In 

chapter 5, we developed a simple method, to measure water loss of arthropods of different 

habitats. We thus measured water loss and metabolic rate of 557 individuals of several 

arthropod orders from a forest site and two different grassland sites. 

Chapter 6: Thermal reaction norms of moth species and their host plant specialisation: 

specialists face a dual risk 

Temperature has a strong effect on development and survival of moth’s larvae. In general, 

physiological rate increases exponentially with temperature, which leads to a faster 

development. In chapter 6, we analysed these effects on 30 moth species to investigate 

differences relating to their degree of specialisation. 
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Abstract 

Most forests are exposed to anthropogenic management activities that affect tree species 

composition and natural ecosystem processes. Changes in ecosystem processes such as 

herbivory depend on management intensity, and on regional environmental conditions and 

species pools. Whereas influences of specific forest management measures have already 

been addressed for different herbivore taxa on a local scale, studies considering effects of 

different aspects of forest management across different regions are rare. We assessed the 

influence of tree species composition and intensity of harvesting activities on arthropod 

herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots 

in three regions of Germany. We found that herbivore abundance and damage to beech trees 

differed between regions and that – despite the regional differences - density of tree-

associated arthropod taxa and herbivore damage were consistently affected by tree species 

composition and harvest intensity. Specifically, overall herbivore damage to beech trees 

increased with increasing dominance of beech trees – suggesting the action of associational 

resistance processes – and decreased with harvest intensity. The density of leaf chewers and 

mines was positively related to leaf damage, and several arthropod groups responded to 

beech dominance and harvest intensity. The distribution of damage patterns was consistent 

with a vertical shift of herbivores to higher crown layers during the season and with higher 

beech dominance. By linking quantitative data on arthropod herbivore abundance and 

herbivory with tree species composition and harvesting activity in a wide variety of beech 

forests, our study helps to better understand the influence of forest management on 

interactions between a naturally dominant deciduous forest tree and arthropod herbivores.
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Introduction 

Most forests have been considerably modified by human activities (FAO 2010; Paquette and 

Messier 2010; Powers 1999). Anthropogenic influences affect forest ecosystems indirectly 

via activities including hunting, livestock grazing, environmental pollution, human-assisted 

biological invasions and climate change, but also directly via forest management activities 

(Jactel et al. 2009; Milad et al. 2011; Pautasso et al. 2010). Whereas it is evident that forest 

management such as logging and reforestation with mono- and polycultures of native or 

non-native tree species can affect forest biodiversity (sensu Fischer et al. 2010; Wilson 

1992) and related ecosystem processes (Gamfeldt et al. 2013; Hunter 1999; Petersen et al. 

2000), the extent of these effects is more difficult to predict and supposedly contingent on 

the intensity of forest management and on the processes studied (Levers et al. 2014; Paillet 

et al. 2010; Riedel et al. 2013; Schall and Ammer 2013). 

Herbivory, the consumption of plant material by animals, is a fundamental ecosystem 

process that affects nutrient cycles and plant abundance, and as a consequence resources and 

habitats for other organisms (Boyd et al. 2013; Metcalfe et al. 2014; Schowalter 2006). In 

forests, arthropod herbivores are abundant and diverse (Coley and Barone 1996; Elderd et 

al. 2013; Lewinsohn et al. 2005), and both abundance and diversity of herbivores are 

assumed to contribute to the extent of herbivory in forests (Salazar and Marquis 2012; 

Schowalter and Lowman 1999; Vehviläinen et al. 2007), although the relationship between 

herbivore abundance, herbivore diversity and herbivory may also be ambiguous (Hartley et 

al. 2010; Nummelin 1992; Peter et al. 2014). 

Herbivore diversity and abundance on host plants is modified by an array of different 

factors such as abiotic conditions (Schowalter 2012; Seidl et al. 2011), the quality of host 

plants (Cornelissen et al. 2008; Lavandero et al. 2009; Poelman et al. 2009), and the 

exposure to competitors and natural enemies (Kaplan and Denno 2007; Letourneau et al. 

2009; Schmitz and Barton 2014). In forests, these factors may show strong vertical 

stratification within individual trees (Ulyshen 2011), and they may also be strongly 

influenced by tree species composition (Barbosa et al. 2009; Jactel and Brockerhoff 2007). 

Following the vertical stratification of resources and conditions within tree crowns, many 

arthropod herbivores show a stratified spatial distribution in the canopy (Leksono et al. 

2005; Su and Woods 2001; Ulyshen 2011). Although a distinct stratification of arthropods 

has been described for both tropical and temperate forests, stratification seems to be no 
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static characteristic of canopy arthropod assemblages, but it may vary between seasons and 

with tree species identity, tree age and tree neighbourhood (Didham and Springate 2003; 

Gossner et al. 2014a; Ulyshen 2011). 

Tree neighbourhood reflects age structure and species composition of neighbour trees and 

can thus be viewed as one aspect of the more general influence of forest management and 

tree species composition (tree association) on the abundance and diversity of herbivores on 

forest trees. Although plants in pure stands may often suffer from stronger herbivory than 

those in mixed stands, both positive and negative effects of plant association on herbivore 

damage have been reported (Agrawal et al. 2006; Heiermann and Schütz 2008; Plath et al. 

2012). Plant associations can increase or decrease herbivore density or herbivore damage 

and are referred to as "associational susceptibility" (AS) and "associational resistance" (AR) 

respectively (Barbosa et al. 2009). In forest systems, both AS and AR have been 

documented as a consequence of tree association, which is most commonly measured as tree 

diversity or dominance of a focal tree species (Jactel and Brockerhoff 2007; Koricheva et al. 

2006). For example, insect herbivory on oaks and alders was lower in monocultures, 

whereas herbivory on birch was higher in pure birch stands (Vehviläinen et al. 2007). To 

explain such contrasting effects of plant association on plant damage, different hypotheses 

have been established. These hypotheses consider both bottom-up and top down processes 

(see Jactel et al. 2005; Poveda et al. 2008 for review of associational resistance hypotheses), 

and the influence of variation in species characteristics (Castagneyrol et al. 2014; Plath et 

al. 2012). 

Tree association in forests is strongly determined by forest management, which influences 

tree species composition and quality (Forkner and Marquis 2004; Hermy and Verheyen 

2007), and thus directly and indirectly affects the abundance of herbivores (Savilaakso et al. 

2009; Schowalter et al. 1986). Besides determining tree association, forest management 

involves harvesting practices, which may, for example, change forest microclimate, host 

plant quality, host plant quantity, and enemy pressure (Forkner et al. 2006; Jactel et al. 

2009). As a consequence of these changes in the abiotic and biotic environment, harvesting 

can have intensity-dependent effects on herbivores and on related damage to trees 

(Schowalter 1995; Summerville 2011; Watt 1992). These effects may either decrease or 

increase herbivore populations and herbivore diversity depending on species characteristics 

such as dependence on specific hosts and successional stages of forest (Paquette et al. 2006; 

Rosenvald and Lohmus 2008). In addition to the potentially strong influence of forest 
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management on herbivore populations and herbivore diversity, all the effects should be 

regarded in the context of larger-scale environmental variation (including climate, edaphic 

conditions, landscape heterogeneity) and regional species pools. These factors can have a 

strong impact on herbivore abundance and damage, and they may dilute, overlay or interact 

with the effects of forest management (Franklin et al. 2003; Schowalter 1995; Summerville 

and Crist 2008). 

Considering the varying and interacting effects of tree association, harvest intensity and 

regional environmental conditions on herbivores and their damaging activity, a 

simultaneous assessment of these factors appears necessary to achieve generalizable 

information on the major determinants of herbivory in forest ecosystems. In our study, we 

investigated herbivore density and damage to European beech trees (Fagus sylvatica L.) 

growing in forests with different management histories in three regions of Germany, to 

clarify the role of forest management on herbivore abundance and on related damage to 

trees across a variety of silvicultural and abiotic conditions. We focused on beech forests 

since European beech is the dominating tree species of the potential natural vegetation in 

Central Europe (Ellenberg and Leuschner 2010; Packham et al. 2012). Despite their 

dominant role in European forests, beech trees appear to suffer relatively low damage and to 

host a less speciose and abundant arthropod assemblage than other common deciduous trees 

such as oak and maple (Brändle and Brandl 2001; Sobek et al. 2009; Yela and Lawton 

1997). As increasing abundance and species-area relationships are generally related to 

increasing species richness (Brändle and Brandl 2001; Kennedy and Southwood 1984), the 

relatively low infestation and species richness of arthropod herbivores on beech emphasizes 

the need for investigations on determinants of herbivore-beech interactions. 

Specifically, we investigated whether (1) herbivore abundance and damage vary between 

regions differing in various environmental conditions for the same forest type (beech forest) 

and whether (2) forest management, estimated by beech dominance and harvest intensity, 

affects herbivore abundance and damage under consideration of expected regional effects. 

In addition to regional patterns, we (3) also considered herbivore distribution and damage 

by specific arthropod taxa within tree crowns (Paillet et al. 2010). 

  



  Chapter 2 

 31 

Material and Methods 

Ethics statements 

Permits for field work were issued by the responsible state environmental offices of 

Brandenburg, Thüringen and Baden-Württemberg (according to § 72 BbgNatSchG). The 

study sites comprise state forests and protected areas such as the National Park Hainich and 

some nature reserves within the biosphere reserves Schwäbische Alb and Schorfheide-

Chorin, as well as in the forest of Keula, Hainich-Dün. No species that are protected by 

European or national laws were sampled during this study. 

Study area 

The study was conducted in the framework of the German Biodiversity Exploratories 

Project (http://www.biodiversity-exploratories.de). The Biodiversity Exploratories Project 

addresses effects of land use on biodiversity and biodiversity-related ecosystem processes 

(Fischer et al. 2010). 

Leaf damage by herbivores was assessed in November 2012 (year 1) from fallen leaves and 

in May and July 2013 (year 2) from live leaves. The assessments in year 2 were also used to 

quantify herbivore load on study trees. Assessments were carried out in forest plots in the 

three Biodiversity Exploratories (from north to south) “Schorfheide-Chorin” (Schorfheide; a 

glacial formed landscape in North-East Germany, 3 - 140 m a.s.l., 13°23’27” - 14°08’53” E 

/ 52°47’25” - 53°13’26” N), “Hainich-Dün” (Hainich; a hilly region in Central Germany, 

285 - 550 m a.s.l., 10°10’24” - 10°46’45” E / 50°56’14” - 51°22’43” N), and “Schwäbische 

Alb” (Alb; a low-mountain range in South-West Germany, 460 - 860 m a.s.l., 09°10’49” - 

09°35’54” E / 48°20’28” - 48°32’02” N). Schorfheide is characterized by the lowest annual 

precipitation (520 - 580 mm), with a mean annual temperature of 6 - 7°C. It is followed by 

Hainich (630 - 800 mm, 6.5 - 8°C) and Alb (800 - 930 mm, 8 - 8.5°C). More details on the 

Biodiversity Exploratories can be found in Fischer et al. 2010. 

Sample processing 

In year 1, fallen leaves were collected on each corner of 15 plots in Hainich and in Alb 

Exploratories. These plots included three different forest types (n = 5 plots per type and 
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region): uncultivated, young and old beech forest. Leaf damage was then calculated as the 

percentage of leaf damage for 50 leaves randomly chosen per corner that were scanned and 

afterwards subjected to a pixel analysis using the software Image J (Rasband 1997). Per cent 

leaf damage was calculated by estimating the number of pixels of the leaf area missing due 

to herbivory (attributable to chewing herbivores, not mines and galls) and by relating this 

number to the number of pixels of the whole leaf including intact and damaged leaf parts 

(Mody and Linsenmair 2004). In year 2, we collected live leaves of five beech trees 

randomly chosen in 16 plots per region. Additionally to beech forest, conifer forest (pines at 

Schorfheide and spruces at Hainich and Alb) was added in year 2 (n = 4 plots per 

Exploratory). For each selected beech tree, leaves of a lower and an upper position within 

the tree crown were considered, henceforth termed “crown position”. The leaves from 

heights below 2 meters were sampled with secateurs, whereas leaves from higher crown 

positions were sampled with a telescopic stick with a clipper at the end controlled by dint of 

a rope. To ensure that no arthropods escaped due to dropping during branch cutting, we 

collected those arthropods in a textile funnel positioned underneath the cut branch. The 

height of the sampled crown positions ranged between 10 cm and 10 m, and depended on 

the height of the sampled trees and on the accessibility of leaves by the ‘telescopic stick 

technique’ described above. The size of the sampled trees ranged from less than 1 meter 

high to fully-grown mature beeches. We estimated the height of the sampled tree (between 

20 cm and 30 m) and counted the leaves of one branch per crown position (between 8 and 

132 leaves, mean 36), estimated the percentage leaf damage attributable to chewing 

herbivores of each counted leaf with the aid of sample ‘leaf area loss’ cards (sensu Adams et 

al. 2009, see Supplementary Material S2.1: Fig. S2.1.1) and collected or registered all 

herbivores, galls and mines on the branch as a measure of herbivore load. In case that we 

encountered oaks (Quercus petraea Liebl. and Q. robur L.) or sycamore maples 

(Acer pseudoplatanus L.) in the plot, we analysed herbivory and herbivores of three 

individuals of these tree species as well (and sampled only three beeches). We conducted 

the surveys in May when leaf-flushing in F. sylvatica starts, and during the midseason in 

July. We started each survey at Schorfheide followed by Hainich and Alb, an order that 

represented expression of tree phenology in the field (J. Mangels personal observation). 

Mean values of leaf damage were calculated for each sampled tree per plot and per survey. 

Mean values were calculated in a similar way of the total number of herbivores, galls and 

mines per leaf for the surveys in year 2, as an estimator of herbivore density. We 
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additionally calculated the coefficient of variation (CV) of herbivore damage across 

different trees within a plot, and compared damage patterns in different tree heights 

(two crown positions differing in height within a tree) based on a vertical stratification index 

VS = LDU/(LDU+LDL), where LDU is the leaf damage assessed at the upper crown position 

and LDL the damage at the lower position. For VS between 0 and 0.5, herbivore damage is 

higher in lower parts; values exceeding 0.5 indicate higher damage in the upper crown 

position. To compare leaf damage experienced by F. sylvatica with damage of other tree 

species, we conducted the same assessments of herbivore damage for individuals of 

Q. robur/petraea (n = 26) and A. pseudoplatanus (n = 70). 

Forest management intensity 

Defining forest management is a complex issue. The intensity usually varies gradually, 

which is not well mirrored in simple categorical classifications. To consider different 

aspects of forest management intensity, we used a combination of two predictor variables: 

(1) ‘beech dominance’ in the study plots, and (2) ‘harvest intensity’, measured as the 

proportion of harvested tree volume in the study plots (‘Iharv’: Kahl and Bauhus 2014). 

Beech dominance was assessed as the percentage of beech trees (in the shrub and the tree 

layer) among all tree individuals in the plot area (Boch et al. 2013 and Fabrice Grassein, 

unpublished). The original forests in our study are dominated by beech - a higher proportion 

of beech trees thus assumedly reflects a lower management intensity. Beech dominance was 

also negatively related to tree diversity in the studied forest plots (beech dominance vs. 

Shannon diversity index: r = -0.416, p < 0.0001). Harvested tree volume in the study plots 

was quantified by Kahl and Bauhus as the ratio of harvested volume to the sum of standing, 

harvested and dead wood volume (Kahl and Bauhus 2014). In accordance with Kahl and 

Bauhus, we use the same term Iharv for harvested tree volume to address harvest intensity 

in our analyses. 

Data analysis 

Data were analysed in generalized linear models (commands ‘glm’ for the model) using the 

statistical software package R 2.15.1 (R Core Team 2012) with the package ‘nlme’ 

(Pinheiro et al. 2014). Leaf damage or herbivore densities were the response variables used 

in the model, with region (Schorfheide, Hainich and Alb), beech dominance and harvest 

intensity as the three fixed effect terms in a hierarchical order. The significance of the effect 
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terms was tested using Chi2-tests (command “anova” based on sequential models of 

"type I"), and the differences between regions were assessed by Tukey post hoc tests 

following ANOVA. The data were transformed when necessary (see Tab. 2.1) to comply 

with the assumptions of variance homogeneity (Bartlett test) and normal distribution 

(Shapiro-Wilk test) of the residuals, and quasi-Poisson distribution was assumed when 

transformation was unsuccessful. In addition to the deviance and significance level of the 

GLM factors, we also show the linear regression coefficient for beech dominance and 

harvest intensity on response variables for a simple interpretation of response directions. To 

summarize impacts of forest management that may also appear via changes in beech 

dominance, an additional model for leaf damage was used where beech dominance was 

removed from the model. To elucidate the interaction effects between region and the 

continuous predictor variables beech dominance and harvest intensity, we additionally 

analysed their effects on the response variables separately per region within the same 

generalized linear model. Finally, to compare leaf damage across different tree species, we 

used ANOVA (command ‘aov’) followed by Tukey post hoc tests. 
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Tab. 2.1: Relationship between average leaf damage and the total density of herbivore groups. Generalized mixed model; for the direction of the effects, the linear regression 
coefficient (r) between the residuals of the previous predictors and the respective response variable are shown. VS = vertical stratification index, CV = coefficient of variation 
of leaf damage, R. fagi = Rhynchaenus fagi. Distribution: n (normal) and qp (quasi-Poisson); data transformation for n given in parentheses. Significance levels: . (p < 0.1), 
* (p < 0.5), ** (p < 0.01) and *** (p < 0.001). Degrees of freedom are 1 for beech dominance, 1 for harvest intensity, and 2 for region in May and July (but 1 in November). 
Effect of harvest intensity in reduced model without beech dominance.  
a) r = -0.35**, b) r = -0.07; c) r = -0.22. See Supplementary Material S2.1: Tab. S2.1.1 for complementary analysis of significant interaction effects. 

  
Distribution 
(transf.) 

  Region (R) Beech dominance (B) Harvest intensity (M) Interactions 
Response     Null-

Deviance 
Deviance   Deviance r   Deviance r     

Leaf damage May n (log+1) 17.50 11.76 *** 1.07 0.43 *** 0.52 -0.26 **a) RxB*, BxM*** 
July n (^1/3) 74.87 47.55 *** 1.35 0.22 ns 0.05 -0.04 ns b) 

 Nov n 37 27.34 *** 0.1 0.1 ns 0.44 -0.20 ns c) RxM* 
VS May n 0.87 0.32 *** 0.08 0.37 * 0 -0.1 ns 

 July n 0.74 0.08 * 0.18 0.53 *** 0.02 0.2 ns 
 CV May n (log+1) 1.74 0.09 ns 0.09 -0.23 ns 0.02 -0.08 ns 
 July n  3.77 0.22 ns 0.04 0.12 ns 0.30 -0.31 * 
 Nov n (^1/3) 0.08 0.01 * 0 0.26 ns 0 -0.01 ns 
 Chewers May qp 1.46 0.88 *** 0 0.02 ns 0 -0.14 ns 
 July n (^1/4) 0.01 0.01 *** 0 -0.16 ns 0 0.29 * BxM** 

Weevils excl. 
R. fagi 

May n (^1/6) 6.51e-5 7.08e-6 ns 9.27e-7 -0.07 ns 1.19e-6 -0.13 ns 
 July qp 0.15 0.02 ** 0 0.07 ns 0.06 0.37 *** RxM* 

R. fagi May qp 0.62 - 0 0.08 ns 0.01 -0.13 ns 
 July qp 0.63 - 0 0.34 ns 0.01 -0.14 ns 
 Caterpillars May n 0.001 8.77e-5 * 6.79e-6 0.12 ns 6.41e-6 -0.05 ns 
 July n (sqrt) 0.04 0  0 0.11 ns 0 0.23 * RxM*** 

Aphids May qp 2.75 0.1 *** 0.77 -0.3 *** 0 -0.1 ns 
 July qp 14.13 4.64 *** 0.62 -0.22 *  0.23 -0.19 ns RxB***, BxM* 

Mines May qp 10.77 9.33 *** 0.11 0.2 * 0.04 0.13 ns BxM*** 
July n (^1/3) 0.17 0.06 *** 0 -0.14 ns 0 0.12 ns RxBxM* 

Galls May n (^1/4) 2.64 0.8 *** 0.28 0.09 ** 0.10 0.14 .  
July n (^1/3) 3.51 1.81 *** 0.01 0.15 ns 0.01 -0.13 ns RxB*** 
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Results 

Leaf damage by chewing herbivores differed considerably between regions (Fig. 2.1, 

Tab. 2.1), and both the proportion of F. sylvatica (beech dominance) and harvest intensity 

affected the amount of leaf damage and the density of different taxonomic groups of 

herbivores when the regional differences were accounted for (Fig. 2.2, Tab. 2.1). Damage of 

live leaves was highest in Alb (mean ± SD: 5.3 ± 2.9% in May and 8.1 ± 3.5% in July) and 

significantly lower in the two other regions (1.0–1.8 ± 0.4–1.9 %) (Fig. 2.1, Tab. 2.1). 

Similar results were observed for herbivore damage estimated on fallen leaves, with higher 

damage in Alb (3.2 ± 0.7%) than in Hainich (1.3 ± 0.5%) (Fig. 2.1c, Tab. 2.1). 

Beech dominance showed a significant positive effect on leaf damage in May, with a 

significant effect in Hainich, a marginally significant trend in Alb and a weak trend in 

Schorfheide (Fig. 2.2, Tab. 2.1, see Supplementary Material S2.1: Tab. S2.1.1). Even after 

accounting for region and beech dominance, harvest intensity had an additional effect on 

leaf damage in May, where leaf damage decreased significantly with increasing harvest 

intensity. The effect of harvesting in May remained significant when beech dominance was 

not considered as a predictor prior to harvesting in a sequential model (Tab. 2.1). The trends 

for leaf damage in July and for fallen leaves in November were similar, but not significant. 

Beech dominance and harvesting were not correlated (Pearson r = -0.19, p = 0.205)  
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Fig. 2.1: Leaf damage (%) of beech trees in the three study regions – Schorfheide (Sch), Hainich (Hai) and 
Alb (Alb) – in the surveys in May (a) and July 2013 (b) and November 2012 (c). The letters indicate 
significant differences between regions (ANOVA, Tukey’s post hoc p < 0.05). 



  Chapter 2 

 37 

Region and beech dominance significantly affected the vertical distribution of leaf damage 

(VS index) in May and July (Tab. 2.1). Herbivory was most pronounced in upper crown 

positions in May in Alb (mean VS ± SD: 0.61 ± 0.09), but in lower positions in Hainich and 

Schorfheide (0.44 ± 0.14 and 0.42 ± 0.12, respectively). VS values were significantly 

different from 0.5 (which would indicate a similar herbivory in lower and upper crown 

positions) in Alb (p = 0.04) and Schorfheide (p = 0.006), but not in Hainich (p > 0.05). 

Overall-VS values in May were not significantly different from 0.5. In July, the majority of 

herbivory was found in the upper crown positions (Alb: 0.56 ± 0.14, Hainich: 0.57 ± 0.09, 

Schorfheide: 0.48 ± 0.14), with overall-VS values and values from Hainich being 

significantly higher than 0.5 (p = 0.04 and 0.003 for overall values and Hainich, 

respectively). These results thus suggest an upward-shift of herbivore feeding in tree crowns 

during the season at least in Hainich and Schorfheide. In forests with high proportions of 

beech, herbivory was also more pronounced in higher crown positions (Tab. 2.1).  
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Fig. 2.2: Influence of beech 
dominance and harvest 
intensity on leaf damage 
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Data were collected in May 
(a,b), July (c,d) and 
November (e,f) in the three 
regions Schorfheide (Sch), 
Hainich (Hai) and Alb (Alb). 



Results 

 38 

The variation of severity of herbivory across trees, expressed by the coefficient of variation 

(CV) of leaf damage, was not strongly differing between regions (Tab. 2.1). The only 

difference in CV was found between Alb and Hainich for data on fallen leaves, where the 

CV of damage of fallen leaves was significantly lower in Alb (0.25 ± 0.09) than in Hainich 

(0.38 ± 0.20). Beech dominance showed no effect on CV of leaf damage, whereas a weak 

negative effect (significant only in July) was detected for harvest intensity (Tab. 2.1). 

Consistent with leaf damage, the abundance of all herbivore guilds - namely chewers, 

miners, aphids and galls - and of selected taxa, including weevils and lepidopteran 

caterpillars, significantly differed between regions (Tab. 2.1). Rhynchaenus (Orchestes) 

fagi L. was the most abundant weevil and represented 95% of all collected weevil 

individuals. As this species was detected exclusively in Alb, it was treated separately from 

the remaining weevils; region was removed as factor in the model. The results suggest that 

beech dominance and harvest intensity have no significant effect on R. fagi density. In 

contrast, beech dominance did have a significant negative effect on the density of aphids 

(represented by the woolly beech aphid Phyllaphis fagi L.) in both surveys, and a significant 

positive effect on mines and galls in May (Tab. 2.1). Harvest intensity had a positive effect 

on the density of weevils (excluding R. fagi) and on chewers in July (Tab. 2.1). Hence, 

contrasting responses to harvest intensity were found for leaf damage by chewing 

herbivores (negative in May) and these herbivore groups (positive) in different months. 

A more detailed analysis on the family level of galling arthropods showed a positive effect 

of beech dominance on gall midges in May (r = 0.22; p = 0.005) and July (r = 0.32; 

p < 0.001) but no effect on gall mites. Analyses on the species level revealed that gall 

density of the gall mite Aceria nervisequa Cane. was positively related to beech dominance 

in May (r = 0.11, p = 0.027). Furthermore, beech dominance was positively related to gall 

density of the gall midges Mikiola fagi Hart. (May: r = 0.26, p = 0.016, July: r = 0.42, 

p < 0.001) and Phegomyia fagicola Kief. (July: r = 0.15, p < 0.001). Harvest intensity was 

positively related to gall density of the gall mite A. nervisequa in May (r = 0.28, p = 0.015) 

and to the gall midge P. fagicola in May (r = 0.25, p = 0.028). 

Across all sites, average leaf damage and the total density of all leaf-chewing herbivores 

together were significantly positively correlated in May, but not July (Tab. 2.2). This was 

also confirmed for the caterpillars and for R. fagi alone, as well as for leaf mines that were 

not part of the damage assessment (Tab. 2.2). 
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Fagus sylvatica showed the lowest level of leaf damage compared to the other two studied 

tree species in July. Highest damage was found for Acer pseudoplatanus (mean ± SD: 

8.7 ± 11.0 %), followed by Quercus spp. (4.2 ± 4.6 %) and F. sylvatica (3.8 ± 5.2 %). The 

factor tree species influenced leaf damage significantly (F = 14.27, p < 0.0001). The 

difference between damage of F. sylvatica and A. pseudoplatanus was highly significant 

(p < 0.0001). In May, where Quercus had not yet flushed leaves, A. pseudoplatanus 

(3.4 ± 6.4%) did not differ significantly from F. sylvatica (2.5 ± 3.8%).  

Tab. 2.2: Relationship between average leaf damage and the total density of herbivore groups. Spearman rank 
correlation; data were obtained in May and July and across all sites (n = 48). The correlation between 
Rhynchaenus fagi (R. Fagi) and leaf damage was restricted to the study region ALB (n = 16). Significance 
levels: ns (not significant), * (p < 0.05), and *** (p < 0.001). 

 

	 May July 
Predictor rs p rs p 
Chewers 0.47 *** 0.04 ns 

Weevils excl. 
R. fagi 

-0.22 ns 0 ns 
R. fagi 0.55 * 0.04 ns 

Caterpillars 0.13 ns -0.03 ns 
Aphids 0.14 ns 0.18 ns 
Mines 0.59 *** 0.13 ns 
Galls -0.05 ns -0.04 ns 
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Discussion 

In our study we investigated the effects of different aspects of forest management on the 

abundance of arthropod herbivores and on herbivore-related damage to beech trees, the 

prevailing tree species in natural Central European forests. Forest management was 

characterized by (1) changes in beech dominance, assuming that a low proportion of beech 

trees often represents targeted establishment of other timber species, and (2) by harvest 

intensity. Our results demonstrated that herbivore damage on beech trees may decline 

(depending on season) with decreasing beech dominance (i.e. a lower herbivory with 

increasing management intensity) and that it additionally may decline with increasing 

harvest intensity. The density of leaf chewers and mines was positively related to leaf 

damage, and several of the studied arthropod groups were found to respond to beech 

dominance and harvest intensity, albeit in different ways. An analysis of damage patterns in 

different tree heights indicated a vertical shift of herbivores to higher crown layers during 

the season and with higher beech dominance. 

Regional differences in herbivore density and leaf damage 

The regional differences found for herbivore density and leaf damage are in accordance 

with other studies showing strong differences in herbivore abundance and impact between 

study sites differing in climate and other environmental variables (Adams et al. 2009; 

Gossner et al. 2014a; Stoeckli et al. 2008; Truxa and Fiedler 2012a). Regional differences 

in abundance of insect species may be related to abiotic but also biotic environmental 

parameters, and they may occur for widespread as well as for site-restricted species (for a 

detailed discussion for German beech forests see Andersen 1997; Connor et al. 2000; 

Gering et al. 2003; Gossner et al. 2014a). Whereas all groups of herbivores varied in 

abundance across regions in our study, this pattern was particularly obvious for abundance 

of the beech leaf-miner weevil R. fagi. This species can be considered as a key herbivore of 

beech (Nielsen 1978; Phillipson and Thompson 1983; Rheinheimer and Hassler 2010), and 

it was the most numerous beetle species in our samples, but was only detected in one of the 

three regions (Alb). As R. fagi is known to occur throughout Germany (Rheinheimer and 

Hassler 2010), these marked differences in abundance are best explained by fluctuations in 

population density that are reportedly highly pronounced in this species (Péré et al. 2011, 

and references therein). The importance of this species for herbivore damage in our study 
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was supported by the high correlation of R. fagi density and overall leaf damage found in 

May, and the lower herbivore damage in Hainich and Schorfheide might be partially 

explained by the absence of this species. 

Influence of forest management on leaf damage and herbivore density 

Despite the strong regional differences in herbivore communities, consistent effects of tree 

species composition (beech dominance) and harvest intensity on herbivore density and 

damage were found. This finding emphasizes the potential importance of forest 

management for interactions between beech trees and their arthropod herbivores in different 

environmental contexts and it augments information obtained from qualitative herbivory 

assessments (Gossner et al. 2014a). The increase of damage to beech trees with beech 

dominance also suggests that some processes described by “associational resistance 

hypotheses” may hold for native Central European beech forests and are not restricted to 

agricultural (Andow 1991; Letourneau et al. 2011) or plantation (Jactel and Brockerhoff 

2007; Plath et al. 2012; Vehviläinen et al. 2006) systems that are strongly influenced by 

land management. Associational resistance can be based on different processes, which may 

affect herbivores directly via plant traits such as suitability or appearance of focal plants 

(bottom-up processes), or via indirect effects on the herbivores’ enemies (top-down 

processes). Different bottom-up processes contribute to associational resistance (see Jactel 

et al. 2005; Poveda et al. 2008 for review of associational resistance hypotheses). As most 

of these hypotheses have been developed in short-lived agricultural systems - where initial 

host plant colonization is assumedly more important than in long-lived, perennial systems 

such as forests - or in young experimental forests, it is still a matter of on-going 

investigations how they apply to mature or near-natural forest systems. 

An increase of herbivory in pure stands is often explained by the resource concentration 

hypothesis (Root 1973; Vandermeer 1989). This hypothesis assumes that herbivores 

maintain higher densities and success in monospecific stands of their host plants, where 

presence of many conspecific plants enhances accessibility of host plants for specialist 

herbivores. In mixed stands, plant diversity may protect host plants by physically (Perrin 

and Phillips 1978), visually (Castagneyrol et al. 2013; Finch and Collier 2000) or 

chemically (Castagneyrol et al. 2013; Finch and Collier 2000; Tahvanainen and Root 1972) 

impeding herbivore access to the host plant. As herbivore species or even stages of the same 

herbivore species are strongly differing in their foraging behaviour and responses to 
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environmental parameters (Hochuli 2001; Moreau et al. 2006), the specific mechanisms 

underlying an observed damage pattern can only be completely understood when the 

damaging species have been identified. In our study, this specific identification was 

obtained for a few species, namely the beech leaf-miner weevil R. fagi, the woolly beech 

aphid P. fagi and a few gall makers. The community of chewing herbivores as a whole 

responded in a positive way to beech dominance. However, the abundance of the only 

common chewing herbivore species that can be related to the quantified herbivore damage - 

the weevil R. fagi - did not respond to beech dominance in our analysis. The roles of other 

species need to be elucidated in more detailed studies in beech forests. Nevertheless, 

possible mechanisms can be deduced from other studies and systems. For example, positive 

relationships between herbivore damage and host plant dominance may occur in passively 

dispersing herbivores including early-instar moth larvae, where higher host density 

increases the probability to land on a suitable host, or for bark beetles, where higher host 

plant densities allow for build-up of critical population densities (Hochuli 2001; Kemp and 

Simmons 1979; Speight and Wainhouse 1989). 

Increasing tree diversity (decreasing host dominance) may also increase herbivore damage, 

translating to associational susceptibility (Barbosa et al. 2009). This is particularly 

described for generalist herbivores profiting from mixing different host species, or spilling-

over from preferred hosts to less palatable focal plants following exhaustion of the preferred 

host species (Brown and Ewel 1987; White and Whitham 2000). However, associational 

susceptibility due to increasing tree diversity is not restricted to generalist herbivores, but it 

can also occur for specialist herbivores avoiding enemies or competitors (Plath et al. 2012), 

or those that profit from mixing heterogeneous conspecific plants (Castagneyrol et al. 2012; 

Mody et al. 2007). In our study, an indication for associational susceptibility was found for 

infestation of beech by P. fagi, which was negatively related to beech dominance in spring 

and summer. In this case, a higher dominance of host trees may dilute the density of early-

season fundatrices (Kareiva 1983), or it may affect the quality of beech trees as a host. Host 

quality of trees may depend on tree association, for example as a consequence of facilitation 

and reduced stress in mixed stands during periods of abiotic stress such as drought (Pretzsch 

et al. 2013), which is known to affect the suitability of trees for insect herbivores (Gaylord 

et al. 2013; Gutbrodt et al. 2012; Jactel et al. 2012), depending on drought intensity 

(Banfield-Zanin and Leather 2015; Mody et al. 2009). 

The change in associational effects - from support to suppression of herbivores - by 
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increasing tree diversity (decreasing beech dominance) may also be related to indirect 

effects of enemies as stated by the enemies hypothesis (Riihimaki et al. 2005; Root 1973). It 

is generally assumed that natural enemies of herbivores may profit from increasing plant 

diversity due to an increasing availability of resource and habitat conditions (Letourneau et 

al. 2011). In forests, these positive effects of increasing tree diversity have been shown for 

some predator or parasitoid groups but not for others (Jactel and Brockerhoff 2007; Lange et 

al. 2014; Nixon and Roland 2012; Sobek et al. 2009). To assess whether top-down 

processes have contributed to effects of beech dominance on herbivores in our study, further 

investigations on enemy assemblages and on specific herbivores are required. 

Besides effects of beech dominance, we also detected an influence of harvest intensity - 

defined as the proportion of harvested tree volume - on leaf damage and on abundance of 

some chewing herbivores. Harvesting activities may lead to a simplification of forest 

structure, which may provoke a reduction of herbivore abundance or species richness 

(Ayres and Lombardero 2000; Bouget et al. 2012; Grove 2002) in different taxonomic 

groups (Dodd et al. 2012; Paillet et al. 2010). These reductions in herbivore occurrence 

(including both abundance and diversity) may lead to a decrease in leaf consumption, which 

might explain the observed negative relationship between harvest intensity and herbivore 

damage in spring and also autumn (see also Gossner et al. 2014b, who found a negative 

relationship between land use intensity and herbivory in grasslands). The decrease in 

herbivory might also come along with increased enemy pressure in more strongly disturbed 

forests, which might be possible for some key enemies (Gandhi et al. 2008; Sheehan 1986; 

Way 1977), but is not generally to be expected (Schowalter 2012 and references therein). 

Relationship between herbivore density and damage 

We found a generally positive relationship between herbivore density and damage although 

such a pattern may not always be apparent given the conceptual differences between the two 

parameters: whereas the assessment of damage integrates over a period of time, the 

activities of specific herbivores are usually fluctuating over the season and with changes in 

environmental conditions or resource availability (Gaston and McArdle 1994). In our study 

this shift became apparent by the observed switch of herbivory from lower to higher canopy 

layers. These shifts may directly track resource availability and quality, but they may also 

reflect changes in species composition (Ruhnke et al. 2009). The shifts in resources and 

species may also explain why we did not detect effects of beech dominance and harvest 
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intensity on damage later in the season—probably since different effects were masking each 

other. 

Conclusion 

Our study showed that the occurrence of arthropod herbivores in forests and resulting 

damage to forest trees is influenced by host tree dominance and by differences in harvest 

intensity. Specifically, herbivore damage to beech trees increased with increasing 

dominance of beech trees and decreased with increasing harvest intensity. These findings 

appear to be generalizable at least for European beech forests as they were consistent across 

forests from three regions varying in biotic and abiotic environmental conditions. At the 

same time, strong temporal and spatial variation in herbivore occurrence and damage to 

beech, but also to oak and maple trees, point to the highly conditional nature of herbivory as 

an ecosystem process.  
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Abstract 

Grasslands belong to the ecologically most relevant habitats in cultural landscapes, but also 

provide high economic value when used as meadows or pastures. Land-use intensification 

in grasslands negatively affects plant diversity as well as arthropod communities that 

depend on plants as food source and habitat, with important consequences for the provision 

and resilience of ecosystem functioning.  

In this study, we analysed 178 moth species to investigate whether species composition, 

diversity and life-history trait characteristics of moth communities respond to the type and 

intensity of land use, comparing 26 sites in three different regions of Germany.  

Consistent across the three regions, we found that pastures grazed by cattle, horses or sheep 

harbour fundamentally different moth communities than meadows (mown and fertilized 

grasslands). Overall land-use intensity (LUI) – i.e. grazing intensity, amount of fertilizer 

applied and mowing frequency taken together – significantly reduced abundance and 

species richness as well as diversity. Some 27 % of the species showed significant negative 

responses to LUI. A shift towards generalist life-history traits was observed: in frequently 

mown and fertilized meadows, rare specialist species were replaced by ubiquist species, i.e. 

highly reproductive habitat generalists.  

These results show the sensitivity of moths, an important group of arthropod herbivores and 

pollinators, to land use change in grassland ecosystems. The functional homogenization of 

life-history traits in plants along land-use gradients is mirrored by their herbivore 

consumers, leaving high-intensity grasslands less diverse and potentially less resilient to 

environmental disturbances. 
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Introduction 

Grasslands constitute one of the largest biomes covering 26 % of the world land area (FAO 

2008). In central Europe, however, grassland ecosystems naturally occur only under 

particular edaphic or climatic situations (e.g. at high altitudes or in wetlands). Most 

European grasslands are anthropogenic in origin either as pastures or meadows, with 

possible conflicting goals in terms of biodiversity conservation, agro-economical and other 

stakeholder interests.  

Therefore, grassland biodiversity is highly contingent on the type (mode of biomass 

removal through grazing intensity or mowing) and intensity of management (frequency of 

biomass removal, replenishment of soil nutrients through fertilization). Several studies 

reported a general loss of grassland biodiversity after intensification of land-use activities by 

the three most common management interventions, namely grazing, mowing and 

fertilization (Debinski et al. 2011; Johst et al. 2006; Krause and Culmsee 2013; Lanta et al. 

2009; Moranz et al. 2012; Öckinger et al. 2006a; van den Berg et al. 2011). So far, only few 

studies related community composition and life-history trait variation with the type and 

intensity of land use (Birkhofer et al. 2015a; Bommarco et al. 2014; Gossner et al. 2014b; 

Tsiafouli et al. 2015).  

As grasslands are managed more intensively, land-use practice often moves away from 

livestock grazing to frequent mowing, accompanied by the application of fertilizer. 

Extensively used grassland with low disturbance by livestock grazing typically maintains a 

higher structural diversity and higher plant diversity than more disturbed and intensively 

managed sites (Boch et al. 2013; Socher et al. 2012). Grazing by livestock can have direct 

and indirect effects on the complexity of the grassland vegetation structure by defoliation, 

treading and manuring (Morris 2000). In contrast, mowing affects all plant and animal 

populations at once, although interventions last only for very short periods in time. 

Conceptually, mowing can thus be considered as a pulse disturbance, whereas disturbance 

via grazing is more persistent and more selective. In the long term, frequently repeated 

mowing will select for different plant growth forms (e.g. rosettes, Liira et al. 2009) than 

grazing (e.g. plants with physical or chemical defence against grazers, Diaz et al. 2007). In 

common land-use practice, however, mowing is usually combined with the application of 

fertilizer to grasslands, which increases total biomass production (Simons et al. 2014) and 
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favours fast-growing, highly competitive plant species (Liancourt et al. 2009), consequently 

reducing plant diversity (Simons et al. 2014; Zechmeister et al. 2003).  

These changes in the resource composition and plant functional diversity due to land-use 

intensification are mirrored by the arthropod community. Livestock grazing affects 

arthropod diversity directly, by unintentional predation and increased disturbance, and 

indirectly, via selective resource depletion and changes in vegetation structure and abiotic 

conditions (van Klink et al. 2015). Under moderate grazing pressure, high species richness 

of plants and arthropod herbivores can be maintained or even increased (Kruess and 

Tscharntke 2002). Mowing, on the other hand, being primarily non-selective for plant taxa 

or functional groups, also induces high disturbance on the arthropod communities with 

particularly high fatalities on less mobile larval stages feeding on leaves (Humbert et al. 

2010). The decline in resource plant species richness and higher plant biomass production 

due to combined mowing and fertilization (Lee et al. 2010; Socher et al. 2012) is causing a 

loss of specialist herbivore species and an increase in generalists (Gámez-Virués et al. 2015; 

Huston and Gilbert 1996; Simons et al. 2016). For example, the niche breadth of adult 

butterflies has been found to increase with the degree of disturbance; mono- and 

oligophagous specialist species occur more commonly in less disturbed habitats (Börschig 

et al. 2013; Kitahara et al. 2000). Many generalist arthropod species also have higher 

reproductive rates due to a larger number of reproductive cycles per year (i.e. multivoltine 

species, Börschig et al. 2013). Further, species traits such as a wide distribution or high 

dispersal mobility may improve the likelihood of arthropods to recolonize grassland sites 

after local extinctions through mowing or grazing (Öckinger et al. 2010; Tscharntke et al. 

2005). Since individual body size is an important constraint on many functional traits, and 

particularly of mobility and dispersal range (Bartonova et al. 2014; Kivelä et al. 2013) as 

well as diet breadth (Kalinkat et al. 2013), it will be considered as a major factor of trait 

variation in this study.  
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This leads to the following expectations for arthropod communities in the wake of land-use 

intensification:  

(1) Species composition of arthropod communities in grasslands depends on the type of 

land use (mowing and fertilization vs. grazing).  

(2) Arthropod abundance and diversity concomitantly decrease in high-intensity 

grasslands.  

(3) At high land-use intensification, generalist life-history traits will prevail over 

specialist traits. 

In this study, we aim to test these predictions by assessing abundance, diversity and trait 

variation of moth communities from grassland sites distributed over three regions in Central 

Europe, which comprise meadows managed by mowing as well as pastures grazed by cattle, 

sheep and horse. The selected grasslands in this large-scale collaborative project 

(Biodiversity Exploratories) are representative for the three regions and cover a broad range 

of land-use intensities (Fischer et al. 2010). Land-use intensity (LUI) in these grasslands is 

quantified by three individual components (fertilization intensity, mowing frequency and 

grazing intensity) and summarized in a compound index, since the individual components 

are non-independent (Blüthgen et al. 2012). 

Lepidoptera contain more than 160,000 described species and belong to the largest and best-

explored arthropod groups (Kristensen et al. 2007; New 2004). However, the main focus of 

studies on land-use intensification has been on diurnal butterflies (Macgregor et al. 2015), 

whereas more than 85 % of Lepidopteran species are moths. Life-history traits and diversity 

of moths along quantified land-use gradients in grassland have rarely been studied (but see 

Pavlikova and Konvicka 2012; Rickert et al. 2012; Šumpich and Konvička 2012).  
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Material and Methods 

Study area 

The study was performed in the framework of the German Biodiversity Exploratory Project 

(http://www.biodiversity-exploratories.de; Fischer et al. 2010). The main objectives of the 

Biodiversity Exploratory Project are to understand the relationships between biodiversity of 

different taxa and levels, the role of land use and management for biodiversity, and the role 

of biodiversity for ecosystem processes. The established experimental plot design is used as 

a framework for many research projects to enable synthesis across taxa and functional 

groups.  

The Exploratories were established in 2006 in three different regions of Germany: the 

Biosphere Reserve “Schorfheide-Chorin” (a glacially formed landscape in North-East 

Germany, 3-140 m a.s.l., 13°23’27’’-14°08’53’’ E / 52°47’25’’ - 53°13’26’’ N, mean 

annual temperature 6 - 7 °C, mean annual precipitation 520 - 580 mm), National Park 

“Hainich” and its surroundings (a hilly region in Central Germany, 285 - 550 m a.s.l., 

10°10’24’’ - 10°46’45’’ E / 50°56’14’’ - 51°22’43’’ N, mean annual temperature 6.5 - 8 °C, 

mean annual precipitation 630 - 800 mm), and the Biosphere Reserve “Schwäbische Alb” (a 

low-mountain range in South-West Germany, 460 - 860 m a.s.l., 09°10’49’’-09°35’54’’ E / 

48°20’28’’ - 48°32’02’’ N, mean annual temperature 8 - 8.5 °C, mean annual precipitation 

800 - 930 mm).  

Sample processing 

Micro- and macro-moths were collected once a month between May and August 2014 in 

Hainich and Alb and in June and July 2014 in Schorfheide, because the highest species 

richness and abundance is expected during this period (Jonason et al. 2014). Nine grassland 

plots were sampled in both Hainich and Alb and eight in Schorfheide (n = 26), representing 

different land-use intensities and management methods. Moths represent one of the most 

diverse groups of arthropods and their abundance varies strongly along the season. To cover 

the whole variation within the plots, we preferred sampling repeatedly, rather than 

increasing local sample size. Every night during the sampling periods, three plots (termed 

A, B and C) were chosen. Moths were attracted using a battery powered (12 V) portable 

light trap, consisting of a super actinic and a black light tube (230 V, 2 x 20 W, bioform®) 
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with a twilight sensor, surrounded by a gauze cylinder (height: 180 cm; diameter: 70 cm). 

Light traps were placed in the centre of a plot to minimize the attraction of moths from 

adjacent habitats (Merckx et al. 2012), because the distance by which moths are attracted to 

light traps is up to 30 meters (Merckx and Slade 2014; Truxa and Fiedler 2012b). The 

sensor facilitated a simultaneous onset of the three light-traps after sunset. Every night the 

observation started with complete darkness (mean = 1.26 h after sunset) and comprised two 

sampling rounds when moths were manually collected at each trap and its direct 

surroundings. During the first sampling round, the light traps were visited (in order A, B, C) 

and directly observed for 20 minutes during which all moths were caught in individual vials. 

The second observation round reversed the order of plots (C, B, A) and lasted 15 minutes at 

each site. Thus, for logistic reasons given the travel distance of at least 20 minutes car drive 

between the three sites, the time between visits and the exposure to light varied between the 

plots, with longest exposure (sunset to last visit) at plot A and shortest at plot C. In 

consequence, the traps were illuminated for a total of 138 – 317 minutes 

(mean = 225.1 minutes) per night. In climate stations permanently installed on the plots, we 

recorded the mean air temperature two meters above ground per night and plot as a measure 

of ambient temperature per sampling site and night. All moths were identified to species 

level using identification guides (Rennwald and Rodeland 2002; Segerer and Hausmann 

2011; Steiner et al. 2014) and by taxonomic experts (see Acknowledgements). 

Land-use intensification  

We examined the responses of moth communities to land-use intensity in grasslands using 

the quantitative index of land-use intensity (LUI) as an explanatory variable. This index 

combines the intensity of the three main management components applied to anthropogenic 

grasslands in Central Europe, namely livestock grazing [livestock units � grazing days � ha-1 

� year-1], mowing [cuts � year-1] and fertilization intensity [kg N � ha-1 � year-1] at each site. 

The index of land-use intensity (LUIs) for each site s combines these three land-use 

components and is quantified as 

!"#! =
!!
!!
+  !!
!!

+ !!
!!

 

where intensities of fertilization (Fs), mowing (Ms) and grazing (Gs) on site s are 

standardized by their respective mean intensity across the three regions (Fr, Mr, Gr) 
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(Blüthgen et al. 2012). The land-use information is obtained annually by interviews with the 

landowners and farmers. 

We used the land-use intensity of the year 2013, assuming that the year preceding the 

survey has the strongest influence on the occurrence of moths. Nevertheless, the LUI is 

highly correlated between successive years (r = 0.86 between 2013 and 2012, r = 0.84 

between 2013 and 2014; n = 26 sites, for detailed information about the intensity of each 

plot see Supplementary Material S3.1: Tab. S3.1.1). In addition, the land-use components 

grazing, mowing and fertilization were evaluated separately as binary explanatory variables 

(grazed/ungrazed, mown/unmown, fertilized/unfertilized). Note that mowing and 

fertilization are usually coupled due to prevailing management practices in the study regions 

(and thus non-independent), whereas grazing trends to be complementary, even if eight 

plots were managed as mown pastures (see Supplementary Material S3.1: Data S3.1.1, 

Tab. S3.1.14).  

Life-history traits  

To analyse how land-use intensification may represent an environmental filter for moth 

species with particular life-history traits, we categorized the larval feeding niche, wingspan 

(as a representation of body size), reproductive cycle (expressed through voltinism and 

hibernation stage), geographic distribution in Europe, and national conservation status of 

each species based on the literature and supplemented with own data (KF, pers. obs.). The 

data are provided in Supplementary Material S3.2, the reference list in Supplementary 

Material S3.1: Literature S3.1.1. Larval feeding niche was classified in four ranks: 

(1) narrow specialists (host plants within one plant genus), (2) moderate specialists (host 

plants within one plant family), (3) moderate generalists (host plants recorded from two to 

four families), and (4) wide generalists (host plants in five or more families). We used the 

mean wingspan of each species taken from literature records, because it is strongly 

correlated with body size and is also known to relate to dispersal abilities and reproductive 

rates (Garcia-Barros 2000), even if such relationships might not be fully consistent across 

different studies (Betzholtz and Franzen 2011; Sekar 2012; Slade et al. 2013). We assume 

that larger body size supports the recolonization after disturbance events associated with 

management. As characteristics related to the reproductive cycle, we used two life-history 

traits. First, we classified voltinism of each species according to the number of generations 

produced within one year: (1) semivoltine (i.e. all individuals must undergo two periods of 
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hibernation to complete their development), (2) strictly univoltine, and (3) multivoltine (i.e. 

two or more generations are regularly observed per year). Second, we classified the 

hibernation stage: (1) egg, (2) larva, (3) pupa, and (4) adult. Species with more advanced 

hibernation stages appear earlier in spring and have a higher degree of phenological 

advancement (Diamond et al. 2011). Therefore, they have better chances to avoid early-

season land-use associated disturbances like mowing. We additionally classified the 

occurrence of each species across six different biogeographic zones within Europe 

(subarctic, boreal, continental, Atlantic, alpine and Mediterranean). To quantify the gross 

distribution we counted the number of zones in which the species occurs. National 

conservation status of moth species was taken from available red lists and the classification 

was adapted from the original red list: (1) critically endangered, (2) endangered, 

(3) vulnerable, (4) near threatened, (5) least concern. Since no nation-wide red list 

classification is available for micromoths in Germany, we excluded the conservation status 

for these species (for detailed information on scoring of the traits see Supplementary 

Material S3.1: Tab. S3.1.2, for life-history traits of each species see Supplementary Material 

S3.3). 

Data selection 

For the main analysis, we only included true grassland moth species, i.e. species whose 

larvae feed on herbs or grasses that regularly occur on meadows and pastures, because only 

populations of those species are expected to be affected by local land-use activities in the 

grassland. We thus aimed to exclude moths that were sampled while on dispersal flight or 

which may have been attracted by the light traps from nearby habitats. In particular, we 

assigned ‘ecotone species’, whose larvae feed on plants which may occasionally occur on 

grassland habitats, but mostly towards surrounding forest, hedgerows, neighbouring 

wetlands, agricultural land, or in stages of vegetation succession after mowing or grazing 

has been abandoned, and ‘forest species’, whose larvae feed on plants which are never a 

component of the vegetation community in open grassland. Both ‘ecotone species’ and 

‘forest species’ were excluded. For comparison and as an assessment of the robustness of 

our results, we repeated the complete analysis for the grassland and ecotone species 

combined, and also for the forest species alone (see Supplementary Material S3.1: 

Tab. S3.1.8 - S3.1.13, Fig. S3.1.3 - S3.1.8).  
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Analysing community composition 

To see how combined land-use intensification and particular land-use factors affected 

species composition, we analysed the species abundances per plot by means of a constrained 

ordination method (dbRDA / CAP). We z-transformed the predictors, square-root-

transformed the moth counts and then calculated the Bray-Curtis distance of faunal 

composition across sites, based on proportional abundances of each species. With this 

method we converted all predictors to the same scale and minimized the effect of a few 

highly abundant species. We then tested the influence of land-use factors on moth species 

composition by running univariate tests (number of permutations = 999). As environmental 

factors, LUI and its individual components were used.  

Analysing diversity trends and trait filtering 

We further studied a variety of community-level metrics in response to land-use 

intensification, namely Shannon species diversity (H), total abundance (A) and observed 

species richness (S) of moths for each site during each survey. To quantify the average score 

of the moth assemblage for each life-history trait per site and survey, we calculated 

community-weighted means (CWM). 

The statistical analysis of responses of moth communities (H, A, S, and CWM) to land use 

was performed in two steps. First, to account for random factor variation in the abiotic 

conditions we calculated residuals on a linear model (subsequently termed the co-variate 

model) that described the response variables as a function of the average temperature 

(in °C), the month (as factorial variable with levels “May”, “June”, “July”, “August”) and 

the potential influence of exposure to moonlight (Merckx et al. 2009). Moon exposure was 

quantified as the product of its proportional visibility during the observation period (sunset 

to end of second sampling; min = 0.07, max  = 0.09; using http://www.mooncalc.org by 

Hoffmann 2015) and the proportion of lunar illumination (calculated using the lunar 

package in R, Lazaridis 2014; min = 0 at new moon; max = 1 at full moon). Controlling for 

effects of moonlight is important since this factor is known to substantially influence the 

effectiveness of light traps (Jonason et al. 2014). The duration of the observation period had 

no significant effect on the response variables and was therefore omitted from the co-variate 

model. Thus, the residual values extracted from the co-variate model are adjusted for any 

occurring seasonal or temperature-dependent variation in the response values. In the second 
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step of analysis, the residual values of all temporal replicate samples per site were pooled 

into a single annual mean value for each plot, which was then used as response value in a 

series of ANCOVAs. These analyses tested whether land use (LUI, or its components 

grazing, mowing, or fertilization) had a significant effect on moth community attributes (H, 

A, S, CWM) and if this effect was concordant across the three regions (Alb, Hainich, 

Schorfheide). For significant results only, we additionally included the interaction effect 

between land use and region for significant results. 

Pooling the temporal replicates assumes that the variation of observations on plots is 

Gaussian and no further correction for plot effects is required. The factor ‘plot’ was not 

included in our residual model, because the combination of plot and month, as the temporal 

replicates of samplings per plot, explains all of the variance. Using a linear mixed-effect 

model for the last step and adding plot as random effect would cause the same conflict 

between plot and land-use effect.  

Analysing land-use niche of species 

To further differentiate the responses of individual species to land-use intensity, we 

characterized the species by their distribution and abundance across the sites, defining their 

‘land-use niche’ (Chisté et al. 2016). In particular, we defined the abundance-weighted 

means (µi) of the land-use gradient values of the sites in which species i occurs as a measure 

of its environmental niche optimum relative to the ecological gradient covered by our 

sampling (see Chisté et al. 2016  for land-use niche; Kühsel and Blüthgen 2015 for thermal 

niche). The species niches were estimated for the aggregate LUI value as well as for its 

components grazing, mowing and fertilization intensity. We compared the abundance-

weighted means to a null model to test whether the observed µi does conform to 

expectations if the species was randomly distributed across the sites (Chisté et al. 2016). 

Therefore, we used 10,000 permutations of species occurrence while fixing the total number 

of plots in which the species occurs, to compute a distribution of µnull values. For instance, if 

a species occurred in a total of three sites with mean land use µi, each null model computed 

the mean µnull of any three sites randomly selected from the entire pool of 26 sites. We then 

calculated the proportion of the 10,000 µnull values below and above the observed µi, p 

(µnull < µi) and p (µnull > µi), respectively. The smaller of both p-values defines the level of 

one-tailed significance. Species that had significantly lower realized µi land-use intensity 

than expected by chance are termed ‘losers’, whereas species that had a significantly higher 
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µi are termed ‘winners’. While this null model approach has high statistical power even for 

rare species occurring in few plots, the minimum number of sites in which a species needs 

to occur to significantly deviate from the null model depends on the total number of sites 

and the number of sites sharing the lowest or highest land-use intensity, e.g. zero 

fertilization. To restrict the analyses to those species with sufficient power (i.e. a significant 

result for a hypothetical extreme response), we only included moth species that occurred on 

three or more sites for LUI, grazing and mowing; for fertilization we only included species 

that occurred on five or more sites since 15 plots were unfertilized. 

Analysing relationship between land-use niche and species traits 

Life-history traits were used to analyse patterns of µi associated with each trait level. The 

differences between the categories were assessed by Tukey's post hoc test following 

ANOVA or ANCOVA in case of body size. Within each category, a one-sample t-test 

comparing to the mean LUI was used to find differences within each category according to 

land-use intensification. To assess how mowing and grazing as contrasting management 

strategies affect the occurrence across all species, we correlated the µi of grazing and the 

µi of mowing. 

Variance homogeneity and normal distribution was checked with Bartlett's test and Shapiro-

Wilk's test, respectively. All statistical analyses were performed in the R environment (R 

Core Team 2014, version 3.1.2), using the packages lme4 (Bates et al. 2014), MASS 

(Venables and Ripley 2002) and vegan (Oksanen et al. 2015).  
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Results 

Between May and August 2015 we recorded and determined 4,811 moth individuals 

belonging to 461 species from 26 families. After discounting all species that are atypical for 

grassland habitats, the sample on which the analyses described below was based, comprised 

3,237 individuals (178 species, 14 families). 

Fig. 3.1: Constrained ordination of moth species composition in all regions (a), and separately for the 
three regions Schwäbische Alb (Alb) (b), Hainich (Hai) (c) and Schorfheide (Sch) (d). Comparisons of 
communities were based on quantitative Bray-Curtis distances. Arrows represent the relationships with 
the respective land-use components. Asterisks indicate a statistically significant effect of the predictor. 
Detailed information on the statistical results and the residual model are given in the Supplementary 
Material S3.1. 
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Community composition 

Community composition differed significantly across all three regions (dbRDA: F = 4.53, 

df = 2, p = 0.001) and was on this large scale significantly affected only by grazing 

(F = 2.68, df = 1, p = 0.004). The two other factors of land use did not explain significantly 

the variance in moth species composition. Moth samples from the Alb and the Hainich 

formed two rather well defined clusters in reduced ordination space, whereas the 

Schorfheide samples (characterized by the overall lowest sample sizes) appeared more 

variable with regard to species composition. Within each region, a significant relationship 

between land-use intensity (i.e. LUI) and moth species composition could be shown in Alb 

(F = 2.13, df = 1, p = 0.008) and in Hainich (F = 1.54, df = 1, p = 0.045), but not in 

Schorfheide. Of the individual factors describing land use, only grazing had a significant 

effect in Schorfheide (F = 3.44, df = 1, p = 0.021; See Fig. 3.1), whereas all other factors 

did not show any close relationships with moth species composition in any region. In 

Hainich and Schorfheide, grazing and mowing effects on moth species composition were 

opposed to each other. In the Alb, in contrast, the effects of mowing and grazing were 

independent, with mowing largely projected on the first and grazing on the second canonical 

axis (See Fig. 3.1). For the full list of species in each region and month, see Supplementary 

Material S3.2.   
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Diversity trends  

After correcting for the variation caused by temperature, moonlight and season by taking the 

residuals on the covariate-model, we tested the effect of land use on species diversity, 

abundance and species richness across all survey regions. No response variable was 

significantly reduced at higher LUI values across all three regions, but an interaction 

between LUI and region was significant for abundance (F = 4.46, df = 2, p = 0.026). 

However, among the three land-use dimensions, mowing as a binary explanatory was 

associated with a decline in diversity (F = 4.78, p = 0.04), abundance (F = 10.31, p = 0.046) 

and richness (F = 11.43, p = 0.047) (Fig. 3.2c, g & k). No significant effects were observed 

for grazing and fertilization (ANOVAs testing the effect of grazing, mowing and 

Fig. 3.2: Relationship between residuals of moth diversity [(a) – (d)]; abundance [(e) – (h)] and observed 
species [(i) – (l)] per site along the standardized integrated land-use intensity index LUI [(a), (e), (i)] for 
the three regions Schwäbische Alb (Alb), Hainich (Hai) and Schorfheide (Sch). The results are based on a 
linear model using LUI and region as explanatory variables, after accounting for variation in light-trap 
samples related to temperature, season and moonlight. The factors grazing mowing and fertilization were 
examined separately. In contrast to species composition, region had no significant effect in any of the 
models. Different slopes of the three lines illustrate the interaction between land use and region, if it is 
significant. Significance levels: n.s. – not significant; * = p < 0.05; ** = p < 0.01; *** = p < 0.005. Please 
note: We calculated species diversity with mean temperature and moonlight in May (1.13) and in July 
(2.10), because those months showed the lowest and highest species diversity. Those results are equivalent 
to 0 on the y-axis. (Observed mean abundance: 18.48 moths per night and site in May, 74.51 in July; 
observed species richness: 5.68 species per night and site in May, 20.77 in July). Detailed information on 
the statistical results and the residual model are given in the Supplementary Material S3.1. 
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fertilization as binary explanatories; Fig. 3.2b - d, 3.2f - h; Supplementary Material S3.1: 

Tab. S3.1.6). 

Trait filtering  

Larval feeding niche, voltinism, distribution range and conservation status were all 

significantly filtered to some extent by land-use intensification. The community-weighted 

mean (CWM) of the species’ larval feeding niche breadth increased significantly with LUI 

Fig. 3.3: Relationship between residuals of moth traits along the land-use intensity index LUI [(a), (e), (i), 
(m)] in the three regions Schwäbische Alb (Alb), Hainich (Hai) and Schorfheide (Sch). Shown are those 
four traits with significant results, namely breadth of larval feeding niche, voltinism, distributional range, 
and national conservation status. The results are based on a linear model using LUI and region as 
explanatory variables. Voltinism and vulnerability show a significant interaction effect between LUI and 
region. The factors Grazing [(b), (f), (j), (n)], Mowing [(c), (g), (k), (o)] and Fertilization [(d), (h), (l), (p)] 
were additionally examined. Different slopes of the three lines illustrate the interaction between land use 
and region, if it is significant. Significance levels: n.s. – not significant; * = p < 0.05; ** = p < 0.01; *** = 
p < 0.005. Please note: We calculated feeding niche with mean temperature and moonlight in May (3.46) 
and in July (2.6), because those months showed the lowest and highest moth species diversity. Those 
results are equivalent to 0 on the y-axis. (Observed community-weighted averages: Voltinism: 2.53 in 
May, 2.28 in July; Distribution: 5.01 in May, 5.47 in July; Red list status: 4.83 in May, 4.99 in July). 
Detailed information on the statistical results and the residual model are given in the Supplementary 
Material S3.1.  
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(F = 7.36, df = 1, p = 0.013), mowing (F = 7.97, df = 1, p = 0.011) and fertilization 

(F = 9.13, df = 1, p = 0.006), i.e. species in intensively used grasslands were more 

generalistic in terms of their caterpillar's host ranges. LUI had no consistent effect on the 

CWM of voltinism (p = 0.649), but an interaction between region and LUI was significant 

(F = 5.59, df = 2, p = 0.012), where voltinism decreased with LUI in Alb, increased in 

Hainich and remained constant in Schorfheide. Grazing caused a weak positive (p = 0.071) 

and mowing a negative (p = 0.056) trend for voltinism (see Fig 3.3, Supplementary Material 

S3.1: Tab. S3.1.7). The CWM of the species’ distribution range increased significantly with 

mowing (F = 4.556, df = 1, p = 0.045), i.e. species in intensively mown grasslands were on 

average more geographically widespread within Europe. The CWM of the national 

conservation status was affected significantly by LUI (F = 13.66, df = 1, p = 0.002), but this 

effect varied very substantially across regions (F = 13.43, df = 2, p < 0.0001). The effect of 

LUI on conservation status was strongly positive in Alb but weakly negative in the other 

two exploratories. This was due to the fact that the most threatened species were found on 

xeric grassland, which among our study sites only occur at Alb (see Fig 3.3, Supplementary 

Material S3.1: Tab. S3.1.7). The analyses of wingspan and hibernation stage did not show 

any significant filtering effects. 

Tab. 3.1: List of species, which were determined as neutral, losers, winners and mid-specialists in relation to 
the standardized integrated land-use intensity index LUI and its components grazing, mowing and fertilization. 
Results were given by the Null model with its total abundance (A) and number of plots they occurred (n plots). 
Species are defined as losers, when the abundance-weighted means (µi) is significantly lower than the 
expected µNull giving by the Null model, winners have a significantly higher µi, than µNull and mid-specialists 
are specialised at medium land-use intensification. For fertilization we only included species that occurred on 
five or more sites. 

Species Family A n plots LUI Grazing Mowing Fertilisation 
Agriphila straminella Crambidae 322 22 winner mid spec. winner winner 
Idaea biselata Geometridae 5 3 winner mid spec. neutral 

	Siona lineata Geometridae 6 4 winner neutral neutral 
	Autographa gamma Noctuidae 9 5 winner mid spec. neutral winner 

Axylia putris Noctuidae 8 6 winner neutral neutral winner 
Mesoligia furuncula Noctuidae 9 7 winner mid spec. neutral winner 
Mythimna albipuncta Noctuidae 6 4 winner neutral neutral 

	Noctua interposita Noctuidae 8 3 winner neutral winner 
	Oligia versicolor Noctuidae 15 6 winner neutral winner winner 

Spilosoma lubricipeda Noctuidae 49 16 winner loser winner neutral 
Xestia c-nigrum Noctuidae 123 24 winner loser winner winner 
Celypha rufana Tortricidae 11 6 winner neutral neutral winner 
Pyrausta despicata Crambidae 80 10 loser neutral neutral loser 
Pyrausta purpuralis Crambidae 13 5 loser neutral loser loser 
Acompsia cinerella Gelechiidae 21 5 loser neutral loser loser 
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Species Family A n plots LUI Grazing Mowing Fertilisation 
Chiasmia clathrata Geometridae 104 17 loser loser neutral loser 
Epirrhoe alternata Geometridae 31 13 loser loser neutral neutral 
Eupithecia satyrata Geometridae 6 4 loser neutral loser 

	Scopula ornata Geometridae 13 3 loser mid spec. loser 
	Scotopteryx chenopodiata Geometridae 53 9 loser mid spec. loser neutral 

Xanthorhoe spadicearia Geometridae 23 6 loser mid spec. loser neutral 
Triodia sylvina Hepialidae 13 5 loser neutral loser loser 
Agrotis cinerea Noctuidae 32 4 loser mid spec. loser 

	Apamea lithoxylaea Noctuidae 12 6 loser mid spec. neutral neutral 
Apamea monoglypha Noctuidae 30 16 loser loser neutral neutral 
Charanyca trigrammica Noctuidae 40 7 loser loser loser neutral 
Deltote deceptoria Noctuidae 16 4 loser neutral loser 

	Hada plebeja Noctuidae 26 6 loser mid spec. loser neutral 
Mythimna conigera Noctuidae 25 8 loser neutral loser loser 
Thalpophila matura Noctuidae 7 4 loser neutral loser 

	Xestia xanthographa Noctuidae 9 3 loser neutral neutral 
	Oncocera semirubella Pyralidae 33 7 loser neutral loser loser 

Agapeta zoegana Tortricidae 22 3 loser neutral loser 
	Agriphila inquinatella Tortricidae 25 4 loser neutral loser 
	Crambus pratellus Tortricidae 23 7 loser loser loser neutral 

Eucosma cana Tortricidae 9 5 loser neutral loser neutral 
Ostrinia nubilalis Crambidae 42 9 neutral neutral winner winner 
Arctia caja Erebidae 12 9 neutral loser neutral neutral 
Eupithecia subfuscata Geometridae 10 9 neutral loser neutral neutral 
Eupithecia subumbrata Geometridae 7 6 neutral mid spec. neutral neutral 
Perizoma alchemillata Geometridae 18 12 neutral mid spec. neutral neutral 
Agrotis exclamationis Noctuidae 109 17 neutral loser mid spec. neutral 
Amphipoea fucosa Noctuidae 39 10 neutral neutral neutral winner 
Ceramica pisi Noctuidae 5 4 neutral winner neutral 

	Cerapteryx graminis Noctuidae 3 3 neutral loser neutral 
	Hoplodrina octogenaria Noctuidae 25 11 neutral mid spec. neutral neutral 

Mythimna ferrago Noctuidae 12 11 neutral neutral mid spec. winner 
Noctua pronuba Noctuidae 96 18 neutral loser neutral neutral 
Ochropleura plecta Noctuidae 86 19 neutral mid spec. mid spec. neutral 
Oligia strigilis Noctuidae 18 8 neutral mid spec. mid spec. neutral 
Phragmatobia fuliginosa Noctuidae 147 17 neutral neutral winner neutral 
Rivula sericealis Noctuidae 67 9 neutral loser neutral winner 
Agapeta hamana Tortricidae 49 16 neutral mid spec. winner winner 
Agriphila tristella Tortricidae 199 17 neutral mid spec. neutral neutral 
Celypha lacunana Tortricidae 40 16 neutral loser neutral neutral 
Chrysoteuchia culmella Tortricidae 178 19 neutral loser winner neutral 
Cnephasia asseclana Tortricidae 22 11 neutral loser neutral neutral 
Cnephasia stephensiana Tortricidae 15 4 neutral neutral loser 

	Crambus perlellus Tortricidae 122 19 neutral loser winner neutral 
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Land-use niche 

Individual species varied massively in their response to land-use. Regarding the aggregate 

land-use intensity (LUI) index, the observed niche optima (µi) significantly differed from 

expectations under a random distribution (null model, µnull) for 36 of 87 species. In 24 

species (27.6 %) a significantly lower µi was observed, marking them as losers; whereas 12 

species (13.8 %) were winners. For the individual land-use components grazing (losers: 

24 species, 27.6 %; winners: 12 species, 13.8 %) and mowing (losers: 19 species, 21.8 %; 

winners: 10 species, 11.5 %), similar results were found. In addition 17 species (19.5 %) 

were detected as mid-specialists for grazing and 4 species (4.6 %) for mowing. In contrast, 

fertilization showed an opposing effect (losers: 7 species, 12 %; winners: 12 species, 20.7 % 

of the total 58 species for which this analysis was possible) (See Tab. 3.1 for list of species, 

Supplementary Material S3.1: Tab. S3.1.4 for µi, µnull and p-values of all 87 species). 
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Fig. 3.4: Relationship between the observed niche optima relative to LUI (µi) and traits of 178 grassland 
moth species. The dashed line represents the mean LUI (1.67) observed across all 26 sites. Asterisks 
represent a significant difference to the mean LUI given by a one-sample t-test. Significant differences 
between the groups a given by an ANOVA.  
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Relationship between land-use niches and species traits  

The niche optima of species relative to land-use varied with the levels of most life-history 

traits (see Fig. 3.4). In terms of larval feeding niche, significantly more narrow (p = 0.018) 

and moderate specialists (p = 0.016) and moderate generalists (p = 0.009) had niche optima 

at land-use intensities below average (niche optima µi significantly < 1.67). Similarly, the 

analysis of hibernation stage revealed that species that overwinter as eggs (p = 0.006), 

larvae (p = 0.013) and pupae (p = 0.035), correlate with low LUI values, whereas adult 

hibernation was unrelated. Multivoltine species, species with broad distribution (5 zones: p 

= 0.02; 6 zones: p = 0.043) and nearly threatened species (p = 0.027) also were favoured by 

low LUI. Note that no life-history trait level predicted niche optima above average LUI.  

The effects of grazing and mowing intensity on the abundance-weighted means (µi) were 

strongly negatively correlated (rs = -0.302; p < 0.001). Grazing had a stronger effect on 

abundance-weighted means (µi) than mowing. Many species preferred sites of below-

average grazing intensity (143 species; 35 species above-average grazing). High mowing 

intensity was avoided by 99 species, versus 79 species that were more abundant on sites 

with above-average mowing intensity (see Fig. 3.5).  

The overall effects of land-use intensity were less pronounced when the analyses were not 

restricted to genuine grassland moths. Including species that are affiliated with larval host 

plants that mostly occur in ecotones around the plot area (additional 103 species from 
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14 families, 532 individuals) uncovered overall similar effects as with the true grassland 

species only. In contrast, considering only those stray species that are not a component of 

open grassland assemblages as inferred from their larval host plant affiliations 

(1037 individuals, 179 species, 22 families) did not reveal any statistically significant 

relationships with land use (see Supplementary Material S3.1: Tab. S3.1.8 – S3.1.13, Fig. 

S3.1.3-S3.1.8).  
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Discussion 

For the case of nocturnal moths, we found significant effects of land use on the species 

assemblage, its diversity and composition of life-history traits in grasslands. As expected, 

species with specialist traits were favoured by low-intensity pasturing while generalists 

were prevailing in intensely managed meadows.  

Differences in community composition matched the differences in land-use intensity 

consistently across two of the three regions in Germany, regardless of the strong geographic 

differentiation in species composition. Among the three types of land use considered in this 

study, grazing had the strongest effect on species composition. We found that grazing and 

mowing/fertilization had largely opposing effects on the moth assemblages: species 

characteristic for meadows such as Agriphila straminella, Agriphila tristella and Crambus 

perlellus declined under more intense livestock grazing and were replaced by other species 

such as Anerastia lotella, Mythimna pallens and Xestia c-nigrum.  

Besides these qualitative effects on species diversity, abundance and richness of moths 

significantly declined in response to land-use intensification, particularly through mowing. 

These negative effects were consistent across all three regions.  

In correspondence to changes in species composition with land-use intensification, the 

species traits found in the communities indicate a shift towards more ubiquitous, generalist 

moth species: with land-use intensification communities were composed of common species 

which cover a broader geographic distribution range and whose larvae feed on a broader 

host plant range. Voltinism, i.e. the number of reproductive cycles within one year, showed 

an inconsistent response, and neither body size nor hibernation stage of grassland moths 

were detectably filtered by land use. 

Similar effects were shown for the land-use niche. Most species had niche optima at low 

land-use intensity. This pattern was mediated by the components grazing and mowing. In 

contrast to expectation, species mostly prefer niches associated with a higher application of 

fertilizers.  

Our finding of a reduction in moth diversity, species richness and abundance as well as an 

increase in generalist prevalence also adds to the evidence of negative effects of land-use 

intensification on biodiversity that has been demonstrated for moths (Ekroos et al. 2010; 
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Kadlec et al. 2009) and a variety of other taxa (Allan et al. 2014; Billeter et al. 2008). Not 

all taxa or functional groups are equally affected (Weiner et al. 2014; Winfree et al. 2008), 

and our results confirm that land use acts as an environmental filter (Klimek et al. 2007; 

Kühsel and Blüthgen 2015; Loder et al. 1998).  

Mowing represents a massive pulse disturbance in grassland and has been found to increase 

the mortality of caterpillars up to forty per cent (Humbert et al. 2010). The occurrence of 

moths, therefore, is likely constrained by the survival rate of their larvae in response to the 

land-use management regime. In the process of recolonizing the habitat after such a 

treatment, common ubiquitous moth species are favoured over rare species with narrow 

larval food niches for stochastic reasons alone. With a plant community being dominated by 

few fast-growing plant species as a result of fertilizer application, larvae with a broad 

spectrum of host plants were favoured on such sites. In addition, a trend towards higher 

reproduction rates of moths (e.g. voltinism) could be found in mown grasslands. Generalists 

with this set of traits are more likely to colonize new environments and have better abilities 

to find necessary recourses (Duncan et al. 2003). Changes in trait composition towards 

generalist species in response to land-use intensification have been reported for other traits 

and arthropod taxa in the same grasslands (e.g. Birkhofer et al. 2015b; Börschig et al. 2013; 

Simons et al. 2016). This shift to more generalist species may ultimately lead to functional 

homogenization, defined as the effect of “spatial similarity of a functional variable over 

time” (Clavel et al. 2011). Higher homogenization in intensively managed habitats has been 

found in several taxa (Finke and Snyder 2008), including butterflies (Börschig et al. 2013). 

In our study, the effect of fertilization, which is expected to affect the development of 

herbivores due to stoichiometric limitations (Audusseau et al. 2015; Fischer and Fiedler 

2000; Serruys and Van Dyck 2014), is likely masked by the strong contingency between 

mowing and fertilization on the study sites of the Biodiversity Exploratories (Blüthgen et al. 

2016, see Supplementary Material S3.1: Data S3.1.1).  

In contrast to mowing, grazing preserves species that combine life-history traits 

characteristic for specialists. Livestock grazing, by acting continuously and selectively, 

maintains a less disturbed habitat structure and more diverse plant resources, particularly 

with regard to herb species (Socher et al. 2013). Caterpillars of only a small number of moth 

species in our sample are predominantly or exclusively grass feeding, while the majority of 

grassland species encountered in our study were herb feeders. The higher diversity of herb 

species under livestock grazing regimes may explain why moth communities on pastures 
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were more diverse than on meadows. The loss of specialists along with resource 

homogenization and the subsequent simplification of the functional trait diversity in the 

arthropod community is an alarming pattern that illustrates how consequences of land-use 

intensification for the vegetation translate into community shifts at higher trophic levels.  

This pattern recurs, considering the land-use niche of moth species. The majority of species 

preferred low land-use intensity, especially regarding grazing and mowing, i.e. the losers of 

land-use intensification. Hemerophilous species, i.e. species often associated with 

anthropogenic land use such as Oligia versicolor, Spilosoma lubricipeda or Xestia c-

nigrum, benefit from increasing land-use intensification. Except for the highly polyphagous 

S. lubricipeda, the larvae of all winners live on grasses. In contrast, losers of land-use 

intensification prefer extensively used habitats. They feed on herbaceous plants that 

disappear with increasing land use (e.g. Thymus and related Lamiaceae for Pyrausta 

purpuralis or Scopula ornata, some Fabaceae for Oncocera semirubella or Rhinanthus for 

Perizoma blandiata). In contrast, more species benefit with increased application of 

fertilizers. In general, eutrophication decreases the occurrence of diurnal and nocturnal 

Lepidopteran (Fox et al. 2014; Hodgson et al. 2014; Öckinger et al. 2006b; Van Es et al. 

1999; Wallisdevries et al. 2012). Nevertheless, a few winners do not occur in nutrient-poor 

grassland (e.g. Amphipoea fucosa, Celypha rufana, Mythimna ferrago), live as ubiquists 

(e.g. Autographa gamma, Oligia versicolor) or even prefer nutrient-rich environments 

(e.g. Agriphila straminella, Axylia putris, S. lubricipeda, X. c-nigrum). Agapeta hamana 

might disappear with even stronger fertilization and the European corn borer (Ostrinia 

nubilalis) is well known as a pest species and benefit from increasing eutrophication. The 

results suggest that particularly ubiquists or hemerophilous species benefit from land-use 

intensification, i.e. species that require open grassland vegetation with immature soil 

disappear.  

Finally, smaller species are often more specialized in resources whereas larger species are 

often more dependent on a particular environment (Loder et al. 1998; Summerville et al. 

2006). This pattern may lead to a contingency between body size and niche breath. We did 

not find a significant relationship between land-use intensity and average body-size, 

however. 

In this study, we showed that the community composition of moths, a rich and abundant 

group of arthropods known to maintain important ecosystem processes such as herbivory 
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and pollination, selectively respond to different types of land use. The threats to biodiversity 

imposed by land-use intensification in the form of mowing and fertilization complement the 

documented changes in plant communities, as specialised moth species are tied to the fate of 

their host plants. Such intensive land-use management thus filters for generalist species and 

nurtures homogeneous communities of plants and consumers that may, in the long run, be 

less resilient to environmental change (Blüthgen et al. 2016; Gámez-Virués et al. 2015; 

Kühsel and Blüthgen 2015). By opting for grazing rather than for mowing and fertilization, 

land-use managers may contribute to conservation of specialized species and grassland 

biodiversity.  
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Abstract 

Intraspecific phenotypic variation in populations promotes a species’ persistence in different 

environments and to tolerate environmental variation, land use and habitat disturbances. 

Hence, trait composition across species in communities and within populations should be 

affected by the intensity of land use. Cultural grasslands are regularly disturbed by different 

kinds of management (mowing, grazing and fertilisation) at varying intensity. For animals, 

traits associated with mobility and dispersal thus play a key role, and the importance of such 

traits may increase with land-use intensity. Moreover, resource specialists may be affected 

more strongly than generalists. Therefore, it is important to understand the relationship 

between specialisation and dispersal-related traits across species in a community. In this 

context, land-use intensity affects both, intraspecific variation and community trait 

composition. 

In this study, we analysed the intraspecific variation of morphological traits associated with 

dispersal ability (body mass, wing area and wing loading) of 67 species of moths 

(Lepidoptera) across 26 grasslands in three regions. We examined how these selected traits 

changed with land-use intensity and tested whether phenotypic variability explained the 

occurrence of moth species along the land-use gradient. Additionally, we analysed how trait 

variation corresponded to host-plant specialisation of each moth species. Species differed 

strongly in land-use responses, but a higher number of species significantly increased in 

body mass and wing loading with increasing land-use intensity, whereas few species 

decreased in these traits. Increases were most pronounced with increasing fertilization. 

Especially grass-feeding moths responded positively, corresponding to an increase in grass 

biomass and quality with fertilizer application. In contrast, species with increasing body 

mass and wing loading along land-use gradients were not more abundant in intensively 

managed sites than others. All three morphological traits were correlated interspecific with 

the species’ host plant specialization: the mean trait values were significantly lower for 

specialised species than for generalists, whereas the intraspecific variance did not change 

across the range of specialisation. Hence, generalists were larger and additionally profited 

from fertilization by developing a higher body mass and total wing area. Intraspecific 

variation together with the specialization of consumers may thus contribute to biodiversity 

declines and changes in community composition with increasing land-use intensity. 
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Introduction 

The global decline of biodiversity is mainly caused by land-use intensity (Sala et al. 2000), 

which has also a strong effect of community trait composition (Birkhofer et al. 2017; 

Simons et al. 2016). In this context, potential filtering of phenotypic traits become 

particularly evident and have often been examined in an interspecific context, focusing on 

the community-weighted means and variance of various traits across species (Gámez-Virués 

et al. 2015; Kühsel and Blüthgen 2015). Such traits include life history, behavioural, 

physiological or morphological traits. For instance, variation in the shape of wings may be 

associated with altered flight performance in birds or insects, with consequences for a 

species’ dispersal ability and mobility in different habitats (Chai and Srygley 1990; 

Claramunt et al. 2012; Kennedy et al. 2016). To survive in changing environments or in 

different habitats, organisms can also adjust to altered conditions through phenotypic 

plasticity, filtering of phenotypes within populations and selection of associated genotypes 

and thus adaptation over several generations. Ecological consequences of intraspecific trait 

variation on populations and communities are multifold (reviewed in Bolnick et al. 2011). 

For instance, higher intraspecific variability can buffer populations against temporal 

fluctuations in environmental conditions, promotes a broader ecological niche and 

accelerates adaptive eco-evolutionary dynamics (Bolnick et al. 2011). 

Land-use interferes with resource allocation and succession in grassland. A certain degree 

of disturbance is necessary in many semi-natural grasslands to avoid vegetation succession, 

shrub and tree growth (Huston 1994). The Intermediate Disturbance Hypothesis suggests 

that maximal diversity can be reached if local disturbances are frequent enough to delay 

negative effects of asymmetric interspecific competition, as long as the degree of 

disturbance does not lead to eliminations of the species (Connell 1978). In this context it is 

necessary to consider the type and intensity of disturbance via land use. In grasslands the 

three most common components are grazing, mowing and fertilization, and each of these 

components potentially represents a substantial impact and disturbance on an ecosystem 

(Debinski et al. 2011; Gossner et al. 2016; Johst et al. 2006; Krause and Culmsee 2013; 

Lanta et al. 2009; Moranz et al. 2012; Öckinger et al. 2006a; van den Berg et al. 2011). In 

general, the intensity of grazing and mowing are usually opposing managements, and the 

latter has the strongest effect (Humbert et al. 2009). In contrast, grassland fertilization is 
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often coupled with mowing and decreases plant diversity, increases the total plant biomass 

production and leads to a higher dominance of grass species (Simons et al. 2014).  

The application of fertilizers may increase food availability – depending on the focal 

herbivore’s diet. Additionally, fertilization improves the nutrient content of plant tissue with 

variable effects on the individual herbivorous insects’ body mass and reproductive strategies 

such as egg size and quality or number of offspring (Awmack and Leather 2002; 

Bissoondath and Wiklund 1997; Craig et al. 1992; Ebeling et al. 2013). Several traits are 

expected to express an insects’ dispersal ability and short-term mobility, e.g. to cope with 

temporal disturbances. For example, an higher wing area corresponds to a higher 

acceleration capacity, whereas smaller wings have a positive effect on the intraspecific 

manoeuvrability in butterflies (Berwaerts et al. 2002). Intraspecific phenotypic plasticity 

can also vary between generations for polyvoltine species. Here, adults of spring 

generations have a larger abdomen for reproduction and summer generations have larger 

wings for mobility (Shkurikhin and Oslina 2016). Wing loading combines body mass and 

wing area: it is defined as body weight divided by the area of the wing (Almbro and 

Kullberg 2012). The relationship between flight performance and wing loading is 

controversially debated in the literature (Van Dyck 2012). Nevertheless, decreasing wing 

loading is associated with long distance-movements, flight speed and manoeuvrability for 

birds and insects (Betts and Wootton 1988; Stevens et al. 2012; Turlure et al. 2010; 

Wickman 1992). Even if low wing loading is associated with lower flight energy (Wickman 

1992), dispersal ability should be improved (Turlure et al. 2016). In theory, with decreasing 

disturbance or increasing food supply insects may achieve a higher wing loading – and thus 

higher investment in body mass relative to lower allocation to wings. Species that show 

intraspecific trait variation related to mobility should benefit from land-use intensity. As a 

consequence, they should be more dominant in disturbed areas. 

Across a broad taxonomic range, morphological traits are also associated interspecific with 

host specificity. Two different hypotheses discuss the occurrence of generalists and 

specialists in disturbed area (Carboni et al. 2016): Specialists can perform better in their 

optimal habitat than generalists (the ‘jack-of-all-trades is master of none’ hypothesis; Levins 

1968). As long as the extent of disturbance does not vary, they could adapt to the local 

conditions and could also be more abundant in disturbed environments. On the other hand 

generalists tolerate a broad variety of environmental conditions, whereas specialists exist 

only in a small range. As a consequence generalists are less vulnerable to disturbance and 
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environmental changes (Clavel et al. 2011; Slatyer et al. 2013) and should be more common 

in disturbed habitats (Vazquez and Simberloff 2002).  

Large species can be more tolerant against environmental stress and are able to handle a 

larger environmental variation (Loder et al. 1998). While the relationship between body 

size, distribution and specialisation is discussed by numerous studies (Brändle et al. 2000; 

Davis et al. 2013; Komonen et al. 2004; Lindstrom et al. 1994; Mattila et al. 2009), little is 

known about the effect of host specificity on intraspecific variation. Large species are also 

more variable in size and this intraspecific variability alters the flexibility to adapt to more 

variable environmental conditions. A broader variability in host plant identity and thus 

quality across individuals for generalised species could have caused a higher variability in 

growth, performance or body mass.  

With 160,000 described species, Lepidoptera are the second largest arthropod group 

(Kristensen et al. 2007; New 2004). About 85 % of Lepidopteran are nocturnal moths, but 

the main focus is still on diurnal butterflies (Macgregor et al. 2015). Moths are a very 

heterogeneous group and play as herbivores (larvae) and pollinators (adults) an important 

role in ecosystems. Depended by the species, moths can either feed extremely specialistic, 

but also generalistic on a variety of plant taxa and possess an enormous interspecific 

variability. For example the atlas moth Attacus atlas (Saturniidae) has the largest wing 

surface area and can reach a wing span of 300 mm, whereas Stigmella maya (Nepticulidae) 

belong with its wing span of 2.5 mm to one of the smallest moths in the world. Due to their 

ecological importance and variability moths are suitable targets to unravel mechanisms and 

consequences of trait variation particularly in the context of mobility and dispersal. 

In this framework we asked the following questions: 

1.) Does the intraspecific variation in morphological traits of moths (body mass, wing 

area, wing loading) respond to land-use intensity? 

2.) Are these possible responses in morphological traits related to the distribution of 

moths along land-use gradients?  

3.) Does the species’ degree of dietary specialisation correspond to a smaller mean and 

reduced intraspecific variation in morphological traits across the moth community?  
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Material and Methods 

Study area 

The study was executed in the framework of the German Biodiversity Exploratory Project 

(www.biodiversity-exploratories.de) funded by the German Research Foundation (DFG). 

The main objectives of the Biodiversity Exploratory project are to understand the 

relationship between biodiversity of different taxa and levels, the role of land use and 

management for biodiversity and the role of biodiversity for ecosystem processes. 

The Exploratories are established in three different regions of Germany called the Biosphere 

Reserve “Schorfheide-Chorin” (a glacial formed landscape in North-East Germany, 3-

140 m a.s.l., 13°23’27’’-14°08’53’’ E / 52°47’25’’-53°13’26’’ N, mean annual temperature 

6-7 °C, mean annual precipitation 520-580 mm), National Park “Hainich” and its 

surroundings (a hilly region in Central Germany, 285-550 m a.s.l., 10°10’24’’-

10°46’45’’ E / 50°56’14’’-51°22’43’’ N, mean annual temperature 6.5-8 °C, mean annual 

precipitation 630-800 mm) and the Biosphere Reserve “Schwäbische Alb” (a low-mountain 

range in South-West Germany, 460-860 m a.s.l., 09°10’49’’-09°35’54’’ E / 48°20’28’’-

48°32’02’’ N, mean annual temperature 8-8.5 °C, mean annual precipitation 800-930 mm). 

(For further information of the Biodiversity Exploratories see Fischer et al. 2010). 

Sample processing 

Nocturnal moths were collected once a month between May and August 2014 in Hainich 

and Alb and in June and July 2014 in Schorfheide (26 plots), because most species fly 

during this period (Jonason et al. 2014). Every night, moths from three plots were attracted 

and collected using a battery powered (12 V) portable light trap, consisting of a super 

actinic and a black light tube (230 V, 2 x 20 W, bioform®) with a twilight sensor, 

surrounded by a gauze cylinder (height: 180 cm; diameter: 70 cm). The observation started 

with complete darkness (mean = 1.26 h after sunset) and compiled two sampling rounds. In 

the first sampling round, traps were visited for 20 minutes. For the second round 

(15 Minutes) plots were observed in the reversed order than in the first round. The mean 

illumination for the plots lasts 225.1 minutes (For detailed information about the sampling 

design and results of diversity and life-history traits see Chapter 3). 
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Land-use intensity 

Land use in grasslands is represented by three main management components, namely 

grazing (the number of livestock units times the number of days on the pasture per year and 

hectare), mowing (as number of cuts per year) and fertilization (amount of nitrogen [kg] 

applied per year per hectare). Moreover, to summarize these components, we used the land-

use intensity (LUI) index, for which each component is standardized relative to its mean 

within each corresponding region and then added (Blüthgen et al. 2012). The LUI for each 

site was sqrt-transformed to improve normality. 

Trait measurements 

Moths were kept in separated paper bags and dried out for several weeks at 20 °C in airtight 

boxes including silica gel. For each individual moth, the body mass (dry weight) was 

determined (Mettler Toledo XS3DU; accuracy ±0.001 mg) and forewing length and width 

(for one of the forewings) was measured with a sliding calliper. Forewing length (xi [mm]) 

was determined as the distance between base and apex, and its width (yi [mm]) as the 

distance between tornus and costa. Both measures were then used to estimate forewing area 

(Ai) for each individual moth of a species i. The true wing area (A0 [mm2]) was quantified 

for a single representative individual for each species, using image analysing software 

(Image J, freely available at http://imagej.nih.gov/ij/), together with its x0 and y0 (Fig. 4.1). 

We used this method, because we assumed that intraspecific variability of wing shape is 

negligible compared to body mass and wing area. We then obtained the ratio a0 between the 

rectangle area defined by x0 • y0 versus the measured wing area A0 as a0 = A0 [mm2] / 

(x0 [mm] • y0 [mm]). We assumed a0 to be constant in each species to calculate the wing area 

Fig. 4.1: For each moth species, the 
area (A), length (x) and width (y) of a 
forewing were measured for a 
specimen based on digital scanning. 
The constant a represents the ratio 
between the measured area A and the 
rectangle described by the length and 
width, i.e. a = A/(x � y). Assuming that 
the shape of the wing and thus a is 
constant within a species, we then 
calculated the total wing area of each 
individual based on individual 
measurements of forewing length (x) 
and width (y) with callipers.  
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for each individual as Ai [mm2] = a0 • xi [mm] • yi [mm]. Wing loading was calculated as the 

ratio of body dry mass/wing area [mg / mm2] (Almbro and Kullberg 2012). Note that the 

value of the species-specific constant a0 allows making realistic comparisons of wing area 

and wing loading across species with different shapes, but a0 is irrelevant for describing the 

relative variability or trends within a species. 

Host specificity 

To analyse how morphological traits are related to the degree of specialisation, we 

categorized the larval feeding niche. It was classified in four ranks: (1) narrow specialists 

(host plants within one plant genus), (2) moderate specialists (host plants within one plant 

family), (3) moderate generalists (host plants recorded from two to four families), and 

(4) wide generalists (host plants in five or more families). We also categorized all species 

related to their host plant type as ‘grass’, ‘herb’ and ‘other’; the category ‘other’ includes 

plant species that are not directly affected by land-use intensity in the grassland like trees 

and shrubs (for detailed information of references, see Supplementary Material S3.1) 

Data analysis 

To investigate whether the individual traits are unimodal, bimodal or multimodal, we 

examined the distribution of wing data for each of the 20 most frequent species, 

representative for our data. For example, a bimodal distribution may indicate a sexual 

dimorphism; sex was not determined in most species. None of the species showed an 

indication for bi- or multimodality. Therefore, we did not consider separate groups per 

species for our analyses (see Supplementary Material S4.1).  

In preparation for the following analyses, we excluded all species that were trapped in the 

grasslands but do not typically occur in this habitat during its larval stages (283 of 461 

species). We assume that only those species that feed as caterpillars on herbs or grasses that 

regularly occur on meadows and pastures, can be directly affected by local land-use 

activities. We also excluded all moth species with less than five individuals, resulting in a 

total of 67 species for the analyses.  

For each species, we analysed the linear correlation between each of the three main traits 

(body mass, wing area, wing loading) and the land-use intensity of the grassland in which 

the individual was collected. The resulting correlation coefficient (r) and its significance 
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describes the species’ trait response to land use, e.g. see the example of Crambus perlellus 

in Fig. 4.2a. We additionally calculated the abundance-weighted mean land-use intensity of 

each species as its land-use niche optimum (χW) (Fig. 4.2b) (see Chisté et al. 2016). 

Afterwards, we plotted r against χW across all species to investigate the relationship between 

the trait responses to land use and the overall land-use response. For each relationship, a 

one-sample t-test, weighted by the number of plots where the species occurred, was used to 

find an overall trend across all species.  

We additionally calculated the mean values and the coefficient of variation (CV; standard 

deviation divided by the mean) for the traits to analyse how intraspecific variation and size 

correspond to the species’ diet breath. Please note that the coefficient of variation is, in 

contrast to standard deviation (SD), mathematically independent with the mean value (see 

Supplementary Material S4.1 for the same analysis using SD, which shows similar results 

than using the mean values). For this analysis, we used a linear model weighted by the 

number of individuals per species. For simplicity, we used the host specificity rank from 1 

to 4 (see Host specificity above) as an explanatory variable in this linear model. We finally 

analysed the correlation between the mean values and coefficient of variation of the traits 

and the land-use niche optimum to combine both analysis. 

Normal distribution and variance homogeneity were tested using Shapiro-Wilk test and 

Bartlett test. The statistical and graphical analysis was performed using software R (R Core 

Team 2014) using the packages diptest (Mächler 2015), weights (Pasek 2016) and 

SDMTools (VanDerWal et al. 2014).   
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Fig. 4.2: One example of trait variation within a species (Crambus perlellus) and its response to land-use 
intensity. (a) In this case, wing loading significantly increases with the compound land-use intensity (LUI), 
described by the positive r. (b) This species occurs in many sites along the entire gradient of LUI, but varies 
in abundance. The abundance-weighted mean LUI of C. perlellus – its LUI-niche optimum χW – is 1.82. 
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Results 

Among the 67 species considered (2091 individuals; mean 32.7 individuals per species), 

30 species showed a significant intraspecific positive or negative response in at least one of 

the morphological traits (body mass, wing area or wing loading) to land-use intensity (either 

the aggregate LUI or its components). Body mass (21 positive and 7 negative correlations) 

and wing loading (21 positive, 10 negative) mostly increased with land-use intensity. In 

contrast, responses of wing area (13 positive, 13 negative) were balanced (Tab. 4.1, 

Fig. 4.3). Agriphila straminella, Apamea lithoxylaea and Crambus perlellus showed the 

most positive and Agrotis cinerea, Mythimna pallens and Spilosoma lubricipeda showed the 

most negative responses. Across all species, no consistent relationship between the species’ 

land-use niche (χW) and their trait responses was found (Fig. 4.3). In case of wing area, a 

significant correlation between the coefficient of variation based on fertilisation of the traits 

and the fertilised niche optimum appeared across all species (r = 0.25, p = 0.049). But this 

case was, however the only significant trend (body mass – LUI: p = 0.516; body mass – 

grazing: p = 0.104; body mass – mowing p = 0.284; body mass – fertilisation p = 0.648; 

wing area – LUI: p = 0.405; wing area – grazing: p = 0.181; wing area – mowing p = 0.103; 

wing loading – LUI: p = 0.97; wing loading – grazing: p = 0.481; wing loading – mowing 

p = 0.673; wing loading – fertilisation p = 0.623; see Fig 4.3 a-l). 

 

 

 

 

 

 

 

 

 

Tab. 4.1 (next page): Results of the correlation between morphology and occurrence of each species. 
+ indicates a significant morphological increase with increasing land-use intensity, - indicates an significant 
decrease and 0 indicates no significant relation. Single lined species show a similar pattern between LUI and 
the component fertilization. Double lined species show an additional pattern between body mass and wing 
loading. Host-plant specialisation is classified as (1) narrow specialists (host plants within one plant genus), 
(2) moderate specialists (host plants within one plant family), (3) moderate generalists (host plants recorded 
from two to four families), and (4) wide generalists (host plants in five or more families).  
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 Wing loading Body mass Wing area Host-plant Host plants 
Species Family LUI G M F LUI G M F LUI G M F specialisation Grass

es 

Herbs Other 
Agriphila straminella Crambidae + 0 + + + 0 + + 0 0 0 0 2 ✓ 

  Agriphila tristella Crambidae 0 0 0 0 + + + 0 0 0 0 0 2 ✓ 
  Agrotis cinerea Noctuidae - 0 - - 0 0 - - 0 0 0 0 3  
✓ 

 Agrotis exclamationis Noctuidae + 0 0 + + 0 0 + 0 0 0 0 4  
✓ 

 Apamea lithoxylaea Noctuidae + 0 0 + + 0 + + 0 0 + 0 1 ✓ 
  Apamea monoglypha Noctuidae 0 0 0 0 0 0 0 0 0 0 0 + 2 ✓ 
  Axylia putris Noctuidae + 0 0 + 0 0 0 0 0 0 0 0 3 ✓ ✓ 

 Celypha rufana Tortricidae 0 0 0 0 + 0 0 + 0 0 0 0 2  
✓ 

 Chiasmia clathrata Geometridae 0 0 0 0 0 0 0 0 + - + + 3  
✓ 

 Chrysoteuchia culmella Crambidae 0 + 0 - 0 + - 0 0 0 0 0 2 ✓ 
  Cnephasia stephensiana Tortricidae 0 0 0 0 0 0 0 0 - + - - 4  
✓ ✓ 

Crambus perlellus Crambidae + 0 0 + + 0 0 + + 0 0 + 2 ✓ 
  Crambus pratellus Crambidae + 0 0 0 0 0 0 0 0 0 0 0 1 ✓ 
  Deltote bankiana Noctuidae 0 0 0 0 + 0 0 + + 0 0 + 3 ✓ 
  Diaphora mendica Erebidae 0 0 0 0 0 0 0 0 - 0 0 - 4  
✓ ✓ 

Hada plebeja Noctuidae 0 + 0 0 0 0 0 0 0 0 0 0 2  
✓ 

 Lathronympha strigana Tortricidae 0 0 0 0 0 0 0 0 0 0 0 - 1  
✓ 

 Melanchra persicariae Noctuidae 0 0 0 0 0 0 0 0 - 0 - 0 4  
✓ ✓ 

Mythimna pallens Noctuidae 0 + - 0 0 + - - 0 0 0 - 2 ✓ 
  Ochropleura plecta Noctuidae 0 0 0 0 0 0 0 0 + 0 0 0 4 ✓ ✓ 

 Oncocera semirubella Pyralidae + 0 0 + 0 0 0 0 - 0 0 - 2  
✓ 

 Perizoma alchemillata Geometridae 0 - 0 0 0 - 0 0 0 0 0 0 2  
✓ 

 Phragmatobia fuliginosa Erebidae 0 + 0 0 0 0 0 0 0 0 0 0 4  
✓ ✓ 

Plutella xylostella Plutellidae 0 0 0 0 + 0 0 0 0 0 0 0 2  
✓ 

 Pyrausta despicata Crambidae 0 0 0 0 0 - 0 0 0 0 0 0 2  
✓ 

 Pyrausta purpuralis Crambidae 0 0 0 0 0 0 0 0 + + 0 0 2  
✓ 

 Scotopteryx chenopodiata Geometridae 0 0 0 0 0 + 0 0 0 + - 0 2  
✓ 

 Spilosoma lubricipeda Erebidae - 0 0 0 - 0 0 - 0 0 0 - 4  
✓ 

 Stenoptilia pterodactyla Pterophoridae 0 0 0 0 0 - 0 0 0 0 0 0 1  
✓ 

 Thalpophila matura Noctuidae + 0 + + 0 0 0 0 0 0 0 0 2 ✓ 
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Moth species differed strongly in their trait responses to land-use intensity (Fig. 4.3). Wing 

loading significantly increased The results for body mass were similar: with increasing LUI 

eight species significantly increased in eight species and decreased in two species with 

increasing land-use intensity (LUI). and one species decreased its body mass. Regarding 

wing area, five species showed a significant positive trend and four species a negative trend 

with LUI (Tab. 4.1). Land-use effects were mostly driven by fertilization, since effects 

found for LUI were mostly supported by fertilization intensity in all three traits, rarely by 

mowing and but least by variation in grazing intensity. In most cases, only one of the three 

Fig. 4.3: Correlation between the species’ morphological trait responses to land-use intensity (r) versus their 
land-use optimum (χW) across all 67 moth species. Black circles depict species with significant trait 
responses, which were not significant in species displayed by grey circles.  
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traits was affected, but in five species parallel trends of wing loading and body mass and in 

one species of wing loading and wing area occurred (Fig. 4.3, Tab. 4.1; see Supplementary 

Material S4.1 for detailed results of all species). 

The mean values of all three morphological traits were strongly related to the species’ host-

plant specificity: body mass, wing area and wing loading were significantly higher for 

generalists compared to specialists (body mass: R2 = 0.21, p < 0.0001; wing area: 

R2 = 0.257, p < 0.0001; wing loading: R2 = 0.318, p < 0.0001). In contrast, the intraspecific 

variability of body mass did not change significantly with host-plant specialisation 

(R2 = 0.011, p = 0.403), nor the variability of wing loading (R2 = 0.001, p = 0.994), while 

host-plant generalists had a slightly lower variability for wing area (R2 = 0.067, p = 0.0433) 

(Fig. 4.4). In general, trait variability was similar for body mass (coefficient of variation 

CV: 0.26 ± 0.09, mean ± sd, n = 67 spp.) and wing loading (CV: 0.25 ± 0.1) and marginally 

smaller for wing area (CV: 0.15 ± 0.07) (See Fig. 4.4 d-e). 

Correlating morphological traits to each other, they showed strong relations, as wing 

loading was calculated using body mass and wing area (body mass – wing area: r = 0.86, 

p < 0.0001; body mass – wing loading: r = 0.91, p < 0.0001; wing area – wing loading: 

r = 0.73, p < 0.0001)  
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Fig. 4.4: The average body mass, wing area and wing loading (a,b,c) and its intraspecific variation (d,e,f) 
in relation to host plant specialisation. 
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Discussion 

Variation in the three selected morphological traits – body mass, wing area and wing 

loading – has potential consequences for the mobility of individual insects (Turlure et al. 

2016). For several species, such trait variability may occur in responses to land use as a 

relevant environmental filter. Most notably, body mass and wing loading of more species 

increased with higher land-use intensity, than decreased. In contrast wing area was similarly 

affected in both directions. These trends were most pronounced for fertilization and weaker 

for the other land use components mowing and grazing. Nevertheless, we found no 

correlation between the response of the morphological traits to land-use intensity and the 

preferred land-use intensity, where the species existed. The size of all traits degreased with 

the degree of host plant specialisation across species, whereas it’s intraspecific variations 

were less affected.  

Fertilisation and mowing are often coupled, but still have different effects on ecosystems. 

The application of fertilizers leads to an increase of plant biomass (Crawley et al. 2005; 

Simons et al. 2014; Socher et al. 2012) and also nutrient concentrations in plant tissue 

(Klaus et al. 2013; Oelmann et al. 2009), suggesting that herbivores profit from fertilisation 

in general. In contrast, aboveground biomass gets removed via mowing, which additionally 

leads to removal of nutrients (Oelmann et al. 2009). Due to increasing biomass and 

nutrients, moths can increase their body mass during the larval stage. Nevertheless 

fertilization has only an indirect effect on moth body mass and thus wing loading, during its 

direct effect on host plants. To understand the mechanism, it is important to consider the 

type of host plant and the feeding niche of the affected species: Five of seven species that 

profit from fertilization by a larger body mass are either generalists or grass-feeding species. 

Only Spilosoma lubricipeda is feeding on a variety of herbs and had a negative effect of 

fertilization on body mass. Fertilization also leads to a shift in the plant composition to grass 

species (Socher et al. 2013), and grass-feeding herbivores and generalists may tolerate or 

even benefit from fertilization, whereas specialised herb feeders may have negative 

responses (chapter 3). Indeed, all those species that showed a decreasing wing area with 

fertilization were specialists on herbs. Whereas fertilization had the strongest effect, 

relatively few species responded to the intensification of mowing or grazing. Weaker 

patterns of the land-use components grazing and mowing can also be masked by the strong 

contingency between mowing and fertilization, or the alternative, contrasting management 
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of meadows (mowing, fertilization) and pastures (grazing) within the Biodiversity-

Exploratories (Blüthgen et al. 2016). 

In contrast to our results, we assumed that moths are more abundant in more intensively 

used grasslands that are able to change their morphological traits with increasing land-use 

intensity to modify their flight performance. We are aware that the occurrence of 

Lepidoptera in grassland sites is depended by a variety of other biotic and abiotic factors, 

like plant diversity, fragmentation or temperature (De Crop et al. 2012; Filz et al. 2013; 

Pellissier et al. 2012). In this context the results does not necessarily disprove our 

hypothesis, but the effect is at least masked by other stronger impacts. 

Moreover, morphological traits across species were related to their dietary specialization. 

The positive correlation between body size and diet breath supports previous findings. Body 

mass, wing area and wing loading are coupled with the degree of distribution and also 

generalists are more widespread and abundant than specialists (Brown 1984; Nieminen et 

al. 1999). This pattern is basically observed for other species of lepidopteran (Beck and 

Kitching 2007; Davis et al. 2013; Lindstrom et al. 1994; Loder et al. 1998), but also for 

other insects (Brändle et al. 2000; Novotny and Basset 1999). Species having a broader 

feeding niche breath increase their ability to find suitable host plants and thus increase the 

chance to colonise in new habitats. In contrast, the relationship between intraspecific 

phenotypic variation, e.g. in body mass, and diet breath has rarely been studied. However, 

our results do not confirm this hypothesis, and showed that generalists were not more 

variable in body size than specialists. 

Conclusion 

Our study suggests that trait variation in several moth species is related to land-use intensity 

in grasslands, and particularly the application of fertilizers may contribute to an increase in 

body mass and wing area within species. However, these intraspecific responses to land use 

did not consistently explain the species’ occurrence along the gradient across all species. 

Generally, environmental filtering effects at the community level and concomitant changes 

in trait composition across species seem to be more pronounced than trends within species. 

For instance, the losses of host plant specialists contribute to the decline in moth diversity 

along the land-use gradient in the same grassland sites (chapter 3). Here, body size was 

interspecifically independent by land use. Classen et al. (2017) showed similar patterns 
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comparing intra- and interspecific body size variation in total depended by elevation. 

Considering body size associated traits (e.g. glossa length), however, similar interspecific 

and intraspecific trends appeared. Beyond these changes in species composition, however, 

intraspecific variation may additionally contribute to the variation across species in land-use 

responses, particularly where generalised species increase in fitness-related traits with 

increasing eutrophication or other land-use practices.  
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Abstract 

Water loss represents an important risk for arthropods, and their responses to avoid 

desiccation include improved cuticular lipid layers and reduced respiration. In general, 

species can adapt to their specific local conditions either by desiccation resistance or 

desiccation tolerance. As a consequence, species from arid habitat have been shown to 

possess lower water loss rates than species from mesic environments. 

Even if studies in this framework are of great importance, methods to measure water loss of 

arthropods are still complex and time consuming. We thus developed a simple flow-through 

system, henceforth termed evaporimeter. The device can measure small arthropods, but also 

plant parts or soil samples and it facilitates to measure water loss of ten samples in less than 

30 minutes. Synthetic air with 0 % relative humidity is directed into the evaporimeter and 

flows through a chamber including the sample, whereas a subsequent air humidity sensor 

measures the water amount enriched by the sample. With this method, together with an 

established microrespirometer, we measured water loss and metabolic rate of 

557 individuals from two grassland and one forest site in a single region. 

Water loss rate and metabolic rate were higher in the grassland sites compared to a forest. 

Also within a site, the microhabitat plays an important role, and individuals living in or 

directly on the ground showed lower water loss rates than individuals on the vegetation. As 

expected due to a stronger cuticular protection, water loss rate was correlated with 

metabolic rate only for specimen from grasslands.  

The relative contribution of cuticular and respiratory water loss varies across species from 

different climatic conditions. Due to a stronger reduction of cuticular transpiration in 

species from arid environments, respiratory losses become increasingly relevant, confirmed 

by a positive correlation between metabolic rate and water loss in such species. Two 

previous studies showed this relationship via meta analysis on a global scale and for a small 

number of individuals in a desert ecosystem, but more studies are needed to examine the 

generality of these trends. Our approach based on an effective evaporimeter confirmed these 

results for grassland versus forest on a local scale and highlight the relevance of variation in 

macro- and microhabitat conditions for climatic responses of arthropods. 
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Introduction 

Water availability is one of the most important abiotic factors affecting physiological 

performance in animals and plants. The concentration of body water needs to be within 

tolerable limits to ensure optimal functioning.  

For arthropods, the majority of water loss happens through the cuticular surface, but also via 

respiratory transpiration (Hadley 1994). The relationship between respiratory transpiration 

to total water loss, however, depends strongly on the activity of an organism (Harrison and 

Roberts 2000). Insects can limit desiccation either by behavioural responses, e.g. migration 

to cooler or wetter microhabitats or by physiological regulation (Chown et al. 2011). 

Physiologic regulation is usually performed either by desiccation resistance or desiccation 

tolerance (Hadley 1994). Resistant species can have more water in their cellular tissue 

(Hadley 1994) or show changes in their cuticular lipid composition (Gibbs 1998) to 

decrease cuticular transpiration. Additionally closing the spiracles temporally and 

performing discontinuous gas exchange can contribute to a reduced respiratory 

transpiration. The limit of desiccation tolerance can vary between different groups, and 

some arthropods, such as larvae of the chironomid Polypedilum vanderplanki, do even 

tolerate nearly complete desiccation (Alpert 2005). 

Species from arid environments are more tolerant against desiccation and have lower rates 

of water loss after correction for body size variation (Addo-Bediako et al. 2001). Thus, the 

desiccation adaptation hypothesis argues that costs of desiccation resistance strategies needs 

to be balanced with the benefit in a particular environment. Zachariassen et al. (1987) 

analysed differences in the water loss rate and respiratory rate between Coleoptera from arid 

and mesic environments in east Africa and the relationship between both factors depended 

by the environment. Addo-Bediako et al. (2001) repeated the analysis with a variety of taxa 

in a meta-analysis on a global scale. Arid species showed general lower rates than mesic 

species, but a significant positive relationship only occurred for arid species (Zachariassen 

et al. 1987; see also: Addo-Bediako, Chown & Gaston 2001). The authors argue that 

respiratory transpiration in xeric species contributes a higher proportion to water losses; 

cuticular transpiration in such species is more limited e.g. via an increased lipid layer. 

Zachariassen’s study compiled 71 individuals from 24 species collected in two years; Addo-

Bediako’s analysis comprised 180 species (76 published studies). Both used data on a large 

geographic scale, whereas other studies showed also differences of water resistance on 
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smaller scales (Chown 2001). For example, thermal tolerance of dung beetles increased with 

increasing elevation in southern Africa (Gaston and Chown 1999), or canopy ants showed 

higher desiccation resistance than understory ants in a central American rainforest (Bujan et 

al. 2016).  

In this study, we re-analyse the trends reported by Zachariassen et al. (1987) and Addo-

Bediako el al. (2001) on a local scale. We investigate the relationship between total water 

loss and respiration rate for species in different macrohabitats (a forest site, a moist and a 

dry grassland site) within a single region. We predict that grassland species also show a 

significant positive relationship between water-loss rate and respiratory rate, whereas 

species from the forest do not show those patterns. We additionally considered the 

microhabitat and differed between epigeal arthropods and vegetation associated arthropods, 

because epigeal communities should be more protected against desiccation. 

A variety of methods were developed to measure the water-loss rate directly via cuticular 

transpiration, e.g. gravimetric methods, radioisotopic tracers as well as in vivo and in vitro 

methods (Hadley 1994). Most of the methods are time-consuming and it is problematic to 

measure a variety or individuals in a short period, e.g. when only a single individual can be 

measured at one time. In general, one of the main hypotheses is that the amount of 

respiratory and cuticular transpiration and its differences between species is in strong 

relation of the habitat, where the species occur. To understand these mechanisms, it is 

important to consider and compare those physiologic traits of several individuals and 

species. Thus, we developed a simple flow-through system (hereafter evaporimeter) using 

electronic moisture sensing to measure water loss of invertebrates (based on Louw and 

Hadley 1985; Nicolson and Louw 1982 who developed the system with one chamber). The 

structure of the evaporimeter is simple but effective, and it is possible to measure water loss 

rate of 10 individuals in 30 minutes. Additionally the evaporimeter enables to demonstrate 

discontinuous gas exchange. Combining this method with an existing method to measure 

the metabolic rate (Scheu 1992) facilitate the opportunity to measure water loss and 

metabolism up to 60 individuals in 24 hours.   
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Material and Methods 

Study area and sampling design 

Arthropods were collected in three macrohabitats, a forest site (8°68’02’’ E, 49°85’79’’ N) 

a moist grassland (8°67’82’’ E, 49°85’81’’ N,) and a dry grassland (8°63’51’’ E, 

49°84’59’’ N) in the surroundings of Darmstadt in 2016. The forest site represents a 

common mixed forest dominated by Fagus sylvatica and Tilia spec. Here the most abundant 

species in the herb layer were Luzula luzuloides, Dryopteris carthusiana, Dactylis polygama 

and Galium odoratum. The moist grassland was mainly dominated by Holcus lanatus, 

Agrostis capillaris, Plantago lanceolata and Juncus acutiflorus and was mostly covered by 

the vegetation cover (6 % open ground). In contrast, the dry grassland had 41 % open 

ground and was dominated by Hypnum cupressiforme, Carex hirta, Euphorbia cyparissias 

and Vulpia myuros. 

In total, we measured water loss rate of 557 individual arthropods and metabolic rate of 305 

individuals; 298 species overlapped in both measurements. These individuals were assigned 

to 10 different orders (Araneae, Auchenorrhyncha, Chordeumatida, Coleoptera, 

Dermaptera, Diptera, Heteroptera, Lepidoptera, Orthoptera, Pseudoscorpiones). 

Arthropods were collected in two sampling rounds with pitfall traps, insect nets and beat 

sheets. The first survey started in the end of June, and each macrohabitat was sampled for 

one week (27th of June - moist grassland, 04th of July - forest, 11th of July - dry grassland). 

During a second survey, sampling sites were sampled in a different order (08th of August - 

dry grassland, 15th of August - moist grassland, 22th of August - forest). Sampling with 

three different methods allowed differing the microhabitats of epigeal specimen (pitfall 

traps) and vegetation related specimen (insect nets, beating trays). Arthropods were kept in 

vials in which they received water supply with moistened tissues, were kept separately at 

10 °C in a climate chamber and were measured within two days after collection in the field. 

Evaporimeter 

Water loss rate of each arthropod was measured with a custom-made evaporimeter, 

incorporated into an incubator to regulate the temperature. The evaporimeter enables to 

measure water loss of samples such as soil, seeds, leaf parts or small animals. Synthetic air 
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(Air Liquide®) with 0 % relative humidity was directed into the system with an airflow of 

200 ml min-1. This air flowed through a copper tube, which was bent in several loops in the 

incubator to receive the temperature of the inside of the incubator (in our case 25 °C). The 

dry air then flowed in a distributer, where a temperature sensor and a humidity sensor 

(Honeywell GmbH®) monitored the condition. From here, the air was distributed among 10 

different tubes, each with a connected glass chamber (Peco Laborbedarf GmbH®, 

Griesheim). The airflow of each chamber was regulated separately at 20 ml min-1. In each 

chamber, a sample could be placed. At the end of each chamber, a humidity sensor was 

installed, which was separated by gauze from the main volume of the chamber to prevent 

samples from drifting or insects from crawling into the following tube. Hence, the water 

enrichment measured in the humidity sensor (compared to the humidity sensor at the 

distributor) represented the water loss of the sample. Finally, the enriched air was lead out 

of the incubator through flowmeters (Profimess GmbH®, Bremerhaven) to monitor the 

airflow in each chamber (Fig. 5.1).  

It was necessary to avoid plastic and rubber materials that absorbed water from the 

surrounding air to keep the air humidity as low as possible. Because we needed flexible 

elements in the evaporimeter to simplify handling when exchanging samples, however, we 

used rubber hoses as adapters between the distributor and the chambers; all ten rubber hoses 

had the same length of 18 cm. Due to these rubber hoses, it was not possible to maintain 

0 % relative humidity with the chosen airflow. Before each measurement we started the 

evaporimeter without any specimen until the relative air humidity reached 2.5 % in each 

chamber (control). We then subtracted the control value from the relative humidity value 

rH 

rH chamber 

distributor flowmeter 

chamber 

copper tube 

incubator 

T = temperature sensor 

rH = humidity sensor   
 
(connected to computer) 

T 

Bottled synthetic air 
0 % humidity 

regulator 

T 

rH 

Fig. 5.1: Graphical sketch of the evaporimeter (not to scale). Dry air is first tempered in a copper tube, 
leading into a distributor. From here it flows through ten independent chambers, each including a 
biological sample or specimen. A subsequent humidity sensor measures the enriched air humidity caused 
by the specimen. See main text for a detailed description. 
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including a sample to obtain the air humidity emitted by the specimen. 

All sensors send data every 0.33 seconds to a computer program. The program output 

included the relative humidity (rH), e.g. the percentage of the actual amount of water 

vapour in the air to the amount it can hold when saturated expressed. To quantify the 

absolute water loss of the sample per hour, we needed the absolute humidity (aH). We first 

calculated the saturation vapour pressure (EW) of water using the Magnus-formula giving 

the temperature in °C (T): 

!!  =  6.1078 ∙ 10!.!∙! (!"#.!!!) 

The saturation vapour pressure describes the pressure at which water in air is balanced 

between solid, liquid and gaseous phases and increases exponentially with the temperature. 

Since EW cannot be calculated exactly, the Magnus-formula is only an approximation of the 

true EW. We then calculated the actual vapour pressure (E) by the following equation: 

! =  !" 100 ∙  !! 

Using the universal gas constant (Ru) and the molecular weight of water vapour (mW) we 

could calculate the absolute humidity (aH): 

!" =  10! ∙!! !! ∙ ! (273.15+ !) 

Finally we obtained the desired water loss (LW) per hour [mg h-1], using aH and the adjusted 

airflow (af): 

!! = !" ∙ !" 

Arthropods were kept in the evaporimeter until the air humidity was constant, which last not 

longer than 30 minutes.  

Respirometer 

Following the measurements in the evaporimeter, the individuals were again kept separately 

with water supply before being used in the respirometer (6 – 24 hours after the evaporimeter 

measurement). To measure the oxygen consumption (hereafter: metabolic rate) per 

individual we used an automated electrolytic microrespirometer (based on Scheu 1992). The 

apparatus included a pressure detector that compared the pressure between a control 
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chamber and the chamber including the sample. Beside the sample, the last mentioned 

chamber additionally included potassium hydroxide (KOH) that absorbed the produced 

carbon dioxide of the sample. This process leaded to a pressure gradient between the two 

chambers. A third electrolytic chamber including a platinum (Pt) electrode and copper 

sulphate (CuSO4) solution was directly connected with the sample chamber. In case of a 

pressure gradient the pressure detector sent a 10 mA pulse lasting for 1 second to the 

electrode, which liberated 0.83 µg Oxygen (Fig. 5.2). The chambers could be submerged in 

temperature conditioned water basins to regulate the temperature during the measurements. 

The whole system was connected to amplifier units and a computer program that made it 

possible to control up to 30 respirometers simultaneously. 

The measurements last either 7 hours during the day (9 am – 4 pm) or 16 hours during the 

night (5 pm – 9 am). The length of a measurement did not influence the results, because we 

used only a constant cut-out of the measurement. 

After the measurements, the dry weight (as body mass) of all individuals was determined 

(Mettler Toledo XS3DU; accuracy ±0.001 mg). See Supplementary Material S5.1 for 

further information (e.g. calibration techniques, R-scripts, pictures) of the evaporimeter and 

the respirometer. 

Data analysis 

The small size of insects makes them particularly vulnerable to dehydration, given their 

higher surface-area-to-volume ratio. The surface area increases with the 2/3 power of 

volume or body mass, which also predicts their water loss rates, and metabolic rate roughly 

increases body mass to the power of 3/4 (Brown et al. 2004). To account for such isometric 

CuSO4 (aq) 

chamber control 

el
ec

tr
od

e 

pressure detector 

V1 V2 

KOH (aq) 

Fig. 5.2: Graphical sketch of the 
respirometer (not to scale). Each 
chamber includes the specimen 
and some potassium hydroxide 
(KOH), which absorbs the 
produced carbon dioxide. The 
pressure detector compares 
pressure differences between the 
sample and a control and sends an 
impulse to the electrode if 
necessary. This process produces 
oxygen for the sample and 
balances the pressure difference. 
See main text for a detailed 
description. 
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scaling effects, we transformed body mass either with the power term 3/4 for water loss rate 

accorded linear regressions or with the power term 2/3 for metabolic rate accorded linear 

regressions. Additionally, body mass and response variables (water loss and metabolic rate) 

were log transformed. 

Tukey’s post hoc tests following linear mixed effect models were used to analyse the effect 

on responses (i.e. water loss and metabolic rate). Here, we used body mass, macrohabitat 

(forest, grassland) and microhabitat (ground dwelling, above ground) as independent fixed 

effects and taxonomic order as a random effect:  

lmer(log(water loss [g/h]) ~ log(body mass [g] ^(2/3)) + macro + micro + (1|order)) 

lmer(log(metabolic rate [J/h]) ~ log(body mass [g] ^(3/4)) + macro + micro + (1|order)) 

We calculated the correlation between water loss versus metabolic rate after accounting for 

body mass and order, hence between the residuals of the same model but without 

macrohabitat and microhabitat as independent fixed effects. 

All analysis were performed using R (R Core Team 2014), including the packages lmerTest 

(Kuznetsova et al. 2014), and multcomp (Hothorn et al. 2008).   
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Results 

Across 557 individuals from 11 different orders, body mass had a positive effect on water 

loss rate (Fdf=1 = 140.03, p < 0.0001). Macrohabitat (Fdf=2 = 8.04, p = 0.0004) had a 

significant effect, and specimen from the forest site had a higher water loss rate than those 

from the moist meadow (p = 0.02) and the dry meadow (p < 0.001), whereas both meadows 

were relatively similar (p = 0.154). The microhabitat also showed a significant effect, since 

water loss was higher for epigeal species than for those that were associated to the 

vegetation (Fdf=1 = 109.12, p < 0.0001) (Fig. 5.3 a-b).  

The metabolic rate also increased with body mass (F = 145.67, p < 0.0001) and differed 

across macrohabitats (F = 9.55, p < 0.0001), but not across microhabitats (F = 2.74, 

p = 0.1). It was higher for specimen from the forest than from the moist meadow (p = 0.01) 

and dry meadow (p < 0.001), respectively. Specimen from both meadows were more similar 

(p = 0.06) (Fig. 5.3 c-d). 

Fig. 5.3: Differences of water loss (a,b) and metabolic rate (c,d) based on macrohabitat (moist and dry 
meadow) and microhabitat (vegetation associated or epigeal). 
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The correlation between the residuals of the water loss rate and the residuals of the 

metabolic rate was significant in the moist meadow (r = 0.39, p < 0.0001) and in the dry 

meadow (r = 0.29, p = 0.006), but not in the forest (r = 0.07, p = 0.48). Additionally a 

significant correlation appeared for species associated to the vegetation (r = 0.34, 

p < 0.0001), but not for epigeal species (r = 0.04, p = 0.74; Fig. 5.4).  

Fig.5. 4: Correlation between water loss and metabolic rate based on macrohabitat forest, moist and dry 
grassland (a) and vegetation associated or epigeal microhabitat (b). 
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Discussion 

Our results from a single region were consistent with the desiccation hypothesis previously 

tested at larger scale for arid versus mesic habitats (Addo-Bediako et al 2001, Zachariassen 

et al 1987): both water loss and metabolic rates were lower in species from two grasslands 

than from a forest. The differentiation even occurred similar in microhabitats, i.e. the 

stratum in which the specimen were collected: vegetation associated specimen had lower 

water loss than epigeal specimen, but the metabolic rate did not differ. We additionally 

showed that a significant correlation between both rates only appeared for species in dry 

macro- and microhabitats, consistent with the global analyses (Addo-Bediako et al 2001, 

Zachariassen et al 1987). Addo-Ediako et al. tested the hypothesis on a global scale based 

on 76 published papers and Zachariassen et al. collected and analysed 71 individuals in two 

years. In contrast, we developed and simplified an evaporimeter to measure water loss of 10 

individuals simultaneously. Using this method, we were able to collect and measure water 

loss and metabolic rate of 557 individuals within six weeks. As studies about functional 

diversity and also physiological traits became more relevant (Hooper et al. 2000), the 

evaporimeter gives the opportunity to provide much larger datasets on several taxa and thus 

to understand the mechanisms and the relationship between climate conditions within an 

ecosystem and its including organisms. 

Species can adapt to local conditions including strategies to avoid desiccation, as long as 

such investments are balanced with benefits of the environment (Bujan et al. 2016). 

Grassland sites are usually more exposed to dry weather conditions than forest sites. The 

average air temperature in grasslands is about 1 °C warmer and has more pronounced 

diurnal temperature range including maximum at midday than in forests (Morecroft et al. 

1998). Also within the site, microclimatic conditions additionally differ between species 

that live inside the soil or epigeal on the ground, protected by the vegetation layer, versus 

species that live more exposed on the vegetation. As a consequence, species from open 

environments should be more adapted to warmer, drier conditions. In doing so, their 

physiological processes are lower compared to species from less exposed environments.  

The relation between cuticular and respiratory transpiration is contentious and varies across 

species, although the majority of total water loss generally occurs via cuticular transpiration 

(Chown 2002). Water loss in arid species is reduced mainly by a stronger protection against 

cuticular transpiration; the remaining respiratory transpiration becoming more relevant. 
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Thus as the proportional cuticular transpiration decreases, the effect of respiratory 

transpiration on total water loss becomes stronger.  

In general, physiological traits vary with body mass (Brown et al. 2004). This study also 

confirmed that both, water loss and metabolic rates increased significantly with body mass. 

As a consequence, the correlation between water loss and metabolic rate may simply be a 

consequence of their parallel body mass relationships (Addo-Bediako et al. 2001). 

However, both processes are still coupled, because a higher metabolism rate leads to an 

increasing transpiratory water loss (Hadley 1994).  

Conclusions  

In the actual context of the global climatic warming, the number of studies investigating the 

responses of different organisms to weather conditions recently increased. We developed a 

simple method to measure water loss of several individuals simultaneously in a short period, 

allowing for an efficient assessment of responses of populations and/or communities, which 

is important to understand the consequences of changes in temperature or drought for 

ecosystems. Based on this method we were able to show that species from xeric versus 

mesic habitats within the same region and even microhabitats show a similar differentiation 

than species from arid and mesic habitats at a global scale.  
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Abstract 

Global warming is predicted to have a strong effect on the fitness of ectotherms such as 

insects. Due to an exponentially increasing metabolic rate, growth rates of developing larval 

stages of insects increase strongly under warmer conditions, but also their mortality. 

However, such thermal reaction norms – and corresponding risks – are likely to vary across 

species, partly mirroring the environmental conditions in the species’ natural range and 

habitat. Besides their geographic distribution, another key aspect that varies across species 

is their feeding niche, e.g. the host plant specialisation of herbivorous insects. Narrow 

specialization represents a further risk against land use or disturbance, and if resource 

specialization is coupled with a reduced thermal tolerance, both risks could be non-

independent and additive. Here we compared the thermal responses of 30 different species 

of moths (Lepidoptera) raised in climatic chambers under three regimes (average summer 

day, 4°C and 8°C warming), henceforth termed ‘thermal treatments’. Across species, we 

confirmed a decreasing survival rate, faster larval development and higher pupal mass in 

warmer thermal treatments. Treatments also had an effect on respiration rate and water loss 

rate at 25°C; both rates increased with the thermal treatment at which specimen were grown. 

All thermal responses varied significantly across species. Host plant generalists were better 

adapted to higher temperatures than specialists, suggesting that resource specialization and 

thermal responses are coupled – and together increase a species’ risk to global change. 
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Introduction 

The performance of insects depends on a variety of biotic and abiotic factors, such as food 

quality, photoperiod and humidity (Berggren et al. 2009; Gotthard 2008; Jang et al. 2015). 

But since insects are ectotherms, temperature has a direct effect on their growth and 

development rate, final body mass, fitness and mortality (Bale et al. 2002). Apart from 

direct effects, temperature indirectly affects adult performance since the juvenile growth 

provides the fundament for later stages including reproductive fitness during the adult phase 

for most organisms (Abrams et al. 1996). Our understanding of such thermal reaction norms 

becomes increasingly relevant in the light of global warming, given the predicted increase in 

mean temperature up to 4.8 °C as well as increased climatic variation (IPCC 2014).  

The niche breath of a species characterises its degree of specialisation and is defined as the 

extent of a resources or environmental conditions it can appropriate, including the range of 

temperatures (Gaston et al. 1997). The thermal niche is described as the temperature range 

in which a species is able to perform; these and the species’ thermal responses (its 

temperature-dependent reaction norms) are species-specific. For example, the variation in 

pollinator activity in grasslands is largely explained by temperature with an optimum at 

24.3°C, and it varies across species (Kühsel and Blüthgen 2015), and the number of moths 

attracted to light increases with temperatures at night (Jonason et al. 2014). Thermal 

reaction norms not only include activity or consumption, but also developmental rates as 

well as physiological processes such as respiration and water loss, both of which are related 

to metabolism and performance of insects but also represent critical constraints for thermal 

niches (Chown et al. 2011; Gillooly et al. 2001). Ectotherms from the temperate zone often 

have a broad thermal niche and may benefit physiologically from warmer conditions if they 

are not too extreme, whereas species from tropical climates may be less tolerant to further 

increases in their temperature conditions (Deutsch et al. 2008). Species differ in their 

responses, depending on their origin, and those adapted to cooler conditions may face a 

higher risk of extinction. Range shifts towards the poles or higher altitudes are expected, but 

will vary across species depending on their thermal niche and dispersal abilities (Regniere et 

al. 2012).  

Under their optimal and predictable conditions, environmental or resource specialists may 

outperform generalists, because physiological plasticity that provides individual generalists 

with an opportunity to respond to variable environments can be associated with increasing 
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energetic costs (the ‘jack-of-all-trades is master of none’ hypothesis; Levins 1968). As a 

consequence of their narrow tolerance, however, specialists tend to be stronger negatively 

affected by disturbance than generalists (Gaston et al. 1997). For example, the amount of 

specialistic lepidopteran degreases with the degree of land-use intensity (Börschig et al. 

2013, chapter 3). The degree of specialisation can vary across different life-history traits and 

niche dimensions. For example, species that are able to capitalize a broader variety of 

resources tend to be more widespread (Brown 1984; Slatyer et al. 2013). Nevertheless, the 

relationship between the degree of specialisation in any niche dimension versus the 

specialization in another dimension has been rarely investigated. This is particularly 

important for variation in resource specificity versus sensitivity to warmer temperatures 

across species – two factors that may impose species-specific risks to habitat disturbance, 

land use and climatic change. 

The relationship between time of development of ectotherms and temperature is well 

documented in a variety of publications (reviewed in Bale et al. 2002). Most studies only 

focused on a single or very few species, however, and did not include comparisons of life-

history traits. In this study we will focus on the effect of temperature across many species of 

Lepidoptera that vary in their degree of host plant specialisation. We hypothesise that 

generalised species are also more tolerant against warmer conditions and thus possibly 

against climate warming. We thus examined the larval growth, pupal mass and mortality for 

30 species of moths in climatic chambers with average temperature regimes of typical 

summer months in Central Europe (including diurnal variation) and compared their 

performance against conditions increased by 4°C and by 8°C. In addition, to examine the 

physiological responses in more detail, we tested respiration and water loss for a subset of 

the species raised under these three conditions.  
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Material and Methods 

Study areas and moth sampling 

In the framework of the German Biodiversity Exploratories Project 

(http://www.biodiversity-exploratories.de) we collected female moths in grassland in in 

three different regions of Germany: the Biosphere Reserve ‘Schorfheide-Chorin’ 

(13°23’27’’-14°08’53’’ E / 52°47’25’’-53°13’26’’ N), the National Park ‘Hainich-Dün’ and 

its surroundings (10°10’24’’-10°46’45’’ E / 50°56’14’’-51°22’43’’ N), and the Biosphere 

Reserve ‘Schwäbische Alb’ (09°10’49’’-09°35’54’’ E / 48°20’28’’-48°32’02’’ N) in 2014. 

For further information of the Biodiversity Exploratories see Fischer et al. 2010. In 2015, 

we additionally caught moths in a grassland site in northern ‘Odenwald’ (08°77’31’’ E, 

49°83’66’’ N) and in a forest site southeast of Darmstadt (8°69’62’’ E, 49°86’10’’ N).  

In the Biodiversity-Exploratories, moths were collected once a month between May and 

August in Hainich and Alb and in June and July in Schorfheide (n=26). The observation at 

the grassland site in Odenwald last twice a month and in the forest three times a week from 

Mid-April until Mid-July.  

For the sampling in the Biodiversity-Exploratories and the grassland site, a battery powered 

(12 V) portable light trap, consisting of a super actinic and a black light tube (230 V, 

2 x 20 W, bioform®) with a twilight sensor, surrounded by a gauze cylinder (height: 

180 cm; diameter: 70 cm) was used. The twilight sensor facilitated the onset of the light-

traps right after sunset. In the Biodiversity-Exploratories, every observation comprised two 

sampling rounds (first round 20 minutes, second round 15 minutes) were moths were 

collected manually. Here, the mean illumination for the plots lasts 225.1 minutes. At the 

grassland site in Odenwald, the light trap was observed two hours after sunset and last till 

no new moth appeared within 15 minutes.  

The observations in the forest 2015 were made using an automatic battery powered (12 V) 

portable light-trap considering of a super actinic light tube (15 W, bioform®), an interbred 

acrylic glass, a twilight sensor and a collecting bag. Moths were collected on the next 

morning from the collecting bag. 
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Growth-related reaction norms 

Only female moths were kept and feed with a honey-water mixture until they laid eggs. 

Both were kept at 15 °C in a climate chamber. One day after hatching, larvae were separated 

in three different vivaria (each with 12 – 35 larvae depending on the species) that were 

prepared with paper towels and leaves from species-specific host plants stuck in water-

soaked floral foam (see Supplementary Material S6.1 for list of host plant species). These 

vivaria were placed into three different thermal treatments, where larvae were kept until 

pupation. The first treatment had a mean temperature of 17.7 °C (min = 12.5 °C, 

max = 23 °C, humidity = 60 %, day/night = 10/14 hours, ‘control’), which represents the 

average summer temperature in Germany between 2003 and 2013 (source: Rahlf 2015). In 

the second treatment, larvae were kept at 21.4 °C mean temperature (min = 15 °C, 

max = 28 °C, humidity = 60 %, day/night = 10/14 hours, ‘+ 4 °C’) and in the third treatment 

at 25.3 °C mean temperature (min = 18 °C, max = 33 °C, humidity = 60 %, 

day/night = 10/14 hours, ‘+ 8 °C’). Each vivarium was monitored at least after three days, 

depending on the host plant quality and number and size of larvae. Vivaria were cleaned; 

host plant leaves renewed and living larvae were counted. In case of pupation, pupae were 

removed and weighted (Mettler Toledo XS3DU) at the next day. For logistical reasons it 

was not possible to focus on both, the development based on single individuals and on 

various species.  

As growth rate reaction norms, we thus used survival rate, pupal mass and growth rate from 

2014 and 2015. In 2015 we additionally measured physiological reactions norms, namely 

respiration and water loss of the larvae. 

Physiological reaction norms 

To quantify respiration rates, an automated electrolytic microrespirometer was used (Scheu 

1992). Here, the individual is kept in a chamber containing KOH, which absorbs the 

produced carbon dioxide. This process leads to a pressure loss in the chamber. If the 

pressure decreases to a certain level, a pressure detector sends a signal to a Pt electrode in an 

electrolytic chamber including CuSO4 solution, which liberates 0.83 µg oxygen. Both 

chambers are connected to each other and the pressure difference will be balanced. A 

computer records the number of impulses that are needed to keep the pressure balanced, 
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whereas the amount of oxygen that is used can be calculated (see chapter 5 for a detailed 

description of the respirometer). 

To measure the water loss of the individuals, we used an evaporimeter. Air with 0 % 

humidity flows through a chamber including the individual. A humidity sensor after the 

sensor measures the relative humidity of the air, which is enriched by the individual. 

Afterwards the absolute water loss can be calculated using the relative humidity and the 

airflow per hour (see chapter 5 for a detailed description of the evaporimeter). 

Both measurements were performed using an environmental temperature of 25 °C. All 

individuals were weighted before the measurement started (Mettler Toledo XS3DU; 

accuracy ±0.001 mg). 

Feeding niche 

To analyse how the development was affected within the degree of specialisation, we 

categorized the larval feeding niche in four ranks: (1) narrow specialists (host plants within 

one plant genus), (2) moderate specialists (host plants within one plant family), 

(3) moderate generalists (host plants recorded from two to four families), and (4) wide 

generalists (host plants in five or more families) (see Supplementary Material S6.1 for 

feeding niche per species; for detailed information and references, see chapter 3). 

Data analysis 

Effects of thermal conditions on survival rate (5, 20 and 40 days after hatching), time of 

development from egg hatching to pupae, pupal mass and growth rate (pupal mass divided 

by development time), water loss rate and respiration were assessed by linear mixed-effect 

models with treatment as fixed effect and clutch identity as random effect, followed by a 

Tukey post-hoc test. For water loss rate and respiration the body weight was also included 

as a random effect in the model. For better allometric scaling, the body weight was log 

transformed and multiplied by the ¾ exponent. First, we performed the analysis for all 

individuals. For the second step, we executed the same model, but for each feeding niche 

category separately (not for water loss rate and respiration). We did not use feeding niche as 

an explanatory because the distribution of clutches within each category was unbalanced. In 

some cases larvae did not develop until pupation. For this reason we decided to analyse the 

survival rate at three different times: at beginning, the middle and the end of development.  
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For a phylogenetic analysis, we used Pearson’s correlation for the larval development and 

pupal weight, followed by an ANOVA with pupae weight as predictor and larval 

development and family as explanatory.  

All analysis were performed in R (R Core Team 2014, Version 3.1.2) using the packages 

lme4 (Bates et al. 2014) and multcomp (Hothorn et al. 2008).  
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Results 

The study was performed with 30 different moth species (17 Noctuidae and 8 Geometridae, 

4 Erebidae, 1 Nolidae), represented by a total of 63 egg clutches for which subsets of eggs 

were distributed among temperature treatments. Water loss rate of 213 individuals 

(11 species, 12 clutches) and respiration rate of 326 individuals (9 species, 12 clutches) was 

measured. Species differed in all reaction norms. The survival rate differed significantly 

among species (F = 3.7 after 5 days, F = 5.5 after 20 days and F = 4.0 after 40 days, all 

p < 0.0001; Tab. 6.1).  

Species also differed in developmental time, pupal weight and growth rate, but more 

importantly in their thermal responses, i.e. the interaction term between each parameter and 

the thermal treatment (larval development F = 95.1, p < 0.0001; interaction F = 2.4, 

p = 0.001; pupal weight F = 96.1, p < 0.0001; interaction F = 2.2, p = 0.002; growth rate 

F = 73.4, p < 0.0001; interaction F = 2.6, p = 0.001; Tab. 6.2).  

Tab. 6.1: Median values of the survival rate 5, 20 and 40 days after hatching per species (Ere = Erebidae, 
Geo = Geometridae, Noc = Noctuidae, Nol = Nolidae). 

  
Survival rate (5 days) Survival rate (20 days) Survival rate (40 days) 

Species Family control  + 4°C  + 8°C control  + 4°C  + 8°C control  + 4°C  + 8°C 

Acronicta rumicis Noc 1 1 0.97 1 0.94 0.46 0.35 0.2 0 
Agrotis exclamationis Noc 1 0.95 0.93 0.74 0.76 0.75 0.39 0.43 0.46 
Autographa gamma Noc 1 1 1 0.79 0.05 0.24 0.26 0 0 
Autographa pulchrina Noc 1 1 0.79 1 0.93 0.57 0.92 0.71 0.29 
Axylia putris Noc 0.77 0.57 0.6 0.6 0.49 0.34 0.49 0.26 0.11 
Calliteara pudibunda Ere 1 1 1 0.85 0.81 0.73 0.73 0.69 0.54 
Campaea margaritaria Geom 1 0.91 0.91 0.66 0.37 0.01 0.05 0 0 
Catarhoe cuculata Geom 1 1 0.18 0.67 0.13 0.00 NA NA NA 
Ceramica pisi Noc 0.8 0.57 0.71 0.6 0.00 0.29 0.17 0 0.14 
Charanyca trigrammica Noc 0.63 0.49 0.66 0.23 0.17 0.57 0 0.09 0.2 
Colocasia coryli Noc 1 1 1 0.79 0.63 0.53 0.73 0.23 0.47 
Eilema griseola Ere 1 0.82 0.85 0.93 0.65 0.38 0.93 0.59 0.38 
Epirrhoe alternata Geom 1 0.75 0.35 0.45 0.15 0.2 NA NA NA 
Euplexia lucipara Noc 1 1 1 0.58 0.1 0.33 0.58 0.11 0.17 
Hada plebeja Noc 1 0.71 0.4 0.77 0.49 0.31 0.03 0.06 0 
Hoplodrina spec. Noc 0.74 1 0.83 0.36 0.23 0.05 0.15 0.16 0.02 
Hypomecis roboraria Geom 0.75 0.31 0.56 0.69 0.31 0.44 0.63 0.31 0.44 
Idaea deversaria Geom 0.75 0.81 0.44 0.38 0.38 0.31 0.38 0.38 0.31 
Lacanobia oleracea Noc 1 0.91 1 0.26 0.00 0.09 0.06 0 0 
Macdunnoughia confusa Noc 0.82 0.7 0.52 0.55 0.20 0.11 0.22 0.03 0 
Miltochrista miniata Noc 1 1 1 0.89 0.89 0.84 0.46 0.35 0.38 
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  Survival rate (5 days) 

Survival rate (40 days) 

Survival rate (20 days) Survival rate (40 days) 
Species Family control  + 4°C  + 8°C control  + 4°C  + 8°C control  + 4°C  + 8°C 

Ochropleura plecta Noc 0.83 0.67 0.58 0.75 0.65 0.30 0.65 0.18 0.15 
Phlogophora meticulosa Noc 1 1 0.71 0.80 0.43 0.22 0.61 0.34 0.01 
Phragmatobia fuliginosa Noc 0.99 0.97 1 0.89 0.87 0.71 0.67 0.6 0.54 
Pseudoips prasinana Nol 1 1 0.95 0.87 0.92 0.68 0.71 0.45 0.22 
Scotopteryx chenopodiata Geom 1 1 0.67 0.53 0.24 0.28 0.53 0 0.22 
Spilosoma lubricipeda Ere 0.94 0.79 1 0.74 0.79 0.79 0.66 0.23 0.06 
Spilosoma lutea Ere 1 1 0.8 0.71 0.51 0.77 0.34 0.14 0.23 
Xanthorhoe montanata Geom 1 1 1 0.82 0.88 0.82 0.82 0.81 0.28 
Xestia c-nigrum Noc 1 0.4 0.46 0.58 0.26 0.06 0.23 0.03 0 

 

Tab. 6.2: Median values of larval development, pupal weight and growth rate per species (Ere = Erebidae, 
Geo = Geometridae, Noc = Noctuidae, Nol = Nolidae). Species listed in Tab. 6.1 but not here did not reach the 
pupal stage. 

  
Larval development Pupal weight Growth rate 

Species Family control  + 4°C  + 8°C control  + 4°C  + 8°C control  + 4°C  + 8°C 

Acronicta rumicis Noc 51 34 NA 219.1 171.1 NA 1.37 1.46 NA 
Agrotis exclamationis Noc 63 55 44 304.5 270.6 286.1 1.37 1.42 1.47 
Autographa gamma Noc 26 20 21 186.2 163.7 102.5 1.60 1.69 1.53 
Axylia putris Noc 45 42 36.5 110.3 135.4 117.6 1.22 1.32 1.32 
Calliteara pudibunda Ere 104 97 78 863.1 623.1 678.7 1.46 1.39 1.50 
Catarhoe cuculata Geom 23 NA NA 43.7 NA NA 1.20 NA NA 
Ceramica pisi Noc NA NA 39 NA NA 254.8 NA NA 1.51 
Colocasia coryli Noc 68.5 NA 42 198.6 NA 218.7 1.25 NA 1.45 
Epirrhoe alternata Geom 35 29 NA 43.8 48.6 NA 1.09 1.15 NA 
Euplexia lucipara Noc 62 NA NA 132.0 NA NA 1.15 NA NA 
Hypomecis roboraria Geom 68 72 NA 174.5 168.0 NA 1.22 1.20 NA 
Idaea deversaria Geom 48 NA NA 61.3 NA NA 1.06 NA NA 
Macdunnoughia confusa Noc 36 25 24 137.5 105.6 91.9 1.38 1.42 1.42 
Ochropleura plecta Noc 44 38 37 163.7 161.2 153.8 1.36 1.41 1.41 
Phlogophora meticulosa Noc 56 NA NA 354.7 NA NA 1.46 NA NA 
Phragmatobia fuliginosa Noc NA 82 80 NA 124.5 147.8 NA 1.01 1.14 
Pseudoips prasinana Nol 53 40 39.5 262.3 318.2 257.1 1.41 1.55 1.55 
Spilosoma lubricipeda Ere 47 38.5 35 316.1 299.9 263.1 1.50 1.58 1.57 
Spilosoma lutea Ere 66 43 49 131.6 222.8 128.9 1.16 1.41 1.24 
Xanthorhoe montanata Geom 97 101 NA 57.3 50.5 NA 0.89 0.85 NA 
Xestia c-nigrum Noc NA 79.5 NA NA 158.2 NA NA 1.11 NA 
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Independent of the larval stage, survival rate decreased continuously with increasing 

temperature 5 days after hatching (control / + 4°C: z = -2.58, p = 0.027; control / + 8°C: 

z = -5.43, p < 0.001; + 4°C / + 8°C: z = -2.85, p = 0.012) 20 days after hatching 

(control / + 4°C: z = -4.35, p < 0.001; control / + 8°C: z = -7.13, p < 0.001; + 4°C / + 8°C: 

z = -2.78, p = 0.015) and 40 days after hatching (control / + 4°C: z = -4.86, p < 0.001; 

control / + 8°C: z = -7.62, p < 0.001; + 4°C / + 8°C: z = -2.75, p = 0.017; Fig. 6.1 a-c). The 

time of development from hatching until pupation decreased significantly over all thermal 

treatments (control / + 4°C: z = -12.87, p < 0.001; control / + 8°C: z = -14.18, p < 0.001; 

+ 4°C / + 8°C: z = -3.03, p = 0.006). Pupal mass and growth rate increased consistently 

(albeit not always significant) with increasing temperature (Fig. 6.1 d-f). An increase of 

4 °C comparing to the control treatment did not affect pupal mass (z = 0.41, p = 0.91), but 

an increase of 8 °C lead to significantly heavier pupae (control / + 8°C: z = -2.93, p = 0.009; 

+ 4°C / + 8°C: z = -3.44, p = 0.002). The growth rate was significantly higher in 4°C and 

8°C warmer temperature regimes than in the control (control / + 4°C: z = 9.49, p < 0.0001; 

control / + 8°C: z = 7.63, p < 0.0001; + 4°C / + 8°C: z = -0.76, p = 0.73). 

Water loss in the control treatment differed significantly to the + 4°C treatment (z = 2.39, 

p = 0.044) and the + 8°C treatment (z = 2.43, p = 0.039), whereas the warmer thermal 
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Fig. 6.1: Survival rate 5, 20 and 40 days after hatching (a-c), larval developmental time (d), pupal weight (e) 
and growth rate (f) in relation to the three thermal treatments: control (mean: 17.7 °C, range: 12.5 – 23 °C), 
+ 4°C (21.4 °C, 15 – 28 °C) and + 8°C (25.3 °C, 18 -33 °C). Please note: y-axis shows raw data, while the 
analysis is based on clutch as random factor. 
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treatments did not differ significantly among themselves (z = 0.2, p = 0.97). In contrast 

respiration rate was different in all treatments (control / + 4°C: z = 3.19, p = 0.004; 

control / + 8°C: z = 6.63, p <0.001; + 4°C / + 8°C: z = 3.87, p < 0.001; Fig. 6.2). 

The comparison across different host specialisation categories showed variable effects of 

thermal treatments, mainly a more negative impact of warmer conditions in climate 

chambers to host specialists than generalists (Fig. 6.3). After the first five days of 

development, specialists showed a stronger mortality increment with increasing temperature 

than generalists. This difference became weaker over time and was not significant after 

40 days of development (Fig. 6.3 a-c). None of the narrow and moderate specialists 

developed until pupation in the warmest treatment. Time of development declined with 

increasing temperature for all niche levels, but the effect was not significant in all groups 

(Fig. 6.3 d). Moderate generalists were heaviest and showed the strongest growth rate in the 

+ 4°C treatment. The trend reversed for + 8°C, whereas it still increased continuously for 

wide generalists with increasing temperature (Fig. 6.3 e-f, see Supplementary Material S6.1 

for the result of the statistical analysis, and S6.2 for effects of temperature on survival rate, 

larval development, pupal weight and growth rate based on species level). It was not 

possible to compare physiological reaction norms across different host plant specialisation 

types, because too few specialists survived and most measured species were generalists. 

Fig. 6.2: Water loss rate (H2O ml/hour) and respiration rate (O2 mg/hour) in relation to the climate treatment 
control, + 4°C and + 8°C. Please note: y-axis shows the residuals of body weight and clutch, whereas they 
were used as random factors in the analysis. 
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Across species, pupal mass and larval developmental time were generally positively 

correlated (r = 0.28, p < 0.0001), particularly for Geometridae, although variation across 

species was pronounced (Fig. 6.4). The correlation between pupal mass and larval 

development within the treatments was not affected by the factor family of the species 

(control: F = 0.19, p = 0.82; + 4°C: F = 0.04, p = 0.96; + 8°C: F = 0.56, p = 0.48).   

Fig. 6.3: Survival rate 5, 20 and 40 days after hatching (a-c), larval developmental time (d), pupal weight (e) 
and growth rate (f) in relation to the climate treatment control, + 4°C and + 8°C within each host-plant 
category. Please note: y-axis shows raw data, while the analysis is based on clutch as random factor. 
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Discussion 

Our results confirmed that high temperatures during the larval development of 30 

Lepidoptera species (Erebidae, Geometridae, Noctuidae and Nolidae) were generally 

associated with a lower survival rate, increased growth rate and higher pupal mass. With 

warmer conditions the water loss rate and the respiration rate also increased, even if the 

measurements were performed using a standardized temperature (25 °C). For those species 

that were host plant specialists, mortality due to warmer temperatures during their 

particularly sensitive early larval stages was much stronger than for generalists – thermal 

specialization and host-plant specialization were thus coupled. This effect became less 

strong during the later stages. Specialists did not manage to pupate in the warmest regime in 

the climatic chamber representing an actual increase of 8 °C, hence they were unable to 

complete their life cycle. For moderate generalists, the highest pupae mass and fastest 

growth rate were reached in the intermediate temperature regime (+4 °C warming). Broad 

generalists, however, showed a general increase of pupa mass and growth rate with 

increasing temperature. Additionally, we showed that the results did not vary across the 

families and thus the effect of temperature on morphological traits was independent of the 

phylogeny. 

Increasing growth rate with higher temperature has been confirmed by a variety of studies 

on caterpillars and other insects (Bale et al. 2002; Buse et al. 1999; Pimentel et al. 2011; 

Salis et al. 2016). In case of unlimited food availability, growth rates of larvae can increase 

and can substantially reduce the time of development from hatching until pupation. This 

plasticity suggests that the actual temperature is still below a species-specific thermal 

optimum. Once temperature exceeds the thermal optimum, however, growth rate may 

decrease rapidly (Kingsolver and Woods 1997; Kingsolver et al. 2006). In addition, we 

showed a general increase of pupae mass with warmer temperature. This result for a small 

thermal range of 8 °C is not consistent with previous findings on the correlation between 

temperature and pupae mass: most studies reported a negative effect on pupae mass for a 

temperature range between 10 °C and 40 °C (da Silva et al. 2012; Kingsolver and Woods 

1997; Kingsolver et al. 2006). Nevertheless, marginally positive effects (Lindroth et al. 

1997), inconsistent effects (Higgins et al. 2015) or even no effect (Lemoine et al. 2015; 

Schwartzberg et al. 2014; Seiter and Kingsolver 2013) were also found for Lepidoptera. 

Lemoine et al. (2014) identified an increase in overall consumption rate with temperature 
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for herbivores between 20 °C and 30 °C. An increase in consumption rate with increasing 

metabolic requirements is important to compensate demands for development and other 

physiological processes. The positive correlation up to 30 °C suggests a sufficient plasticity 

within the investigated climate range. In our study, the mean temperature did not exceed 

25 °C despite much warmer conditions at mid-day, hence we assume a decrease of pupal 

mass for higher temperatures.  

Nearly all physiological and biochemical rates of ectotherms increase exponentially with 

temperature (Brown et al. 2004; Kleiber 1932). Nevertheless, most studies analyse this 

effects by varying the temperature during the measurement, not necessarily the climate 

regimes in which they grow (DeVries and Appel 2013; Ehnes et al. 2011; Rourke and Gibbs 

1999). The higher rates for larvae grown under warmer regimes (but measured at standard 

temperature) indicate a more general, long-lasting thermal response, e.g. potential 

biochemical reaction, developmental plasticity and higher basal metabolic rate. However, 

such responses may not mirror short time temperature changes, and specimen may not be 

able to compensate such fluctuations in the same way. Additionally water loss regulation of 

arthropods is usually performed either by desiccation resistance or desiccation tolerance 

(Hadley 1994). Resistance includes a decreasing cuticular transpiration of individuals from 

warmer conditions, due to changes of cuticular lipid composition of epicuticular waxes 

(Gibbs 1998). Nevertheless, our results rather suggest a desiccation tolerance. Individuals 

developing under warmer condition had a higher cuticular transpiration rather than a down-

regulation, and obviously tolerate such higher transpiration rates e.g by higher water uptake 

during consumption. 

In our study, host plant specialists were less tolerant to thermal stress than generalists, 

particularly during the very early larval phases. This pattern supports the hypothesis that 

generalists are in general more tolerant against climate warming and other global change 

effects, whereas specialists have a reduced tolerance against disturbances. Due to biotic 

homogenisation, generalists often replace specialists (McKinney and Lockwood 1999; 

Olden et al. 2004). Correspondingly, the most abundant nocturnal Lepidoptera are often 

polyphagous, i.e. they are host plant generalists. Because specialists are less commonly 

trapped, generalists were much more common than specialists in our study (see 

Supplementary Material S6.1). To better generalize the findings on the relationship between 

host plant specialisation and thermal tolerance, it is indispensible to investigate the effects 
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of temperature on development particularly for other specialists and relatively rare species 

in general.   
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CHAPTER 7 

General discussion  
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In this thesis, I analysed anthropogenic effects on Arthropod composition and their 

functional traits. Land-use intensity and climate change have negative effects on Arthropod 

diversity and abundance. Both drivers act as environmental filters, leading to a shift towards 

more generalistic species communities. The intraspecific traits variation also differs 

between specialists and generalists as only generalists show benefits with increasing land 

use and specialists face a higher risk of distinction with increasing environmental 

temperature. Morphological (increasing body mass) and physiological (water loss resistance 

and changings in metabolic rates) processes affect responses to anthropogenic effects and 

differences between specialists and generalists. 

We determined herbivore induced leaf damage in beech forests to analyse the effect of tree 

species composition and harvesting intensity on herbivore density (chapter 2). The next 

study focused on moths, as a representative taxon for herbivores and pollinators in 

grassland, to examine how grazing, mowing and fertilisation each affect moth diversity. We 

additionally analysed composition of life-history traits (chapter 3) and intraspecific 

variation of morphologic traits (chapter 4) according to land-use intensity. We developed a 

new method to measure water loss of several arthropod groups from grassland and forest 

sites within one region. By combining this method with measurements of the metabolic rate, 

we showed physiological differences of arthropods according to their environmental 

conditions (chapter 5). Additionally, we kept caterpillars at different climatic conditions to 

determine the effect of temperature on their survival, development and physiology in the 

context of their degree of specialisation (chapter 6). 

Land-use intensity leads to a general loss of Arthropods and a 

lack of functional traits 

Forest ecosystems are influenced anthropogenically, via forest management activities, 

including hunting, livestock grazing, logging, and reforestation of monocultures (Jactel et 

al. 2009; Milad et al. 2011; Wilson 1992). Herbivore density in beech trees correlates with 

the abundance of their host trees and decreased with harvest intensity (chapter 2). This 

pattern was, however, less pronounced during the vegetation period and was not continuous 

across three different regions in Germany. In grassland sites of the same regions 

(chapter 3), the majority of moths preferred extensively used management strategies, as the 
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diversity and abundance decreased with land-use intensification. The most relevant negative 

component was mowing.  

Generalists did benefit from land-use intensity, whereas specialists were less tolerant. In 

contrast, more species showed an intraspecific increase of wing loading than a decrease, 

mostly conditioned by fertilisation (chapter 4). Increasing wing loading is caused by higher 

body mass, which also enhances reproduction success in insects as was shown for several 

taxa (Boggs and Freeman 2005; Knapp and Uhnava 2014). Species that did show these 

morphological advantages according to land-use intensity in our study had not been more 

abundant on stronger managed sites than others. Additional interspecific analysis of 

morphological traits in relation to the host-plant specialisation of the species showed that 

generalists were larger than specialists. 

Today, German forests are mainly extensively and sustainable managed (Höltermann and 

Oesten 2001), whereas the proportion of intensively managed grasslands as pastures or 

meadows (in combination with fertilisation) is still increasing (Umweltbundesamt 2015). 

Disturbance via land-use intensification affects vegetation and Arthropod composition, 

which could also be shown for several taxa in the framework of the Biodiversity-

Exploratories (Birkhofer et al. 2017; Chisté et al. 2016; Gossner et al. 2014a; Gossner et al. 

2016; Simons et al. 2015; Socher et al. 2012). As anthropogenic activities in forests and 

grasslands differ massively, land-use intensity in grasslands has a stronger direct effect on 

the ecosystem structure. The stronger impact of human activities in grasslands mirrors our 

results: Comparing the results of chapter 2 and chapter 3, we see a general negative impact 

of land-use intensification on species composition and functional traits in both ecosystems. 

But in grasslands land use causes a stronger effect across the season in different regions, and 

thus the ecological reaction is more pronounced. The study in chapter 4 shows that some 

species also benefit of land use. Stronger fertilisation leads to a higher plant biomass 

production and thus a possible increase of food resources for herbivores, resulting in an 

intraspecific increase in body mass with land-use intensity. This response, however, 

appeared only for generalists or grass feeding specialists, which means that land use act as a 

strong environmental filter and lead to a loss of diversity especially in grasslands. 
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Temperature effects inter- and intraspecific plasticity 

Considering climatic effects, we first analysed interspecific physiological responses to local 

climatic conditions and then intraspecific morphological and physiological adaptions with 

increasing temperature. We detected higher transpiration and metabolic rates of arthropods 

in forests than these from grasslands and that only grassland species show a strong 

correlation between both rates (chapter 5). In general, arid species develop strategies to 

avoid desiccation (Chown 2001) either during desiccation resistance or desiccation 

tolerance (Hadley 1994). We suggest that species from arid environments show a stronger 

reduction of cuticular transpiration and thus respiratory transpiration becomes more relevant 

in total water loss, which could also be shown on larger geographic scales (Addo-Bediako et 

al. 2001; Zachariassen et al. 1987). This process is, however, protracted and related to 

evolutionary processes. Considering single individuals adapted to warmer conditions short-

term (e.g. within one generation), lead to a change of this pattern. The analysis of 

development and survival of several caterpillar species in different temperature treatments 

suggests a decreasing mortality rate and an increasing growth rate with warmer conditions 

(chapter 6). Here, individuals in warmer conditions suffer greater stress and their 

transpiration and metabolism is in general higher. Similar to stronger negative land-use 

effects on specialists, they face a higher risk of elimination with increasing temperature than 

generalists. In contrast to the results of chapter 5, larvae that have adapted to warmer 

temperature treatments have higher transpiration and metabolic rates. Short-term 

temperature depended fluctuations pose a major threat for arthropods and especially 

specialists are vulnerable to changing climatic conditions.  

The results of my studies suggest that, under a scenario of increasing global temperatures 

and more extreme weather events, environmental filtering will preferentially select for 

generalist species, whereas the specialists are vulnerable to extinction. 

Combining general relationships between anthropogenic drivers 

and its consequences for human well-being 

The main purpose of this thesis is to contribute to the understanding and response of 

anthropogenic activities on ecosystems processes and –services (Fig. 7.1). Ecosystems are 

influenced by its occurring species, but no other species has such a massive effect on global 
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environments than humans, and thus the present age is considered as the Anthropocene 

(Lewis and Maslin 2015). Studies investigate general consequences of anthropogenic 

drivers on terrestrial and aquatic ecosystems (Halpern et al. 2008; Ives and Carpenter 2007; 

Tilman et al. 2012; Winfree et al. 2009), being in permanent alteration, due to immigration 

and emigration of species and by biotic and abiotic factors. The interaction between drivers 

in an ecosystem and its species is, however, complex and a change in one driver can lead to 

unpredictable chain reactions in the ecosystem. Additionally, different drivers can affect 

ecosystems in similar ways and simultaneous changings can reinforce the effect of other 

drivers.  

We thus studied direct and indirect effects of anthropogenic activities by analysing land-use 

intensity and temperature change on arthropod communities and functional traits. We 

considered several aspects like herbivore density in forests, moth diversity in grassland and 

also several functional traits of moths like life-history traits (feeding niche breath, voltinism 

or hibernation), morphological traits (wing area, body weight and wing loading), and 

Fig. 7.1: Overview of the main results of this thesis in a general context. 
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physiological traits (growth rate, water loss rate and metabolism). Our results confirm a 

general species loss and decreasing density and biodiversity of herbivores and pollinators 

with increasing land-use intensification (chapter 2-3). Arthropods are able to adapt to their 

local and relatively stable climatic conditions in a long term (chapter 5). During the 

development of single individuals, environmental temperature has, however, negative 

effects on the survival (chapter 6). Especially specialists face a higher risk of extinction: 

land-use intensity leads to a shift towards more generalistic communities (chapter 3), and 

within these communities mostly generalists show morphological benefits of the higher 

input of nutrients (chapter 4). Negative temperature effects are stronger for specialists, as 

the survival rate is lower and pupation is constrained (chapter 6). Other studies suggest a 

biodiversity decrease with increasing temperature (Miles et al. 2004; Parmesan 2006; 

Williams et al. 2003). Thus this thesis shows similar consequences of land-use 

intensification and climate change as two different anthropogenic drivers (Fig. 7.2). 

Especially mutually reinforcing effects of human activities lead to a shift of taxonomic and 

functional composition towards generalistic communities and a general loss of diversity. 

Cardinale et al. (2012) describes possible consequences of these responses. He predicts that 

species- and functional-rich communities decrease homogenisation, which leads to stable 

ecosystem functioning, higher productivity and functional performance of ecosystem 

processes and services. Human activities can thus have an indirect negative effect on human 

well-being. 

Outlook 

Responses of harvesting intensity and beech dominance was mostly analysed on herbivory 

induced leaf damage (chapter 2). Sustainable and effective sampling methods within beech 

trees should be improved to observe direct effects of land use on beech herbivore 

communities on the considered scale (see Longino et al. 2002 for a selection of methods). 

As the community changes towards sun exposed canopies (Grimbacher and Stork 2007), 

leaf samples of the entire vertical stratification should be observed to analyse our hypothesis 

in a broader scale and to enhance the validity. 

Analysing functional traits is a useful method to measure precise relationships between the 

stability in an ecosystem and its species. The analysis of functional traits yields more 

information than considering the occurrence of species alone, as these traits include 

ecological processes like predictions of the performance of a species in an ecosystem as 
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well as the effect of a species on an ecosystem (Violle et al. 2007). Compared to previous 

studies, that only consider species diversity, the study of functional traits is a new field, and 

to facilitate more research in this direction it is necessary to collect and categorise more data 

on functional traits. This is supported by our newly developed new method that measures 

water loss of several samples within a short period (described in detail in chapter 5). 

Especially the study about temperature-related responses on development and physiological 

processes in chapter 6 should be further improved. In this study we compared effects on 

generalists and specialists, but as specialists are underrepresented in general, specialists 

need more investigations. The study additionally suggests that the temperature range was 

still within tolerable limits, as pupae weight increased with temperature. One should 

investigate absolute limits but also analyse effects of temperature variability. It would also 

be interesting to analyse differences between different generations, to see how temperature 

affects reproduction and plasticity of the offspring.   
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Conclusion 

In this thesis, I analysed the effects of the two main anthropogenic disturbances – namely 

land-use intensity and climate change – on species diversity and functional traits of 

Arthropods. Functional traits are features or measurable properties that are related to the 

effect or response of species in an ecosystem. Investigating functional traits yields 

additional information than taxonomic species composition in an ecosystem alone, as they 

consider the effect of the species in an ecosystem (e.g. their host-plant specialisation). 

The results show that biodiversity and population densities decrease in general with land-

use intensification and a rise in temperature. Anthropogenic drivers affect mainly resource 

specialists negatively, which leads to a prevalence of generalist species. Decreasing 

biodiversity and a shift towards generalised communities increase functional 

homogenization of the species community and decrease the stability and functional 

performance of the ecosystem. The maintenance of high biodiversity, heterogeneity and 

stability, however, is important to guarantee sufficiently productive ecosystem functioning 

(biological, geochemical and physical processes) and services (goods provided by 

ecosystems) that are important for human well-being. 

Trait-based ecology is a useful tool to describe, quantify and predict anthropogenic impacts 

on biodiversity and can be used to indicate the performance of ecosystem functioning and 

services. Thus, traits can be effective indicators to analyse sustainable land-use management 

strategies. Knowledge transfer between research and policymaker, stakeholder, and general 

public is needed to increase the importance of conversation and functional diversity. 
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Supplementary Material 

Supplementary Material is provided on a CD in the end of this thesis. 

Chapter 2: 

 S2.1: Calculated percentage damage of a fictive leaf to support the estimation of damage of sampled 

 leaves and complementary analysis of significant interaction effects between region, beech 

 dominance and harvest intensity. 

 S2.2: Data summary 

Chapter 3: 

 S3.1: Additional information of land-use intensity and live-history traits, supplementary literature, 

 analysis of co-variance tables for residual model (including figures) and main model. 

 S3.2: Data table of life-history traits and larval habitat of 460 moth species . 

 S3.3: Data table of abundances of 447 moth species per region and month. 

Chapter 4: 

 S4.1: Additional information of the intraspecific distribution for the most frequent species and 

 statistical analysis including the correlation between the morphological traits and land-use intensity 

 and abundance-weighted means of the land-use intensity. 

Chapter 5: 

 S5.1: Pictures of the evaporimeter and the respirometer, calibration analysis of the evaporimeter and 

 descriptions for generating data including R-scripts and exemplary datasets. 

Chapter 6: 

 S6.1: Additional information of host plants, number of individuals per clutch and statistical analysis 

 including results of the Tukey-Tests.  

 S6.2: effects of temperature on survival rate, larval development, pupal weight and growth rate based 

 on species level. 
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