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Abstract

Ab initio calculations of nuclei from the valley of stability to the drip lines are a prime challenge in low-energy
nuclear theory. The interactions in atomic nuclei, being composed of protons and neutrons, are governed by strong
interactions. The fundamental theory of strong interactions is quantum chromodynamics (QCD). Due to the non-
perturbative nature of QCD at low energies a direct calculation of nuclear forces from the underlying theory is
presently not possible. However, chiral effective field theory (EFT) connects the symmetries of QCD to nuclear
forces, enabling a systematic derivation of nuclear interactions, naturally including many-nucleon forces and un-
certainty estimates. Chiral EFT interactions are generally softer than phenomenological interactions, but their low-
and high-momentum components can still be coupled strongly. Using renormalization group (RG) methods, e.g.,
the similarity renormalization group, this coupling can be removed by a unitary transformation, resulting in even
softer interactions. In addition to advances on nuclear forces and RG methods, several ab initio approaches have
been developed in recent years to calculate medium-mass nuclei in a systematically improvable way.

We employ some of these advanced many-body approaches in our calculation of nuclei, starting from a set
of chiral two- and three-nucleon interactions that, when used in perturbative calculations of symmetric nuclear
matter, reproduce empirical saturation properties within theoretical uncertainties. We study ground- and excited-
state energies of doubly open-shell nuclei from oxygen to calcium using valence-space interactions derived using
many-body perturbation theory. Given the prominent role of the calcium isotopic chain, we perform coupled-
cluster calculations to investigate stable and short-lived neutron-rich calcium isotopes. The ab initio calculations
reveal that the size of the neutron skin of 48Ca is much smaller than results from density functional theory. In
addition, the very steep increase in charge radii up to 52Ca measured recently questions the neutron shell closure at
N = 32 and provides an intriguing benchmark for our coupled-cluster calculations. We extend our study to ground
states of closed-shell nuclei from 4He to 78Ni using the in-medium similarity renormalization group (IM-SRG).
The experimental binding-energy and charge-radius systematics is well described, encouraging the decoupling of
valence-space interactions with the IM-SRG to study also open-shell nuclei. The results for ground- and excited-
state energies as well as for charge radii of open-shell nuclei achieve a similar level of agreement found in the
closed-shell calculations, enabling broad predictions for future experiments up to mass number ∼ 80.

1



2



Zusammenfassung

Ab initio Berechnungen von Atomkernen vom Tal der Stabilität bis zu den Grenzen der Neutronen- und Proto-
nenstabilität sind eine fundamentale Herausforderung der theoretischen Kernphysik. Die Wechselwirkungen in
Atomkernen, welche aus Protonen und Neutronen bestehen, werden durch starke Wechselwirkungen bestimmt.
Die fundamentale Theorie der starken Wechselwirkung ist die Quantenchromodynamik (QCD). Durch die nicht
perturbative Beschaffenheit der QCD im Niederenergiebereich ist es zur Zeit nicht möglich Kernkräfte direkt aus
der zugrunde liegenden Theorie zu berechnen. Die chirale effektive Feldtheorie (EFT) verbindet jedoch die Symme-
trien der QCD mit Kernkräften und ermöglicht eine systematische Berechnung von nuklearen Wechselwirkungen
einschließlich Vielteilchenkräften und Unsicherheitsabschätzungen. Wechselwirkungen basierend auf der chiralen
EFT sind im Allgemeinen weicher als phänomenologische, dennoch kann eine starke Kopplung von Komponenten
bei niedrigen und hohen Impulsen bestehen. Unter Verwendung von Methoden der Renormierungsgruppe (RG),
z.B. der Similarity Renormalization Group, kann diese Kopplung durch eine unitäre Transformation entfernt und
damit die Wechselwirkung weicher gemacht werden. Zusätzlich zum Fortschritt bei Kernkräften und RG Methoden
wurden in den vergangenen Jahren mehrere ab initio Zugänge entwickelt, um mittelschwere Atomkerne in einer
systematisch verbesserungsfähigen Art zu berechnen.

Wir verwenden einige dieser modernen Vielteilchenmethoden in unseren Berechnungen von Atomkernen, aus-
gehend von einem Satz von Zwei- und Dreiteilchenkräften, welche unter Verwendung einer störungstheoretischen
Rechnung für symmetrische Kernmaterie den empirischen Saturierungspunkt innerhalb theoretischer Unsicher-
heiten reproduzieren. Wir untersuchen Atomkerne mit nicht abgeschlossenen Schalen von Sauerstoff bis Calcium
ausgehend von Valenzschalenwechselwirkungen, welche aus Vielteilchenstörungstheorie berechnet wurden. Durch
die bedeutende Rolle der Calciumisotopenkette führen wir Coupled-Cluster Rechnungen für stabile und kurzlebige,
neutronenreiche Calciumisotope durch. Unsere ab initio Rechnungen zeigen, dass die Dicke der Neutronenhaut von
48Ca viel kleiner ist als Resultate aus Dichtefunktionaltheorie. Außerdem stellt der starke Anstieg in den kürzlich
gemessenen Ladungsradien bis 52Ca den Neutronenschalenabschluss N = 32 in Frage und bietet einen Benchmark
für unsere Coupled-Cluster Rechnungen. Wir erweitern unsere Untersuchung der Grundzustände auf Atomkerne
mit abgeschlossenen Schalen zwischen 4He und 78Ni mit Hilfe der In-Medium Similarity Renormalization Group
(IM-SRG). Die experimentelle Systematik von Bindungsenergien und Ladungsradien wird gut beschrieben und er-
mutigt das Entkoppeln von Valenzschalenwechselwirkungen mit der IM-SRG, um Atomkerne mit offenen Schalen
zu untersuchen. Die Ergebnisse für Grundzustands- und Anregungsenergien sowie Ladungsradien für Atomkerne
mit offenen Schalen erreichen eine ähnliche Übereinstimmung wie im Fall von Rechnungen für Atomkerne mit
abgeschlossenen Schalen, und ermöglichen damit umfassende Vorhersagen für zukünftige Experimente bis zur
Massenzahl ∼ 80.
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1 Introduction

The discovery of the neutron by Chadwick in 1932 [1] provided the basis for the understanding of atomic nuclei
as compound, self-bound objects composed of protons and neutrons. While first theoretical descriptions of atomic
nuclei were performed semi-empirically within the liquid-drop model, e.g., the Bethe-Weizsäcker mass formula
developed in 1935 [2], more sophisticated microscopic models emerged, assuming nucleons to strongly interact
through meson exchanges as proposed in the seminal work by Yukawa [3].

The development of quantum chromodynamics (QCD), describing the interaction of color-charged quarks via
gluon exchanges, put the field on a new level with interactions in atomic nuclei to be governed by residual strong
interactions between the color-charge neutral nucleons. Although the fundamental aspects of QCD had been esta-
blished in the beginning of the 1970s, meson-exchange or phenomenological nucleon-nucleon (NN) potentials
were still widely used in the 1990s and are even used nowadays. The reason for that is the non-perturbative nature
of QCD at low energies complicating a direct analytical derivation of nuclear forces from the underlying theory.
However, in the beginning of the 1990s Weinberg [4] opened a new era in nuclear physics by laying the foundations
of chiral effective field theory (EFT), see Refs. [5, 6] for recent reviews. This approach connects the symmetries of
QCD to nuclear forces, allowing a systematic derivation of nuclear forces including consistent many-body forces,
consistent electroweak currents, and uncertainty estimates.

In addition to nuclear forces, systematic approaches are needed to solve the non-relativistic many-body Schrö-
dinger equation without uncontrolled truncations. A pioneer of these so called ab initio many-body methods is
the nuclear Green’s Function Monte Carlo (GFMC) method [7–9]. Here, the many-body Schrödinger equation is
solved by performing the integration over the particle coordinates stochastically, while summations in spin-isospin
space are performed explicitly. Consequently, the method provides very accurate results, but is computationally
very expensive and allows only calculations of nuclei with mass number A≤ 12. In addition, approaches based on
large-scale diagonalizations, e.g., the no-core shell model (NCSM) [10], are able to perform quasi-exact calculati-
ons of up to p- and even lower sd-shell nuclei by employing importance truncation (IT) [11] techniques. Moreover,
in recent years several ab initio approaches have been established to solve the nuclear many-body problem beyond
mass number A> 20, as shown in Fig. 1.1, in a truncated but controlled and systematically improvable way. These
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Figure 1.1: Progress in the ab initio calculation for the nuclear A-body problem. The progress in the mass number A
was only linear until 2010 because the exponentially increasing computer power was used for exponenti-
ally expensive many-body methods. New methods with a polynomial scaling in A have greatly increased
the reach in recent years. Taken from Ref. [12].

methods are coupled-cluster (CC) theory [13], the In-Medium Similarity Renormalization Group (IM-SRG) [14]
and self-consistent Green’s function (SCGF) theory [15] as well as nuclear lattice EFT [16]. While some of these
methods are limited to closed-shell or singly open-shell systems, others have been generalized to doubly open-shell
systems as well as the calculation of excited-state properties.

Although the coupling of low and high momenta is weaker for non-local interactions based on chiral EFT com-
pared to phenomenological potentials, all of the many-body methods mentioned above that rely on a matrix re-
presentation of the Hamiltonian have benefited from methods to decouple low and high momentum degrees of
freedom. Different renormalization group methods, such as the similarity renormalization group (SRG) [17], have
been developed, enabling many-body calculations with an accelerated convergence with respect to the model-space
size. However, the evolution of, e.g., a two-body interaction will induce many-body forces, in general, up to the
A-body level, making a careful analysis of the induced contributions necessary [18, 19].
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While for some ab initio methods mentioned above the formal inclusion of three-nucleon (3N) forces, either
induced or from the starting Hamiltonian, is straightforward, e.g., GFMC, lattice EFT, or NCSM calculations, others
require a generalization to the three-body level, as successfully performed for CC theory [20–22]. Moreover, the
computational cost of NCSM or CC calculations usually increases by orders of magnitude when including 3N
forces explicitly. Thus, the development of the normal-ordering approximation allows to include up to two-body
contributions of 3N forces, enabling calculations based on a two-body formalism. Nevertheless the calculation of a
reference state, e.g., in a Hartree-Fock calculation, to perform the normal ordering is done at the full three-body
level. This poses an enormous challenge for the transformation of 3N matrix elements into the single-particle basis
when aiming at the calculation of heavy nuclei.

Instead of directly aiming at the calculation of finite nuclei, nuclear matter is often considered as an intermediate
benchmark. Nuclear matter is a system of infinite size with a given ratio of protons and neutrons, determined by the
proton fraction x = np/(nn+np)with the finite proton and neutron density np and nn. While nuclear interactions are
taken into account, the Coulomb interaction among protons is omitted. The extreme case of no protons, i.e., x = 0,
is called neutron matter. The system with an equal amount of protons and neutrons, i.e., x = 0.5, corresponds
to symmetric nuclear matter, while systems with an arbitrary fraction of protons and neutrons are denoted by
asymmetric nuclear matter.

A long standing issue in low-energy nuclear physics was the reproduction of nuclear matter saturation. While
the important role of 3N forces for saturation was suggested long ago [23, 24], progress has been hindered by
difficulties to formulate consistent 3N forces for meson-exchange or phenomenological NN potentials. In addition,
difficulties in solving the nuclear many-body problem for these potentials prevented progress. When the empirical
saturation properties were reproduced quantitatively, it was imposed by adjusting short-range 3N forces, see, e.g.,
Refs. [25, 26]. However, recently this changed when nuclear matter calculations using soft Hamiltonians, derived
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Figure 1.2: Energy per nucleon of symmetric nuclear matter plotted as a function of the Fermi momentum kF at
the Hartree-Fock level (left), and including second-order (middle) and third-order particle-particle/hole-
hole contributions (right). The results are based on low-momentum interactions Vlow k obtained from the
N3LO NN potential EM 500 MeV [27] supplemented with non-local N2LO 3N forces with 3N low-energy
couplings adjusted to the 3H binding energy and 4He charge radius. Taken from Ref. [28].

from chiral NN+3N interactions with low-energy couplings only fit to few-body (A ≤ 4) data, reproduced the
empirical saturation point within uncertainty estimates [28], as shown in the right panel of Fig. 1.2. While the
results in Fig. 1.2 are shown for low-momentum interactions Vlow k, similar results hold for SRG interactions [29].

Atomic nuclei are arranged according to their proton and neutron number in the nuclear chart. While up to now
about 3000 nuclei up to proton number Z = 120 have been studied experimentally [30], it was calculated that
about 7000 nuclides are bound [31]. The particle stability of a nuclide is primarily determined by its separation
energy, which is the amount of energy needed to remove a single neutron (Sn) or proton (Sp) or two neutrons
(S2n) or protons (S2p). In terms of the binding energy of a nuclide with proton number Z and neutron number N ,
BE(Z , N) (defined negatively), the one- and two-neutron separation energies are defined as Sn = BE(Z , N − 1)−
BE(Z , N) and S2n = BE(Z , N − 2)− BE(Z , N) with the proton separation energies defined analogously. In case the
separation energy is positive the nuclide is stable against particle emission, while in case the separation energy is
negative it is unstable. Thus, the location of the drip line is determined by Sn = 0 for the one- and S2n = 0 for the
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two-neutron drip line. Pairing, which makes nuclides with an even number of nucleons generally more bound than
their odd-mass neighbors, has a strong effect on the location of the drip line. This can be seen, e.g., already in the
helium isotopic chain with the even-even 4,6,8He being bound, whereas 5,7,9He are unbound.

Figure 1.3 shows the status of the nuclear landscape for even values of the proton number Z and the neutron
number N (status from 2012), including 767 stable (black squares) or radioactive (green squares) isotopes known
experimentally. In contrast to the location of the proton drip line, which is well established for all elements oc-
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Figure 1.3: Status of the nuclear landscape in 2012 as a function of proton number Z and neutron number N . The
figure includes 767 even-even nuclides known experimentally, represented as black squares for stable
and green squares for radioactive isotopes. The red lines show the two-proton and two-neutron drip
line when averaging over different EDFs. While the S2n = 2 MeV line is shown in brown, the blue line
represents the neutron drip line for another EDF. The inset focuses on the neutron drip line near Z = 100.
Taken from Ref. [31].

curring naturally on earth, the location of the neutron drip line is only known experimentally up to the oxygen
isotopic chain. The experimental investigation of neutron-rich nuclei is very challenging due to low production
yields and extremely short lifetimes. Since the first successful construction of a particle accelerator by Cockcroft
and Walton [32] in 1932, light-ion and heavy-ion accelerators with a successive increase in beam energy allowed
to expand the nuclear chart to new regions. Neutron-rich nuclei can be produced by target fragmentation, for
which a stable, heavy, neutron-rich nucleus is bombarded with light ions at high energies, inducing fragmentation,
spallation, or fission reactions. The inverse process, the fragmentation of heavy projectiles on light-mass targets
also allows to produce new neutron-rich nuclides. After their production the nuclides of interest have to be separa-
ted and transported to the experimental setup, using the in-flight separation [33] or the isotope separation on line
(ISOL) technique [34]. Experimental facilities are, however, currently limited in neutron excess, see, e.g., the recent
measurements along the calcium isotopic chain [35–37]. Nevertheless, a great extent of the neutron-rich regime
will be accessed by experiments on the way at the Radioactive Isotope Beam Factory (RIBF) at RIKEN in Tokyo
(Japan) [38], while the Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz-Center for Heavy-Ion
Research in Darmstadt [39] and the Facility for Rare Isotope Beams (FRIB) at the Michigan State University in East
Lansing (USA) [40] are still under construction. However, even with these future facilities the neutron drip line for
heavy elements will not be reached.

Especially neutron-rich nuclei in the medium- to high-mass region far from stability are of interest in nuclear
astrophysics, being crucial for the description of heavy-element nucleosynthesis. Heavier elements beyond iron
cannot be formed in stellar burning processes, but there exist different nucleosynthesis processes for the formation
of heavy elements. One of these is the rapid neutron-capture process (r-process) [41], occurring in extremely dense
neutron-rich environments such as core-collapse supernovae or neutron-star mergers. Theoretical simulations of
the r-process rely on calculations of neutron capture and photodissociation cross sections as well as fission barriers
over a wide mass range only accessible with energy-density functionals (EDF). However, so far EDFs have not
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been calculated directly from nuclear forces but parametrizations like Skyrme [42] and Gogny [43] have been
determined by a fit to experimentally known nuclei. Thus, a comparison of ab initio and EDF results in the medium-
mass regime, accessible by both approaches, provides an important test of global EDF models.

The highest densities that can be observed in the cosmos, up to ∼ 1015 g cm−3, are found in the core of neutron
stars. Representing the final stage of a core-collapse supernovae, neutron stars consist mainly of neutrons with a
small fraction of protons and electrons [44]. They have one to two times the mass of our sun with the presently
upper mass limit determined by relatively recent observations of two-solar-mass neutron stars [45, 46]. Their
radius has so far not been measured due to observational difficulties [47], but typical radii are estimated to be in
the range of 10-15 km [48]. Theoretical constraints on the properties of neutron stars are obtained by calculations
of infinite neutron matter. The energy per particle as the a function of density, i.e., the equation of state, of neutron
matter can be employed to predict the mass-radius relation of neutron stars [49, 50]. The recent observations of
two-solar-mass neutron stars ruled out already many models of nuclear interactions not supporting such heavy
neutron stars. Further observations, e.g., the simultaneous measurement of a neutron star’s mass and radius, or its
moment of inertia will further constrain the nuclear equation of state.

This thesis is organized as follows: In Chapter 2 we introduce chiral EFT for nuclear forces and summarize
old and new regularization schemes as well as novel fitting strategies to determine the low-energy couplings. The
similarity renormalization group to evolve nuclear forces to lower resolution scales is discussed in Chapter 3. Details
about the NN+3N Hamiltonians employed in this work are given in Chapter 4, while we derive the transformation
of NN and 3N momentum-space matrix elements into the single-particle harmonic-oscillator basis in Chapter 5.
In Chapter 6 we present the many-body approaches used in this work. We explore sd-shell nuclei from valence-
space interactions derived from many-body perturbation theory in Chapter 7, while we focus on CC calculations
of neutron-rich calcium isotopes in Chapter 8. The impact of the saturation properties of nuclear forces on the
properties of finite nuclei is investigated by IM-SRG calculations over a wide mass-range in Chapter 9. We conclude
in Chapter 10 and give an outlook. The results presented in this thesis have been published in Refs. [12, 37, 51–53].
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2 Chiral effective field theory for nuclear forces

The derivation of systematic nuclear interactions is a long-lasting endeavor in theoretical nuclear physics. In con-
trast to prior meson-exchange models or phenomenological interactions chiral effective field theory (EFT) systema-
tically connects the symmetries of the underlying theory, namely quantum chromodynamics (QCD), with nuclear
forces. In this section we first discuss the basic principles and symmetries of QCD. Starting from this basis we give
an introduction to chiral EFT and summarize its latest developments.

2.1 Quantum chromodynamics

The underlying theory of strong interactions, that binds protons and neutrons to nuclei, is quantum chromodyna-
mics (QCD), a local non-Abelian gauge theory. Its fundamental degrees of freedom are the matter fields, called
quarks, and the gauge bosons, called gluons. There exist six quark flavors in nature (see Table 2.1). The quarks
carry mass and electrical charge and interact via gluon exchanges. In addition, both quarks and gluons, also carry
color charge. In nature, these constituents cannot be observed due to their - at least at low temperatures T and low
baryon chemical potential µb - confinement into color-neutral particles, the hadrons. There exist three color char-
ges: Red (r), green (g) and blue (b). One way of composing color-neutral particles, in analogy to the additive color
mixing of light, are baryons which consist of three quarks with different color charges, e.g., urugdb like the proton.

Another way are mesons consisting of a quark and an antiquark, e.g., urdr like the positively-charged pion π+.
Furthermore, there are indications for four-quark particles (tetraquarks) [54], while a five-quark state, so-called
pentaquark, was recently measured at LHCb at the Large Hadron Collider (LHC) at CERN [55]. The pentaquark
consists of four quarks and an antiquark.

For low-energy nuclear physics only the three lightest quarks up, down, and strange need to be taken into
account, while the remaining three quarks are treated as heavy and are integrated out. The subsequent discussion
follows Ref. [56], where further details can be found.

In this light-quark approximation the QCD Lagrangian is given by

L QCD =
∑

f=u,d,s

�

q f i /Dq f −m f q f q f

�

−
1
2

Tr(GµνGµν) , (2.1)

using the Feynman-slash notation for the covariant derivative /D ≡ γµDµ = γµ(∂µ + i gAµ). q f denote the quark
fields, m f the quark masses and Aµ the gluon fields, while the gluon-field-strength tensor is given by

Ga
µν = ∂µAa

ν − ∂νA
a
µ + g f abcAb

µAc
ν , (2.2)

with color indices a, b, c = 1, ..., 8, the dimensionless coupling constant of the strong force g, and the SU(3)
structure constants f abc . By applying the projection operators qR = (1+ γ5)/2, qL = (1− γ5)/2 the kinetic energy
in Eq. (2.1) can be represented in terms of left- and right-handed quarks

∑

f

q f i /Dq f =
∑

f

�

qL f i /DqL f + qRf i /DqRf

�

. (2.3)

This term is symmetric under the rotation of the three flavors of left-handed and right-handed quarks by indepen-
dent unitary matrices. The U(3)L × U(3)R symmetry is, however, not a symmetry of the quantum theory due to
anomalies in the U(1)A transformation. Hence, the remaining symmetry is U(1)V × SU(3)L × SU(3)R. While U(1)V
just corresponds to baryon number conservation, SU(3)L×SU(3)R, under which qL f → L f f ′qL f ′ and qRf → R f f ′qRf ′ ,
where R and L are independent SU(3) matrices, is called “chiral symmetry”. The SU(3)L × SU(3)R symmetry can
be rewritten as SU(3)A × SU(3)V = SU(3)L−R × SU(3)L+R in terms of the axial chiral symmetry SU(3)A and the
vector symmetry SU(3)V , which corresponds to the isospin symmetry generalized to three quarks. However, both
symmetries SU(3)A and SU(3)V are explicitly broken due to the small, non-zero quark masses mu 6= 0, md 6= 0,
ms 6= 0. The quark mass term may be written as

∑

i

miqiqi =
∑

i, j

qRi Mi jqL j +H.c. , with M =





mu
md

ms



 , (2.4)

coupling explicitly left- and right-handed quarks.
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Table 2.1: Masses, electrical charges and additional quantum numbers of the six quark flavors
from Particle Data Group (PDG) [57].

symbol flavor(f) mass electric charge
u up 2.3+0.7

−0.5 MeV +2/3 isospin=+1/2
d down 4.8+0.5

−0.3 MeV −1/3 isospin=−1/2
s strange 95± 5 MeV −1/3 strangeness=−1
c charm 1275± 25 MeV +2/3 charm=+1
b bottom 4660± 30 MeV −1/3 bottom=−1
t top 173210± 510 MeV± 710 MeV +2/3 top=+1

In addition to this explicit breaking axial chiral symmetry SU(3)A is also spontaneously broken, even for vanis-
hing quark masses. If axial chiral symmetry would not be spontaneously broken, there would exist parity doublets
in the particle spectrum. These particles would have the same mass and identical quantum numbers but opposite
parity. That this is not the case can be deduced from the nucleon N

�

Jπ = 1
2
+�

with mass mN ≈ 940 MeV and its

chiral partner N∗
�

Jπ = 1
2
−�

with mN∗ ≈ 1535 MeV. The spontaneous (axial) chiral symmetry breaking by the QCD
vacuum gives rise to the formation of the chiral condensate 〈0|qq|0〉. The chiral condensate is the expectation value
of a quark-antiquark pair in vacuum and is non-zero when (axial) chiral symmetry is spontaneously broken. It can
be seen as the order parameter of spontaneous (axial) chiral symmetry breaking.

Furthermore, spontaneous (axial) chiral symmetry breaking has an important consequence. By Goldstone’s theo-
rem there are massless Goldstone bosons - one for each generator of a spontaneously broken continuous symme-
try [58]. Pions, kaons, and the eta meson are identified as the Goldstone bosons of spontaneous (axial) chiral
symmetry breaking. However, the Goldstone bosons acquire small masses due to the explicit chiral symmetry brea-
king by the quark masses and are therefore called pseudo-Goldstone bosons. The pions are indeed very light, while
the mesons carrying strangeness are heavier because of the stronger breaking of the chiral symmetry in the strange
sector. The pseudo-Goldstone bosons are very important for nuclear forces because their long-range parts can be
formulated in terms of pion exchanges.

Another characteristic property of QCD is the significant running of the strong coupling constant αs. Working
in an energy range, where the number of flavors is taken constant, a simple exact analytic expression for the
renormalized coupling αs(µ2

R) as a function of the (unphysical) renormalization scale µR at the one-loop level [59,
60] is given by

g2

4π
≡ αs(µ

2
R) =

1

b0ln
�

µ2
R
Λ2

� , (2.5)

where Λ is a constant of integration, which corresponds to the scale where the perturbatively-defined coupling
would diverge, i.e., it is the non-perturbative scale of QCD. The one-loop beta-function coefficient is given by
b0 = (33 − 2n f )/(12π) with the number of quark flavors n f , that are considered light (m f � µR), while the
remaining heavier quark flavors decouple from the theory. At high momenta the strong coupling constant becomes
weaker, resulting in the so-called “asymptotic freedom”, that allows for a perturbative treatment of the theory.
However, at low momenta of about less than 1 GeV αs becomes larger than 1, making QCD non-perturbative in
this low-momentum regime. Thus, it is not possible to analytically derive nuclear forces directly from the QCD
Lagrangian.

There is, however, an approach to directly obtain low-energy properties of nuclear systems from QCD using
lattice Monte-Carlo techniques. In lattice QCD [61] a four-dimensional Euclidean lattice is used to discretize space-
time, with the quarks residing on the lattice sites, and the gluon fields residing on the links between the lattice sites.
The path integrals can then be evaluated numerically and the results are depending, among other input parameters,
on the lattice spacing b, defining the distance between adjacent lattice sites, and the lattice size L, determining
the volume. Combining calculations for several lattice spacings and lattice sizes, results can be extrapolated to
vanishing lattice spacing and infinite volume. Nevertheless, the computational cost of lattice QCD calculations
is extremely high. While calculations for baryons are using physical values for the light quark masses as input
parameters, calculations for nuclear systems with A > 1 are currently limited to large values for the light quark
masses leading to unphysical values of the pion mass.
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Figure 2.1: Results for the spectrum of light hadrons calculated by lattice QCD [65]. Horizontal lines and bands are
the experimental values with their decay widths. Red solid circles with vertical error bars correspond to
the lattice QCD results and their error estimates. The blue circles mark π, K and Ξmasses that were used
to set the light and strange quark masses and the strong coupling constant g.

One remarkable example of lattice QCD calculations is the prediction of the spectrum of light hadrons, shown
in Fig. 2.1, using the π, K and Ξ masses to set the light and strange quark masses and the strong coupling con-
stant g. Many interesting results for low-energy nuclear physics observables have been obtained for example by
the NPLQCD Collaboration, using quark masses corresponding to mπ ≈ 800 MeV. Examples are the scattering
parameters that describe low-energy nucleon-nucleon scattering [62], the binding energies of a range of nuclei
and hypernuclei with atomic number A ≤ 4 and strangeness |s| ≤ 2 [63], and magnetic moments of the lightest
nuclei [64]. For more details we refer to a review on lattice QCD [61].

Due to the complicated non-perturbative nature of QCD at low-energies nuclear interactions have been modeled
for a long time by meson exchanges, e.g., CD-Bonn [66], or phenomenological potentials, e.g., Argonne v18 [67].
These potentials reproduce nucleon-nucleon scattering data very accurately but there is no clear connection to the
symmetries of the underlying theory. Effective field theories (EFT), however, allow for the systematic determination
of nuclear interactions and currents consistent with the symmetries of QCD. In general, EFT are based on the
separation of scales. Therefore we briefly want to discuss the different scales in low-energy nuclear physics.

As stated before, the interaction between nucleons may be formulated in terms of meson exchanges. The lightest
mesons, the pions, have an average mass of mπ ≈ 138 MeV, corresponding to a Compton wavelength of λπ =
1/mπ ≈ 1.4 fm. Comparing this to the two unnaturally large neutron-proton S-wave scattering lengths

anp(
1S0) = −23.714 fm , anp(

3S1) = 5.42 fm� λπ (2.6)

reveals that there already exists a relevant energy scale well below the pion mass. This scale is also manifested in
the binding momentum of the lightest nucleus, the loosely-bound deuteron,

Γd =
p

mNEd ≈ 46 MeV� mπ , (2.7)

with the nucleon mass mN ≈ 938.92 MeV and the binding energy of the deuteron Ed = 2.224 MeV. For large
scattering length physics the momentum scale of interest is q ∼ |a(1S0)|−1 ≈ 8 MeV � mπ, which defines the so-
called pion-less EFT [68, 69], whose breakdown scale Λb is of the order of the pion mass. When going to higher
momenta pions are resolved and need to be included in the EFT explicitly, leading to chiral EFT, whose breakdown
scale is around 500 MeV. When comparing the breakdown scale of chiral EFT to the energy separation in the
hadron spectrum it may be important to include even heavier particles such as the delta isobar ∆(1232), whose
energy separation from the nucleon is only about m∆−mN ≈ 293 MeV. This extension is referred to as ∆-full chiral
EFT [70].
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2.2 Chiral effective field theory for low-energy QCD

2.2.1 Basic principles

As mentioned above the general idea of effective field theories is the separation of scales. For a physical system
of interest one has to choose the relevant degrees of freedom, leaving the symmetry properties of the system
unchanged. In the fundamental theory of strong interactions quarks and gluons are the basic degrees of freedom.
If a system, however, is probed at low energies or momenta, corresponding to long distances, these basic degrees
of freedom are not resolved. Only probes with high energy or momentum would resolve these basic degrees of
freedom, necessitating a different choice for the relevant degrees of freedom of the EFT and thereby moving also
the breakdown scale to higher energies.

Already in 1979 Steven Weinberg outlined the basic principle of EFT in the following way [71]: “If one writes
down the most general possible Lagrangian, including all terms consistent with assumed symmetry principles, and
then calculates matrix elements with this Lagrangian to any given order of perturbation theory, the result will simply
be the most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition and
the assumed symmetry principles.”

The most general Lagrangian consistent with assumed symmetry principles for a typical low-momentum scale q
with respect to the breakdown scale Λb is then given by

L =
∑

ν

�

q
Λb

�ν

Fν(q, gi) , (2.8)

where Fν is a function of order 1 and gi are the a priori undetermined low-energy constants (LECs). The different
terms in Eq. (2.8) are ordered, according to a power-counting scheme, in terms of powers ν of the expansion para-
meter q/Λb < 1. The lowest order, or leading order (LO) with ν = 0, contains the most important contributions in
the expansion, while there are infinitely many higher orders. These include contributions of decreasing importance
and are called next-to-leading order (NLO) for ν = 1, N2LO for ν = 2, etc.. The inclusion of higher orders leads
to a systematic improvability of the EFT, but also involves the determination of more LECs. In case the number of
undetermined LECs exceeds the available data used to fix them, the predictive power of the EFT is limited. This
problem should, however, arise only at very high orders in the EFT.

Since high-momentum (energy) degrees of freedom only exist for short distances (times) they are not resolved
in a low-energy EFT. Consequently, these high-momentum (energy) degrees of freedom are treated as heavy and
are integrated out. Their contribution gets implicitly included by fixing the LECs gi , appearing along with contact
interactions, to experimental data. These LECs should take values of the order ∼ 1, called natural, so that the
convergence behavior of the EFT is not influenced by over- or underestimation of individual terms.

2.2.2 Chiral effective field theory

Chiral effective field theory was introduced in the pioneering work of Weinberg in the early 1990’s [4, 72]. The
relevant degrees of freedom in chiral EFT are nucleons and pions. The typical low-momentum scale q in nuclei or
nuclear matter is set by nucleon momenta of the order of the pion mass. The high-momentum or breakdown scale
Λb is obtained by comparing to the energy separation in the hadron spectrum. As mentioned above the inclusion
of the delta isobar is still an open question, however, heavier-meson exchanges, e.g., that of the ρ meson with
mρ ≈ 770 MeV, are not resolved. Thus, the breakdown scale is usually assumed to be Λb ∼ 500 MeV. This leads to
an expansion parameter q/Λb ∼ 1/3, so that the uncertainty should be reduced by a factor of 3 when including the
next order.

Before introducing a power-counting scheme to set the hierarchy for the importance of terms in the effective
Lagrangian, we examine how many powers of q arise in the one-pion-exchange interaction. The coupling of a pion
to non-relativistic nucleons, shown on the left of Fig. 2.2, is given by

Hint = −i
gA

2 fπ

∫

d3kd3k′

(2π)3
b†(k ′, ms′ , mt′)b(k, ms, mt)[(σ)ms ,ms′

· q](τi)mt ,mt′

1
Æ

2ωq

(a†
i (−q) + ai(q)) , (2.9)

where the coupling strength −i gA
2 fπ

contains the axial coupling gA and the pion decay constant fπ. b† (b) denote the

creation (annihilation) operator of a nucleon with momentum k and spin (isospin) projections ms (mt) and a†
i (ai)

correspond to the creation (annihilation) operator of a pion with momentum q = k ′ − k and isospin component i.
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Figure 2.2: Interaction vertex Hint of a pion πwith isospin component i and nucleons N (left) and contribution from
different time orderings to the one-pion-exchange interaction (right).

σ/τ denote the Pauli spin/isospin matrices and the pion energy is given by ωq =
Æ

q2 +m2
π. The sum in the last

term of Eq. (2.9) arises due to different time orderings, where a†
i (−q) corresponds to the emission and ai(q) to the

absorption of a pion. Thus, we can derive the one-pion-exchange interaction

〈k ′|VOPE |k〉=
∑

n=1

〈k ′|Hint |n〉〈n|Hint |k〉
Ei − En

, (2.10)

where we have to sum over one pion (n = 1) and the energy denominator is given by Ei − En = −ωq. Evaluating
this and taking into account the two time orderings, shown on the right of Fig. 2.2 leads to

VOPE(k
′, k) = VOPE(q = k ′ − k) =

�

−i
gA

2 fπ

�2
�

1
Æ

2ωq

�2
1
−ωq

τ1 ·τ2 [σ1 · qσ2 · (−q) +σ1 · (−q)σ2 · q]

= −
�

gA

2 fπ

�2 (σ1 · q )(σ2 · q )
q2 +m2

π

τ1 ·τ2 . (2.11)

Having motivated the origin of the powers of the momentum scale q we want to introduce Weinberg’s power-
counting scheme [4, 72, 73], based on dimensional analysis, which is most widely used. We outline this scheme,
following Ref. [4], in which an interaction of type i is characterized by the number ni of nucleon fields, the number
pi of pion fields. and the number di of derivatives or pion mass insertions. Each meson field contributes −1/2
powers of q from 1/

Æ

2ωq in Eq. (2.9), each derivative one power of q, and each intermediate state makes a
contribution of −1 power of q. Additionally, each loop is accompanied with an integral over a three-momentum,
and hence adds three powers of q. Combining this, a graph with Vi vertices of type i, D intermediate states, and L
loops contributes in powers ν of q/Λb

ν=
∑

i

Vi(di −
1
2

pi)− D+ 3L . (2.12)

Using the following topological identities

D =
∑

i

Vi − 1 , L = I − D , 2I + 2N =
∑

i

Vi(pi + ni) , (2.13)

with the number of internal lines I and the number of nucleons N , Eq. (2.12) can be rewritten to

ν= 2− N + 2L +
∑

i

Vi(di +
1
2

ni − 2) . (2.14)

Additionally, in order to account for the normalization of the N -nucleon states [74], the factor 3N − 6 has to be
added to the right-hand side of Eq. (2.14), leading to

ν= −4+ 2N + 2L +
∑

i

Vi(di +
1
2

ni − 2) , (2.15)
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maintaining a rather natural hierarchy of nuclear dynamics. Nucleons interact mainly via two-body forces starting
at v = 0 (LO), while many-body forces provide small corrections. The natural and consistent emergence of many-
nucleon forces in chiral EFT is a fundamental advantage over previous approaches to obtain nuclear interactions.
Many-nucleon forces arise due to the fact that nucleons are finite-size composite particles.

Based on the power counting we can now construct the effective Lagrangian order-by-order. The LO and NLO
effective Lagrangians, describing vertices ∆i = di + ni/2− 2= 0, 1, take the form [74]

L (0) =
1
2
(∂µπ · ∂ µπ)−

1
2

m2
ππ

2 + N †
�

i∂0 +
gA

2 fπ
τσ ·∇π−

1
4 f 2
π

τ · (π× π̇)
�

N

−
CS

2
(N †N)(N †N)−

CT

2
(N †σN)(N †σN) + . . . , (2.16)

L (1) = N †
�

4c1m2
π −

2c1

f 2
π

m2
ππ

2 +
c2

f 2
π

π̇2 +
c3

f 2
π

(∂µπ · ∂ µπ)−
c4

2 f 2
π

εi jk εabc σiτa(∇ j πb)(∇kπc)
�

N

−
D

4 fπ
(N †N)(N †στN) ·∇π−

E
2
(N †N)(N †τN) · (N †τN) + . . . , (2.17)

where π and N are the pion and nucleon fields, respectively. The LECs are given by ci , CS,T , D and E and ellipses
refer to terms with more pion fields. For more complete expressions of the Lagrangian including higher-order terms
we refer to Ref. [74] and references therein.

The derivation of a potential from the effective Lagrangian, which is an intensively studied problem in nuclear
physics, is necessary to enable calculations of nuclear observables using nucleonic degrees of freedom. The import-
ant conceptual achievements in this field have been made in the 1950’s for meson field theory [75]. For a discussion
of methods, which have been used in the context of chiral EFT, we again refer to Ref. [74].

The LO and NLO effective Lagrangians in Eqs. (2.16) and (2.17) determine the nuclear potential up to N2LO,
except for a NN contact term at NLO, which includes a vertex from L (2) [76]. In Fig. 2.3 we show the hierarchy
of nuclear forces up to N3LO and emphasize, that the diagrams do not represent Feynman graphs of the scattering
amplitude, but should be understood as a schematic visualization of the irreducible parts of it. In general, there are
contact interactions parametrizing the short-range, or high-momentum, physics with LECs usually fit to low-energy
nucleon-nucleon scattering data. Moreover, the long- and intermediate-range contributions are due to the exchange
of one or more pions and also contain LECs that are determined from low-energy pion-nucleon scattering data.

The contribution at LO (first row) consists of two contact interactions and the one-pion exchange. We give the
expression in momentum space here and refer to Refs. [5, 77] for higher-order two-nucleon contributions

VLO(q) = V (0)contact + V (0)OPE = CS + CTσ1 ·σ2 −
�

gA

2 fπ

�2 (σ1 · q )(σ2 · q )
q2 +m2

π

τ1 ·τ2 , (2.18)

where q = k ′ − k is the nucleon momentum transfer with initial and final relative momenta k = (k1 − k2)/2,
k ′ = (k ′1 − k ′2)/2 and the initial and final single-nucleon momenta k i , k ′i . The LECs are the same as in Eq. (2.16).
A NN contact interaction with a ∆i = 1 vertex is not allowed due to parity conservation. Hence, NLO contribution
have power ν= 2, and consist of 7 contacts with a∆i = 2 vertex and two-pion exchange interactions with one loop.
At order N2LO, one πN ∆i = 0 vertex in the two-pion exchange with one loop gets replaced by a ∆i = 1 vertex.
At this order there are no new NN contact interactions. In addition to 15 new NN contacts with a ∆i = 4 vertex
and two-pion exchange interactions with one loop and two ∆i = 1 vertices also three-pion exchanges contribute
to order N3LO. Furthermore, there are relativistic corrections to the one- (1/m2) and two-pion exchange (1/m)
interactions.

Following Eq. (2.15) the leading three-nucleon interaction should appear at ν = 2, i.e., at NLO, however, those
contributions cancel against part of the recoil correction of the iterated two-body potential [78]. Thus, the first
non-vanishing 3N force contribution appears at order ν = 3, i.e., at N2LO. The two-pion-exchange contribution,
depending on the low-energy couplings c1, c3, and c4 from the NLO chiral Lagrangian, which are predicted from
the NN sector, cf. Eq. (2.17), is given by

V (3)2π =
1
2

�

gA

2 fπ

�2 ∑

i 6= j 6=k

(σi · q i)(σ j · q j)

(q2
i +m2

π)(q
2
j +m2

π)
Fαβi jkτ

α
i τ
β
j , (2.19)

with the function Fαβi jk defined as

Fαβi jk = δ
αβ

�

−
4c1m2

π

f 2
π

+
2c3

f 2
π

q i · q j

�

+
∑

γ

c4

f 2
π

εαβγτ
γ

kσk · (q i × q j) .
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Figure 2.3: Hierarchy of nuclear forces in chiral effective field theory up to N3LO. Solid lines represent nucleons,
while dashed lines correspond to pions. The different low-energy couplings are indicated in the vertices.
Small dots, large solid dots, solid squares, and empty squares denote vertices of index ∆i = 0,1, 2 and
4, respectively. More details are given in the text.

The contributions from the remaining graphs are a one-pion-exchange contact, and a three-nucleon-contact term,
which take the form

V (3)1π, cont = −
gA

8 f 2
π

D
∑

i 6= j 6=k

σ j · q j

q2
j +m2

π

�

τi ·τ j

�

(σi · q j) , V (3)cont =
E
2

∑

j 6=k

(τ j ·τk) , (2.20)

where D and E are the corresponding LECs from the Lagrangian of order ∆i = 1, cf. Eq. (2.17). These are related
to the constants cD and cE by

D =
cD

f 2
πΛχ

, E =
cE

f 4
πΛχ

, (2.21)

with Λχ = 700 MeV. Thus, cD and cE are the only new LECs arising in the leading 3N force and have to be adjusted
to uncorrelated few-body observables. Different choices for fitting these constants are presented in Secs. 2.4 and
4. Sub-leading 3N forces at N3LO have been derived in Refs. [79–81] and can be grouped into five topologies.
They contain no new LECs and are predicted from the LO NN sector, since they only depend on the couplings CS
and CT . While the leading 3N forces have been implemented in nuclear structure calculations for some time, a
straightforward inclusion of N3LO 3N forces has only become possible by the recent partial-wave decomposition
of those terms [82]. We will come back to this in Sec. 5.2, describing the implementation of 3N forces in our
many-body calculations.

The first non-vanishing 4N forces arise at N3LO and have been derived in Refs. [83, 84]. Similar to the sub-
leading 3N forces, 4N forces at N3LO do not contain new LECs, but only depend on the LO LEC CT . Current
nuclear-structure calculations do not include chiral 4N forces and it seems to be justified, since neutron and sym-
metric nuclear matter calculations, including 4N forces in the Hartree-Fock approximation, have shown that their
contributions are small [85].

2.3 Old and new regularization schemes

Chiral EFT potentials lead to ultraviolet (high-energy) divergences when substituted into the Lippmann-Schwinger
(LS) equation [86]. The appearance of these UV divergences is an inherent feature of chiral EFT. A commonly
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adopted scheme for the renormalization of the LS equation is based on introducing a finite UV cutoff. The resulting
potential V (k, k ′) is multiplied with a regulator function f ΛNN,

V (k, k ′)→ Vreg(k, k ′) = f ΛNN(k)V (k, k ′) f ΛNN(k
′) , (2.22)

where the exponential regulator function

f ΛNN(k) = exp(−km/Λm) , (2.23)

with m = 6 was used in the Epelbaum, Glöckle and Meißner [87] (EGM) potentials, while different powers m ≤
8 for different terms in the potential were employed by Entem and Machleidt [6] (EM). The potential is then
renormalized by tuning the LECs, accompanying the contact interactions, to scattering data. However, this scheme
leads to the appearance of finite-cutoff artefacts as reflected in a residual cutoff dependence of nuclear observables.
Necessarily, the UV momentum-space cutoff Λ has to be of the order of the breakdown scale Λb.

The most-commonly used N3LO potential in nuclear-structure calculations employs a UV momentum-space cutoff
Λ= 500 MeV, denoted EM 500 MeV [27] in the following. Another version of the potential has a momentum-space
cutoff Λ = 600 MeV [6]. While keeping πN LECs c1 [88] and the di ’s [89] at the values determined from πN data,
c2, c3, and c4 were varied in addition to the NN LECs. The optimization procedure started with a fit to NN phase
shifts and then the fit was refined by minimizing the χ2 obtained from a direct comparison with the data.

Recently, Entem, Machleidt and Nosyk [90] published new potentials using three momentum-space cutoffs Λ =
450,500, 550 MeV for all chiral orders from LO up to N4LO.

Following a different approach in the regularization, EGM obtained a variety of N2LO [91] and N3LO [87]
potentials with a momentum-space cutoff in the range Λ = (450 − 600)MeV. In addition to the momentum-
space cutoff Λ, the spectral function of the sub-leading two-pion exchange was also regularized to suppress an
unphysically strong attraction caused by the very strong short-range components, using Λ̃= (500−700)MeV [92].
The πN LECs c1 and c4 were adopted from Ref. [88], while for c3 the value c3 = −3.40 GeV−1 was used, which
is still consistent with the result c3 = −4.69 ± 1.34 GeV−1 from Ref. [88]. The remaining πN LECs c2 and di ’s
were taken from Ref. [89]. The NN LECs were adjusted to NN phase shifts up to a laboratory scattering energy of
TLab = 200 MeV in case of the N3LO potentials.

Instead of performing a momentum-space regularization used in the N2LO and N3LO potentials described above,
it is also possible to perform the regularization in coordinate space. This was used recently in the construction of
local chiral NN potentials up to N2LO [93, 94] for quantum Monte Carlo calculations. A local potential just depends
on the separation r = r 1− r 2 between the particles. In the momentum-space formulation of chiral potentials there
are two sources of non-localities: The Fourier transformation of the regulator function given in Eq. (2.23) leads to
a non-local interaction V (r , r ′). In addition, there are genuine non-localities, e.g., in the contact interactions that
depend on the momentum transfer in the exchange channel qexc = (k

′ + k)/2 and also qexc-dependent parts in
the one-pion exchange beyond N2LO. However, the Fourier transformation of terms with the momentum transfer
q = k ′− k lead to a local interaction. Both sources of non-locality were eliminated up to N2LO. Instead of applying
the regulator in momentum-space, long-range terms of the interaction got directly regularized in coordinate space
using

f R0
NN, long(r) = 1− exp(−r4/R4

0) . (2.24)

So, R0 takes over the role of the momentum-space cutoff Λ. The regulator smoothly cuts off short-range parts of the
pion-exchange potentials, for which the chiral expansion does not converge [95], at distances r < R0, while leaving
the long-range parts unchanged. Similar to the momentum-space interactions a spectral-function regularization
was applied, making the two-pion exchange at N2LO less singular at short distances. The genuine non-localities
were avoided by choosing a set of qexc-independent contact operators. This is possible for all contributions up to
N2LO, except for the spin-orbit term that depends on q×qexc. The contact interactions were regularized with a local
momentum-space regulator fNN,cont(q2) resulting in a smeared out delta function in coordinate space. In the local
chiral NN potentials, derived in Ref. [94], a cutoff range R0 = (1.0− 1.2) fm (R0 = (0.8− 1.2) fm in Ref. [93]) was
used and the spectral-function-regularization cutoff was varied in the range Λ̃ = (1.0− 1.4)GeV. These potentials
employed the same πN LECs as the EGM potentials and the NN LECs were determined by a fit to NN phase shifts,
using different maximal laboratory scattering energies T max

Lab at different chiral orders and values of R0.
Although fully-local chiral potentials can only be derived up to N2LO the idea of locally regularizing the long-

range terms was also used in the derivation of higher-order potentials [77, 86]. Epelbaum, Krebs and Meißner
(EKM) employed a local coordinate-space regulator function

f R0
NN, long(r) = [1− exp(−r2/R2

0)]
n , (2.25)
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with n = 6. This function is Fourier transformed to momentum space and then multiplied to the long-range terms.
Due to the form of the regulator the additional spectral-function regularization of the two-pion exchange contri-
butions is obsolete. This is particularly beneficial for the inclusion of 3N forces at N3LO and N4LO [96, 97], since
they were only derived for infinite Λ̃. The contact operators got regularized with the standard non-local regulator
specified in Eq. (2.23) with m = 2. In order to have a single cutoff scale, the coordinate- and momentum-space
cutoffs R0 and Λ are related by Λ= 2R−1

0 . For the regulator R0, EKM employed the range R0 = (0.8−1.2) fm, which
corresponds to a range Λ÷ (500−330)MeV for the momentum-space cutoff. In contrast to the fully non-local EGM
potentials, EKM adopted the central values of πN LECs up to N3LO from Refs. [88, 89] without modifications and
also fit the NN LECs to NN phase shifts, using different maximal laboratory scattering energies T max

Lab at different
chiral orders (T max

Lab ≤ 25 MeV at LO, T max
Lab ≤ 100 MeV at NLO and N2LO and T max

Lab ≤ 200 MeV at N3LO). However,
at N3LO further constraints had to be imposed to stabilize the fit in the coupled 3S1-3D1 channel. More specifically,
it was imposed that the deuteron binding energy was reproduced correctly, the D-state probability in the deuteron
was within PD = 5%± 1% or Wigner SU(4) symmetry was not violated too strongly.

2.4 Novel fitting strategies for the determination of the low-energy couplings

The quest for higher orders in chiral EFT is important in a systematically improvable expansion and is reflected in
the derivation of NN forces up to N4LO [77, 98] and even the dominant contributions at N5LO [99]. As mentioned
above, also 3N forces are developed up to N4LO [96, 97]. However, the inclusion of higher orders will only result
in higher accuracy if the fit at lower orders was done accurately.

When the fits of the EGM and EM potentials were about a decade old, Ekström et al. [100] started to revisit the
optimization question, because in the meantime there had been considerable progress in the development of tools
for derivative-free nonlinear least-squares optimization. Furthermore, the quantification of theoretical uncertain-
ties in nuclear-structure calculations requires, in principle, a covariance analysis of the LECs with respect to the
experimental uncertainties of the scattering data employed in their fit. The N2LOopt potential used a momentum-
space cutoff Λ= 500 MeV and a spectral-function regularization with Λ̃= 700 MeV. While for the N2LOopt potential
πN and NN were optimized with respect to a selected class of phase shifts and the deuteron binding energy, the
estimation of the uncertainties of the LECs was the focus of the N2LO potential obtained in Ref. [101]. Thus, the
objective function was consisting of experimentally measured cross sections and their associated experimental un-
certainties. The relative uncertainties in the LECs were found to be below 1%, except for c1 and C1P1

where it was
5.8% and 2.6%, respectively. In addition to a correlation analysis, the uncertainties of the LECs were propagated in
the calculation of deuteron observables, phase shifts, and effective range parameters. However, the authors noted
the importance of extracting the derivatives of the objective function with higher numerical precision. Instead of
using a bivariate spline of the objective function or finite-difference approximations automatic differentiation was
suggested to obtain derivatives to machine precision.

Optimization techniques based on automatic differentiation were first employed in a condensed analysis of the
statistical uncertainties of all LECs up to N2LO in Ref. [102]. Two different strategies for the fit of the LECs have
been pursued: The separate (sep) approach is very similar to the conventional procedure of constraining the LECs.
In the first step πN LECs (ci , di , ei) are optimized to πN cross sections. Subsequently, the NN LECs are fit to NN
cross sections, and finally, 3N forces are determined by fitting cD and cE to the binding energies and radii of 3H and
3He as well as the β-decay half-life of 3H. In the simultaneous approach, however, all LECs up to a specific order
are optimized at the same time with respect to πN and NN scattering data as well as bound-state observables of
2,3H and 3He. The derived potentials employ the non-local NN regulator specified in Eq. (2.23) with m = 6 and a
momentum-space cutoff Λ = 500 MeV as well as a spectral-function regularization with Λ̃ = 700 MeV. In addition,
the momentum-space cutoff is varied in the range Λ= (450−600)MeV for the simultaneous fit of N2LO potentials.
The 3N force is regularized with a non-local 3N regulator of the form

f Λ3N
3N (p, q) = exp[−((p2 + 3/4q2)/Λ2

3N)
n3N] , (2.26)

with the Jacobi momenta p and q, the 3N cutoff Λ3N = 500 MeV and n3N = 3. The availability of machine-precise
first- and second-order derivatives of the objective function with respect to the LECs was used during the optimiza-
tion, the uncertainty analysis and the error propagation. By comparing the sim and sep approach it was concluded
that a simultaneous fit is necessary to identify the optimal set of LECs, capture all relevant correlations, reduce
the statistical uncertainty, and attain order-by-order convergence in chiral EFT. However, when performing calcu-
lations for all 42 N2LOsim potentials, arising from 7 different momentum-space cutoffs Λ and 6 different maximal
NN laboratory scattering energies 125 MeV ≤ T max

Lab ≤ 290 MeV used in the fit, no-core shell-model results for the
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Figure 2.4: Ground-state energy per nucleon and difference between computed and experimental charge radii for
selected nuclei computed with chiral interactions [103]. The results with N2LOsat are represented by
the red diamonds, while other symbols correspond to different theoretical predictions. The marked
observables are a subset of many-body properties that were used in the fit of the LECs. Taken from
Ref. [103].

ground-state energy of 4He vary by about 2 MeV and coupled-cluster results for the ground-state energy of 16O
even vary by about 35 MeV, respectively. Thus, the spread of N2LOsim results hints at a surprisingly large systematic
error when extrapolating to heavier systems, while the corresponding statistical uncertainties are small.

The strategy to simultaneously optimize all LECs up to a specific order has been also used in the construction
of the N2LOsat potential [103]. While the optimization did not make use of automatic differentiation it included
the properties of nuclei with mass number A > 3,4. The set of fit observables included NN scattering data with
T max

Lab ≤ 35 MeV, effective range parameters, deuteron properties, the binding energies and charge radii of 3H,
3,4He, 14C, and 16O, as well as binding energies of 22,24,25O, respectively. This potential also employs the non-
local NN regulator specified in Eq. (2.23) with m = 6 and a momentum-space cutoff Λ = 450 MeV as well as a
spectral-function regularization with Λ̃ = 700 MeV. Moreover, the 3N regulator is also non local. Coupled-cluster
calculations for binding energies and radii of nuclei up to 40Ca, shown in Fig. 2.4, are in very good agreement with
experiment, while other ab initio calculations predict too-small radii and too-large binding energies. In addition,
coupled-cluster calculations of symmetric nuclear matter using N2LOsat are consistent with the empirical saturation
point.

In addition, also the Granada group investigated statistical and systematic uncertainties when fitting δ-shell
interactions [104] and, more recently, also in the context of chiral EFT interactions [105].
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3 Similarity renormalization group

Comparing chiral EFT interactions, introduced in Sec. 2.2, to phenomenological high-precision NN interactions like
CD-Bonn [66] or Argonne v18 [67], reveals that the former are already quite soft due to the regularization sche-
me that suppresses high-momentum contributions. Although some nuclear-structure calculations for medium-mass
nuclei employ unevolved interactions from chiral EFT, e.g., coupled-cluster calculations using the N2LOsat inter-
action in Refs. [12, 37, 103], most configuration-space based many-body approaches can only achieve converged
results for light systems using unevolved interactions. Since the coupling of low- and high-lying momenta enables
the scattering of nucleon pairs from low- to high-momentum states large many-body model spaces are needed for
the representation of the interaction. However, many-body calculations for larger model spaces require increasing
computational resources, making a rather fast model-space convergence desirable. A possibility to tame short-range
central and tensor correlations, induced by the repulsive core at short distances, using a unitary transformation is
the unitary correlation operator method (UCOM) [106]. The correlated interaction VUCOM has been prediagonali-
zed to a band-diagonal structure in momentum space, indicating that low and high momenta have been decoupled.
Another approach are low-momentum NN interactions Vlow k, introduced to low-energy nuclear physics in the early
2000s [107]. The Vlow k interactions are given by the low-momentum block of a block-diagonal Hamiltonian in
momentum space. This decoupling pattern is clearly different from that of the correlated interaction VUCOM. The
Similarity Renormalization Group (SRG) was independently developed by Glazek and Wilson [108, 109] as well as
Wegner [110] in the early 1990s, for applications in light-front quantum field theory and condensed matter phy-
sics, respectively. The first application of the SRG in nuclear physics was the evolution of NN potentials by Bogner
et al. in Ref. [17]. Although starting from a different conceptional background the SRG and the UCOM approach
both yield interactions that are band-diagonal in momentum space. However, the behavior of matrix elements in
the high-momentum sector is quite different, since UCOM-transformed interactions generate a stronger coupling
among high-lying states compared to SRG-evolved interactions [111]. While the UCOM and the Vlow k formalism
are, so far, restricted to the two-body space, the SRG has been applied in three- and even in four-body space. In the
following we present the basic principles of the SRG, which is nowadays used most widely in low-energy nuclear
theory, see Ref. [112] for a recent review.

The basic idea of the SRG is to simplify the structure of the Hamiltonian by a continuous sequence of unitary
transformations

Hα = UαH0Uα
† , (3.1)

where H0 is the initial, unevolved Hamiltonian and the quantity α characterizes the unitary transformation and
is called flow parameter. The flow parameter α is related to the resolution scale λ by α = λ−4. Differentiating
Eq. (3.1) with respect to α results in

dHα
dα
=

d
dα
(UαH0Uα

†) =
dUα
dα

H0Uα
† + Uα

dH0

dα
︸︷︷︸

=0

Uα
† + UαH0

dUα
†

dα
, (3.2)

with the initial Hamiltonian H0 being independent of the flow parameter. Since Uα is a unitary operator, i.e.,
UαUα

† = Uα
†Uα = 1, differentiating leads to

d
dα
(UαUα

†) =
dUα
dα

Uα
† + Uα

dUα
†

dα
=

d
dα

1= 0 , (3.3)

which implies

dUα
dα

Uα
† = −Uα

dUα
†

dα
. (3.4)

By inserting 1 and Eq. (3.4) in Eq. (3.2), it can be rewritten to

dHα
dα
=

dUα
dα

Uα
†UαH0Uα

† + UαH0Uα
†Uα

dUα
†

dα
(3.5)

=
dUα
dα

Uα
†Hα −Hα

dUα
dα

Uα
† = [ηα, Hα] . (3.6)

The generator ηα has been defined as

ηα ≡
dUα
dα

Uα
† , (3.7)
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and is anti Hermitian, which can be easily shown with Eq. (3.4)

ηα
† =

�

dUα
dα

Uα
†
�†

= Uα
dUα

†

dα
= −ηα . (3.8)

In general, any anti-Hermitian operator can be chosen as generator. If we choose ηα = [Gα, Hα], the operator
Gα has to be Hermitian in order to fulfill the anti-Hermiticity relation in Eq. (3.8). Wegner proposed to take the
diagonal matrix elements of Hα

Gα = Hd
α =

∑

k

〈k|Hα |k〉 |k〉 〈k| , (3.9)

using some generic basis { |k〉}. Thus, the evolution will terminate at the fix point, when Hα is diagonal and the
generator ηα = [Hd

α, Hα] vanishes. A choice for the operator Gα that has been used most widely is the intrinsic
kinetic energy Tint = T − Tcm, leading to the generator

ηα =
�

2µ

ħh2

�2

[Tint, Hα] , (3.10)

with the reduced mass µ= mN/2. Assuming the intrinsic kinetic energy Tint to be independent of the flow parameter
α, the flow equation in a two-body partial-wave momentum-space basis is given by

dVα(k, k′)
dα

= [[Tint, Tint + Vα(k, k′)], Tint + Vα(k, k′)] (3.11)

= −(k2 − k′2)2Vα(k, k′) +
2
π

∫ ∞

0

q2dq(k2 + k′2 − 2q2)Vα(k, q)Vα(q, k′) , (3.12)

with the normalization condition
∫∞

0
2
πq2dq |q〉 〈q| = 1 and assuming units mN/ħh

2 = 1. Here, k = |k| and k′ = |k ′|
denote the initial and final relative momenta, respectively. Note that the matrix structure of Vα(k, k′) in coupled
channels such as 3S1-3D1 is implicitly included. For small enough α the first term on the right-hand side of Eq. (3.12)
dominates in the far off-diagonal region, leading to

Vα(k, k′)
k 6=k′
−→ Vα=0(k, k′)exp[−α(k2 − k′2)2] . (3.13)

Thus, the coupling of low- and high-momenta in the far off-diagonal region is driven to zero and the evolved
interaction Vα(k, k′) is taking a band-diagonal form. The resolution scale λ measures the “width” of the band-
diagonal interaction in momentum space by limiting the momentum transfers between nucleons to

|q |= |k ′ − k|® λ . (3.14)

While the SRG flow is continuous, we show in Fig. 3.1 momentum-space matrix elements for selected λ values
during the SRG evolution of the chiral N3LO NN potentials EM 500 MeV [27] and EGM Λ/Λ̃ = 550/600 MeV [87]
in the 1S0 (top) and 3S1 (bottom) channel. While the resolution scale λ decreases the evolved interaction is taking
a band-diagonal form as expected from Eq. (3.13). Note that the axes are the kinetic energy k2, so that the width
of the band in k2 is roughly given by λ2. For the solution of Eq. (3.12) we have used the CVODE solver from the
Sundials package [113].

The great flexibility of the SRG is the freedom of choosing appropriate generators to achieve different patterns
of decoupling. Block-diagonal forms for the generator were studied in Refs. [116, 117], leading to an analogous
decoupling as achieved in low-momentum interactions Vlow k. Variations of the standard kinetic energy were inves-
tigated in Ref. [118], enabling the evolution to proceed more efficiently without losing its advantages.

A peculiarity of renormalization methods is, however, that irreducible operators of higher particle rank get indu-
ced when solving the flow equation. To understand this we can insert an initial irreducible two-body interaction,
e.g., written in second quantization, into the right-hand side of Eq. (3.6). Thus, the evaluation of the commutators
induces irreducible contributions beyond the two-body level in each infinitesimal step in the flow parameter. In ge-
neral, up to A-nucleon operators arise during the evolution, which are of course only probed in calculations of the
A-nucleon system. If the SRG flow equations are truncated at the two-body level the properties of the two-nucleon
system, e.g., the deuteron binding energy, are preserved. Truncations at the three-body level preserve energies of
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Figure 3.1: Momentum-space matrix elements for selected λ values during the SRG evolution of the chiral N3LO
NN potentials EM 500 MeV [27] and EGM Λ/Λ̃ = 550/600 MeV [87] in the 1S0 (top) and 3S1 (bottom)
channel. Note that the axes are the kinetic energy k2. Taken from [114] based on [115].

A= 3 nuclei, and so on. Truncating the SRG flow equation at particle rank i causes a violation of unitarity, leading
to a resolution-scale dependence of many-body results for mass numbers A> i.

The SRG evolution in three-body space has been implemented in relative (Jacobi) harmonic oscillator [18, 19],
relative-momentum plane-wave [119], and momentum-space hyperspherical-harmonics representations [120]. Re-
sults for the ground-state energy of 3H as a function of the resolution scale λ are presented in Fig. 3.2, using a
chiral N2LO interaction by EGM with Λ/Λ̃ = 550/600 MeV that has been SRG evolved in relative-momentum
plane-wave basis [119]. When only the chiral NN interaction is taken into account, while the generator and the
flowing Hamiltonian are truncated at the two-body level, the ground-state energy results, denoted NN-only, show
a significant resolution-scale dependence due to the violation of unitarity in the three-body system. However, as
already explained above the unitarity of the transformation can be restored by truncating the flow equations at
the three-body level, taking into account induced 3N interactions, labeled NN+3N-induced. Thus, the ground-state
energy does not change for varying resolution scales λ. If the initial NN and 3N forces are consistently SRG evolved
at the three-body level the triton ground-state energy, represented by NN+3N-full, is again not depending on the
resolution scale λ and reproduces the experimental value, that was used to constrain the low-energy couplings in
the leading chiral 3N force at N2LO.
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Figure 3.2: Ground-state energy of 3H as a function of the flow parameter λ for a chiral N2LO NN+3N interaction by
EGM with Λ/Λ̃= 550/600 MeV. NN-only results, shown by the black curve, discard induced 3N interacti-
ons, while those were included in the results labeled NN+3N-induced (red). The blue curve (NN+3N-full)
represents results for which NN and 3N forces were consistently SRG evolved at the three-body level. The
experimental binding energy is shown by the black dotted line. Figure taken from [121].

So far the discussion was focused on the Hamiltonian, but when aiming at a consistent calculation of other
observables the corresponding operators should be evolved as well [122, 123]. The flow equation for a general
operator Oα is given by

dOα
dα
= [ηα, Oα] . (3.15)

Since the generator depends on the evolved Hamiltonian Hα, the flow equations for the Hamiltonian and for other
operators need to be solved simultaneously with initial conditions Hα=0 = H and Oα=0 = O. It may therefore be
more efficient to evolve the unitary transformation Uα itself

dUα
dα
= ηαUα , (3.16)

with the initial condition Uα=0 = 1. It is also possible to determine Uα directly from the eigenvectors of the Hamil-
tonians Hα=0 and Hα by

Uα =
∑

i

|ψi(α)〉 〈ψi(0)| . (3.17)
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4 Chiral NN+3N Hamiltonians used in this work

In this section we introduce the Hamiltonians used in this work. While the model-space convergence of chiral
potentials regularized in momentum space is still rather slow, it can be enhanced by performing a SRG evolution
introduced in Sec. 3. In addition, the inclusion of binding energies and charge radii of nuclei with A > 3, 4 in
the construction of the N2LOsat potential [103], described in Sec. 2.4, revealed that coupled-cluster calculations of
symmetric nuclear matter using this potential are consistent with the empirical saturation point.

The motivation to use rather soft potentials that also reproduce the empirical saturation point within uncertain-
ties was already employed in Ref. [28]. Instead of using unevolved NN potentials in the determination of the N2LO
3N couplings cD and cE , these Hamiltonians employed low-momentum NN interactions obtained by SRG evolution
of the EM 500 MeV [27] potential to a series of low-resolution scales λNN = 1.8, 2.0, 2.2,2.8 fm−1. Taking chiral
EFT as a general low-momentum basis and assuming the long-range couplings ci to be invariant under the SRG
transformation, each SRG-evolved NN interaction was combined with the leading N2LO 3N force [78, 124], using
the non-local 3N regulator specified in Eq. (2.26) with n3N = 4 and Λ3N = 2.0 fm−1. In addition, the 3N cutoff was
varied to Λ3N = 2.5 fm−1 for the λNN = 2.0 fm−1 interaction. The ci couplings in the two-pion-exchange 3N interac-
tion were taken consistently with the NN interaction: c1 = −0.81 GeV−1, c3 = −3.2 GeV−1, c4 = 5.4 GeV−1. To probe
uncertainties in the ci couplings, 3N forces with the ci values obtained from the Nijmegen NN partial wave analysis
(PWA): c1 = −0.76 GeV−1, c3 = −4.78 GeV−1, c4 = 3.96 GeV−1 [125] were used for the λNN/Λ3N = 2.0/2.0 fm−1

interaction. For all Hamiltonians, the low-energy couplings cD, cE in the 3N one-pion-exchange and 3N contact
interaction have been fit to the 3H binding energy and 4He charge radius using Faddeev- and Faddeev-Yakubovsky
calculations. The resulting LECs and the ground-state energies of 4He are summarized in Tab. 4.1. Symmetric
nuclear-matter calculations, performed at an incomplete third order in many-body perturbation theory omitting
third-order particle-hole contributions, using these Hamiltonians reproduce the empirical saturation point within
theoretical uncertainties [28, 29], as already mentioned in Sec. 1.

λNN/Λ3N [fm−1] cD cE E4He [MeV]
1.8/2.0 (EM) +1.264 −0.120 −29.0660
2.0/2.0 (EM) +1.271 −0.131 −28.8957
2.0/2.5 (EM) −0.292 −0.592 −28.9920
2.2/2.0 (EM) +1.214 −0.137 −28.8147
2.8/2.0 (EM) +1.278 −0.078 −28.7005

2.0/2.0 (PWA) −3.007 −0.686 −28.8810

Table 4.1: Results for the cD and cE couplings fit to E3H = −8.482 MeV and to the point charge radius r4He =
1.464 fm (based on Ref. [126]) for the NN SRG scales λNN and 3N cutoffs Λ3N and different EM/PWA
ci values used. The last column includes the Faddeev-Yakubovsky results for the ground-state energy of
4He.

In addition to these chiral NN+3N Hamiltonians, we also employ the N2LOsat potential [103] in our coupled-
cluster calculations of calcium isotopes, presented in Sec. 8.
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5 Jacobi-momentum and single-particle harmonic-oscillator bases

While some approaches for solving the nuclear many-body problem only rely on the operator structure of the
nuclear interaction, e.g., quantum Monte Carlo methods, others employ interaction matrix elements expanded in a
plane-wave momentum basis, e.g., Faddeev- and Faddeev-Yakubovsky calculations. For all approaches that rely on
a basis expansion of the nuclear Hamiltonian the corresponding basis has to be chosen carefully, so that it covers
the relevant physics and also exploits the symmetries of the underlying operators. All many-body methods used in
this work employ at some point a basis composed of harmonic-oscillator (HO) eigenstates. It has been proven to be
suitable for the calculation of ground- and excited states of nuclei. In this section we discuss the steps to transform
the input matrix elements, given with respect to Jacobi momenta, into matrix elements in the HO single-particle
basis. The procedure for NN matrix elements is outlined in Sec. 5.1, while details on the transformation of 3N
matrix elements are explained in Sec. 5.2.

5.1 Two-body bases

Before going into detail on the different steps to transform NN matrix elements we briefly outline the general
idea: The operator structure of chiral NN potentials is usually given in momentum space. Having expanded these
operators in a plane-wave momentum basis, the corresponding matrix elements are transformed into the relative
HO basis. In a successive step, these relative matrix elements are coupled with the center-of-mass coordinate of the
two-body system to obtain NN interaction matrix elements in the single-particle basis.

A general NN interaction can be written in terms of initial and final relative momenta k = (k1 − k2)/2, k ′ =
(k ′1 − k ′2)/2 as

V (2) = V (2)(k, k ′) , (5.1)

with initial and final single-nucleon momenta k i , k ′i . It can be decomposed in a plane-wave partial wave basis by
evaluating projection integrals of the form

F
ml ml′
l l′ (k, k′) =

∫

d k̂
′
d k̂Y ∗l′ml′

(k̂
′
)Ylml

(k̂)V (2)(k, k ′) , (5.2)

for fixed values of k = |k|, k′ = |k ′| and the angular momentum quantum numbers. Since the nucleons also carry
spin and isospin, we couple the single-nucleon spins (isospins) to a total spin S (isospin T), leading to partial-
wave decomposed matrix elements 〈k(lS)J TMT |V (2) |k′(l ′S)J TMT 〉 = 〈(lS)J TMT |V (k, k′) |(l ′S)J TMT 〉 already
used as input for the NN SRG evolution in Sec. 3. Here, we explicitly show the MT dependence distinguishing
proton-proton, proton-neutron and neutron-neutron T = 1 matrix elements.

A general basis state in the two-body Jacobi HO basis, suppressing the isospin, is given by

|n(lS)J〉=
∑

ml ,mS

�

l S
ml mS

�

�

�

�

J
mJ

�

{ |nlml〉 ⊗ |SmS〉} . (5.3)

Thus, we need a relation between the Jacobi HO basis state |nlml〉 and the plane-wave partial wave basis state
|klml〉. We start by expressing the Jacobi HO state in terms of momentum states

|nlml〉=
∫

d3p |p〉〈p|nlml〉=
∫

dpp2

∫

d p̂ |p〉〈p|nlml〉 , (5.4)

where the overlap is the HO wave function [127] in momentum space

Ψnlml
(p) = 〈p|nlml〉= Rnl(p)Ylml

(p̂) , (5.5)

with the radial part given by

Rnl(p) = (−1)n
√

√

√
2(n!)b3

Γ (n+ l + 3
2 )
(pb)l e−

1
2 (pb)2 L

l+ 1
2

n

�

(pb)2
�

. (5.6)
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Here, we have employed the oscillator parameter b =
r

(ħhc)2
mNħhΩ

and the generalized Laguerre polynomials

L
l+ 1

2
n

�

(pb)2
�

. Expanding the momentum states |p〉 in the plane-wave partial wave basis leads to

|p〉=
∑

l′,ml′

∫

dp′(p′)2 |p′l ′ml′〉〈p′l ′ml′ |p〉 (5.7)

=
∑

l′,ml′

∫

dp′(p′)2
δ(p′ − p)

p′p
Y ∗l′ml′

(p̂) |p′l ′ml′〉 (5.8)

=
∑

l′,ml′

Y ∗l′ml′
(p̂) |pl ′ml′〉 . (5.9)

Inserting Eq. (5.9) into Eq. (5.4) reveals the relation between the Jacobi HO basis and the plane-wave partial wave
basis

|nlml〉=
∑

l′,ml′

∫

dpp2Rnl(p)

∫

d p̂Y ∗l′ml′
(p̂)Ylml

(p̂)
︸ ︷︷ ︸

=δl l′δml ml′

|pl ′ml′〉=
∫

dpp2Rnl(p) |plml〉 , (5.10)

where we used the orthonormality relation of the spherical harmonics. Thus, we return to Eq. (5.3), which can be
rewritten by employing Eq. (5.10) and by recoupling of the angular momenta to

|n(lS)J〉=
∑

ml ,mS

∑

J ′,mJ′

�

l S
ml mS

�

�

�

�

J
mJ

��

l S
ml mS

�

�

�

�

J ′

mJ ′

�

∫

dkk2Rnl(k) |k(lS)J〉

=
∑

J ′,mJ′

δJJ ′δmJ mJ′

∫

dkk2Rnl(k) |k(lS)J〉

=

∫

dkk2Rnl(k) |k(lS)J〉 , (5.11)

where we exploited the orthonormality relation of the Clebsch-Gordan coefficients. Thus, the transformation for-
mula for NN matrix elements from the plane-wave partial wave to the Jacobi HO basis is given by

〈n(lS)J TMT |V (2) |n′(l ′S)J TMT 〉=
∫

dkk2Rnl(k)

∫

dk′k′2Rn′ l′(k
′)〈k(lS)J TMT |V (2) |k′(l ′S)J TMT 〉 , (5.12)

which is evaluated on a two-dimensional momentum mesh with Nk = Nk′ ∼ 100 points. In the radial wave function
we have to introduce scaling factors bk =

p
2 multiplied to the oscillator parameter b to compensate for the

difference in the definition of the relative momentum k = (k1−k2)/2 and the Jacobi momentum k = (k1−k2)/
p

2.
This step is necessary since the following transformation into the single-particle basis assumes Jacobi coordinates,
see Eq. (5.18).

For the transformation into the single-particle basis we start from non-antisymmetrized j-coupled HO single-
particle states |na(lasa) jam ja mta

〉 and couple them to the total angular momentum J and total isospin T

|ab〉= |na(lasa) jam ja tamta
, nb(lbsb) jbm jb tbmtb

〉 (5.13)

=
∑

J ,M

∑

T,MT

�

ja jb
m ja m jb

�

�

�

�

J
M

��

ta tb
mta

mtb

�

�

�

�

T
MT

�

× |[na(lasa) ja, nb(lbsb) jb]JM , (ta tb)TMT 〉 , (5.14)

In a first step we change the coupling scheme of particle 1 and 2 from j- to ls-coupling

|[(lasa) ja(lbsb) jb]J 〉→ |[(la lb)λ(sasb)S]J 〉 , (5.15)

with the total orbital angular momentum λ and the total spin S, by employing a 9 j-symbol

|[(lasa) ja(lbsb) jb]J 〉=
∑

λ,S

ĵa ĵbλ̂Ŝ







la sa ja
lb sb jb
λ S J







|[(la lb)λ(sasb)S]J 〉 , (5.16)
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where we have introduced the notation ĵa =
p

2 ja + 1. Therefore, in the second step we can perform the Talmi
transformation [127] from the single-particle coordinates r 1, r 2 to the center-of-mass coordinate cm x of particles
1 and 2 and the relative Jacobi coordinate x

cm x =
r 1 + r 2p

2
, (5.17)

x =
r 1 − r 2p

2
. (5.18)

This coordinate transformation is obtained by the orthogonal matrix

�

cm x
x

�

=

�q

d
d+1

q

1
d+1

q

1
d+1 −

q

d
d+1

�

�

r 1
r 2

�

, (5.19)

with d = 1 and is represented by a Talmi-Moshinsky bracket [127], also referred to as HO bracket,

|[na la(r 1)nb lb(r 2)]λ〉=
∑

N ,L,n,l

〈N L, nl;λ|na la, nb lb〉d=1 |[N L(cm x)nl(x )]λ〉 . (5.20)

In step three we reorder the coupling of angular momenta. The relative orbital angular momentum l of the Jacobi
coordinate is coupled with the total spin S to the relative angular momentum J , which is successively coupled with
the orbital angular momentum L of the center-of-mass of particles 1 and 2 to the total angular momentum J ,
according to

|[(Ll)λS]J 〉→ |[L(lS)J]J 〉 . (5.21)

For that, we employ a 6 j-symbol

|[(Ll)λS]J 〉=
∑

J

〈[L(lS)J]J |[(Ll)λS]J 〉 |[L(lS)J]J 〉

=
∑

J

(−1)L+l+S+J λ̂Ĵ
§

L l λ
S J J

ª

|[L(lS)J]J 〉 . (5.22)

Collecting all terms and decoupling the orbital angular momentum L of the center-of-mass of particles 1 and 2 and
the relative angular momentum J leads to

|ab〉=
∑

J ,M

∑

T,MT

∑

λ,S

∑

N ,L,n,l

∑

J

∑

mL ,mJ

(−1)L+l+S+J ĵa ĵbλ̂
2Ŝ Ĵ

×
�

ja jb
m ja m jb

�

�

�

�

J
M

��

ta tb
mta

mtb

�

�

�

�

T
MT

�

×







la sa ja
lb sb jb
λ S J







〈N L, nl;λ|na la, nb lb〉d=1

§

L l λ
S J J

ª

×
�

L J
mL mJ

�

�

�

�

J
M

�

|N LmL; n(lS)JmJ TMT 〉 . (5.23)

When considering antisymmetrized states |ab〉a an additional term arises with exchanged single-particle indices,
according to

|ab〉 → |ab〉a =
p

2!A |ab〉=
1
p

2
( |ab〉 − |ba〉) , (5.24)

whereA is the antisymmetrization operatorA = 1
A!

∑

P sgn (P )P with the permutation operator P and the sign
of the corresponding permutation sgn (P ). Considering this exchange of indices in all terms of Eq. (5.23) leads to
phases from the Clebsch-Gordan coefficients (−1) ja+ jb−J , (−1)ta+tb−T , the 9 j symbol (−1)la+lb+sa+sb+ ja+ jb+λ+S+J
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and the HO bracket (−1)λ−L . Collecting all phases and employing that the HO bracket conserves parity, i.e., (−1)L =
(−1)la+lb+l , leads to (−1)l+S+T and, consequently, to

|ab〉a =
1
p

2

�

1− (−1)l+S+T
�

|ab〉 . (5.25)

Before writing the transformation for two-body matrix elements we consider the properties of a general two-body
interaction

〈N LmL; n(lS)JmJ |V (2) |N ′L′mL′ ; n′(l ′S′)J ′mJ ′〉= δNN ′δLL′δmL mL′
δSS′δJJ ′δmJ mJ′

× 〈N LmL; n(lS)JmJ |V (2) |N LmL; n′(l ′S)JmJ 〉 , (5.26)

i.e., that in addition to the isospin quantum numbers also the center-of-mass, the spin and the relative angular
momentum quantum numbers are not affected by the interaction. Thus, we can already eliminate the Clebsch-
Gordan coefficients

∑

mL ,mJ

�

L J
mL mJ

�

�

�

�

J
M

��

L J
mL mJ

�

�

�

�

J
M

�

= δJJ δMM , (5.27)

and the transformation to normalized, antisymmetrized J T -coupled matrix elements is given by

a〈(ab)J TMT |V (2) |(cd)J TMT 〉a =
2

p

(1+δab)(1+δcd)

∑

λ,S

∑

N ,L,n,l

∑

J

∑

λ′

∑

n′,l′

× (−1)L+l+S+J ĵa ĵbλ̂
2Ŝ Ĵ(−1)L+l′+S+J ĵc ĵd λ̂

′2Ŝ Ĵ

×







la sa ja
lb sb jb
λ S J







〈N L, nl;λ|na la, nb lb〉d=1

§

L l λ
S J J

ª

×







lc sc jc
ld sd jd
λ′ S J







〈N L, n′l ′;λ′|nc lc , nd ld〉d=1

§

L l ′ λ′

S J J

ª

×
�

1− (−1)l+S+T
�

〈n(lS)J TMT |V (2) |n′(l ′S)J TMT 〉 (5.28)

=
2

p

(1+δab)(1+δcd)

∑

λ,S

∑

N ,L,n,l

∑

J

∑

λ′

∑

n′,l′
ĵa ĵb ĵc ĵd λ̂

2λ̂′2Ŝ2 Ĵ2

×







la sa ja
lb sb jb
λ S J







〈N L, nl;λ|na la, nb lb〉d=1

§

L l λ
S J J

ª

×







lc sc jc
ld sd jd
λ′ S J







〈N L, n′l ′;λ′|nc lc , nd ld〉d=1

§

L l ′ λ′

S J J

ª

×
�

1− (−1)l+S+T
�

〈n(lS)J TMT |V (2) |n′(l ′S)J TMT 〉 , (5.29)

where we employed that l ′ = l ± 2 to eliminate the phase in the second line of Eq. (5.28) and the indices in the
delta functions refer to {na, la, ja}.

5.2 Three-body bases

Similar to the two-body case we outline the different steps to transform 3N matrix elements: The operator structure
of chiral 3N forces, see, e.g., Eqs. (2.19) and (2.20) for the contributions at N2LO, is given in momentum space
and has to be expanded in a plane-wave momentum basis. The corresponding matrix elements of the Faddeev
components are transformed into the relative HO basis. These steps are discussed in Sec. 5.2.1. We continue with
the derivation of a basis representation of the antisymmetrizer in the relative HO basis, which is necessary for
the antisymmetrization of the Faddeev components, in Sec. 5.2.2. In Sec. 5.2.3 we derive the three-body Talmi
Moshinsky transformation to transform the antisymmetrized 3N matrix elements in the relative HO basis to the
single-particle basis.
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5.2.1 Partial-wave decomposition and transformation to relative harmonic oscillator states

A general translationally invariant 3N force can be written as a function of the Jacobi momenta

p =
k1 − k2p

2
, (5.30)

q =

√

√2
3

�

1
2
(k1 + k2)− k3

�

, (5.31)

where k i are the single-nucleon momenta, as

V (3) = V (3)(p,q , p ′,q ′). (5.32)

Here, we have distinguished between the Jacobi momenta of the initial p, q and final states p ′, q ′. In analogy
to the NN sector it is possible to decompose the 3N force in a plane-wave partial wave basis, which involves the
evaluation of projection integrals of the form

F
ml12 ml3 ml′12

ml′3
l12 l3 l′12 l′3

(p, q, p′, q′) =

∫

d p̂ ′dq̂ ′d p̂dq̂Y ∗
l′12ml′12

(p̂ ′)Y ∗
l′3ml′3

(q̂ ′)Yl12ml12
(p̂)Yl3ml3

(q̂)V (3)(p,q , p ′,q ′) , (5.33)

for fixed values of p = |p|, q = |q |, p′ = |p ′|, q′ = |q ′| and the angular momentum quantum numbers. Since we
also need to take into account the spin and isospin quantum numbers of the nucleons we employ a J T -coupled
three-body plane-wave basis [128] of the form

|pqα〉 ≡ |pq; [(l12sab) j12(l3sc)I3] J(tab tc)T 〉 , (5.34)

where l12 denotes the relative orbital angular momentum of particles 1 and 2 with relative momentum p and sab,
j12 and tab correspond to spin, total angular momentum and isospin of the pair. Analogously, the orbital angular
momentum of particle 3 relative to the center-of-mass of the pair 12 with relative momentum q is denoted by
l3, while sc = 1/2, I3 and tc = 1/2 correspond to spin, total angular momentum and isospin. The total relative
three-body angular momentum and the total isospin are labeled by J and T . In Eq. (5.34) we already employed
the rotational invariance of the 3N force, i.e., the independence of the projections mJ andMT , and omitted these
quantum numbers in the basis states. Note that the basis states are only partially antisymmetric with respect to the
exchange of the first two particles, i.e., (−1)l12+sab+tab = 1.

In our nuclear structure calculations we include partial waves up to the relative total three-body angular mo-
mentum J = 9/2. In addition, the maximum value of the relative orbital angular momentum j12 is truncated to
j12,max = 8 for partial waves with J ≤ 5/2, j12,max = 7 for J = 7/2 and j12,max = 6 for J = 9/2. For all partial waves,
however, the number of discrete momenta p and q is Np = Nq = 15.

In general, 3N interactions can be decomposed in terms of Faddeev components

V (3) = 〈pqα|V (3) |p′q′α′〉=
3
∑

i=1

V (3),i , (5.35)

with each of the three Faddeev components V (3),i being symmetric in the second- and third-particle label. These
components are related via permutation transformations

V (3),2 =P123V (3),1P −1
123 , V (3),3 =P132V (3),1P −1

132 , (5.36)

with the permutation operators P123 = P12P23 (P132 = P13P23), that permute three particles cyclically (anti-
cyclically). The inverse of the permutation operator is given by P −1

123 = P23P12 (P −1
132 = P23P13). In contrast, it is

also possible to derive matrix elements of the completely antisymmetrized interaction by

V (3),as = (1+P123 +P132)V
(3),i(1+P123 +P132) . (5.37)

Nevertheless, the application of the permutation operators in Eq. (5.37) in a momentum partial-wave basis is non-
trivial and can induce numerical uncertainties [129]. Although the novel improved implementation of Ref. [82]
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provides perfectly stable results even for large values of angular momenta, we transform the Faddeev components
V (3),i to the Jacobi HO basis and perform the antisymmetrization directly in this basis.

A general basis state in the three-body Jacobi HO basis is given by

|n12n3α〉 ≡ |n12n3; [(l12sab) j12(l31/2)I3] J(tab1/2)T 〉 , (5.38)

which also fulfills the partial antisymmetry with respect to the exchange of the first two particles. Since the trans-
formation is only related to the spatial part we decouple it from the spin part and omit the isospin part for brevity
leading to

|n12n3α〉= |n12n3; [(l12sab) j12(l31/2)I3] J〉 (5.39)

=
∑

m j12 ,mI3

∑

ml12 ,ml3

∑

msab
,msc

�

j12 I3
m j12

mI3

�

�

�

�

J
mJ

��

l12 sab
ml12

msab

�

�

�

�

j12
m j12

��

l3 1/2
ml3 msc

�

�

�

�

I3
mI3

�

×
��

|n12l12ml12
〉 ⊗ |n3l3ml3〉

	

⊗
�

|sabmsab
〉 ⊗ |1/2msc

〉
		

. (5.40)

Then, the transformation formula for 3N matrix elements from the plane-wave partial wave to the Jacobi HO basis
can be obtained in analogy to the NN case, Eq. (5.12), and is given by

〈n12n3α|V (3),i |n′12n′3α
′〉=

∫

dpp2Rn12 l12
(p)

∫

dqq2Rn3 l3(q)

∫

dp′(p′)2Rn′12 l′12
(p′)

∫

dq′(q′)2Rn′3 l′3
(q′)

× 〈pqα|V (3),i |p′q′α′〉 , (5.41)

which is evaluated by interpolating the 3N force matrix elements from the initial four-dimensional momentum
mesh with Np = Nq = Np′ = Nq′ = 15 by cubic splines onto a finer mesh, on which also the radial wave functions
are calculated. Since the 3N matrix elements in the plane-wave partial wave basis are not regularized we regularize
them by multiplication with the regulator function Eq. (2.26) after the interpolation, yielding

〈pqα|V (3),i,reg |p′q′α′〉= f Λ3N(p, q)〈pqα|V (3),i |p′q′α′〉 f Λ3N(p′, q′) . (5.42)

While the successive antisymmetrization and the transformation to the single-particle basis employ the definition
of the Jacobi momenta given in Eqs. (5.30) and (5.31), the partial-wave decomposition uses a slightly modified
version

p̃ =
k1 − k2

2
, (5.43)

q̃ =
2
3

�

k3 −
1
2
(k1 + k2)

�

. (5.44)

Therefore, we have to introduce scaling factors bp =
p

2 and bq =
q

3
2 multiplied to the oscillator parameter b in

the evaluation of the radial part of the HO wave function. In addition, the sign change in the Jacobi momentum
q = −bqq̃ leads to a phase (−1)l12+l′12 . Moreover, since the evaluation of 3N matrix elements in momentum space

is only determined up to a phase we have to introduce a factor i l12−l′12+l3−l′3 .

5.2.2 Basis representation of the antisymmetrizer

As mentioned above the Jacobi HO basis states are only partially antisymmetrized with respect to the exchange of
particle 1 and 2. In order to obtain fully antisymmetrized basis states with respect to particle exchange we derive
a basis representation of the antisymmetrizer A in the Jacobi HO basis [130]. Since the antisymmetrizer A is a
projection operator obeying A 2 = A the diagonalization will yield two eigenspaces. The fully antisymmetrized
states have the eigenvalue 1, while spurious states have eigenvalue 0. The antisymmetrizer for three particles is
defined as

A =
1
3!

∑

P
sgn (P )P (5.45)

=
1
6
(P123 +P312 +P231 −P213 −P321 −P132) . (5.46)
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The antisymmetry with respect to the exchange of particle 1 and 2 implies, e.g., P123 = −P213 leading to

A =
1
6
(P123 +P312 +P231 +P123 +P231 +P312) (5.47)

=
1
3
(1+P312 +P231) (5.48)

=
1
3
(1+T12T23 +T23T12) , (5.49)

where we have used P123 = 1 and the representation of permutation operators in terms of transposition operators.
Since the partial antisymmetry for the exchange of particle 1 and 2 translates to T12 = −1 we can reduce the
three-body antisymmetrizer to the transposition operator T23

A =
1
3
(1− 2T23) . (5.50)

Instead of acting with the transposition operator on the j-coupled Jacobi HO state |α〉 ≡ |n12n3α〉 it is convenient
to transform the basis state to LS coupling

|α〉= |n12n3; [(l12sab) j12(l31/2)I3] JmJ (tab1/2)TMT 〉 (5.51)

=
∑

L,mL

∑

S,mS

ĵ12 Î3 L̂Ŝ







l12 sab j12
l3 1/2 I3
L S J







�

L S
mL mS

�

�

�

�

J
mJ

�

× { |n12n3; (l12l3)LmL〉 ⊗ |(sab1/2)SmS〉 ⊗ |(tab1/2)TMT 〉} . (5.52)

Thus, the matrix element of the transposition operator T23 takes the form

〈α|T23 |α′〉=
∑

L,mL

∑

S,mS

∑

L′,mL′

∑

S′,mS′

ĵ12 Î3 L̂Ŝ ĵ′12 Î ′3 L̂′Ŝ′

×







l12 sab j12
l3 1/2 I3
L S J







�

L S
mL mS

�

�

�

�

J
mJ

�







l ′12 s′ab j′12
l ′3 1/2 I ′3
L′ S′ J ′







�

L′ S′

mL′ mS′

�

�

�

�

J ′

mJ ′

�

× 〈n12n3; (l12l3)LmL |T23 |n′12n′3; (l ′12l ′3)L
′mL′〉

× 〈(sab1/2)SmS |T23 |(s′ab1/2)S′mS′〉〈(tab1/2)TMT |T23 |(t ′ab1/2)T ′MT ′〉 . (5.53)

We start with the last term and evaluate the action of the transposition operator T23 on the ket |[(ta tb)tab tc]TMT 〉

T23 |[(ta tb)tab tc]TMT 〉= |[(ta tc)tac tb]TMT 〉 , (5.54)

resulting in the matrix element for the isospin

〈[(ta tb)tab tc]TMT |T23 |[(ta tb)t
′
ab tc]T

′MT ′〉= 〈[(ta tb)tab tc]TMT |[(ta tc)t
′
ac tb]T

′MT ′〉

= δT T ′δMTMT ′
(−1)tb+tc+tab+t′ac t̂ab t̂ ′ac

§

tb ta tab
tc T t ′ac

ª

= δT T ′δMTMT ′
(−1)1+tab+t′ac t̂ab t̂ ′ac

§

1/2 1/2 tab
1/2 T t ′ac

ª

. (5.55)

The evaluation of the spin matrix element follows in analogy to the isospin, yielding

〈[(sasb)sabsc]SmS |T23 |[(sasb)s
′
absc]S

′mS′〉= δSS′δmS mS′
(−1)1+sab+s′ac ŝab ŝ′ac

§

1/2 1/2 sab
1/2 S s′ac

ª

. (5.56)

Finally, we turn to the spatial matrix element by investigating the action of the transposition operator T23 on the
ket |n12n3; [l12(x )l3(y)]LmL〉

T23 |n12n3; [l12(x )l3(y)]LmL〉= |n12n3; [l12(x
′)l3(y

′)]LmL〉 , (5.57)
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r1
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yx

cmx

Figure 5.1: Schematic illustration of the three-particle system represented in single-particle coordinates r 1, r 2, r 3
(left) and Jacobi coordinates x , y , defined in Eqs. (5.58) and (5.59), and center-of-mass coordinates
cm, cm x , defined in Eqs. (5.17) and (5.80) (right).

where the Jacobi coordinates

x =
r 1 − r 2p

2
, (5.58)

y =

√

√2
3

�

1
2
(r 1 + r 2)− r 3

�

, (5.59)

shown in Fig. 5.1, are redefined due to the exchange of single-particle coordinates 2 and 3. The coordinate trans-
formation leads to

x ′ = T23x =
r 1 − r 3p

2
,

y ′ = T23 y =

√

√2
3

�

1
2
(r 1 + r 3)− r 2

�

. (5.60)

The primed and the original Jacobi momenta can be related by an orthogonal matrix

�

x ′

y ′

�

=

�q

d
d+1

q

1
d+1

q

1
d+1 −

q

d
d+1

�

�

x
y

�

, (5.61)

with d = 1
3 . Thus, we can expand the states with primed coordinates in terms of states with the original coordinates

employing a HO bracket [127]

|n12n3; [l12(x
′)l3(y

′)]LmL〉=
∑

ñ12,ñ3

∑

l̃12,l̃3

〈ñ12 l̃12, ñ3 l̃3; L|n12l12, n3l3〉d= 1
3
|ñ12ñ3; [l̃12(x )l̃3(y)]LmL〉 . (5.62)

Therefore, the spatial matrix element is given by

〈n12n3; (l12l3)LmL |T23 |n′12n′3; (l ′12l ′3)L
′mL′〉= δLL′δmL mL′

〈n12l12, n3l3; L|n′12l ′12, n′3l ′3〉d= 1
3

. (5.63)
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Inserting the results for the spatial, spin and isospin matrix element Eqs. (5.63), (5.56), (5.55) into the Eq. (5.53)
yields

〈α|T23 |α′〉=
∑

L,mL

∑

S,mS

∑

L′,mL′

∑

S′,mS′

δLL′δmL mL′
δSS′δmS mS′

δT T ′δMTMT ′

× (−1)1+sab+s′ac (−1)1+tab+t′ac ĵ12 Î3 L̂Ŝ ĵ′12 Î ′3 L̂′Ŝ′ŝab ŝ′ac t̂ab t̂ ′ac

×







l12 sab j12
l3 1/2 I3
L S J







�

L S
mL mS

�

�

�

�

J
mJ

�







l ′12 s′ab j′12
l ′3 1/2 I ′3
L′ S′ J ′







�

L′ S′

mL′ mS′

�

�

�

�

J ′

mJ ′

�

× 〈n12l12, n3l3; L|n′12l ′12, n′3l ′3〉d= 1
3

§

1/2 1/2 sab
1/2 S s′ac

ª§

1/2 1/2 tab
1/2 T t ′ac

ª

(5.64)

=
∑

L,S

δJJ ′δmJ mJ′
δT T ′δMTMT ′

× (−1)1+sab+s′ac (−1)1+tab+t′ac ĵ12 Î3 L̂2Ŝ2 ĵ′12 Î ′3ŝab ŝ′ac t̂ab t̂ ′ac

×







l12 sab j12
l3 1/2 I3
L S J













l ′12 s′ab j′12
l ′3 1/2 I ′3
L S J ′







× 〈n12l12, n3l3; L|n′12l ′12, n′3l ′3〉d= 1
3

§

1/2 1/2 sab
1/2 S s′ac

ª§

1/2 1/2 tab
1/2 T t ′ac

ª

, (5.65)

where the summations over L′, mL′ , S′, mS′ were carried out first and then the orthonormality relation of the
Clebsch-Gordan coefficients was employed. Equation (5.65) states that the transposition operator is not only
diagonal in mJ and MT but independent of the projection quantum numbers. Consequently, as already poin-
ted out before we can eliminate those quantum numbers from the basis states. Moreover, the transposition
operator is block-diagonal in the energy quantum number (due to the energy conservation of the HO bracket
2n12 + l12 + 2n3 + l3 = 2n′12 + l ′12 + 2n′3 + l ′3), the total relative angular momentum J and total isospin T . Thus,
we can diagonalize each EJ T block of dimension dEJ T separately, yielding the subspaces of physical and spurious
eigenstates. Since the physical subspace within each EJ T block is degenerate we introduce the label i, so that the
expansion of the antisymmetric relative three-particle states in terms of the Jacobi HO states is given by

|EJ T i〉=
dEJ T
∑

α

〈EJ T i|α〉 |α〉=
dEJ T
∑

α

cα,i |α〉 . (5.66)

Here, we introduced the coefficients of fractional parentage cα,i [131, 132], that correspond to the eigenvectors
obtained by diagonalizing the EJ T block. Then the basis representation of the antisymmetrizer A in terms of
antisymmetric Jacobi states reads

A =
∑

E,J ,T,i

|EJ T i〉 〈EJ T i| , (5.67)

and the antisymmetrized J T -coupled matrix elements are given by

〈EJ T i|V (3) |E′J T i′〉= 18
∑

αα′

cα,icα′,i′〈α|V (3),i |α′〉 , (5.68)

with a factor 3 due to the use of the Faddeev components V (3),i and a factor 6 from the antisymmetrization
|abc〉a =

p
3!A |abc〉.

5.2.3 Three-body Talmi Moshinsky transformation

In the following we want to derive the transformation of the 3N matrix elements from the Jacobi HO basis into the
single-particle basis. An expression for this transformation was first given in Ref. [131], but it was replaced with
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a more efficient version from Ref. [132]. We start from non-antisymmetrized j-coupled HO single-particle states
|na(lasa) jam ja mta

〉 and couple them to the total angular momentum J and total isospin T

|abc〉= |na(lasa) jam ja tamta
, nb(lbsb) jbm jb tbmtb

, nc(lcsc) jcm jc tcmtc
〉 (5.69)

=
∑

J12,J

∑

tab ,T

�
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m ja m jb

�

�

�

�

J12
m ja +m jb

��

J12 jc
m ja +m jb m jc

�

�

�

�

J
M

�

×
�

ta tb
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�

�

�

�
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��
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�

�

�

�

T
mT

�

× |{[na(lasa) ja, nb(lbsb) jb]J12nc(lcsc) jc}JM , [(ta tb)]tab tc]T mT 〉 (5.70)

=
∑
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�
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�
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��
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�

�
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�
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�

T
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�

×
�

{ |a〉 |b〉}J12 |c〉
	JM

, (5.71)

with M = m ja + m jb + m jc and mT = mta
+ mtb

+ mtc
. In the definition of the ket in Eq. (5.71) we omitted the

isospin quantum numbers for brevity. Moreover, the identity of the center-of-mass motion and the relative motion
in the Jacobi HO basis

1=
∑

ncm,lcm,mcm

∑

α

|ncmlcmmcm〉 |α〉 〈ncmlcmmcm| 〈α| , (5.72)

with the shorthand notation α = {n12, l12, sab, j12, n3, l3, I3, J , mJ , tab, T, mT}, can be rewritten by coupling to the
total angular momentum J as

1=
∑

ncm,lcm

∑

α

∑

J ′M ′
{ |ncmlcm〉 |α〉}

J ′M ′ { 〈ncmlcm| 〈α|}
J ′M ′ , (5.73)

where the shorthand notation α does not contain mJ anymore. Inserting Eq. (5.73) into Eq. (5.71) results in

|abc〉=
∑

J12,J

∑

ncm,lcm

∑

α

�

ja jb
m ja m jb

�

�

�

�

J12
m ja +m jb

��

J12 jc
m ja +m jb m jc

�

�

�

�

J
M

�

×
�

ta tb
mta

mtb

�

�

�

�

tab
mta
+mtb

��

tab tc
mta
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mtc

�

�

�

�

T
mT

�

× T { |ncmlcm〉 |α〉}
JM , (5.74)

where we introduced the overlap T ≡ {〈ncmlcm| 〈α|}
JM �

{ |a〉 |b〉}J12 |c〉
	JM

. Since the isospin projection quantum
numbers obey mT =MT , the collective summation index simplifies to α= {n12, l12, sab, j12, n3, l3, I3, J , tab, T}.

The overlap T is derived by expanding the state
�

{ |a〉 |b〉}J12 |c〉
	JM

in terms of { |ncmlcm〉 |α〉}
JM . In a first step

we change the coupling scheme of particle 1 and 2 from j- to ls-coupling

|[(lasa) ja(lbsb) jb]J12〉 → |[(la lb)L12(sasb)sab]J12〉 , (5.75)

with the orbital angular momentum L12 and the spin sab, by employing a 9 j-symbol

|[(lasa) ja(lbsb) jb]J12〉=
∑

L12,sab

ĵa ĵb L̂12ŝab







la sa ja
lb sb jb
L12 sab J12







|[(la lb)L12(sasb)sab]J12〉 . (5.76)

Thus, in the second step we can now perform the first Talmi transformation [127] from the single-particle coor-
dinates r 1, r 2 to the relative Jacobi coordinate x and the center-of-mass coordinate cm x of particles 1 and 2 (cf.
Eq. (5.19))

|[na la(r 1)nb lb(r 2)]L12〉=
∑

N12,L12,n12,l12

〈N12L12, n12l12; L12|na la, nb lb〉d=1 |[N12L12(cm x)n12l12(x )]L12〉 . (5.77)
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In preparation for the second Talmi transformation our third step is to decouple the j-coupling of the third nucleon
and couple the orbital angular momenta L12, lc to L and spins sab, sc to S3, so that

|[(L12sab)J12(lcsc) jc]J 〉→ |[(L12lc)L (sabsc)S3]J 〉 , (5.78)

by employing a 9 j-symbol

|[(L12sab)J12(lcsc) jc]J 〉=
∑

L ,S3

Ĵ12 ĵcL̂ Ŝ3







L12 sab J12
lc sc jc
L S3 J







|[(L12lc)L (sabsc)S3]J 〉 . (5.79)

Before performing the second Talmi transformation, which relates the center-of-mass coordinate cm x of particles
1 and 2, Eq. (5.17), and the single-particle coordinate of the third nucleon r 3 to the second Jacobi coordinate y ,
Eq. (5.59), and the total center-of-mass coordinate of the three-particle system

cm =

√

√1
3
(r 1 + r 2 + r 3) , (5.80)

also shown in Fig. 5.1, we perform the fourth step and couple the orbital angular momenta L12, lc to Λ and,
successively, Λ with the orbital angular momentum l12 of the relative motion of particles 1 and 2 to the total
angular momentum L as

|[(L12l12)L12lc]L〉→ |[(L12lc)Λl12]L〉 . (5.81)

This reordering in the coupling of three angular momenta is obtained by a 6 j-symbol

|[(L12l12)L12lc]L〉=
∑

Λ

〈[(L12lc)Λl12]L|[(L12l12)L12lc]L〉 |[(L12lc)Λl12]L〉

=
∑

Λ

(−1)l12+lc+L12+Λ L̂12Λ̂

§

l12 L12 L12
lc L Λ

ª

|[(L12lc)Λl12]L〉

=
∑

Λ

(−1)l12+lc+L12+Λ L̂12Λ̂

§

lc L12 Λ
l12 L L12

ª

|[(L12lc)Λl12]L〉 , (5.82)

where we used the invariance of the 6 j-symbol under interchange of the upper and lower arguments in each of any
two columns. Consequently, in step five we can perform the second Talmi transformation [127] described above,
which is given by

�

cm
y

�

=

�q

d
d+1

q

1
d+1

q

1
d+1 −

q

d
d+1

�

�

cm x
r 3

�

, (5.83)

with d = 2, or in terms of the HO bracket

|[N12L12(cm x)nc lc(r 3)]Λ〉=
∑

ncm,lcm,n3,l3

〈ncmlcm, n3l3;Λ|N12L12, nc lc〉d=2 |[ncmlcm(cm)n3l3(y)]Λ〉 . (5.84)

Since the total center-of-mass angular momentum lcm of the three-particle system is not part of intermediate
angular momentum coupling in the bra { 〈ncmlcm| 〈α|}

JM step six and seven are performed to achieve this also
for the ket. In step six we reorder the coupling of orbital angular momenta. The orbital angular momenta l12, l3
of the Jacobi coordinates are coupled to L3 and, successively, L3 is coupled with the total center-of-mass angular
momentum lcm of the three-particle system to the total orbital angular momentum L , according to

|[(lcml3)Λl12]L〉→ |[lcm(l3l12)L3]L〉 . (5.85)

Here, we employ again a 6 j-symbol

|[(lcml3)Λl12]L〉=
∑

L3

〈[lcm(l3l12)L3]L|[(lcml3)Λl12]L〉 |[lcm(l3l12)L3]L〉

=
∑

L3

(−1)lcm+l3+l12+L Λ̂ L̂3

§

lcm l3 Λ
l12 L L3

ª

|[lcm(l3l12)L3]L〉 . (5.86)
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In addition, we change the order of angular momentum coupling from (l3l12)L3 to (l12l3)L3 introducing a phase
(−1)l3+l12−L3 arising from the exchange of two columns in the Clebsch-Gordan coefficient. We proceed with step
seven in which we separate the total center-of-mass angular momentum lcm from the total relative orbital angular
momentum L3 and couple L3 with the total spin S3 to the total relative angular momentum J . The total relative
angular momentum is adjoined by the total center-of-mass angular momentum lcm so that

|[(lcm L3)L S3]J 〉→ |[lcm(L3S3)J]J 〉 . (5.87)

This recoupling is achieved by application of a 6 j-symbol

|[(lcm L3)L S3]J 〉=
∑

J

〈[lcm(L3S3)J]J |[(lcm L3)L S3]J 〉 |[lcm(L3S3)J]J 〉

=
∑

J

(−1)lcm+L3+S3+J L̂ Ĵ
§

lcm L3 L
S3 J J

ª

|[lcm(L3S3)J]J 〉 . (5.88)

In step eight we change the coupling scheme from ls- to j-coupling and thereby introduce the relative angular
momenta j12 and I3

|[(l12l3)L3(sabsc)S3]J〉 → |[(l12sab) j12(l3sc)I3]J〉 . (5.89)

This is achieved by using a 9 j-symbol

|[(l12l3)L3(sabsc)S3]J〉=
∑

j12,I3

L̂3Ŝ3 ĵ12 Î3







l12 l3 L3
sab sc S3
j12 I3 J







|[(l12sab) j12(l3sc)I3]J〉 . (5.90)

Collecting all terms leads to

�

{ |a〉 |b〉}J12 |c〉
	JM

=
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L12 sab J12
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L S3 J







× (−1)l12+lc+L12+Λ L̂12Λ̂

§

lc L12 Λ
l12 L L12

ª

× 〈ncmlcm, n3l3;Λ|N12L12, nc lc〉d=2

× (−1)lcm+l3+l12+L Λ̂ L̂3

§

lcm l3 Λ
l12 L L3

ª

(−1)l3+l12−L3

× (−1)lcm+L3+S3+J L̂ Ĵ
§

lcm L3 L
S3 J J

ª

× L̂3Ŝ3 ĵ12 Î3







l12 l3 L3
sab sc S3
j12 I3 J







× { |ncmlcm〉 |α〉}
JM , (5.91)

which simplifies when multiplying with the bra
�

〈n′cml ′cm| 〈α
′|
	JM

, recalling the quantum numbers represented by
the collective index α= {n12, l12, sab, j12, n3, l3, I3, J , tab, T}, due to the Kronecker deltas

δncmn′cm
δlcm l′cm

δn12n′12
δl12 l′12

δsabs′ab
δ j12 j′12

δn3n′3
δl3 l′3

δI3 I ′3
δJJ ′ . (5.92)
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Thus, the overlap T , introduced in Eq. (5.74), is given by

T =
∑
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× 〈N12L12, n12l12; L12|na la, nb lb〉d=1

× Ĵ12 ĵcL̂ Ŝ3
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ª
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ª
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ª

× L̂3Ŝ3 ĵ12 Î3







l12 l3 L3
sab sc S3
j12 I3 J







, (5.93)

agreeing with the result of Ref. [132] up to the N12 summation, which may be eliminated by the energy conserva-
tion of the HO bracket N12 =

1
2 (2na + la + 2nb + lb − 2n12 − l12 −L12).

Returning to Eq. (5.74) and decoupling the center-of-mass orbital angular momentum from the relative angular
momentum leads to

|abc〉=
∑

J12,J

∑

ncm,lcm

∑

α

∑

mcm,mJ

�

ja jb
m ja m jb

�

�

�

�

J12
m ja +m jb

��

J12 jc
m ja +m jb m jc

�

�

�

�

J
M

�

×
�

ta tb
mta

mtb

�

�

�

�

tab
mta
+mtb

��

tab tc
mta
+mtb

mtc

�

�

�

�

T
mT

�

× T
�

lcm J
mcm mJ

�

�

�

�

J
M

�

|ncmlcmmcm〉 |αmJ 〉 . (5.94)

Considering the properties of a general three-body interaction

〈ncmlcmmcm;αmJ |V (3) |n′cml ′cmm′cm;α′mJ ′〉= δncmn′cm
δlcm l′cm

δmcmm′cm
δJJ ′δmJ mJ′

× 〈ncmlcmmcm;αmJ |V (3) |ncmlcmmcm;α′mJ 〉 , (5.95)

i.e., that in addition to the total isospin quantum numbers also the center-of-mass and the relative angular mo-
mentum quantum numbers are not affected by the interaction. Thus, we can already eliminate the Clebsch-Gordan
coefficients

∑
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�

�

�

�

J
M

��
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mcm mJ

�

�

�

�

J
M

�

= δJJ δMM , (5.96)

and the transformation to J T -coupled matrix elements is given by

〈[(ab)J12 tabc]J T |V (3) |[(a′b′)J ′12 t ′abc′]J T 〉=
∑

J12,J ′12,J

∑

ncm,lcm

∑

α,α′

×
�

{ 〈a| 〈b|}J12 〈c|
	J { |ncmlcm〉 |α〉}

J

× 〈α|V (3) |α′〉

×
�

〈ncmlcm| 〈α′|
	J
n

�

|a′〉 |b′〉
	J ′12 |c′〉

oJ
, (5.97)
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where we use 3N matrix elements 〈α|V (3) |α′〉 that have been transformed back after the antisymmetrization and
the collective indices refer to

α= {n12, l12, sab, j12, n3, l3, I3, J , tab, T}

α′ =
�

n′12, l ′12, s′ab, j′12, n′3, l ′3, I ′3, t ′ab

	

. (5.98)

The transformation of 3N matrix elements is computationally very demanding, but optimized caching of the rele-
vant intermediates and the use of Basic Linear Algebra Subprograms (BLAS) for the matrix multiplications allows
us to generate 3N matrix elements in 15 major oscillator shells (eMax = 14) and e1 + e2 + e3 ≤ E3Max = 18 < 3eMax
at moderate computational cost.
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6 Many-body approaches

In the following section we briefly introduce the many-body methods used throughout this work. Before going into
there, we want to give an overview of the different approaches to solve the non-relativistic nuclear many-body
problem. The Green’s function Monte Carlo approach [7–9], using phenomenological NN+3N interactions and,
more recently, also local chiral EFT interactions [133, 134], as well as configuration-interaction (CI) approaches,
e.g., the no-core shell model (NCSM) [10], are able to perform quasi-exact calculations of up to p-shell nuclei.
Large-scale NCSM diagonalizations, starting from the initial or a free-space RG evolved Hamiltonian, in a finite
model space are, however, limited due to the curse of dimensionality, i.e., the exponential growth of the Slater-
determinant basis dimension when enlarging the model space. This limitation can be overcome by importance
truncation (IT) [11], allowing to select the many-body basis states according to their importance for the calculation
at hand. Thus, also lower sd-shell isotopic chains like the oxygen isotopes are accessible [135]. Moreover, the advent
of chiral EFT interactions and RG transformations, have enabled the development of new many-body methods and
the revival of old ones. The increase in reach of ab initio calculations into the medium-mass regime, comparing

Figure 6.1: The chart of nuclides and the reach of ab initio calculations in 2005 (top) and 2015 (bottom). For nuclei
marked blue there exist ab initio calculations. Note that the figure is just an illustration and is not inten-
ded to be exhaustive. Taken from Ref. [14].

the status in 2005 (top) and 2015 (bottom) in Fig. 6.1, can be attributed to methods for which the numerical
cost of solving the nuclear many-body problem scales polynomially in the number of nucleons A. Those methods
are coupled-cluster (CC) theory [13], the In-Medium Similarity Renormalization Group (IM-SRG) [14] and self-
consistent Green’s function (SCGF) theory [15]. Another approach is nuclear lattice EFT [16], for which the many-
body problem of nucleons is solved on a Euclidean space-time lattice. Similar to GFMC and lattice QCD, the energies
of the ground and excited states are obtained by propagating the system in imaginary time. Of course all approaches
have benefited from ever-increasing computer performance.
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Figure 6.2: Ground-state energies of oxygen isotopes obtained in large many-body spaces by the MR-IM-SRG [135],
IT-NCSM [135], SCGF [136], CC [137], based on the SRG-evolved NN+3N-full Hamiltonian, and nuclear
Lattice EFT [138], based on NN+3N forces at N2LO. Taken from [139].

An example that highlights the progress in ab initio nuclear-structure calculations is given in Fig. 6.2, summari-
zing the results for the ground-state energies of oxygen isotopes obtained in large many-body spaces by the multi-
reference IM-SRG (MR-IM-SRG(2)) [135], IT-NCSM [135], SCGF (Dyson ADC(3)) [136], CC (Λ-CCSD(T)) [137],
based on the same SRG-evolved NN+3N-full Hamiltonian, and nuclear Lattice EFT [138], based on NN+3N forces
at N2LO. The results from methods that solve the Schrödinger equation of the A-body system in an approximate,
but systematically improvable, way agree with IT-NCSM diagonalizations within a few percent, when starting from
the same Hamiltonian. Clearly, these CC, IM-SRG and SCGF results are obtained at different level of truncation
of the many-body expansion and while IT-NCSM results include full 3N matrix elements the other three methods
include them in a normal-ordered approximation. Moreover, because of the large number of 3N matrix elements all
calculations have to introduce an energy cut on them. Nevertheless, the sum of uncertainties associated with these
truncations is on a few percent level, suggesting that the truncations are well controlled. We conclude this discus-
sion by referring to Tab. 6.1, which summarizes the different ab initio many-body approaches and their current,
most sophisticated formulations for the calculation of ground and excited states of closed- and open-shell nuclei in
the medium-mass regime (A> 20). We also specify their ability to derive valence-space interactions, since this is a
focus of this thesis.

Since all many-body approaches used throughout this work include normal ordered 3N forces we will give
a brief introduction to normal ordering in Sec. 6.1. In Sec. 6.2 we summarize the basic principles of many-body
perturbation theory to obtain valence-space interactions. For a long time this approach started only from NN forces,
and the agreement to experiment was restored by fitting single-particle energies and monopole matrix elements or
single-particle energies and all two-body matrix elements to data. However, the normal-ordering technique enabled
the inclusion of normal-ordered 3N forces in the derivation of valence-space interactions. Although the resulting
interactions described experimental results well, the restriction to low order in the many-body expansion is hard
to overcome due to the increasing number of diagrams arising at higher orders.

An ab initio method used in this work is the IM-SRG, presented in Sec. 6.4. It was developed in the last deca-
de [140] and combines the flow-equation formalism, also used in the free-space SRG, with the normal-ordering
technique for solving the many-body Schrödinger equation. In addition, we use CC theory, which, originally deve-
loped in nuclear physics but mostly applied in quantum chemistry in the meantime, experienced a revival, which
started more than a decade ago. Details on CC theory are given in Sec. 6.5. Since both approaches build correlations
between nucleons on top of a reference state, e.g., a Hartree-Fock Slater determinant for closed-shell nuclei, we
briefly review the Hartree-Fock method in Sec. 6.3. While both ab initio approaches were first applied to ground
states of closed-shell nuclei, their reach has been extended by equation-of-motion (EOM) techniques to excited
states of closed-shell nuclei and even further to ground and excited states of open-shell nuclei. In addition, they are
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also capable to derive valence-space interactions non-perturbatively. For details we refer to Tab. 6.1 and the given
references.

6.1 Normal ordering

The starting point of nuclear-structure calculations is the intrinsic nuclear A-body Hamiltonian containing, in prin-
ciple, NN, 3N and higher-body interactions,

H =
�

1−
1
A

�

T (1) + T (2) + V (2) + V (3) + . . . , (6.1)

with the A-body intrinsic kinetic energy Tint separated into a one- and two-body contribution

T (1) ≡
∑

i

p2
i

2m
, T (2) ≡ −

∑

i< j

p i · p j

Am
. (6.2)

While the formal inclusion of many-body forces is straightforward in some many-body approaches, e.g., the no-core
shell model [152], the extension of others is a non-trivial task, e.g., coupled-cluster theory with explicit 3N interac-
tions [20–22]. Even if the extension of the formalism is easy, the computational cost usually increases by orders of
magnitude due to the explicit inclusion of 3N forces. Thus, calculations, especially of heavier nuclei, that are routi-
nely done at the NN level, may be rendered unfeasible. This motivated the development of approximation schemes
to include 3N interactions. In the following we will discuss the basic principles of normal ordering, that allows to
include contributions of an operator of a given particle rank in lower-particle rank operators. Hence, a many-body
method that includes NN forces can include up to two-body contributions of 3N or higher-body forces without addi-
tional cost. There is, however, no a priori quantification of the amount of information transferred to lower-particle
ranks, making benchmarks against calculations including the full 3N interaction explicitly indispensable.

The calculation of the structure of an atomic nucleus of mass A is done in A-body Hilbert space, employing
a suitable A-body basis. Since the nucleus is composed of fermions, a natural choice are Slater determinants,
i.e., antisymmetrized product states of single-particle wave functions. Starting from the fermionic creation and
annihilation operators a†

i and a j , which satisfy the canonical anticommutation relations

�

a†
i , a†

j

	

=
�

ai , a j

	

= 0 ,
�

a†
i , a j

	

= δi j , (6.3)

a generic A-particle Slater determinant can be constructed as

|Φ0〉= |ϕ1〉 ⊗ · · · ⊗ |ϕA〉 (6.4)

=
A
∏

i=1

a†
i |0〉 , (6.5)

with the particle vacuum |0〉, obeying a j |0〉 = 0. We use here Hartree-Fock single-particle wave functions |ϕk〉,
obeying |ϕk〉 = a†

k |0〉 with the corresponding fermionic creation operator a†
k. For details on the relation between

Hartree-Fock and harmonic oscillator single-particle wave functions we refer to Sec. 6.3.
Normal ordering with respect to a reference state |Φ0〉 is a standard tool in quantum many-body and field theory.

An appropriate reference state for the ground state of a closed-shell nucleus is, e.g., the unperturbed harmonic-
oscillator Slater determinant [20, 152, 153] or the ground state of a Hartree-Fock [21, 154] calculation. In this work
we will focus on single-reference normal ordering, while the generalization to multi-reference states is employed
in the calculation of ground [135] and excited states [155] of open-shell nuclei. Since it is very tedious to include
the set of creation operators to generate |Φ0〉 from the particle vacuum |0〉, cf. Eq. (6.5), we define the normal
ordering relative to the reference state |Φ0〉, called Fermi vacuum. We therefore define quasiparticle operators that
create or destroy holes and particles, where holes (particles) are occupied (unoccupied) single-particle states in the
reference state. Hole and particle annihilators acting on the reference state result in

a†
i |Φ0〉= 0 , (6.6)

aa |Φ0〉= 0 , (6.7)

43



Ta
bl

e
6.

1:
A

b
in

iti
o

m
an

y-
bo

dy
ap

pr
oa

ch
es

an
d

th
ei

rc
ur

re
nt

,m
os

ts
op

hi
st

ic
at

ed
fo

rm
ul

at
io

ns
fo

rg
ro

un
d

an
d

ex
cit

ed
st

at
es

of
clo

se
d-

an
d

op
en

-sh
el

ln
uc

le
ii

n
th

e
m

ed
iu

m
-m

as
sr

eg
im

e
(A
>

20
)a

sw
el

la
st

he
ir

ab
ili

ty
to

de
riv

e
va

le
nc

e-
sp

ac
e

in
te

ra
ct

io
ns

.

m
et

ho
d

cl
os

ed
-s

he
ll

nu
cl

ei
op

en
-s

he
ll

nu
cl

ei
va

le
nc

e-
sp

ac
e

gr
ou

nd
st

at
es

ex
ci

te
d

st
at

es
gr

ou
nd

st
at

es
ex

ci
te

d
st

at
es

in
te

ra
ct

io
ns

C
ou

pl
ed

cl
us

te
r

Λ
-C

C
SD

(T
)/

C
R

-C
C

(2
,3

)
Eq

ua
ti

on
of

M
ot

io
n

pa
rt

ic
le

at
ta

ch
ed

/p
ar

ti
cl

e
re

m
ov

ed
ef

fe
ct

iv
e

in
te

ra
ct

io
n

ba
se

d
on

H
F

re
f.

st
at

e
[1

41
]

C
C

SD
EO

M
-C

C
SD

A
±

1,
+

2
[1

42
]a

ba
se

d
on

C
C

[1
37

]
B

og
ol

iu
bo

v
C

C
D

-

In
-m

ed
iu

m
SR

G
IM

-S
R

G
(2

)
[1

40
]/

M
ag

nu
s(

2)
[1

43
]

Eq
ua

ti
on

of
M

ot
io

n
m

ul
ti

-r
ef

.I
M

-S
R

G
(2

)
ba

se
d

on
-

ef
fe

ct
iv

e
in

te
ra

ct
io

n
ba

se
d

on
H

F
re

f.
st

at
e

IM
SR

G
(2

,2
)

[1
44

]
PN

P
H

FB
re

f.
st

at
e

[1
35

]b
ba

se
d

on
en

se
m

bl
e

m
ul

ti
-r

ef
.I

M
-S

R
G

(2
)

ba
se

d
on

no
rm

al
or

de
ri

ng
[1

45
]

N
C

SM
N

re
f

m
ax
=

0
re

f.
st

at
e

[1
46

]b

Se
lf-

co
ns

is
te

nt
D

ys
on

A
D

C
(3

)
[1

36
]

A
±

1
G

or
ko

v
A

D
C

(2
)

[1
47

]
A
±

1
-

G
re

en
’s

fu
nc

ti
on

ba
se

d
on

H
F

re
f.

st
at

e
ba

se
d

on
H

FB
re

f.
st

at
e

M
an

y-
bo

dy
H

F
M

B
PT

(3
)

[1
48

]
-

m
ul

ti
-c

on
fig

ur
at

io
na

lP
T(

2)
ba

se
d

on
-

pe
rt

ur
ba

ti
on

th
eo

ry
N

C
SM

N
re

f
m

ax
=

0,
2,

4
re

f.
st

at
e

[1
49

]

N
uc

le
ar

la
tt

ic
e

EF
T

[1
50

]
-

[1
51

]b
-

-

a
m

as
s

nu
m

be
r

A
is

re
st

ri
ct

ed
to

cl
os

ed
su

b-
sh

el
ln

uc
le

i
b

ev
en

-e
ve

n
nu

cl
ei

on
ly

44



where the quantum number of hole states are given by i, j, k, . . ., the quantum numbers of particle states are given
by a, b, c, . . ., and those of generic states by p, q, r, . . .. A string of quasiparticle operators is in normal order relative
to the Fermi vacuum, if all quasiparticle-annihilation operators are standing to the right of all quasiparticle-creation
operators. However, standard operator expressions in second quantization, e.g., for a 3N force

V (3) =
1
36

∑

p,q,r,s,t,u

〈pqr|V (3) |stu〉a†
pa†

qa†
r auat as , (6.8)

with 〈pqr|V (3) |stu〉 assumed to be fully antisymmetrized, are generically in normal order with respect to the
particle vacuum |0〉. Rewriting a generic string of creation or annihilation operators ABC DE . . . in normal order
with respect to a reference state |Φ0〉 is accomplished by Wick’s theorem [156]

ABC DE . . .= :ABC DE . . . : |Φ0〉 +
∑

single contractions

:ABC DE . . . : |Φ0〉

+
∑

double contractions

:ABC DE . . . : |Φ0〉

+ . . .

+
∑

full contractions

:ABC DE . . . : |Φ0〉 , (6.9)

where : ABC DE . . . : |Φ0〉 represents the string in normal order with respect to the reference state |Φ0〉, which
vanishes when taking the reference state expectation value, i.e.,

〈Φ0| :ABC DE . . . : |Φ0〉 |Φ0〉= 0 . (6.10)

The normal-ordered product is given by

:ABC . . . : |Φ0〉 = sgn (P )HAB . . . , (6.11)

with the sign of the permutations P needed for re-ordering the operator H within the operator string. In this work,
normal-ordered operators are indicated by : . . . : , while in the literature other notations, e.g., N [. . .] or {. . .}, are
also common. Note that the index, indicating the reference state used to calculate the normal-ordered product,
is often omitted for brevity, but the particular reference state is specified in some other way. Furthermore, in the
second term of Eq. (6.9) we introduced a contraction, denoted by the bracket connecting two-involved operators,
which can be rewritten by

:AB . . . H . . . K : |Φ0〉 = sgn (P )HK :AB . . . : |Φ0〉 . (6.12)

The sums in Eq. (6.9) run over all possible single, double, . . ., full contractions within the given string of operators,
with the displayed contractions intended as examples.

The evaluation of products of two normal-ordered strings of operators is accomplished by the generalized Wick’s
theorem

:ABC . . . : |Φ0〉 :X Y Z . . . : |Φ0〉 = :ABC . . . X Y Z . . . : |Φ0〉 +
∑

single contractions

:ABC . . . X Y Z . . . : |Φ0〉

+
∑

double contractions

:ABC . . . X Y Z . . . : |Φ0〉

+
∑

triple contractions

:ABC . . . X Y Z . . . : |Φ0〉

+ . . . , (6.13)

where contractions are only evaluated between normal-ordered strings and not within them. The generalized Wick’s
theorem will be employed in the evaluation of commutators of normal-ordered operators in Sec. 6.4.1.
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Wick’s theorem, Eq. (6.9), simplifies for the special case of two operators to

:AB : |Φ0〉 = AB− :AB : |Φ0〉 . (6.14)

Inserting the quasiparticle operators into Eq. (6.14) leads only to two non-zero contractions

:a†
i a j : |Φ0〉 = a†

i a j− :a†
i a j : |Φ0〉 = a†

i a j + a ja
†
i = δi j , (6.15)

:aaa†
b : |Φ0〉 = aaa†

b− :aaa†
b : |Φ0〉 = aaa†

b + a†
baa = δab , (6.16)

:aia
†
j : |Φ0〉 = 0 , (6.17)

:a†
aab : |Φ0〉 = 0 , (6.18)

while other combinations, involving mixed hole and particle indices, are zero due to the Kronecker delta. The 3N
interaction in Eq. (6.8), using generic states p, q, r, . . ., can be rewritten with Wick’s theorem to

V (3) =
1
36

∑

p,q,r,s,t,u

〈pqr|V (3) |stu〉 :a†
pa†

qa†
r auat as : |Φ0〉 (6.19)

+
1
36

∑

p,q,r,s,t,u

〈pqr|V (3) |stu〉
∑

single contractions

:a†
pa†

qa†
r auat as : |Φ0〉 (6.20)

+
1
36

∑

p,q,r,s,t,u

〈pqr|V (3) |stu〉
∑

double contractions

:a†
pa†

qa†
r auat as : |Φ0〉 (6.21)

+
1
36

∑

p,q,r,s,t,u

〈pqr|V (3) |stu〉
∑

triple contractions

:a†
pa†

qa†
r auat as : |Φ0〉 . (6.22)

Evaluating all possible contractions with Eqs. (6.15)–(6.18) leads to

V (3) =
1
36

∑

p,q,r,s,t,u

〈pqr|V (3) |stu〉 :a†
pa†

qa†
r auat as : |Φ0〉 (6.23)

+
1
4

∑

i,p,q,s,t

〈pqi|V (3) |st i〉 :a†
pa†

qat as : |Φ0〉 (6.24)

+
1
2

∑

i, j,p,s

〈pi j|V (3) |si j〉 :a†
pas : |Φ0〉 (6.25)

+
1
6

∑

i, j,k

〈i jk|V (3) |i jk〉 (6.26)

= V (3)3B + V (3)2B + V (3)1B + V (3)0B , (6.27)

with the two-body (2B) operator arising from terms with a single contraction and the one (zero)-body operator
from doubly (triply) contracted contributions. It is important to notice that, while the sum in the residual three-
body (3B) operator is still running over generic indices, part of the summations for lower particle ranks run over
hole states only. This provides a significant simplification since the number of hole states is small compared to the
number of particle states, reducing the number of required 3N matrix elements.

We have accomplished an operator identity of the 3N interaction in vacuum normal order, Eq. (6.8), and a
sum of operators normal ordered with respect to a reference state |Φ0〉, Eq. (6.27). Thus, the information solely
included in a three-body operator has been transferred to lower particle ranks by normal ordering with respect
to a reference state that encodes information on the closed-shell nucleus of interest. Since we are seeking for
an approximation scheme to include 3N interactions in many-body approaches, without extending the formalism
to the three-body level, the first term in Eq. (6.27) is discarded, defining the so-called normal-ordered two-body
(NO2B) approximation

V (3)NO2B ≈ V (3)0B + V (3)1B + V (3)2B . (6.28)
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To include this operator in many-body calculations, e.g., in NCSM calculations, it is transformed back to vacuum
normal order by reverse application of Wick’s theorem to :a†

pa†
qat as : |Φ0〉 and :a†

pas : |Φ0〉 leading to

:a†
pa†

qat as : |Φ0〉 = a†
pa†

qat as− :a†
pa†

qat as : |Φ0〉− :a†
pa†

qat as : |Φ0〉 (6.29)

− :a†
pa†

qat as : |Φ0〉− :a†
pa†

qat as : |Φ0〉− :a†
pa†

qat as : |Φ0〉− :a†
pa†

qat as : |Φ0〉

= a†
pa†

qat as + a†
pat :a†

qas : |Φ0〉 − a†
pas :a†

qat : |Φ0〉 (6.30)

− a†
qat :a†

pas : |Φ0〉 + a†
qas :a†

pat : |Φ0〉 + a†
pat a

†
qas − a†

pasa
†
qat

= a†
pa†

qat as + a†
pat

�

a†
qas − a†

qas

�

− a†
pas

�

a†
qat − a†

qat

�

(6.31)

− a†
qat

�

a†
pas − a†

pas

�

+ a†
qas

�

a†
pat − a†

pat

�

+ a†
pat a

†
qas − a†

pasa
†
qat

= a†
pa†

qat as + a†
pat a

†
qas − a†

pasa
†
qat − a†

qat a
†
pas + a†

qasa
†
pat + a†

qat a
†
pas − a†

qasa
†
pat (6.32)

:a†
pas : |Φ0〉 = a†

pas− :a†
pas : |Φ0〉 = a†

pas − a†
pas . (6.33)

Inserting Eq. (6.33) into Eq. (6.25) leads to

1
2

∑

i, j,p,s

〈pi j|V (3) |si j〉 :a†
pas : |Φ0〉 =

1
2

∑

i, j,p,s

〈pi j|V (3) |si j〉
�

a†
pas − a†

pas

�

(6.34)

=
1
2

∑

i, j,p,s

〈pi j|V (3) |si j〉a†
pas −

1
2

∑

i, j,k

〈i jk|V (3) |i jk〉 (6.35)

and accordingly inserting Eq. (6.32) into Eq. (6.24) results in

1
4

∑

i,p,q,s,t

〈pqi|V (3) |st i〉 :a†
pa†

qat as : |Φ0〉 =
1
4

∑

i,p,q,s,t

〈pqi|V (3) |st i〉a†
pa†

qat as (6.36)

+
1
4

∑

i, j,q,s

〈 jqi|V (3) |s ji〉a†
qas −

1
4

∑

i, j,q,t

〈 jqi|V (3) | j t i〉a†
qat

−
1
4

∑

i, j,p,s

〈p ji|V (3) |s ji〉a†
pas +

1
4

∑

i, j,p,t

〈p ji|V (3) | j t i〉a†
pat

+
1
4

∑

i, j,k

〈 jki|V (3) | jki〉 −
1
4

∑

i, j,k

〈k ji|V (3) | jki〉

=
1
4

∑

i,p,q,s,t

〈pqi|V (3) |st i〉a†
pa†

qat as −
∑

i, j,p,s

〈pi j|V (3) |si j〉a†
pas (6.37)

+
1
2

∑

i, j,k

〈i jk|V (3) |i jk〉 .

By combining the results for the one- and two-body part with the zero-body part from Eq. (6.26), the 3N interaction
in NO2B approximation in vacuum normal order takes the form

V (3)NO2B =
1
6

∑

i, j,k

〈i jk|V (3) |i jk〉 (6.38)

−
1
2

∑

i, j,p,s

〈pi j|V (3) |si j〉a†
pas (6.39)

+
1
4

∑

i,p,q,s,t

〈pqi|V (3) |st i〉a†
pa†

qat as . (6.40)

The quality of the NO2B approximation was first investigated in coupled-cluster calculations using a harmonic
oscillator Slater determinant as reference state [20].
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6.2 Many-body perturbation theory for valence-space interactions

While many-body perturbation theory (MBPT) can be formulated to calculate ground and excited states of closed-
and open-shell nuclei we employ it as a diagrammatic framework to calculate valence-space interactions. This
approach has been pursued for more than five decades, see, e.g., [157–159]. Before focusing on how to calculate
these interactions within the framework of time-dependent degenerate or nearly degenerate Rayleigh-Schrödinger
(RS) perturbation theory in Sec. 6.2.2 we want to outline the basic idea of valence-space calculations and the
concept of the effective interaction in Sec. 6.2.1. The discussion follows the reviews [160, 161].

6.2.1 Basics

The large-scale diagonalization of the A-body Schrödinger equation

H |Ψα〉= Eα |Ψα〉 , (6.41)

using the intrinsic nuclear A-body Hamiltonian given in Eq. (6.1), to obtain the eigenstates |Ψα〉 and the correspon-
ding energies Eα is limited due the exponential growth of the Slater-determinant basis dimension when enlarging
the model space. Thus, these no-core CI calculations, employing the initial or a free-space RG evolved Hamiltoni-
an, are limited to p- and lower sd-shell nuclei. Valence-space methods however reduce the number of degrees of
freedom by treating the nucleus as a many-body system comprised of a closed-shell core and additional nucleons
occupying a truncated single-particle (valence) space. For this it is customary to rewrite the A-body Hamiltonian in
terms of a one-body potential U , e.g., the harmonic oscillator potential

U =
∑

i

1
2

mωr2
i (6.42)

to

H = T + V = (T + U) + (V − U) = H0 +H1 , (6.43)

where T is the kinetic energy, V includes two- and, in general, also higher-body interactions and H0 is the unper-
turbed Hamiltonian with eigenfunctions |ψi〉 and the corresponding eigenvalues εi

H0 |ψi〉= εi |ψi〉 . (6.44)

The infinitely many degrees of freedom of the Hilbert space are reduced to the valence space by the projection
operator P and its complement Q, defined as

P =
d
∑

i=1

|ψi〉 〈ψi | , (6.45)

Q =
∞
∑

i=d+1

|ψi〉 〈ψi |= 1− P , (6.46)

with the dimension of the valence space denoted as d. The projection operator fulfill the relations PQ = QP = 0,
P2 = P and Q2 = Q. Thus, we can formally reduce the A-body eigenvalue problem of Eq. (6.41) to the valence
space with the Hamiltonian Heff

PHeffP |Ψα〉 = EαP |Ψα〉 . (6.47)

The goal is to derive the valence-space interaction from the original Hamiltonian H, so that the diagonalization
in the valence space reproduces a subset of eigenvalues Eα of the full A-body Hamiltonian. Since valence-space
calculations give binding energies relative to the core, e.g., 16O for the sd-shell, for which all single-particle orbitals
are filled

|c〉=
Ac
∏

I=1

a†
I |0〉 , (6.48)

the eigenvalue problem is modified to

PH ′effP |Ψα〉 = (Eα − Ec)P |Ψα〉 , (6.49)
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where Ec is the energy of the core. Valence-space states, e.g., for two valence nucleons, are defined as

|ΨM
i 〉=

d
∑

α<β

C (i)
αβ

a†
αa†
β
|c〉 , (6.50)

where we use greek indices α, β , . . . for valence-space orbitals, while upper case roman indices I , J , . . . indicate
core and lower case roman indices i, j, . . . higher-lying (unoccupied) orbitals, respectively. The superscript (i)
specifies the quantum number of the states. The effective Hamiltonian H ′eff, given by

H ′eff =
d
∑

α=1

εαa†
αaα + Veff , (6.51)

is composed of the single-particle energies (SPEs) εα of the d orbitals in the valence space and the two-body
effective interaction Veff between valence nucleons. The SPEs can be determined empirically by taking the binding-
energy difference between the appropriate state in the nucleus with one additional nucleon to closed shells and
the ground-state energy of the closed-shell nucleus (core). Moreover, the effective two-body interaction can also be
adjusted to reproduce experimental ground- and excited-state energies. An example for phenomenological sd-shell
interactions are the USD Hamiltonians developed by Brown and Richter [162].

However, our aim is to calculate Heff, where we start from the definition of the effective interaction including the
core energy Ec . We define the projection of the A-body eigenstate |Ψα〉 onto the model space as |ΨM

α 〉= P |Ψα〉 and
the wave operator Ω that transforms the model-space eigenstates back to the A-body eigenstates by |Ψα〉= Ω |ΨM

α 〉.
This latter transformation is however not trivial as it states the existence of a one-to-one correspondence between
d valence and A-body eigenstates. If we assume that the inverse of the wave operator exists, we can similarity
transform the Hamiltonian H toH = Ω−1HΩ and its eigenstates |Ψα〉 to |ΨM

α 〉= Ω
−1 |Ψα〉. This results in

Ω−1HΩΩ−1 |Ψα〉= EαΩ
−1 |Ψα〉 (6.52)

H |ΨM
α 〉= Eα |ΨM

α 〉 , (6.53)

where the eigenvalues are unaffected by the similarity transformation. The similarity transformed HamiltonianH
can be rewritten in terms of the projection operators P and Q to

H = PH P + PHQ+QH P +QHQ , (6.54)

which, when inserted in Eq. (6.53), leads to the decoupling equation

QH P = 0 . (6.55)

This implies that we can define the valence-space effective Hamiltonian Heff by

Heff = PH P = PΩ−1HΩP . (6.56)

It is important to note that there is no unique representation of the wave operator Ω. Since in practical cal-
culations the perturbative expansion is truncated at a given order, the different choices for the wave operator Ω
give different results for the effective interaction. Even the same defining equation for the wave operator might be
solved by different iterative schemes. We choose the wave operator Ω to have the form

Ω= 1+χ , (6.57)

with the correlation operator χ. Since Ω obeys PΩP = P and the term ΩQ does not appear in the theory, the
correlation operator χ has the properties

PχP = 0 , QΩP = QP
︸︷︷︸

=0

+QχP = (1− P)χP = χP , (6.58)

QχQ = 0 , PχQ = 0 . (6.59)
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Thus, we choose χ as

χ =QχP . (6.60)

For the next steps in the derivation the following relations are helpful

χ =QχP =Qχ(1−Q) =Qχ −QχQ
︸︷︷︸

=0

=Qχ , (6.61)

χ =QχP = (1− P)χP = χP − PχP
︸︷︷︸

=0

= χP . (6.62)

This enables us to rewrite Eq. (6.55) in terms of the wave operator Ω= 1+χ and its inverse Ω−1 = 1−χ to

0=QH P =QΩ−1HΩP =Q(1−χ)H(1+χ)P (6.63)

=QHP −QχHP +QHχP −QχHχP (6.64)

=QHP −Qχ(P +Q)HP +QH(P +Q)χP −Qχ(P +Q)H(P +Q)χP (6.65)

=QHP −QχP
︸︷︷︸

=χ

HP −QχQ
︸︷︷︸

=0

HP +QH PχP
︸︷︷︸

=0

+QH QχP
︸︷︷︸

=χ

−Qχ(P +Q)H(P +Q)χP (6.66)

=QHP −χHP +QHχ −χHχ , (6.67)

which determines the correlation operator χ. In the following we employ the partitioning of H = H0+H1 and since
we are working in a degenerate model space we define

PH0P =ωP , (6.68)

with the unperturbed model space eigenvalue ω. Thus, Eq. (6.67) is modified to

0=QH0P
︸ ︷︷ ︸

=0

+QH1P −χH0P −χH1P +QH0χ +QH1χ −χH0χ −χH1χ (6.69)

=QH1P −χ PH0P
︸ ︷︷ ︸

=ωP

−χPH1P +QH0Qχ +QH1Qχ −χ PH0Q
︸ ︷︷ ︸

=0

χ −χPH1Qχ , (6.70)

where we have used Eqs. (6.61) and (6.62) as well as the diagonal nature of H0. By rearranging terms we arrive at

(ω−QH0Q−QH1Q)χ =QH1P −χPH1P −χPH1Qχ , (6.71)

which yields an equation for the correlation operator χ

χ =Q
1

ω−QHQ
QH1P −

1
ω−QHQ

χ(PH1P + PH1QχP) . (6.72)

In the first term on the right-hand side we have used Q2 = Q and in the last term we have again employed
Eq. (6.62). Inserting the ansatz for the wave operator Ω into the effective Hamiltonian, Eq. (6.56), we find

Heff = PΩ−1HΩP = P(1−χ)H(1+χ)P (6.73)

= PHP − PχHP
︸ ︷︷ ︸

PQχPHP=0

+PHχP − PχHχP
︸ ︷︷ ︸

PQχPHχP=0

(6.74)

= PH0P + PH1P + PH0Q
︸ ︷︷ ︸

=0

χP + PH1QχP (6.75)

= PH0P + Veff(χ) , (6.76)

where we have defined Veff(χ) = PH1P + PH1QχP. Inserting this relation into Eq. (6.72) results in

χ =Q
1

ω−QHQ
QH1P −

1
ω−QHQ

χVeff(χ) , (6.77)
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which, when multiplied on both sides with PH1 and adding PH1P to both sides, leads to

PH1P + PH1χ = PH1P + PH1Q
1

ω−QHQ
QH1P − PH1

1
ω−QHQ

χVeff(χ) . (6.78)

We now want to define the so-called bQ-box as

bQ(ω) = PH1P + PH1Q
1

ω−QHQ
QH1P . (6.79)

The diagrammatic content of the bQ-box is discussed in Sec. 6.2.2 on time-dependent RS perturbation theory. We
anticipate that the bQ-box consists of non-folded diagrams which are irreducible and valence linked. An irreducible
diagram has between each pair of interaction vertices at least one hole line or a particle line beyond the valence
space. In valence-linked diagrams the interactions are linked to at least one valence line. Note that there are
connected (consisting of a single piece) and disconnected valence-linked diagrams. However, when including folded
diagrams the disconnected diagrams cancel.

Identifying Veff(χ) on the left and the expression for the bQ-box on the right of Eq. (6.78) leads to

Veff(χ) = bQ(ω)− PH1
1

ω−QHQ
χVeff(χ) . (6.80)

Equation (6.80) is solved by an iteration scheme, where χn and V (n)eff = Veff(χn) are determined from χn−1 and

V (n−1)
eff . While there are several iteration methods we want to focus on the method by Kuo and Krenciglowa. For

that we write Eq. (6.80) as

V (n)eff = bQ(ω)− PH1
1

ω−QHQ
χnV (n−1)

eff . (6.81)

The solution takes the form

V (n)eff = bQ+
∞
∑

m=1

1
m!

�

dm
bQ

dωm

�

�

V (n−1)
eff

�m
, (6.82)

which converges when V (n)eff ≈ V (n−1)
eff . For n→∞ the solution V (∞)eff equals the formal solution

V (∞)eff =
∞
∑

m=0

1
m!

�

dm
bQ

dωm

�

�

V (∞)eff

�m
. (6.83)

6.2.2 Time-dependent Rayleigh-Schrödinger perturbation theory

As pointed out above, we want to derive a valence-linked diagram expansion for both SPEs and Veff from degenerate
time-dependent RS perturbation theory. In a first step we introduce the time-evolution operator U(t, t ′) and discuss
its properties. Then we focus on the propagation of a two-body valence state in imaginary time, addressing the
factorization into different contributions through the decomposition theorem. Based on these preliminaries we
want to derive an expression for the model-space effective interaction.

The relation

U†(t, t ′)U(t, t ′) = U(t, t ′)U†(t, t ′) = 1 (6.84)

implies that the time-evolution operator is unitary, i.e., U†(t, t ′) = U−1(t, t ′). In addition, we conclude from

U(t, t ′)U(t ′, t ′′) = U(t, t ′′) , (6.85)

U(t, t ′)U(t ′, t) = 1 , (6.86)

that

U(t, t ′) = U†(t ′, t) . (6.87)

In our discussion of time-dependent RS perturbation theory we employ the complex time approach for the time-
development operator U , i.e., the time t is rotated by a small angle ε into the complex plane. Thus, the complex
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Figure 6.3: On the left we show a second-order contribution to the wave function with time ordering 0 > t1 >
t2 > −∞. Greek indices and the corresponding lines represent valence-space orbitals, while railed lines
and lower case latin indices belong to the Q-space. In the middle we have factorized the left diagram in
two pieces with time orderings 0 > t1 > −∞ and 0 > t2 > −∞. On the right we subtract the folded
diagram with time ordering 0 > t2 > t1 > −∞, where the down-going lines with a circle correspond to
valence-space orbitals (folded lines).

time t is converted to the real time t̃ by t = t̃(1− iε). The time-evolution operator in the interaction picture is then
given by

U(0,−∞) = lim
ε→0+

lim
t→−∞(1−iε)

U(0, t) = lim
ε→0+

lim
t→−∞(1−iε)

∞
∑

n=0

(−i)n
∫ 0

t′
d t1

∫ t1

t′
d t2 · · ·

∫ tn−1

t′
d tn

×H1(t1)H1(t2) · · ·H1(tn) , (6.88)

or in terms of the time-ordering operator T[. . .]

U(0,−∞) = lim
ε→0+

lim
t→−∞(1−iε)

∞
∑

n=0

(−i)n

n!

∫ 0

t′
d t1

∫ 0

t′
d t2 · · ·

∫ 0

t′
d tnT[H1(t1)H1(t2) · · ·H1(tn)] , (6.89)

where H1(t) is defined as H1(t) = eiH0 t H1e−iH0 t .
The action of the time-evolution operator on the unperturbed wave function of two valence nucleons on top of

a closed-shell core is given by

U(0,−∞)a†
αa†
β
|c〉 , (6.90)

with an example for a contribution to the exact wave function shown in the left part of Fig. 6.3. The diagram
consists of two (n= 2) successive interactions at times t2 and t1. At time t2 the nucleons in valence-space states α,
β are scattered into valence states γ, δ. While at t1 valence states γ, δ are propagated to higher-lying orbitals i, j
from the excluded Q-space. This diagram, assuming for convenience H1 = V instead of H1 = V − U , results in the
following expression

a†
i a†

j |c〉 × v (2)i jγδv (2)
γδαβ

× I , (6.91)

with the abbreviation v (2)i jγδ for fully antisymmetrized two-body matrix elements and the integral I is given by

I = lim
ε→0+

lim
t→−∞(1−iε)

(−i)2
∫ 0

t′
d t1

∫ t1

t′
d t2e−i(εγ+εδ−εi−ε j)t1 e−i(εα+εβ−εγ−εδ)t2 . (6.92)

In a degenerate or a nearly degenerate valence space the vanishing exponent εα + εβ − εγ − εδ ≈ 0 leads to a
divergent integral I . In the following discussion we will show how to factorize out such divergencies. In the middle
part of Fig. 6.3 we have rewritten the left diagram as a factorization of two independent pieces, given by

a†
i a†

j |c〉 × v (2)i jγδv (2)
γδαβ

× I1 , (6.93)
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with the integral I1

I1 = lim
ε→0+

lim
t→−∞(1−iε)

(−i)2
∫ 0

t′
d t1

∫ 0

t′
d t2e−i(εγ+εδ−εi−ε j)t1 e−i(εα+εβ−εγ−εδ)t2 , (6.94)

where the factorization implies that the two time integrations are independent of each other. Nevertheless the t2
integral is also divergent. Because of the different time-integration limits, the factorized diagram contains a time-
incorrect contribution, which is given by the folded diagram on the right of Fig. 6.3. While down-going lines usually
represent hole orbitals, we introduce the convention of down-going lines with a circle for valence-space orbitals
(folded lines). The folded-diagram contribution reads

− a†
i a†

j |c〉 × v (2)i jγδv (2)
γδαβ

× I2 , (6.95)

with the integral I2

I2 = I1 − I = lim
ε→0+

lim
t→−∞(1−iε)

(−i)2
∫ 0

t′
d t1

∫ 0

t1

d t2e−i(εγ+εδ−εi−ε j)t1 e−i(εα+εβ−εγ−εδ)t2 , (6.96)

which is finite, even though I and I1 are infinite. Substituting the integrals to

∫ 0

t′
d t1

∫ 0

t1

d t2 =

∫ 0

t′
d t2

∫ t2

t′
d t1 , (6.97)

we can perform the integrations

I2 = lim
ε→0+

lim
t→−∞(1−iε)

(−i)

∫ 0

t′
d t2e−i(εα+εβ−εγ−εδ)t2

1
εγ + εδ − εi − ε j

(e−i(εγ+εδ−εi−ε j)t2 − e−i(εγ+εδ−εi−ε j)t′) (6.98)

=
1

εγ + εδ − εi − ε j
lim
ε→0+

lim
t→−∞(1−iε)

(−i)

∫ 0

t′
d t2e−i(εα+εβ−εi−ε j)t2 (6.99)

=
1

εγ + εδ − εi − ε j

1
εα + εβ − εi − ε j

. (6.100)

The combined expression for the folded diagram reads

− a†
i a†

j |c〉 × v (2)i jγδv (2)
γδαβ

1
εγ + εδ − εi − ε j

1
εα + εβ − εi − ε j

, (6.101)

which can be further simplified in the case of a degenerate model space with εα + εβ = εγ + εδ =ω to

− a†
i a†

j |c〉 × v (2)i jγδv (2)
γδαβ

1
(ω− εi − ε j)2

, (6.102)

or in terms of the derivative with respect to ω

− a†
i a†

j |c〉 × v (2)i jγδ

d
dω

�

1
(ω− εi − ε j)

�

v (2)
γδαβ

. (6.103)

Having discussed the above diagram as an example out of infinitely many possible diagrams arising in the pro-
pagation of the wave function we now want to turn to a more general way of removing the unwanted divergencies.
We again start from two valence particles propagated in imaginary time

U(0,−∞)a†
αa†
β
|c〉 , (6.104)

where the decomposition theorem allows to factorize diagrams of n-th order into two groups

1. one group of diagrams with µ vertices linked to one or both valence lines UV (0,−∞)a†
αa†
β
|c〉 ,
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t = 0

t = −∞

t = 0

t = −∞

Figure 6.4: The upper diagrams are all connected to the t = 0 boundary via fermion lines and give contributions pro-
portional to the ground-state wave function of the core UQ(0,−∞) |c〉. The lower diagrams correspond
to vacuum fluctuations and are denoted 〈c|U(0,−∞) |c〉.

, , , . . .

Figure 6.5: Active states (top) are solely composed of valence-particle (P -space) lines, while passive states contain
at least one Q-space line.

2. one group of diagrams with ν= n−µ vertices that are not linked to any valence state U(0,−∞) |c〉 .

Starting with the second term, which can be expanded into a sum of all diagrams with n H1 vertices as

U(0,−∞) |c〉=
∞
∑

n=0

U (n)(0,−∞) |c〉 . (6.105)

Similarly to the aforementioned distinction, there are µ vertices that are connected, directly or indirectly, to the
t = 0 time boundary via fermion lines, while there are ν= n−µ vertices not connected to this boundary. The class
of diagrams containing µ vertices corresponds to contributions proportional to the ground-state wave function of
the core UQ(0,−∞) |c〉, with examples shown in the upper part of Fig. 6.4. The class of diagrams consisting of ν
vertices are vacuum-fluctuation diagrams 〈c|U(0,−∞) |c〉, with examples shown in the lower part of Fig. 6.4.

Also the first term, UV (0,−∞)a†
αa†
β
|c〉, can be factorized in a similar manner. For that we define an active state

as being solely composed of valence-particle (P-space) lines, shown in the upper part of Fig. 6.5, and a passive
state as being composed of at least one Q-space line, shown in the lower part of Fig. 6.5. Acting with UV (0,−∞)
on a general P-space basis vector |ψα〉 ≡ a†

αa†
β
|c〉 either terminates in an active or a passive state at t = 0. Thus,

we can write

UV (0,−∞) |ψα〉= |χ P
α 〉+ |χ

Q
α 〉 . (6.106)

The diagrams contributing to these two terms are conveniently expressed in terms of chains of bQ-boxes as shown
in Fig. 6.6. Note that the intermediate active states between two successive bQ-boxes correspond to a summation
over all P-space states. While the bQ-box was briefly introduced in Sec. 6.2.1, we want to remind that it consists of
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α

α
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Q̂
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Q̂

Q̂

Q̂

Figure 6.6: Schematic representation of |χ P
α 〉 (left) and |χQ

α 〉 (right), with t = 0 set at the top of the diagram.

non-folded diagrams which are irreducible and valence linked and contain at least one H1 vertex. An irreducible
diagram has between each pair of interaction vertices at least one hole line or a particle line beyond the valence
space. In valence-linked diagrams the interactions are linked to at least one valence line. This corresponds to the
definition of the bQ-box with incoming and outgoing active states, shown in the upper part of Fig. 6.7. However, for
the |χQ

α 〉 term we need a bQ-box with incoming active and outgoing passive states, like the diagrams shown in the
lower part of Fig. 6.7.

Noting that certain terms in |χQ
α 〉 give rise to divergencies, e.g., the left diagram in Fig. 6.3, we can factorize

these out by the folding operation. Thereby it is possible to extract out of each term in |χQ
α 〉 a contribution that is

belonging to |χ P
α 〉. Thus, we can rewrite UV (0,−∞) |ψα〉 to

UV (0,−∞) |ψα〉=
d
∑

β=1

UVQ(0,−∞) |ψβ〉〈ψβ |UV (0,−∞) |ψα〉 , (6.107)

with the diagrammatic representation of UVQ(0,−∞) |ψβ〉 shown in the upper part of Fig. 6.8, where the folding
operation is denoted by the integration sign, while 〈ψβ |UV (0,−∞) |ψα〉 is shown in the lower part of Fig. 6.8.
Note that the β sum over the first term in UVQ(0,−∞) |ψβ〉 times 〈ψβ |UV (0,−∞) |ψα〉 is equal to |χ P

α 〉.
Thus, by collecting all terms we can rewrite Eq. (6.104) to

U(0,−∞) |ψα〉= UQ(0,−∞) |c〉〈c|U(0,−∞) |c〉 ×
d
∑

β=1

UVQ(0,−∞) |ψβ〉〈ψβ |UV (0,−∞) |ψα〉 . (6.108)

With the above preliminaries we can now derive the model-space equation

PHeffP |Ψλ〉 = EλP |Ψλ〉 , (6.109)

with λ = 1, . . . , d, the eigenvectors |Ψλ〉 and the corresponding energies Eλ of the full A-body Hamiltonian H. We
therefore need a one-to-one correspondence between the d-parent states |ρλ〉 in the model space and the true
eigenstates |Ψλ〉 given by

U(0,−∞) |ρλ〉
〈ρλ|U(0,−∞) |ρλ〉

=
|Ψλ〉
〈ρλ|Ψλ〉

,λ= 1, . . . , d , (6.110)

where we now use the Schrödinger representation for convenience, while all results also hold in the interaction
representation. Employing that |Ψλ〉 are eigenstates with the corresponding energies Eλ, Eq. (6.110) implies

H
U(0,−∞) |ρλ〉

〈ρλ|U(0,−∞) |ρλ〉
= Eλ

U(0,−∞) |ρλ〉
〈ρλ|U(0,−∞) |ρλ〉

,λ= 1, . . . , d . (6.111)
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Figure 6.7: Diagrams contributing to the bQ-box with incoming and outgoing active states (top) and with incoming
active and outgoing passive states (bottom).

We assume that the projections P |Ψλ〉 of d eigenstates of the full Hamiltonian H onto the model space are known
and they are linearly independent. By expanding the parent states |ρλ〉 in terms of P-space basis states |ψα〉 we
arrive at

|ρλ〉=
d
∑

α=1

C (λ)α |ψα〉 , (6.112)

and they fulfill

〈ρλ|Ψµ〉= 〈ρλ| P |Ψµ〉= 0 ,λ 6= µ= 1, . . . , d . (6.113)

The first equality holds because |ρλ〉 is contained only in P-space, while the second equality is true because the
projections P |Ψλ〉 are linearly independent. Note that in general

|ρλ〉 6= P |Ψλ〉 , (6.114)

〈Ψλ| PP |Ψµ〉 6= 0 ,λ 6= µ , (6.115)

〈ρλ|ρµ〉 6= 0 ,λ 6= µ . (6.116)

However, the parent states |ρλ〉 are a pure mathematical device to derive Heff since their construction assumes
knowledge of P |Ψλ〉 which is not available until Heff is known. Consequently, the final expression for Heff should
be independent of |ρλ〉.

Inserting the expansion of the parent states Eq. (6.112) into Eq. (6.111) leads to

d
∑

α=1

C (λ)α
HU(0,−∞) |ψα〉
〈ρλ|U(0,−∞) |ρλ〉

=
d
∑

β=1

C (λ)
β

EλU(0,−∞) |ψβ〉
〈ρλ|U(0,−∞) |ρλ〉

, (6.117)

which can be rewritten using the decomposition theorem, Eq. (6.108), to

d
∑

γ=1

b(λ)γ HUQ(0,−∞) |c〉UVQ(0,−∞) |ψγ〉=
d
∑

σ=1

b(λ)σ EλUQ(0,−∞) |c〉UVQ(0,−∞) |ψσ〉 , (6.118)
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Figure 6.8: Schematic representation of wave-function diagrams UVQ(0,−∞) |ψβ〉 (top), where the integration sign
denotes the folding operation, and matrix elements 〈ψβ |UQ(0,−∞) |ψα〉 (bottom).

with the definition

b(λ)σ =
d
∑

β=1

C (λ)
β

〈c|U(0,−∞) |c〉〈ψσ|UV (0,−∞) |ψβ〉
〈ρλ|U(0,−∞) |ρλ〉

. (6.119)

Since the only P-space contribution in UQ(0,−∞) |c〉UVQ(0,−∞) |ψβ〉 is |ψβ〉, cf. top part of Fig. 6.8, it follows
that

〈ψθ |UVQ(0,−∞) |ψσ〉= δθσ , (6.120)

and, hence, multiplying Eq. (6.118) with 〈ψθ | results in

d
∑

γ=1

〈ψθ |Heff |ψγ〉b(λ)γ = Eλb(λ)
θ

, (6.121)

with Heff = HUQ(0,−∞)UVQ(0,−∞). Comparing this result to Eq. (6.47) suggests to identify b(λ)γ with the projec-
tion of the true eigenstate onto the model space P |Ψλ〉. To prove this we multiply Eq. (6.110) with 〈ψγ| and insert
the expansion of the parent states, Eq. (6.112), and the decomposition theorem, Eq. (6.108), leading to

〈ψγ|Ψλ〉
〈ρλ|Ψλ〉

=
d
∑

α,β=1

C (λ)α
〈ψγ|UVQ(0,−∞) |ψβ〉〈c|U(0,−∞) |c〉〈ψβ |UV (0,−∞) |ψα〉

〈ρλ|U(0,−∞) |ρλ〉
(6.122)

=
d
∑

α,β=1

C (λ)α
δγβ〈c|U(0,−∞) |c〉〈ψβ |UV (0,−∞) |ψα〉

〈ρλ|U(0,−∞) |ρλ〉
(6.123)

=
d
∑

α=1

C (λ)α
〈c|U(0,−∞) |c〉〈ψγ|UV (0,−∞) |ψα〉

〈ρλ|U(0,−∞) |ρλ〉
= b(λ)γ . (6.124)
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Thus, the only dependence of the model-space eigenvalue problem on the parent state |ρλ〉 is via the coefficient
b(λ)γ . Since we have obtained the correct formal structure of a model-space eigenvalue problem in Eq. (6.121), we

are not interested in |ρλ〉 any more, but we may solve the eigenvalue problem directly for b(λ)γ . For a known b(λ)γ ,
Eq. (6.124) ensures that the parent states |ρλ〉 can be indeed constructed as the projection of the true eigenstate
onto the model space.

By defining the model-space eigenstate |bλ〉 as

|bλ〉=
d
∑

γ=1

b(λ)γ |ψγ〉=
P |Ψλ〉
〈ρλ|Ψλ〉

, (6.125)

we arrive at

PHeffP |bλ〉 = EλP |bλ〉 , (6.126)

Although the true eigenvectors are orthogonal, i.e.,

〈Ψλ|Ψµ〉= δλµ , (6.127)

the projections of the true eigenvectors onto the model space do, in general, not preserve orthogonality

〈bλ|bµ〉 6= δλµ . (6.128)

Consequently, Eq. (6.128) implies that the effective Hamiltonian Heff is, in general, not Hermitian. This is overcome
by defining bi-orthogonal wave functions

|bλ〉=
d
∑

γ=1

b
(λ)
γ |ψγ〉 , (6.129)

that obey

〈bλ|bµ〉= δλµ . (6.130)

For the evaluation of the matrix elements of Heff we study the contributions from

〈ψθ |Heff |ψγ〉= 〈ψθ |HUQ(0,−∞)UVQ(0,−∞) |ψγ〉 , (6.131)

where for the second factor all interactions have to be linked to at least one valence line, whereas in the first factor
no valence lines are involved. We start with the contributions from H0, for which |ψθ 〉 is an eigenstate and the only
P-space component of UVQ(0,−∞) |ψγ〉 is |ψγ〉 itself, resulting in

〈ψθ |H0UQ(0,−∞)UVQ(0,−∞) |ψγ〉= 〈ψθ |H0 |ψγ〉= 〈ψθ |H0(C) +H0(V ) |ψγ〉= δθγ(εV + εC) . (6.132)

This term represents the unperturbed energies with the contributions split into a core and a valence-space com-
ponent. Similarly, we can decompose the interaction term into H1 = H1(C) + H1(V ), where H1(C) gives rise to
diagrams in which H1 is not linked to any valence line at the time t = 0 and H1(V ) to all the other diagrams.
Summing all contributions from H1(C) yields

〈ψθ |H1(C)UQ(0,−∞)UVQ(0,−∞) |ψγ〉= δθγ〈c|H1(C)UQ(0,−∞) |c〉= δθγ(EC − εC) , (6.133)

with the core energy EC . Thus, the core part was successfully separated out of the eigenvalue problem

d
∑

γ=1

〈ψθ | (H0(V ) +H1(V ))UQ(0,−∞)UVQ(0,−∞) |ψγ〉b(λ)γ = (Eλ − EC)b
(λ)
θ

, (6.134)

and we can now turn to a prescription to calculate

〈ψθ |H ′eff |ψγ〉= 〈ψθ |H1(V )UQ(0,−∞)UVQ(0,−∞) |ψγ〉 . (6.135)
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Assuming the simplified structure UQ(0,−∞) |c〉= |c〉 H ′eff can be written as

H ′eff = bQ− bQ
′
∫

bQ+ bQ′
∫

bQ

∫

bQ− . . . , (6.136)

with both bQ-boxes consisting of irreducible diagrams with vertices linked to at least one valence line and the integral
sign representing the general folding operation. However, bQ′ has at least two H1 vertices, one from H1(V ) and
the other from UVQ(0,−∞) |ψγ〉, while bQ starts with first order terms from the H1(V ) vertex. Consequently, bQ′ is
obtained from bQ by dropping the terms with less than two vertices and folded diagrams in H ′eff contain at least three
interaction vertices. Taking into account higher-order terms in UQ(0,−∞) |c〉 introduces subtle differences between
the bQ′- and bQ-boxes and necessitates a definition of a third bQ-box bQ1, while the functional form of Eq. (6.136) is
preserved.

While we briefly investigated the calculation of folded diagrams already, it is possible to rewrite folded terms in
H ′eff as

−bQ′
∫

bQ =
d bQ′(ω)

dω
bQ(ω) , (6.137)

bQ′
∫

bQ

∫

bQ =
1
2!

d2
bQ′(ω)
dω2

bQ(ω)bQ(ω) +
d bQ′(ω)

dω
d bQ(ω)

dω
bQ(ω) , (6.138)

leading to the general expression of an n-folded bQ-box with n+ 1 bQ-boxes

bQ′
∫

bQ

∫

bQ · · ·
∫

bQ =
∑

m1m2···mn

1
m1!

dm1 bQ′(ω)
dωm1

P
1

m2!
dm2 bQ(ω)

dωm2
P · · ·

1
mn!

dmn bQ(ω)
dωmn

P bQ(ω) . (6.139)

The constraints for this expression are m1 +m2 + · · ·+mn = n, m1 ≥ 1, m2, m3, . . . , mn ≥ 0 and mk ≤ n− k + 1,
with the last one due to the fact that there are only n − k + 1 bQ-boxes to the right of the k-th bQ-box such that
it can be differentiated at most n − k + 1 times. On the right of Eq. (6.139) we have inserted P-space projection
operators between the bQ-box terms to indicate that model space intermediate states are summed over. Note that
all the bQ-boxes and bQ-box derivatives are evaluated at the degenerate model-space energy ω. Moreover, since bQ′ is
differentiated at least once and with the relation d bQ′(ω)

dω = d bQ(ω)
dω

bQ′ can be eliminated in the above equations. Thus,
it can be shown that a possible solution is given by

V (n)eff = bQ+
∞
∑

m=1

1
m!

�

dm
bQ

dωm

�

�

V (n−1)
eff

�m
. (6.140)

Thus, the effective interaction is obtained through an iterative procedure requiring the evaluation of the bQ-box
and its energy derivatives. It is worth noting that the operator H ′eff includes both one- and two-body contributions
since our derivation started from a state with two-valence nucleons. The corresponding set of one-body diagrams
is denoted bS-box. To obtain the single-particle energies, we solve the coupled Dyson equations,

ε(k)α = 〈α|H0 |α〉+ bS(ε(k−1)
α ) , (6.141)

by iteration starting from ε(0)α = ω until ε(k)α ≈ ε
(k−1)
α . Because the εα depend on relative shifts in the unperturbed

harmonic-oscillator spectrum, we also update the unperturbed valence-space energy to be the centroid of the
converged SPEs and iterate until the centroid of the final SPEs is equal to the unperturbed value.

Note that in the case of NV valence nucleons H ′eff will contain, in general, many-body forces of rank n with n≤ NV
although V is only a two-body interaction. These many-body forces in MBPT have been addressed in Ref. [163].

While the formal definition of the bQ-box includes H1 vertices up to infinite order, practical calculations are done at
finite order in the interaction. In Sec. 7 we present results which include contributions up to second and third order
in H1. Third-order calculations represent the current state-of-the-art, while higher-order calculations are prohibited
by the increasing number of diagrams. For calculations at a given order it has to be ensured that the effective
interaction H ′eff is converged with respect to excitations out of the valence space. These excitations are only allowed
up to some finite energy NħhΩ, which is ultimately limited by the size of the single-particle basis. For our MBPT
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calculations we add to the isospin-symmetry breaking NN forces from chiral EFT electromagnetic interactions,
i.e., the Coulomb force and higher-order electromagnetic corrections. In addition to the two-body interaction we
include normal-ordered one- and two-body terms of chiral 3N forces. These normal-ordered 3N forces are obtained
by normal ordering the 3N force with respect to the harmonic-oscillator Slater determinant of the closed-shell
core |c〉. Their inclusion in MBPT calculations of valence-space interactions was key for the understanding of the
structure of medium-mass nuclei, the evolution to the neutron and proton drip lines [153, 164] and the formation
of shell structure [35, 165–167]. The MBPT calculations are performed with a Fortran code developed by Morten
Hjorth-Jensen [161].

6.3 Hartree-Fock method

The Hartree-Fock (HF) method is an independent-particle or mean-field method. The nuclear many-body problem
with A interacting nucleons is approximated by a one-body operator, assuming that the nucleons move independent-
ly of each other in the mean-field potential. Since the HF method does not include residual interactions between
the nucleons, there are no correlations between particles and, thus, the many-body wave function is given by a
single Slater determinant. It is determined by minimizing its energy expectation value according to the variational
principle, by optimizing the single-particle orbitals from which the Slater determinant is constructed. Therefore,
the HF method itself is a many-body method, selecting the best approximation for the ground state of a closed-
shell nucleus from a set of Slater determinants. Moreover, the Slater determinant, constructed from optimized
single-particle orbitals, provides a starting point for more sophisticated many-body methods, e.g., CC or IM-SRG
calculations, in which it is used as a reference state to normal order 3N forces.

The starting point of the energy minimization is the Hartree-Fock Slater determinant describing the A-body
system

|ΦHF〉= |ϕ1〉 ⊗ · · · ⊗ |ϕA〉 , (6.142)

where |ϕp〉 denote the Hartree-Fock single-particle wave functions. To perform the variational calculation we have
to choose a complete and orthogonal set of single-particle wave functions. For nuclear-structure calculations the
spherical harmonic-oscillator basis with single-particle wave functions |χs〉 and creation operator c†

s provides a
convenient choice. In general, other choices for the single-particle basis are possible. We can expand |ϕp〉 and the
corresponding creation operator a†

p in the chosen basis

|ϕp〉=
∑

s

Dsp |χs〉 , (6.143)

a†
p =

∑

s

Dspc†
s , (6.144)

with the overlap coefficients Dsp = 〈χs|ϕp〉. Since both sets of single-particle wave functions { |ϕp〉} and { |χs〉} are
complete and orthogonal, the basis transformation has to be unitary, i.e., DD† = D†D = 1. Any unitary transforma-
tion that does not mix hole and particle states leaves the HF Slater determinant |ΦHF〉 unchanged up to a phase.
Thus, it is more convenient to work in terms of the one-body density matrix

ρ(1)sp = 〈ΦHF| c†
pcs |ΦHF〉=

∑

q,t

DpqD∗st〈ΦHF| a†
qat |ΦHF〉=

∑

i

Dsi D
∗
pi . (6.145)

In the last step we employed that the one-body density matrix is diagonal in the HF basis

ρ
(1)
ab = naδab , na ∈ {0,1} , (6.146)

with the occupation numbers one for hole (occupied) and zero for particle (unoccupied) states. Moreover, the
idempotence of the one-body density matrix

�

ρ(1)
�2
= ρ(1) (6.147)

assures that ρ(1) is a projector onto the subspace spanned by hole states |ϕi〉.
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For the derivation of the HF equations we start from the intrinsic nuclear A-body Hamiltonian in the harmonic-
oscillator basis, containing the kinetic energy, NN and 3N interactions

H = T (1) + V (2) + V (3) (6.148)

=
∑

p,s

〈p| T (1) |s〉c†
pcs +

1
4

∑

p,q,s,t

〈pq|V (2) |st〉c†
pc†

qct cs +
1
36

∑

p,q,r,s,t,u

〈pqr|V (3) |stu〉c†
pc†

qc†
r cuct cs (6.149)

=
∑

p,s

t(1)ps c†
pcs +

1
4

∑

p,q,s,t

v (2)pqst c
†
pc†

qct cs +
1
36

∑

p,q,r,s,t,u

v (3)pqrstuc†
pc†

qc†
r cuct cs , (6.150)

where the abbreviations v (2)pqst and v (3)pqrstu denote fully antisymmetrized matrix elements of the NN and 3N interac-
tions. We calculate the HF energy by taking the expectation value of the Hamiltonian in the HF Slater determinant
|ΦHF〉

EHF = 〈ΦHF| T (1) + V (2) + V (3) |ΦHF〉 (6.151)

=
∑

p,s

t(1)ps 〈ΦHF| c†
pcs |ΦHF〉+

1
4

∑

p,q,s,t

v (2)pqst〈ΦHF| c†
pc†

qct cs |ΦHF〉+
1
36

∑

p,q,r,s,t,u

v (3)pqrstu〈ΦHF| c†
pc†

qc†
r cuct cs |ΦHF〉 . (6.152)

By introducing the two- and three-body density matrix

ρ
(2)
stpq = 〈ΦHF| c†

pc†
qct cs |ΦHF〉 , (6.153)

ρ
(3)
stupqr = 〈ΦHF| c†

pc†
qc†

r cuct cs |ΦHF〉 , (6.154)

we can rewrite the HF energy as a functional of the density matrices

EHF[ρ
(1),ρ(2),ρ(3)] =

∑

p,s

t(1)ps ρ
(1)
sp +

1
4

∑

p,q,s,t

v (2)pqstρ
(2)
stpq +

1
36

∑

p,q,r,s,t,u

v (3)pqrstuρ
(3)
stupqr . (6.155)

Since we are dealing with a single Slater determinant we can use Wicks’s theorem, introduced in Sec. 6.1, to derive
factorization formulas for the two- and three-body density matrix by full contractions of all operators

ρ
(2)
stpq = 〈ΦHF| c†

pc†
qct cs |ΦHF〉= :c†

pc†
qct cs : |ΦHF〉+ :c†

pc†
qct cs : |ΦHF〉 = ρ

(1)
tq ρ

(1)
sp −ρ

(1)
t p ρ

(1)
sq , (6.156)

ρ
(3)
stupqr = 〈ΦHF| c†

pc†
qc†

r cuct cs |ΦHF〉 (6.157)

= :c†
pc†

qc†
r cuct cs : |ΦHF〉+ :c†

pc†
qc†

r cuct cs : |ΦHF〉+ :c†
pc†

qc†
r cuct cs : |ΦHF〉+

:c†
pc†

qc†
r cuct cs : |ΦHF〉+ :c†

pc†
qc†

r cuct cs : |ΦHF〉+ :c†
pc†

qc†
r cuct cs : |ΦHF〉 (6.158)

= ρ(1)ur

�

ρ
(1)
tq ρ

(1)
sp −ρ

(1)
t p ρ

(1)
sq

�

+ρ(1)t r

�

ρ(1)up ρ
(1)
sq −ρ

(1)
uq ρ

(1)
sp

�

+ρ(1)sr

�

ρ(1)uq ρ
(1)
t p −ρ

(1)
tq ρ

(1)
up

�

. (6.159)

Inserting the factorization formulas into Eq. (6.155) leads to

1
4

∑

p,q,s,t

v (2)pqst

�

ρ
(1)
tq ρ

(1)
sp −ρ

(1)
t p ρ

(1)
sq

�

=
1
4

∑

p,q,s,t

�

v (2)pqstρ
(1)
tq ρ

(1)
sp − v (2)qpstρ

(1)
tq ρ

(1)
sp

�

(6.160)

=
1
4

∑

p,q,s,t

�

v (2)pqstρ
(1)
tq ρ

(1)
sp + v (2)pqstρ

(1)
tq ρ

(1)
sp

�

(6.161)

=
1
2

∑

p,q,s,t

v (2)pqstρ
(1)
tq ρ

(1)
sp , (6.162)
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1
36

∑

p,q,r,s,t,u

v (3)pqrstu

�

ρ(1)ur

�

ρ
(1)
tq ρ

(1)
sp −ρ

(1)
t p ρ

(1)
sq

�

+ρ(1)t r

�

ρ(1)up ρ
(1)
sq −ρ

(1)
uq ρ

(1)
sp

�

+ρ(1)sr

�

ρ(1)uq ρ
(1)
t p −ρ

(1)
tq ρ

(1)
up

��

(6.163)

=
1
36

∑

p,q,r,s,t,u

[v (3)pqrstuρ
(1)
ur ρ

(1)
tq ρ

(1)
sp − v (3)qprstuρ

(1)
ur ρ

(1)
tq ρ

(1)
sp + v (3)qprsutρ

(1)
ur ρ

(1)
tq ρ

(1)
sp − v (3)pqrsutρ

(1)
ur ρ

(1)
tq ρ

(1)
sp

+ v (3)pqr tusρ
(1)
ur ρ

(1)
tq ρ

(1)
sp − v (3)pqrutsρ

(1)
ur ρ

(1)
tq ρ

(1)
sp ] (6.164)

=
1
36

∑

p,q,r,s,t,u

[v (3)pqrstuρ
(1)
ur ρ

(1)
tq ρ

(1)
sp + v (3)pqrstuρ

(1)
ur ρ

(1)
tq ρ

(1)
sp + v (3)pqrstuρ

(1)
ur ρ

(1)
tq ρ

(1)
sp + v (3)pqrstuρ

(1)
ur ρ

(1)
tq ρ

(1)
sp

+ v (3)pqrstuρ
(1)
ur ρ

(1)
tq ρ

(1)
sp + v (3)pqrstuρ

(1)
ur ρ

(1)
tq ρ

(1)
sp ] (6.165)

=
1
6

∑

p,q,r,s,t,u

v (3)pqrstuρ
(1)
ur ρ

(1)
tq ρ

(1)
sp , (6.166)

where we only exchanged indices and used the antisymmetry of two- and three-body matrix elements v (2)pqst and

v (3)pqrstu, respectively. Thus, the HF energy is now only a function of the one-body density matrix

EHF[ρ] =
∑

p,s

t(1)ps ρsp +
1
2

∑

p,q,s,t

v (2)pqstρtqρsp +
1
6

∑

p,q,r,s,t,u

v (3)pqrstuρurρtqρsp . (6.167)

We employ the variational principle to determine the stationary point of EHF[ρ] under variation of ρ

δEHF[ρ] = EHF[ρ +δρ]− EHF[ρ] (6.168)

≈
∑

p,s

t(1)ps δρsp +
∑

p,q,s,t

v (2)pqstρtqδρsp +
1
2

∑

p,q,r,s,t,u

v (3)pqrstuρurρtqδρsp , (6.169)

where terms of higher order in δρ have been omitted. This can be rewritten by separating the variation of the
one-body density matrix

δEHF[ρ] =
∑

p,s

�

t(1)ps +
∑

q,t

v (2)pqstρtq +
1
2

∑

q,r,t,u

v (3)pqrstuρurρtq

�

δρsp (6.170)

≡
∑

p,s

hps[ρ]δρsp . (6.171)

In Eq. (6.171) we have introduced a one-body operator h[ρ], which is called the HF single-particle or mean-field
Hamiltonian. It contains, besides the kinetic energy t, a one-body potential that averages over all two- and three-
body interactions in the nucleus.

The determination of the HF energy requires the solution of the stationary condition

δEHF[ρ] = 0 , (6.172)

with the constraint that the variation ρ +δρ has to be idempotent again, i.e.,

(ρ +δρ)2 = ρ +δρ . (6.173)

When neglecting terms of higher order in δρ this condition simplifies to

δρ = ρδρ +δρρ , (6.174)

or, equivalently

ρδρρ = (1−ρ)δρ(1−ρ) = 0 , (6.175)

which means that the hole-hole (hh) and particle-particle (pp) block of δρ have to vanish. Consequently, variations
of δρ are restricted to hp (δρia) and ph (δρai) matrix elements, leading to the stationary condition

δEHF[ρ] =
∑

p,s

hps[ρ]δρsp =
∑

i,a

hai[ρ]δρia + H.c.= 0 , (6.176)
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which means that ph matrix elements of h[ρ] have to vanish. We can recast the problem into a commutator

[h[ρ],ρ] = 0 , (6.177)

which states that there exists a simultaneous eigenbasis of h[ρ] and ρ that can be obtained by solving the eigen-
value problem for the HF single-particle Hamiltonian

h[ρ] |ϕw〉= εw |ϕw〉 . (6.178)

Here, |ϕw〉 denotes the HF eigenstates and εw the corresponding HF single-particle energies. Because the HF single-
particle Hamiltonian depends on the one-body density matrix, i.e., on the solution of the eigenvalue problem,
Eq. (6.178), this nonlinear problem has to be solved iteratively. Transforming the eigenvalue problem to the HO
basis yields

∑

s

 

t(1)ps +
∑

i

∑

q,t

v (2)pqst Dt i D
∗
qi +

1
2

∑

i, j

∑

q,r,t,u

v (3)pqrstuDu j D
∗
r j Dt i D

∗
qi

!

Dsw = εwDpw . (6.179)

Employing the diagonal form of the one-body density matrix in the HF basis, the summations in the mean-field
Hamiltonian can be restricted to hole states j and k

hps[ρ] = t(1)ps +
∑

j

v (2)p js j +
1
2

∑

j,k

v (3)p jks jk , (6.180)

and for the HF single-particle energies we obtain

εw = t(1)ww +
∑

j

v (2)wjwj +
1
2

∑

j,k

v (3)wjkwjk . (6.181)

The HF ground-state state energy is given by the sum over hole states i, j, k

EHF =
∑

i

t(1)ii +
1
2

∑

i, j

v (2)i ji j +
1
6

∑

i, j,k

v (3)i jki jk , (6.182)

which can also be expressed in terms of the HF single-particle energies, Eq. (6.181),

EHF =
∑

i

εi −
1
2

∑

i, j

v (2)i ji j −
1
3

∑

i, j,k

v (3)i jki jk , (6.183)

which is different from the results in the HO basis, Eq. (6.167). In summary, we have derived the ground-state ener-
gy of a closed-shell nucleus in HF approximation, taking into account a full three-body interaction. This extension
to a full three-body interaction was, e.g., used in Ref. [154].

6.4 In-medium similarity renormalization group

The In-Medium Similarity Renormalization Group (IM-SRG) unites the basic ideas of the renormalization-group
evolution, discussed in Sec. 3, and normal ordering, introduced in Sec. 6.1. Instead of performing the evolution of
free-space interactions in a two- or three-body basis, the term in-medium refers to the fact that the Schrödinger
equation of an A-body system is solved in an approximate, but systematically improvable, way. The IM-SRG was first
employed in the calculation of ground states of closed-shell nuclei [140, 154], while ground and excited states of
open-shell nuclei were first accessible through the decoupling of valence-space interactions [168, 169]. Moreover,
the generalization of the normal ordering to multi-reference states, such as particle-number projected Hartree-Fock
Bogoliubov states, enabled calculations of ground states of even-even, open-shell nuclei [135]. Recently, normal
ordering has also been performed with respect to N ref

max = 0 no-core shell model reference states for even-even,
open-shell nuclei. The corresponding in-medium decoupled Hamiltonian is then used in subsequent no-core shell
model calculations of ground and excited states [146]. While both valence and no-core shell model may ultimately
be limited by the dimension of the largest diagonalizations possible, even with importance truncation, excited states
of closed-shell nuclei have been recently calculated by applying EOM techniques to the ground-state-decoupled IM-
SRG Hamiltonian [144]. However, in this work we will focus on ground-state properties of closed-shell nuclei. In
Sec. 6.4.1 we will outline the basic concepts and derive the m-scheme flow equations for the single-reference case,
while in Sec. 6.4.2 we will present the generators, employed to achieve decoupling. Since we are not only interested
in the ground-state energy, but also in other observables, e.g., charge radii, which need to be evolved simultaneously
with the Hamiltonian, we will present the Magnus formulation, that directly aims at the construction of the unitary
transformation itself. Our discussion follows the review [14], where further details can be found. For a review on
multi-reference IM-SRG calculations we refer to [121].
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6.4.1 Basics and flow equations

Similar to the SRG evolution of the initial Hamiltonian, discussed in Sec. 3, the IM-SRG also employs a continuous
sequence of unitary transformations

Hs = UsH0Us
† (6.184)

to evolve the normal-ordered Hamiltonian, resulting in the same differential flow-equation

dHs

ds
= [ηs, Hs] , (6.185)

where we have used the flow parameter s to discriminate between free-space, for which the flow parameter is deno-
ted α, and in-medium SRG. While both methods start from renormalization-group ideas, the goals are conceptually
different.

The free-space SRG aims at a unitary transformation to decouple low- and high momentum scales, accelerating
the convergence of many-body calculations. However, it is not the goal to evolve the input Hamiltonian to α→∞,
which is equivalent to a full diagonalization yielding momentum eigenstates. In this limit induced terms of hig-
her particle rank, that arise from the evaluation of the commutator in every step of the evolution, would become
unnaturally large, degrading the hierarchy of nuclear forces. Thus, the focus is unambiguously on the prediagonali-
zation of nuclear interactions, although the optimal flow parameter range for a given generator, yielding improved
convergence and only modest induced higher-body forces, is a priori unknown.

The IM-SRG aims, however, at the decoupling of the reference state from its particle-hole excitations. Starting
from a single Slater determinant as the reference state |Φ0〉 the intrinsic nuclear A-body Hamiltonian Eq. (6.1) can
be rewritten exactly in terms of normal-ordered operators, as detailed in Sec. 6.1 for a 3N interaction,

H = E +
∑

p,s

fps :a†
pas : |Φ0〉 +

1
4

∑

p,q,s,t

Γpqst :a†
pa†

qat as : |Φ0〉 +
1
36

∑

p,q,r,s,t,u

Wpqrstu :a†
pa†

qa†
r auat as : |Φ0〉 . (6.186)

In the following we employ the eigenbasis of the one-body density matrix, obtained by solving the eigenvalue
problem for the HF single-particle Hamiltonian, so that

ρab = naδab , na ∈ {0, 1} , (6.187)

which renders the distinction of hole (i, j, k, . . .), particle (a, b, c, . . .) and generic indices (p, q, r, . . .) obsolete. The
different terms in Eq. (6.186) are

E =
�

1−
1
A

�

∑

a

〈a| T (1) |a〉na +
1
2

∑

a,b

〈ab| T (2)+V (2) |ab〉nanb +
1
6

∑

a,b,c

〈abc|V (3) |abc〉nanbnc , (6.188)

fps =
�

1−
1
A

�

〈p| T (1) |s〉+
∑

a

〈pa| T (2)+V (2) |sa〉na +
1
2

∑

a,b

〈pab|V (3) |sab〉nanb , (6.189)

Γpqst = 〈pq| T (2)+V (2) |st〉+
∑

a

〈pqa|V (3) |sta〉na , (6.190)

Wpqrstu = 〈pqr|V (3) |stu〉 , (6.191)

where only hole (occupied) states contribute in the summation over occupation numbers in Eqs. (6.188)–(6.190).
Inserting the normal-ordered Hamiltonian, Eq. (6.186), into the IM-SRG flow equation, Eq. (6.185), yields an

exact unitary transformation in A-body space. Since the evaluation of the commutator increases the particle rank
in every step of the flow ηs and Hs are A-body operators, although they initially have a lower particle rank at
s = 0. In contrast to the free-space SRG, the induced contributions will contribute to terms in Hs with lower
particle rank in successive integration steps. This will become clear in the following when deriving the m-scheme
flow equations. Obviously, it is not feasible to include contributions up to the A-body level, so that a definition
of a truncation scheme is required to close the set of IM-SRG flow equations. Due to the computational demands
associated with handling three-body operators, ηs and Hs are truncated to particle rank n = 2, leading to the
IM-SRG(2) approximation. Thus, for each flow parameter s we truncate Hs and ηs to

Hs ≈ E(s) + f (s) + Γ (s) , (6.192)

ηs ≈ η(1)(s) +η(2)(s) , (6.193)
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employing the NO2B approximation of the Hamiltonian introduced in Sec. 6.1. Inserting this into Eq. (6.185) leads
to

d(E(s) + f (s) + Γ (s))
ds

= [η(1)(s) +η(2)(s), E(s) + f (s) + Γ (s)] (6.194)

= [η(1)(s), f (s)] + [η(1)(s), Γ (s)] + [η(2)(s), f (s)] + [η(2)(s), Γ (s)] . (6.195)

The evaluation of the commutator for two general normal-ordered operators of rank M and N results in contribu-
tions of rank |M − N |, . . . , M + N − 1,

[A(M), B(N)] =
M+N−1
∑

k=|M−N |

C (k) . (6.196)

By employing this property we can evaluate the commutators in Eq. (6.195) to

[η(1)(s), f (s)] = [η(1)(s), f (s)](0) + [η(1)(s), f (s)](1) , (6.197)

[η(1)(s), Γ (s)] = [η(1)(s), Γ (s)](1) + [η(1)(s), Γ (s)](2) , (6.198)

[η(2)(s), f (s)] = [η(2)(s), f (s)](1) + [η(2)(s), f (s)](2) , (6.199)

[η(2)(s), Γ (s)] = [η(2)(s), Γ (s)](0) + [η(2)(s), Γ (s)](1) + [η(2)(s), Γ (s)](2) + [η(2)(s), Γ (s)](3)
︸ ︷︷ ︸

=0, due to IM-SRG(2)

, (6.200)

where the last term contributes to particle rank k = 3, which exceeds the truncation of the IM-SRG(2) approximati-
on. Since we do not distinguish hole and particle indices any longer, the contraction between two hole, Eq. (6.15),
and two particle, Eq. (6.16), states is modified, using the eigenbasis of the one-body density matrix, Eq. (6.187), to

a†
aab ≡ 〈Φ0| a†

aab |Φ0〉 ≡ ρba = nbδba , (6.201)

aaa†
b ≡ 〈Φ0| aaa†

b |Φ0〉= δab −ρab = (1− na)δab . (6.202)

Thus, the summation over Eq. (6.201) only contributes for hole (occupied) states, while the summation over
Eq. (6.202) only contributes for particle (unoccupied) states. Therefore, we can simplify the commutators by app-
lying the generalized Wick’s theorem, Eq. (6.13), to

[η(1)(s), f (s)](0) =
∑

a,b,p,s

ηab fps :a†
aaba†

pas : |Φ0〉 − fpsηab :a†
pasa

†
aab : |Φ0〉 (6.203)

=
∑

a,b,p,s

ηab fpsρsa(δbp −ρbp)− fpsηabρbp(δsa −ρsa) (6.204)

=
∑

a,b,p,s

ηab fpsρsaδbp −ηab fpsρsaρbp − fpsηabρbpδsa + fpsηabρbpρsa (6.205)

=
∑

a,b,p,s

ηab fpsnsδsaδbp − fpsηabnbδbpδsa (6.206)

=
∑

a,b

ηab fba(na − nb) , (6.207)
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[η(1)(s), f (s)](1) =
∑

a,b,p,s

ηab fps :a†
aaba†

pas : |Φ0〉 − fpsηab :a†
pasa

†
aab : |Φ0〉 +ηab fps :a†

aaba†
pas : |Φ0〉−

fpsηab :a†
pasa

†
aab : |Φ0〉 (6.208)

=
∑

a,b,p,s

ηab fpsρsa :aba†
p : |Φ0〉 − fpsηabρbp :asa

†
a : |Φ0〉 +ηab fps(δbp −ρbp) :a†

aas : |Φ0〉−

fpsηab(δsa −ρsa) :a†
pab : |Φ0〉 (6.209)

=
∑

a,b,p,s

ηab fpsδbp :a†
aas : |Φ0〉 − fpsηabδsa :a†

pab : |Φ0〉 (6.210)

=
∑

a,p,s

ηap fps :a†
aas : |Φ0〉 −

∑

b,p,s

fpsηsb :a†
pab : |Φ0〉 (6.211)

=
∑

a,p,s

ηpa fas :a†
pas : |Φ0〉 −

∑

a,p,s

fpaηas :a†
pas : |Φ0〉 (6.212)

=
∑

a,p,s

�

ηpa fas − fpaηas

�

:a†
pas : |Φ0〉 =

∑

a,p,s

(1+ Pps)ηpa fas :a†
pas : |Φ0〉 , (6.213)

where we used the permutation symbol Pps, which interchanges the attached indices in any expression except for
the normal-ordered operator string, i.e.,

Pps g(. . . , p, . . . , s)≡ g(. . . , s, . . . , p) . (6.214)

Evaluation of the remaining commutators and rearranging the results according to their particle rank leads to a
set of coupled ordinary differential equations (ODE) for E(s), f (s) and Γ (s)

dE
ds
=
∑

a,b

(na − nb)ηab fba +
1
2

∑

a,b,c,d

ηabcdΓcdabnanb n̄c n̄d , (6.215)

d fps

ds
=
∑

a

(1+ Pps)ηpa fas +
∑

a,b

(na − nb)(ηabΓbpas − fabηbpas)

+
1
2

∑

a,b,c

(nanb n̄c + n̄a n̄bnc)(1+ Pps)ηcpabΓabcs , (6.216)

dΓpqst

ds
=
∑

a

�

(1− Ppq)(ηpaΓaqst − fpaηaqst)− (1− Pst)(ηasΓpqat − fasηpqat)
	

+
1
2

∑

a,b

(1− na − nb)(ηpqabΓabst − Γpqabηabst)−
∑

a,b

(na − nb)(1− Ppq)(1− Pst)ηbqatΓapbs , (6.217)

with n̄a = 1− na, and the s-dependence suppressed for brevity. The ground-state energy is obtained by integrating
Eqs. (6.215)–(6.217) from s = 0 to s → ∞, with the initial condition at s = 0 given by the normal-ordered
Hamiltonian in Eqs. (6.188)–(6.190). To perform the integration we have to specify the generator η, which is
done in Sec. 6.4.2. While we here only discussed the m-scheme flow equations, it is numerically beneficial to use
J -scheme flow equations for systems with explicit spherical symmetry, e.g., for closed-shell nuclei. In this case
the rotational symmetry of the Hamiltonian is preserved and the flow equations are block-diagonal in angular
momentum and independent of the angular momentum projection.

6.4.2 Generators

The goal of a single-reference IM-SRG calculations is the extraction of the ground-state energy of a closed-shell
nucleus. By representing the starting Hamiltonian Hs=0 in terms of A-particle-A-hole (ApAh) excitations of the refe-
rence state |Φ0〉, employed to perform the normal ordering, we obtain a schematic representation shown in Fig. 6.9.
Here, we start from a two-body Hamiltonian. According to Slater-Condon rules, which simplify the calculation of
matrix elements 〈Φ′|ON |Φ〉 of N -body operators ON in an A-body Slater determinant basis to contributions for
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〈i|Hs=0 | j〉 〈i|Hs→∞ | j〉

0p0h 1p1h 2p2h 3p3h 0p0h 1p1h 2p2h 3p3h

0p
0h

1p
1h

2p
2h

3p
3h

0p
0h

1p
1h

2p
2h

3p
3h

Figure 6.9: Initial, Hs=0, and final, Hs→∞, nuclear many-body Hamiltonian at the two-body level, represented in
terms of particle-hole excitations of the reference state |Φ0〉. Taken from Ref. [14].

which bra 〈Φ′| and ket |Φ〉 differ in at most N orbitals. Thus, a two-body Hamiltonian can only connect npnh to
(n ± 2)p(n ± 2)h blocks. Thus, 0p0h-3p3h or 1p1h-4p4h blocks are zero. To obtain the ground-state energy we,
therefore, need to decouple the 0p0h block from 1p1h and 2p2h excitations

〈Φ0|H0 :a†
pah : |Φ0〉= fph , (6.218)

〈Φ0|H0 :a†
pa†

p′ah′ah : |Φ0〉= Γpp′hh′ , (6.219)

which define with their Hermitian conjugates the off-diagonal part of the Hamiltonian.

Hod
s =

∑

p,h

fph :a†
pah : |Φ0〉 +

1
4

∑

p,p′,h,h′
Γpp′hh′ :a†

pa†
p′ah′ah : |Φ0〉 + H.c. . (6.220)

Note that for a Hartree-Fock reference state the 0p0h-1p1h block of H0 is zero due to Brillouin’s theorem, stating
that

〈Φ0|H0 :a†
pah : |Φ0〉= 0 . (6.221)

This is due to the fact that the hole-particle fhp and particle-hole fph matrix elements have to vanish to fulfill the
stationary condition given in Eq. (6.176).

The virtue of the IM-SRG, similar to the free-space SRG, is its flexibility in choosing different generators to achie-
ve the decoupling. In the following we will discuss three standard choices for the generator and their decoupling
behavior.

The first choice for the generator ηs is similar to the form employed in the free-space SRG proposed by Weg-
ner [110]

ηs = [H
d
s , Hod

s ] . (6.222)

Inserting the definition of the off-diagonal Hamiltonian, Eq. (6.220), and evaluating the same commutators as for
the IM-SRG(2) flow equations, results in

ηph =
∑

a

(1− Pph) f
d
pa f od

ah +
∑

a,b

(na − nb)( f
d

abΓ
od
bpah − f od

ab Γ
d
bpah)

+
1
2

∑

a,b,c

(nanb n̄c + n̄a n̄bnc)(1− Pph)Γ
d
cpabΓ

od
abch , (6.223)

ηpp′hh′ =
∑

a

¦

(1− Ppp′)( f
d
paΓ

od
ap′hh′ − f od

pa Γ
d
ap′hh′)− (1− Phh′)( f

d
ahΓ

od
pp′ah′ − f od

ah Γ
d
pp′ah′)

©

+
1
2

∑

a,b

(1− na − nb)(Γ
d
pp′abΓ

od
abhh′ − Γ

od
pp′abΓ

d
abhh′)−

∑

a,b

(na − nb)(1− Ppp′)(1− Phh′)Γ
d
bp′ah′Γ

od
apbh . (6.224)
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These equations are identical to the flow equations, Eqs. (6.216)–(6.217), up to signs, which arise from the anti-
Hermiticity of the generator. There are two scenarios for the flow equation to reach a fixed point, i.e., ηs vanishes:
Hd

s and Hod
s can commute at finite s, or Hod

s → 0 for s→∞ as desired. Since off-diagonal matrix elements between
states with large energy differences are eliminated first

〈i|Hod
s | j〉 ≈ 〈i|H

od
s0
| j〉 e−(Ei−E j)2(s−s0) , s > s0 , (6.225)

the flow has a proper RG character. Furthermore, the non-existence of energy denominators, which might become
small as for the White generator discussed below, is useful. In numerical applications, however, the Wegner gene-
rator is less efficient than other choices. The construction of the generator is as expensive as the evaluation of the
flow equation, O (N6) in a single-particle basis of dimension N , and cubic terms in f or Γ on the right-hand side of
Eqs. (6.215)–(6.217) result in a stiff flow equation. Thus, the adequate ODE solvers for these flow equations have
higher memory demands due to the storage of several copies of the solution vector and need more intermediate
steps, leading to longer runtimes, than for non-stiff or weakly stiff cases.

The second choice for ηs is motivated by the work of White on canonical transformations in quantum che-
mistry [170]

ηA/B
s ≡

∑

p,h

fph

∆A/B
ph

:a†
pah : |Φ0〉 +

1
4

∑

p,p′,h,h′

Γpp′hh′

∆A/B
pp′hh′

:a†
pa†

p′ah′ah : |Φ0〉 − H.c. . (6.226)

Since f and Γ are part of the Hamiltonian and therefore Hermitian, the energy denominators have to induce a
sign change under transposition to fulfill the anti-Hermiticity of ηs. The superscripts A and B in the definition of
the White generator correspond to two different choices for the energy denominators. The Epstein-Nesbet case is
constructed from diagonal matrix elements of the Hamiltonian in particle-hole representation

∆A
ph ≡ fpp − fhh + (np − nh)Γphph = −∆A

hp , (6.227)

∆A
pp′hh′ ≡ fpp + fp′p′ − fhh − fh′h′ + (1− np − np′)Γpp′pp′ − (1− nh − nh′)Γhh′hh′

+ (np − nh)Γphph + (np′ − nh′)Γp′h′p′h′ + (np − nh′)Γph′ph′ + (np′ − nh)Γp′hp′h (6.228)

= −∆A
hh′pp′ . (6.229)

The Møller-Plesset case is defined as

∆B
ph ≡ fpp − fhh = −∆B

hp , (6.230)

∆B
pp′hh′ ≡ fpp + fp′p′ − fhh − fh′h′ = −∆B

hh′pp′ . (6.231)

The White generator equally suppresses all off-diagonal matrix elements

〈i|Hod
s | j〉 ≈ 〈i|H

od
s0
| j〉 e−(s−s0) , s > s0 , (6.232)

which does not lead to a proper RG flow. Since we are only interested in the limit s →∞, for which all unitary
transformations suppressing Hod are equivalent up to differences caused by the truncation of the IM-SRG flow
equation, the character of the RG flow is not considered further. In numerical applications it is beneficial that the
construction of the White generator scales like O (N2

h N2
p )with the number of holes (particles) Nh (Np). Furthermore,

since the generator is constructed from energy ratios, inserting it on the right-hand side of Eqs. (6.215)–(6.217)
preserves the linearity in f or Γ . This significantly decreases the stiffness of the flow equations compared to those for
the canonical Wegner generator and, therefore, also lowers the number of integration steps, required to solve the
IM-SRG flow equations. However, the drawback of the White generator are the energy denominators, which might
become small or even vanish. This can be tamed by employing an alternative ansatz, also inspired by White [170]

ηA/B
s ≡

1
2

∑

p,h

arctan
2 fph

∆A/B
ph

:a†
pah : |Φ0〉 +

1
8

∑

p,p′,h,h′
arctan

2Γpp′hh′

∆A/B
pp′hh′

:a†
pa†

p′ah′ah : |Φ0〉 − H.c. . (6.233)

Thus, the fractions in the generator ηs are regularized by the arctan function, and explicitly limited to the interval
]− π

2 , π2 [. The initial ansatz for the White generator, Eq. (6.226), is recovered when expanding the arctan function
for small arguments.
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The third choice for the generator is inspired by imaginary-time evolution techniques, used in quantum Monte
Carlo methods, and is defined as

ηA/B
s ≡

∑

p,h

sgn
�

∆A/B
ph

�

fph :a†
pah : |Φ0〉 +

1
4

∑

p,p′,h,h′
sgn

�

∆A/B
pp′hh′

�

Γpp′hh′ :a†
pa†

p′ah′ah : |Φ0〉 −H.c. , (6.234)

employing again two different choices for ∆. Here, the use of fractions, and thereby small or vanishing energy
denominators, is explicitly avoided, while the sign functions are needed to ensure that off-diagonal matrix elements
are suppressed instead of enhanced during the flow. Inserting the imaginary-time generator into the right-hand
side of the IM-SRG(2) flow equations, Eqs. (6.215)–(6.217), leads to quadratic terms in f or Γ , resulting in a mild
increase in the stiffness compared to the use of the White generator. The effort for the construction of the imaginary-
time generator scales like O (N2

h N2
p ), which is identical to the White generator. The imaginary-time generator,

however, generates a proper RG flow, linearly suppressing off-diagonal matrix elements between states with large
energy differences first

〈i|Hod
s | j〉 ≈ 〈i|H

od
s0
| j〉 e−|Ei−E j |(s−s0) , s > s0 . (6.235)

6.4.3 General observables and Magnus formulation

So far, our discussion was focused on the evolution of the Hamiltonian to obtain the ground-state energy of a
closed-shell nucleus. For the evaluation of other observables we have to normal order the operator Os with respect
to the same reference state |Φ0〉, used for the Hamiltonian, and evaluate the flow equation

dOs

ds
= [ηs, Os] , (6.236)

with the same generator ηs as in the flow equation of the Hamiltonian. The flow equation for other observables is
also truncated at the two-body level to be consistent with the IM-SRG(2) truncation scheme. Thus, we obtain a full
set of flow-equations for every other observable, that has to be evolved alongside with the Hamiltonian, leading
to a considerable increase in memory demands when being interested in several observables. In addition, each
operator may have a different decay pattern compared to the Hamiltonian, leading to ODEs becoming stiff.

In contrast to the free-space SRG, where the unitary transformation is recovered from the eigenvectors of the
unevolved and evolved Hamiltonians, Eq. (3.17), in the two- or three-body system, the exact diagonalization of the
Hamiltonian for the A-body problem is prohibited by the computational cost, increasing factorially with the size of
the single-particle basis. The use of large-scale no-core shell model calculations is also not valuable because only
the lowest eigenstates are obtained via Lanczos methods.

An alternative approach, also suggested for the free-space SRG, is the evolution of the unitary transformation Us
itself

dUs

ds
= ηsUs , (6.237)

with the initial condition Us=0 = 1. Magnus [171] proposed, however, to write the unknown operators Us as a
matrix exponential

Us = eΩs , (6.238)

with the anti-Hermitian operatorΩs, i.e.,Ω†
s = −Ωs, and the initial conditionΩs=0 = 0. The formally exact derivative

yields

dΩs

ds
=
∞
∑

k=0

Bk

k!
adk
Ωs
(ηs) , (6.239)

where Bk denotes the Bernoulli numbers and adk
Ωs
(ηs) the recursively defined nested commutators

ad0
Ωs
(ηs) = ηs , (6.240)

adk
Ωs
(ηs) = [Ωs, adk−1

Ωs
(ηs)] , k ≥ 1 . (6.241)
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Integration of Eq. (6.239) by Picard iteration leads to an infinite series for Ωs, the so-called Magnus series,

Ωs =
∞
∑

n=1

Ωs,n . (6.242)

To determine the formulas for the first terms in the series we introduce some parameter ε. ηs is linear in ε, while
Ωs,n is supposed to be of order εn, leading to

Ωs =
∞
∑

n=1

εnΩs,n . (6.243)

Obviously, the Magnus series, Eq. (6.242), is recovered by taking ε= 1. Inserting the modified series in Eq. (6.239)
results in

d
�

εΩs,1 + ε2Ωs,2 + . . .
�

ds
= εηs −

1
2
[εΩs,1 + ε

2Ωs,2 + . . .,εηs]

+
1
12
[εΩs,1 + ε

2Ωs,2 + . . ., [εΩs,1 + ε
2Ωs,2 + . . .,εηs]] + . . . , (6.244)

and equating powers of ε leads to the first three terms

dΩs,1

ds
= ηs , (6.245)

dΩs,2

ds
= −

1
2
[Ωs,1,ηs] , (6.246)

dΩs,3

ds
= −

1
2
[Ωs,2,ηs] +

1
12
[Ωs,1, [Ωs,1,ηs]] . (6.247)

The final result after integration reads

Ωs,1 =

∫ s

0

ds1ηs1
, (6.248)

Ωs,2 =
1
2

∫ s

0

ds1

∫ s1

0

ds2[ηs1
,ηs2
] , (6.249)

Ωs,3 =
1
6

∫ s

0

ds1

∫ s1

0

ds2

∫ s2

0

ds3

�

[ηs1
, [ηs2

,ηs3
]] + [[ηs1

,ηs2
],ηs3

]
	

. (6.250)

For more mathematical details and some applications of the Magnus expansion we refer to Ref. [172].
An improved formulation of the IM-SRG, utilizing the Magnus expansion, was presented in Ref. [143]. The

virtue of the Magnus expansion is due to the fact that, even if Ωs is truncated to low-orders in ηs, the resulting
transformation in Eq. (6.238) using the approximate Ωs is unitary. This also results in a computational advantage
of the Magnus formulation. The flow equations for Ωs, Eq. (6.239), can be solved numerically using a simple
first-order Euler step method and, although sizable time-step errors accumulate in Ωs with a first-order method,
upon exponentiation the transformation, Eq. (6.238), is still unitary. The use of a first-order Euler step method
leads to substantial memory savings, while in the conventional integration of the flow equations time-step errors
accumulate directly in the evolved Hs, requiring the use of a high-order solver to sustain an acceptable level of
accuracy.

Having determined the unitary transformation, Eq. (6.238), the Hamiltonian and any other operator of interest
can be transformed by applying the Baker-Campbell-Hausdorff (BCH) formula,

Hs = eΩs H0 e−Ωs =
∞
∑

k=0

1
k!

adk
Ωs
(H0) , (6.251)

Os = eΩs O0 e−Ωs =
∞
∑

k=0

1
k!

adk
Ωs
(O0) . (6.252)
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Since Eq. (6.251) and Eq. (6.252) consist of an infinite-order series of nested commutators, generating up to A-
body operators, a truncation scheme has to be introduced. In the Magnus(2) truncation Hs, Os, ηs and Ωs as well
as all commutators are truncated at the NO2B level. Even in this scheme, expressions for dΩs

ds , Eq. (6.239), and Hs
or Os, Eq. (6.251) or Eq. (6.252), consist of an infinite number of terms. Truncating Eq. (6.251) at the N -th term
leads to

Hs =
N
∑

k=0

1
k!

adk
Ωs
(H0) +

∞
∑

k=N+1

1
k!

adk
Ωs
(H0) , (6.253)

defining the remainder of the series to be

δHN ≡
∞
∑

k=N+1

1
k!

adk
Ωs
(H0) . (6.254)

Since we are interested in the size of δHN we take the norm

‖δHN‖=
∞
∑

k=N+1

1
k!
‖adk

Ωs
(H0)‖ , (6.255)

and estimate the upper bound on the size of the nested commutator by

‖adk
Ωs
(H0)‖ ≤ 2‖Ωs‖ · ‖adk−1

Ωs
(H0)‖ . (6.256)

Inserting this into the expression for the error we obtain

‖δHN‖ ≤
∞
∑

k=N+1

1
k!
(2‖Ωs‖)k−N‖adN

Ωs
(H0)‖ (6.257)

=
‖adN

Ωs
(H0)‖

(2‖Ωs‖)N

∞
∑

k=N+1

1
k!
(2‖Ωs‖)k . (6.258)

In the last line we can identify the remainder for the Taylor expansion of e2‖Ωs‖. Inserting the Lagrange form of the
remainder gives

‖δHN‖ ≤
‖adN

Ωs
(H0)‖

(2‖Ωs‖)N
e2‖Ωs‖

(N + 1)!
(2‖Ωs‖)N+1 (6.259)

= ‖adN
Ωs
(H0)‖

e2‖Ωs‖

(N + 1)!
2‖Ωs‖ . (6.260)

By introducing a threshold εth such that ‖δHN‖ ≤ εth‖H0‖ we arrive at the convergence criterion

‖adN
Ωs
(H0)‖ ≤ e−2‖Ωs‖ εth‖H0‖

2‖Ωs‖
(N + 1)! , (6.261)

i.e., when the norm of the N -th nested commutator is below the convergence criterion the evaluation of the BCH
expansion terminates.

6.5 Coupled-cluster method

The Coupled-Cluster Method was developed by Coester [173] and Coester and Kümmel [174] in the late 1950s
and was originally denoted exp (S)-Method. While it became a widely used method in quantum chemistry, it was
only scarcely used in nuclear theory, e.g., Kümmel et al. computed nuclear matter and the doubly-magic nuclei
4He, 16O, and 40Ca using a formulation particularly suited to deal with the hard core of local NN interactions.
Their calculations also revealed the relevance of 3N forces as stated in their review [175]. However, with the
advent of chiral EFT and RG-evolved nuclear interactions CC theory has seen a renaissance, starting more than a
decade ago [176]. Similar to the IM-SRG approach CC calculations do not obey the variational principle, however
they are size extensive and exhibit a polynomial scaling in the model space size. In Sec. 6.5.1 we will discuss the
basic concepts and derive the Coupled-Cluster equations for ground-state calculations of closed-shell nuclei. The
extension to excited states of closed-shell nuclei as well as ground and excited states of A± 1 and A+ 2 [142]
systems near closed-sub shells by EOM techniques is introduced in Sec. 6.5.2. Since we are also interested in
other observables, e.g., charge radii, we explain how these are obtained in Sec. 6.5.3. Our discussion follows the
review [13] and Ref. [177], as well as references therein.
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6.5.1 Coupled-cluster theory for closed-shell nuclei

The Coupled-Cluster Method employs, similar to the IM-SRG, an uncorrelated reference state |Φ0〉 for the A-nucleon
system, either obtained by naive filling of the HO orbitals or by a HF calculation. The exponential ansatz for the
correlated CC wave function is given by

|ΨA〉= eT |Φ0〉 , (6.262)

with the cluster operator T = T1 + T2 + T3 + . . .+ TA. The different ranks k of the cluster operator correspond to
different particle-hole (ph) excitation levels of the reference state

T1 =
1
(1!)2

∑

i,a

ta
i :a†

aai : |Φ0〉 , (6.263)

T2 =
1
(2!)2

∑

i, j,a,b

tab
i j :a†

aa†
ba jai : |Φ0〉 , (6.264)

...

Tk =
1
(k!)2

∑

i1,...,ik
a1,...,ak

ta1...ak
i1...ik

:a†
a1
· · · a†

ak
aik · · · ai1 : |Φ0〉 , (6.265)

where i, j, k, . . . denote hole and a, b, c, . . . particle states and the undetermined cluster amplitudes are given by

t =
�

�

ta
i

	

,
¦

tab
i j

©

, . . . ,
¦

ta1...ak
i1...ik

©�

. (6.266)

These are defined to be antisymmetric in hole and separately in particle indices,

tP
′(a1...ak)

P (i1...ik)
= (−1)sgn (P )+sgn (P ′) ta1...ak

i1...ik
, (6.267)

with the permutation operators P , P ′ and the corresponding signs of the permutation sgn (P ), sgn (P ′).
Neglecting the residual three-body term in the normal-ordered Hamiltonian, Eq. (6.186), the eigenvalue problem

for the A-nucleon system in NO2B approximation is written as

H |ΨA〉= E |ΨA〉 . (6.268)

However, in CC theory the ground-state energy is split into the energy of the reference state Eref and the correlation
energy ∆E, given by

∆E = E − Eref . (6.269)

Thus, we can rewrite the eigenvalue problem in terms of the Hamiltonian HN = FN + VN , consisting of the normal-
ordered one-body Fock operator FN and the normal-ordered two-body interaction operator VN , to

HN |ΨA〉= (H − Eref) |ΨA〉=∆E |ΨA〉 . (6.270)

Multiplication with e−T and insertion of the exponential ansatz, Eq. (6.262), result in

e−T HN |ΨA〉= e−T HN eT |Φ0〉 ≡ H |Φ0〉= e−T∆EeT |Φ0〉=∆E |Φ0〉 , (6.271)

where we introduced the similarity-transformed Hamiltonian H. Note that the cluster operator T is not anti-
Hermitian, i.e., T † 6= −T . While T and −T both correspond to excitations, T † describes de-excitations. Thus,
the transformation U = eT is not unitary and consequently the similarity-transformed Hamiltonian H = U−1HN U
is not Hermitian. Nevertheless, the spectrum of the original Hamiltonian is unchanged. Due to the non-Hermiticity
of H the expression for the energy

〈Φ0| e−T HN eT |Φ0〉=∆E (6.272)

is asymmetric.
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Instead of solving the eigenvalue problem for the similarity-transformed Hamiltonian H CC theory can also be
seen from a bi-variational perspective, minimizing the energy functional

E(T,Λ)≡ 〈Φ0| (1+Λ)e−T HN eT |Φ0〉= 〈Φ0| (1+Λ)H |Φ0〉 , (6.273)

with respect to T and Λ. The different ranks k of the de-excitation operator Λ = Λ1 + Λ2 + . . . + ΛA describe the
different ph de-excitation levels

Λ1 =
1
(1!)2

∑

i,a

λi
a :a†

i aa : |Φ0〉 , (6.274)

Λ2 =
1
(2!)2

∑

i, j,a,b

λ
i j
ab :a†

i a†
j abaa : |Φ0〉 , (6.275)

...

Λk =
1
(k!)2

∑

i1,...,ik
a1,...,ak

λi1...ik
a1...ak

:a†
i1
· · · a†

ik
aak
· · · aa1

: |Φ0〉 . (6.276)

The variation of the energy functional can be understood as an independent variation of the bra state 〈eΨA| =
〈Φ0|(1+Λ)e−T and the ket state |ΨA〉= eT |Φ0〉, which fulfill the biorthonormality condition

〈eΨA|ΨA〉= 〈Φ0| (1+Λ)e−T eT |Φ0〉= 〈Φ0|Φ0〉= 1 , (6.277)

since Λk |Φ0〉= 0 for k ≥ 1.
Since it is not possible to include all cluster ranks up to the ApAh level, the cluster operator is usually truncated

at some rank M leading to

T (M) =
M
∑

i=1

Ti . (6.278)

By expanding the exponential in Eq. (6.262) in a Taylor series

|ΨA〉= eT |Φ0〉= |Φ0〉+ T1 |Φ0〉+
�

1
2!

T 2
1 + T2

�

|Φ0〉+
�

1
3!

T 3
1 + T1T2 + T3

�

|Φ0〉+ . . . (6.279)

it is, however, obvious that higher-order excitations are generated from products of the included cluster operators.
Terms of the form Tm |Φ0〉 in the expansion above are called connected clusters, while terms involving products
of cluster operators, such as T 2

1 or T1T2, are called disconnected clusters. The similarity-transformed Schrödinger
equation for the exact case, Eq. (6.271), is modified for a truncated CC method to

H
(M)
|Φ〉= e−T (M)HN eT (M) |Φ〉=∆E(M) |Φ〉 , (6.280)

where we introduced |Φ〉 = |Φ0〉 for brevity. The coupled set of equations for the determination of the cluster
amplitudes

t(M) =
�

�

ta
i

	

,
¦

tab
i j

©

, . . . ,
¦

ta1...aM
i1...iM

©�

(6.281)

is obtained by left-projecting Eq. (6.280) onto excited bra states
¦

�

〈Φa
i |
	

,
¦

〈Φab
i j |
©

, . . . ,
¦

〈Φa1...aM
i1...iM

|
©©

, i.e.,

〈Φ|H
(M)
|Φ〉=∆E(M) (6.282)

〈Φa
i |H

(M)
|Φ〉= 0 ∀ i, a , (6.283)

〈Φab
i j |H

(M)
|Φ〉= 0 ∀ i, j, a, b , (6.284)

...

〈Φa1...aM
i1...iM

|H
(M)
|Φ〉= 0 ∀ i1, . . . , iM , a1, . . . , aM . (6.285)
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An equivalent way for obtaining this set of algebraic equations is by also truncating the de-excitation operator
Λ(M) =

∑M
i=1Λi at the same rank M as the cluster operator T (M) and then vary the energy functional, Eq. (6.273),

with respect to Λ(M).

For the computation of the similarity-transformed Hamiltonian H
(M)

the BCH expansion, also used in Eq. (6.251),
can be employed

H
(M)
=
∞
∑

k=0

1
k!

adk
−T (M)

(HN ) . (6.286)

Since the individual terms of T (M) commute with themselves, the commutators in Eq. (6.286) ensure that each T (M)

connects to the similarity-transformed Hamiltonian HN by at least one contraction. Since we are working in NO2B
approximation the BCH expansion terminates at fourfold nested commutators (kmax = 4), while for a three-body
Hamiltonian up to sixfold nested commutators (kmax = 6) are possible. Thus, the similarity transformation can be
evaluated exactly and the commutator expansion can be simplified even further to

H
(M)
=
�

HN eT (M)
�

C
, (6.287)

with the subscript C denoting connected terms, that have at least one contraction between the similarity-
transformed Hamiltonian HN and each T (M).

Before specifying the maximum rank M of the cluster operator a few comments are in order: For CC calculations
in the HF basis the lowest order contribution to the cluster operator T1, called singles, and the corresponding
amplitudes

�

ta
i

	

have small absolute values. This can be understood by Brillouin’s theorem, given in Eq. (6.221),
stating that in the HF basis the Hamiltonian does not connect the HF state to its 1p1h excitations. In general, CC
calculations including singles are relatively insensitive to the choice of |Φ〉 and the single-particle orbitals, i.e.,
using HF or non-HF Slater determinants as input should yield the same results up to numerical effects. This can
be understood from Thouless’ theorem [178], stating that any two Slater determinants |ΦA〉, |ΦB〉 that are non-
orthogonal and therefore have non-vanishing overlap can be, up to a normalization constant and a phase factor,
related by a similarity transformation

|ΦB〉 ∼ exp

�

∑

i,a

ta
i :a†

aai : |ΦA〉

�

|ΦA〉 ≡ eT1 |ΦA〉 . (6.288)

Due to the exponential ansatz for the correlated wave function, Eq. (6.262), Thouless’ theorem is directly incorpo-
rated in the CC formalism. The next two terms beyond singles T2 and T3, called doubles and triples, give important
contributions and are dominating compared to terms such as T 2

1 or T1T2. Higher-order cluster operators T4 or T5
should become less relevant than T2 and T3, since they describe a simultaneous correlation of four or five nucleons.

In the following we will assume M = 2

T (CCSD) = T1 + T2 , (6.289)

leading to CC calculations including singles and doubles, abbreviated by CCSD. By expanding the exponential
function in Eq. (6.287) into a Taylor series, the energy and amplitude equations are given by

〈Φ|
�

HN (T1 + T2 +
1
2!

T 2
1 )
�

C
|Φ〉=∆E(CCSD) (6.290)

〈Φa
i |
�

HN (1+ T1 + T2 +
1
2!

T 2
1 + T1T2 +

1
3!

T 3
1 )
�

C
|Φ〉=0 ∀ i, a , (6.291)

〈Φab
i j |
�

HN (1+ T1 + T2 +
1
2!

T 2
1 + T1T2 +

1
3!

T 3
1 +

1
2!

T 2
1 T2 +

1
2!

T 2
2 +

1
3!

T 4
1 )
�

C
|Φ〉=0 ∀ i, j, a, b . (6.292)

Note that cluster operator products with excitation ranks being too high for the Hamiltonian HN to de-excite
the resulting determinants to the states the equations are projected on have been left out. The evaluation of
Eqs. (6.290)–(6.292) in terms of matrix elements of HN and Tk is usually accomplished by diagrammatic techni-
ques [177]. The amplitude equations are usually converted into a fixed-point problem and solved iteratively. The
correlation energy, Eq. (6.290), is then obtained by inserting the results for the cluster amplitudes

�

�

ta
i

	

,
¦

tab
i j

©�

. It
is notably that in case of a two-body Hamiltonian the algebraic form of the energy equation is valid for all closed-
shell coupled-cluster truncations, e.g., CCSDT, CSSDTQ, . . ., since it only ever depends on the singles and doubles
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〈i|H | j〉 〈i|H IM−SRG(2)
s→∞ | j〉 〈i|H

(CCSD)
| j〉

0p0h 1p1h 2p2h 3p3h 0p0h 1p1h 2p2h 3p3h 0p0h 1p1h 2p2h 3p3h
0p

0h
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1h
2p

2h
3p

3h

Figure 6.10: Comparison of the initial, H, the IM-SRG(2)-decoupled, H IM−SRG(2)
s→∞ , and the CCSD similarity-

transformed, H
(CCSD)

, nuclear many-body Hamiltonian at the two-body level, represented in terms of
particle-hole excitations of the reference state |Φ〉. Taken from Ref. [14].

amplitudes. This is due to the fact that no closed diagrams can be constructed from a two-body Hamiltonian and
cluster operators beyond T2. Of course, the correlation energy depends implicitly on the T3, T4, . . . amplitudes
through the solution of the amplitude equations. In summary, the CCSD equations demand that the reference state
|Φ〉 is an eigenstate of the similarity-transformed Hamiltonian in the space of all 1p1h and 2p2h excited states,
shown in the right panel of Fig. 6.10.

Moreover, having determined the cluster amplitudes it is possible to explicitly construct the similarity-
transformed Hamiltonian

H
(CCSD)

= e−T (CCSD)
HN eT (CCSD)

(6.293)

by evaluating Eq. (6.286) up to fourfold commutators in case HN contains at most a two-body interaction. Thus,

the similarity-transformed Hamiltonian H
(CCSD)

will contain up to six-body operator terms,

H
(CCSD)

= H0 +H1 +H2 +H3 +H4 +H5 +H6 (6.294)

≡ H0 +H
(CCSD)
open , (6.295)

where we separated closed diagrams, denoted H0, from diagrams with open Fermion lines, labeled H
(CCSD)
open . Clearly,

the closed diagrams H0, that have no external lines, are equal to the correlation energy in Eq. (6.290), while open

diagrams H
(CCSD)
open enter in the amplitude equations Eqs. (6.291)–(6.292).

In addition to the CCSD equations we briefly discuss the Λ-CCSD equations, which are an important ingredient
for an approximative inclusion of triples in the Λ-CCSD(T) approach and in the calculation of observables other
than the energy. The Λ-CCSD equations are obtained from the left-eigenvalue problem

〈Φ|(1+Λ1 +Λ2)H
(CCSD)

=∆E(CCSD) 〈Φ|(1+Λ1 +Λ2) , (6.296)

which can be cast into an energy-independent form by using the distinction of the similarity transformed Hamilto-

nian into diagrams with, H
(CCSD)
open , and without, H0 =∆E(CCSD), external Fermion lines, leading to

〈Φ|(1+Λ1 +Λ2)H
(CCSD)
open = 0 . (6.297)

By right-projecting Eq. (6.297) onto excited ket states
¦

�

|Φa
i 〉
	

,
¦

|Φab
i j 〉
©©

we arrive at a system of linear equations

〈Φ| (1+Λ1 +Λ2)H
(CCSD)
open |Φa

i 〉=0 ∀ i, a , (6.298)

〈Φ| (1+Λ1 +Λ2)H
(CCSD)
open |Φab

i j 〉=0 ∀ i, j, a, b . (6.299)
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This is in contrast to the T amplitude equations, which are nonlinear. Still the corresponding set of algebraic Λ
equations is solved iteratively for

�

�

λi
a

	

,
¦

λ
i j
ab

©�

, because of the sets’ size.
Since the inclusion of full triples, denoted CCSDT (M = 3), is usually computationally too expensive for all but

the lightest nuclei, triples corrections are taken into account perturbatively. While there are several approaches we
focus on the Λ-CCSD(T) non-iterative energy correction [179]. The corrected total energy is given by

E(Λ−CCSD(T)) = Eref +∆E(CCSD) +δE(Λ−CCSD(T)) , (6.300)

with the Λ-CCSD(T) energy correction of the form

δE(Λ−CCSD(T)) =
1
(3!)2

∑

i jkabc

〈Φ|Λ
�

Fod
N + VN

�

|Φabc
i jk 〉

1

εabc
i jk

〈Φabc
i jk | (VN T2)C |Φ〉 . (6.301)

Here, Fod
N is the off-diagonal part of the normal-ordered Fock operator FN , which vanishes in the Hartree-Fock basis

since FN is diagonal, while |Φabc
i jk 〉 is a 3p3h excitation of the reference |Φ〉, and εabc

i jk is given by diagonal matrix
elements of the Fock operator

εabc
i jk = fii + f j j + fkk − faa − fbb − fcc . (6.302)

Before introducing EOM techniques a comment on the numerical efficiency of CC calculations is in order. The m-
scheme formulation of Coupled-Cluster theory, discussed so far, allowed CCSD computations using low-momentum
NN interactions for, e.g., 40Ca in a single-particle basis of up to 9 major harmonic oscillator shells [180]. Similarly
to IM-SRG calculations it is beneficial to exploit spherical symmetry when one is interested in closed-shell nuclei.
In this case the cluster operator is a rank-zero spherical tensor operator and, consequently, already the first CCSD
implementation was able to perform calculations for 40,48Ca and 48Ni in a single-particle basis of up to 15 major
harmonic oscillator shells, starting from unevolved chiral NN forces [181]. The CCSD amplitude equations can be
solved at the cost O (N2

h N4
p ), where the number of hole states Nh is typically much smaller than the number of

particle states Np, while the construction of the CCSD effective Hamiltonian from the amplitudes requires O (N6)
in a single-particle basis of dimension N .

6.5.2 Equation-of-motion techniques

In addition to ground-state wave functions and energies also excited states of closed-shell nuclei can be accessed
within CC theory by employing EOM techniques, abbreviated by excitation energy EOM (EE-EOM) in quantum
chemistry [182]. Excited states |ΨA

µ〉 (µ > 0) of the A-particle system are obtained by applying the linear excitation
operator RA

µ to the correlated CC ground-state wave function |ΨA〉

|ΨA
µ〉= RA

µ |Ψ
A〉= RA

µeT |Φ0〉 . (6.303)

The excitation operator RA
µ for the calculation of excited states in closed-shell nuclei takes the form

RA
µ =

�

rµ
�

0 +
∑

i,a

�

rµ
�a

i :a†
aai : |Φ0〉 +

1
4

∑

i, j,a,b

�

rµ
�ab

i j :a†
aa†

ba jai : |Φ0〉 + . . . , (6.304)

generating 1p1h, 2p2h, 3p3h, . . . excitations on the ground state of the A-nucleon system. The constant term
�

rµ
�

0
is required for the description of excited states of the same symmetry as the ground state. If the two states have
different symmetry then

�

rµ
�

0 = 0.
Moreover, ground and excited states |ΨA±k

µ 〉 (µ≥ 0) of the A± k-particle (k > 0) system are calculated by acting

with the particle-attaching/particle-removing (PA/PR) operator RA±k
µ on the ground state of the closed-shell nucleus

|ΨA±k
µ 〉= RA±k

µ |ΨA〉= RA±k
µ eT |Φ0〉 . (6.305)

Note that RA±k
µ is a particle number non-conserving operator. For k = 1 the PA and PR operator RA±1

µ are given by

RA+1
µ =

∑

a

�

rµ
�a

a†
a +

1
2

∑

i,a,b

�

rµ
�ab

i :a†
aa†

bai : |Φ0〉 + . . . , (6.306)

RA−1
µ =

∑

i

�

rµ
�

i ai +
1
2

∑

i, j,a

�

rµ
�a

i j :a†
aa jai : |Φ0〉 + . . . . (6.307)
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Thus, the PA(PR)-EOM-CC method adds (removes) a particle to (from) a closed-shell nucleus with A nucleons by
creating 1p, 2p1h, 3p2h, . . . (1h, 1p2h, 2p3h, . . .) excitations on the ground state of the A-body system. The two
particle-attaching operator takes the form

RA+2
µ =

1
2

∑

a,b

�

rµ
�ab

:a†
aa†

b : |Φ0〉 +
1
6

∑

i,a,b,c

�

rµ
�abc

i :a†
aa†

ba†
c ai : |Φ0〉 + . . . (6.308)

for states in the A+ 2-nucleus. The corresponding EOM formulations in quantum chemistry are denoted electron
attachment (EA-EOM) and ionization potential (IP-EOM).

While the discussion above was general we restrict the following to EOM-CCSD, truncated at singles and doubles.
In this case the excitation operator is truncated at the 2p2h level

RA, (CCSD)
µ =

�

rµ
�

0 +
∑

i,a

�

rµ
�a

i :a†
aai : |Φ〉 +

1
4

∑

i, j,a,b

�

rµ
�ab

i j :a†
aa†

ba jai : |Φ〉 , (6.309)

and generates excited states by acting on the CCSD ground state

|ΨA, (CCSD)
µ 〉= RA, (CCSD)

µ |ΨA, (CCSD)〉= RA, (CCSD)
µ eT (CCSD)

|Φ〉 , (6.310)

where we again use |Φ〉 = |Φ0〉 for brevity. The corresponding Schrödinger equation for excited states |ΨA, (CCSD)
µ 〉

reads

HN RA, (CCSD)
µ eT (CCSD)

|Φ〉=∆EA, (CCSD)
µ RA, (CCSD)

µ eT (CCSD)
|Φ〉 , (6.311)

with the correlation energy of excited states ∆EA, (CCSD)
µ . Since T (CCSD) and RA, (CCSD)

µ commute, it can be rewritten,

in analogy to the ground-state calculation, in terms of the similarity transformed Hamiltonian H
(CCSD)

to

H
(CCSD)

RA, (CCSD)
µ |Φ〉=∆EA, (CCSD)

µ RA, (CCSD)
µ |Φ〉 . (6.312)

By multiplying the ground-state Schrödinger equation H
(CCSD)

|Φ〉 = ∆E(CCSD) |Φ〉 from the left with RA, (CCSD)
µ and

subtracting it from Eq. (6.312) results in

[H
(CCSD)

, RA, (CCSD)
µ ] |Φ〉=ωA, (CCSD)

µ RA, (CCSD)
µ |Φ〉 , (6.313)

with the excitation energy relative to the ground state

ωA, (CCSD)
µ =∆EA, (CCSD)

µ −∆E(CCSD) . (6.314)

Employing that the similarity transformed Hamiltonian H
(CCSD)

consists of a part without, H0 =∆E(CCSD), and with

open Fermion lines, H
(CCSD)
open , the commutator [H0, RA, (CCSD)

µ ] vanishes and the EOM-CCSD eigenvalue problem can
be further simplified to

�

H
(CCSD)
open RA, (CCSD)

µ

�

C
|Φ〉=ωA, (CCSD)

µ RA, (CCSD)
µ |Φ〉 . (6.315)

By left-projecting Eq. (6.315) onto excited bra states
¦

�

〈Φa
i |
	

,
¦

〈Φab
i j |
©©

we arrive at a set of equations for the

amplitudes
�

��

rµ
�a

i

	

,
¦

�

rµ
�abc

i

©�

〈Φa
i |
�

H
(CCSD)
open RA, (CCSD)

µ

�

C
|Φ〉=ωA, (CCSD)

µ

�

rµ
�a

i ∀ i, a , (6.316)

〈Φab
i j |
�

H
(CCSD)
open RA, (CCSD)

µ

�

C
|Φ〉=ωA, (CCSD)

µ

�

rµ
�ab

i j ∀ i, j, a, b . (6.317)

The constant amplitudes
��

rµ
�

0

	

are determined from the solution of Eqs. (6.316)–(6.317) by calculating

〈Φ|
�

H
(CCSD)
open RA, (CCSD)

µ

�

C
|Φ〉=ωA, (CCSD)

µ

�

rµ
�

0 . (6.318)
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Excited bra states 〈eΨA, (CCSD)
µ | can be parametrized by the ansatz

〈eΨA, (CCSD)
µ |= 〈Φ|LA, (CCSD)

µ e−T (CCSD)
, (6.319)

using the truncated de-excitation operator

LA, (CCSD)
µ =

�

lµ
�

0 +
∑

i,a

�

lµ
�i

a a†
i aa +

1
4

∑

i, j,a,b

�

lµ
�i j

ab a†
i a†

j abaa . (6.320)

The corresponding Schrödinger equation for 〈ΨA, (CCSD)
µ | is given by

〈Φ|LA, (CCSD)
µ e−T (CCSD)

HN =∆EA, (CCSD)
µ 〈Φ|LA, (CCSD)

µ e−T (CCSD)
, (6.321)

which can be reformulated in terms of the similarity transformed Hamiltonian

〈Φ|LA, (CCSD)
µ H

(CCSD)
=∆EA, (CCSD)

µ 〈Φ|LA, (CCSD)
µ . (6.322)

The left eingenvalue problem can, similarly to the right one, directly provide the excitation energy ωA, (CCSD)
µ by

employing the distinction in a part without, H0 =∆E(CCSD), and with open Fermion lines, H
(CCSD)
open , resulting in

〈Φ|LA, (CCSD)
µ H

(CCSD)
open =ωA, (CCSD)

µ 〈Φ|LA, (CCSD)
µ . (6.323)

A system of equations to determine
�

�

(lµ)ia
	

,
¦

(lµ)
i j
ab

©�

is obtained by right-projecting Eq. (6.323) onto excited ket

states
¦

�

|Φa
i 〉
	

,
¦

|Φab
i j 〉
©©

, leading to

〈Φ| LA, (CCSD)
µ H

(CCSD)
open |Φa

i 〉=ω
A, (CCSD)
µ (lµ)

i
a ∀ i, a , (6.324)

〈Φ| LA, (CCSD)
µ H

(CCSD)
open |Φab

i j 〉=ω
A, (CCSD)
µ (lµ)

i j
ab ∀ i, j, a, b . (6.325)

For the determination of
�

(lµ)0
	

we come back to the biorthogonality relation already discussed for the ground
state. By solving the left and right eigenvalue problem for excited states we have obtained two sets of normalized
eigenvectors

r A, (CCSD)
µ =

�

�

(rµ)0
	

,
�

(rµ)
a
i

	

,
¦

(rµ)
ab
i j

©�T
, (6.326)

lA, (CCSD)
µ =

�

�

(lµ)0
	

,
�

(lµ)
i
a

	

,
¦

(lµ)
i j
ab

©�

, (6.327)

which have the same eigenvalues, but are otherwise distinct. They are not orthogonal among themselves, but fulfill
a biorthogonality relation

lA, (CCSD)
µ · r A, (CCSD)

ν = δµν , (6.328)

or, in terms of operators

〈eΨA, (CCSD)
µ |ΨA, (CCSD)

ν 〉= 〈Φ| LA, (CCSD)
µ e−T (CCSD)

RA, (CCSD)
ν eT (CCSD)

|Φ〉= 〈Φ| LA, (CCSD)
µ RA, (CCSD)

ν |Φ〉= δµν , (6.329)

for which the originally normalized left eigenvector lA, (CCSD)
µ is rescaled by

lA, (CCSD)
µ →

1

lA, (CCSD)
µ · r A, (CCSD)

µ

lA, (CCSD)
µ . (6.330)

The choice of scaling the left eigenvector is made to retain consistency with the treatment of the ground state [182],
for which RA, (CCSD)

0 = 1 and LA, (CCSD)
0 = 1+Λ1 +Λ2 and the corresponding sets of eigenvectors are

r A, (CCSD)
0 = (1, {0} , {0})T , (6.331)

lA, (CCSD)
0 =

�

1,
�

λi
a

	

,
¦

λ
i j
ab

©�

. (6.332)
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Inserting the ground-state property RA, (CCSD)
0 = 1 into Eq. (6.329) leads to

〈Φ| LA, (CCSD)
µ |Φ〉= δµ0 , (6.333)

and, thus, we can determine (lµ)0 = 0 for excited states µ [177].
We briefly want to outline particle-number changing PA/PR-EOM-CCSD calculations, for which the correspon-

ding operators are truncated at the 2p1h and 1p2h level, leading to

RA+1, (CCSD)
µ =

∑

a

�

rµ
�a

a†
a +

1
2

∑

i,a,b

�

rµ
�ab

i :a†
aa†

bai : |Φ0〉 , (6.334)

RA−1, (CCSD)
µ =

∑

i

�

rµ
�

i ai +
1
2

∑

i, j,a

�

rµ
�a

i j :a†
aa jai : |Φ0〉 . (6.335)

The 1p and 2p1h amplitudes
�

rµ
�a

and
�

rµ
�ab

i are obtained by solving the PA-EOM-CCSD amplitude equations, and,

similarly, the 1h and 1p2h amplitudes
�

rµ
�

i and
�

rµ
�a

i j are determined by solving the PR-EOM-CCSD amplitude
equations, respectively. Since the intrinsic Hamiltonian depends on the mass number A, a comment for number-
changing EOM operators is in order [13]. For PR-EOM CC calculations, the normal-ordered intrinsic Hamiltonian
with the mass number A−1 is used, when solving the CCSD equations for the correlated reference state with mass
A in the first step. Therefore, the Hamiltonian will not fully capture the intrinsic physics of the A-body problem.
However, when solving the eigenvalue problem of the PR-EOM, the resulting solution approximately factorizes
into the intrinsic and the center-of-mass wave function. Similarly, in the case of PA-EOM CC calculations the mass
number A+1 is used in the normal-ordered intrinsic Hamiltonian when computing the similarity-transformed CCSD
Hamiltonian for the A-body reference.

6.5.3 General observables

For the calculation of ground-state observables other than the energy we have to evaluate expectation values for
the corresponding normal-ordered operator O, i.e.,

〈O〉 ≡
〈ΨA|O |ΨA〉
〈ΨA|ΨA〉

=
〈Φ0| eT†

OeT |Φ0〉
〈Φ0| eT† eT |Φ0〉

. (6.336)

This is obviously more complicated than for many-body methods that employ a linear ansatz for the wave function.
In analogy to the energy we may separate the expectation value of a general operator O into the reference and the
correlation part

〈O〉= Oref +∆O = 〈Φ0|O |Φ0〉+ 〈ON 〉 , (6.337)

where the evaluation of the correlation part can be simplified to [183]

〈ON 〉=
〈Φ0| eT†

ON eT |Φ0〉
〈Φ0| eT† eT |Φ0〉

=
〈Φ0| eT†

eT |Φ0〉〈Φ0|
�

eT†
ON eT

�

C
|Φ0〉

〈Φ0| eT† eT |Φ0〉
= 〈Φ0|

�

eT†
ON eT

�

C
|Φ0〉 . (6.338)

The factorization in the numerator, however, introduces terms that prevent the expansion from terminating, since
multiple excitations or de-excitations of the same hole state may now occur. Thus, an exact determination of the
expectation value is prevented and the evaluation of the expectation value in this way requires truncation at some
level.

When we choose the operator ON to be the Hamiltonian HN , the correlation energy is given by

∆E = 〈HN 〉=
〈Φ0| eT†

HN eT |Φ0〉
〈Φ0| eT† eT |Φ0〉

= 〈Φ0|
�

eT†
HN eT

�

C
|Φ0〉 , (6.339)

while it was determined to ∆E = 〈Φ0| e−T HN eT |Φ0〉 = 〈Φ0|
�

HN eT
�

C |Φ0〉 in Eq. (6.272). The equivalence between
the relations can be shown by inserting eT (P+Q)e−T = 1, with the operators P and Q projecting onto the reference
space and its complement, into the expectation value

∆E =
〈Φ0| eT†

HN eT |Φ0〉
〈Φ0| eT† eT |Φ0〉

=
〈Φ0| eT†

eT (P +Q)e−T HN eT |Φ0〉
〈Φ0| eT† eT |Φ0〉

(6.340)

=
〈Φ0| eT†

eT |Φ0〉〈Φ0| e−T HN eT |Φ0〉
〈Φ0| eT† eT |Φ0〉

= 〈Φ0| e−T HN eT |Φ0〉 . (6.341)
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Here, we have employed that the CC amplitude equations require QH |Φ0〉 = 0, which is only valid when T is
the solution of the untruncated CC equations. Assume we truncate T to T1 + T2, then the amplitude equations for
higher cluster operators, e.g., T3, is not fulfilled and, therefore, QH |Φ0〉= 0 is not strictly valid.

For the evaluation of general operators it is more convenient to work in terms of reduced density matrices. The
normal-ordered part of the one-body reduced density matrix is given by

γN =
∑

p,s

|s〉(γN )sp 〈p| , (6.342)

with the corresponding matrix elements

(γN )sp = 〈Φ0|
�

eT†
:a†

pas : |Φ0〉e
T
�

C
|Φ0〉 . (6.343)

Thus, the correlation part of the expectation value of any normal-ordered one-body operator can be obtained by

〈O(1)N 〉=
∑

p,s

〈p| o |s〉(γN )sp , (6.344)

while the reference part can be included by employing a modified density matrix γsp = 〈Φ0|
�

eT†
a†

pase
T
�

C
|Φ0〉,

leading to

〈O(1)〉=
∑

p,s

〈p| o |s〉γsp , γsp ≡

¨

(γN )sp +δsp , p, s ∈ holes (cf. Eq. (6.15))
(γN )sp , else .

By application of Wick’s theorem the two-body density matrix can be rewritten in terms of the normal-ordered one-
and two-body reduced density matrices and the reference contribution

γstpq = (γN )stpq +δspδp∈holes(γN )tq −δt pδp∈holes(γN )sq +δtqδq∈holes(γN )sp −δsqδq∈holes(γN )t p

+δtqδspδp∈holesδq∈holes −δt pδsqδp∈holesδq∈holes , (6.345)

with the matrix elements of the two-body reduced density matrix

(γN )stpq = 〈Φ0|
�

eT†
:a†

pa†
qat as : |Φ0〉e

T
�

C
|Φ0〉 . (6.346)

Thus, the expectation value for a general two-body operator in terms of density matrix elements is

〈O(2)〉=
1
4

∑

p,q,s,t

〈pq| o |st〉(γN )stpq +
∑

p,s

�

∑

i

〈pi| o |si〉

�

(γN )sp +
1
2

∑

i, j

〈i j| o |i j〉 . (6.347)

However, it is beneficial to replace the factor eT†
in Eq. (6.343) and (6.346) with (1+Λ)e−T , obtained by solving

the Λ-CC equations, to arrive at finite expression for the evaluation of expectation values. This replacement leads
to [177]

(γN )sp = 〈Φ0| (1+Λ)e−T :a†
pas : |Φ0〉e

T |Φ0〉= 〈Φ0|
�

(1+Λ)
�

:a†
pas : |Φ0〉e

T
�

C

�

C
|Φ0〉 , (6.348)

(γN )stpq = 〈Φ0|
�

(1+Λ)
�

:a†
pa†

qat as : |Φ0〉e
T
�

C

�

C
|Φ0〉 . (6.349)

Excited-state properties are obtained in EOM-CCSD, using the excited-state generalization of the ground-state
density matrix γµN with matrix elements

(γN )
µ
sp = 〈Φ0| LA, (CCSD)

µ e−T :a†
pas : |Φ0〉e

T RA, (CCSD)
µ |Φ0〉 , (6.350)

while transitions are calculated from the transition density matrix γµνN with matrix elements

(γN )
µν
sp = 〈Φ0| LA, (CCSD)

µ e−T :a†
pas : |Φ0〉e

T RA, (CCSD)
ν |Φ0〉 . (6.351)
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7 Exploring sd -shell nuclei

In this section we study ground- and excited-state properties of all sd-shell nuclei with neutron and proton numbers
8 ¶ N , Z ¶ 20. We derive effective valence-space Hamiltonians, as outlined in Sec. 6.2, using the set of low-
resolution two- and three-nucleon interactions introduced in Sec. 4, that predict realistic saturation properties of
symmetric nuclear matter. We focus on estimating the theoretical uncertainties due to variation of the resolution
scale in NN forces and the low-energy 3N couplings. In addition, we also explore the uncertainty associated due to
the many-body calculations. While all valence-space interactions derived from MBPT so far were based on a single
chiral NN+3N interaction this study of ground-state energies, two-neutron and two-proton separation energies,
and first excited 2+1 energies overcomes this limitation. The results discussed here have been published in Ref. [51].

We employ five different chiral NN+3N Hamiltonians, which are denoted as 1.8/2.0 (EM), 2.0/2.0 (EM),
2.2/2.0 (EM), 2.0/2.5 (EM), 2.0/2.0 fm−1 (EM+PWA), where the values λNN/Λ3N indicate the SRG resolution
scale and the cutoff in the 3N regulator. The label in parentheses denotes the ci couplings used in the NN/3N
sector. Based on these interactions, we construct effective valence-space Hamiltonians

H ′eff =
d
∑

α=1

εαa†
αaα + Veff , (7.1)

where εα denote the single-particle energies (SPEs), and Veff is the effective two-body interaction for valence nucle-
ons. With H ′eff we perform valence shell-model calculations, where the many-body problem is solved exactly for the
particles in the valence space on top of a closed core. Taking into account many-body processes outside the valence
space, valence-space interactions derived from MBPT have been used successfully for shell-model calculations in
many regions of the nuclear chart, see, e.g., Refs. [184–186]. At third order, MBPT based on RG/SRG-evolved
interactions with low cutoffs shows a reasonable order-by-order convergence for SPEs and Veff in medium-mass
nuclei [187]. To explore uncertainties associated with MBPT, we study valence-shell Hamiltonians obtained at
second- and third-order in MBPT. In contrast to phenomenological interactions, such as USDA/B [162] that fit both
SPEs and Veff to experimental sd-shell data, our results are without adjustments. Therefore, we do not expect to
reach accuracies comparable to the best fit USD interactions.

Studies of oxygen [188, 189] and calcium [35, 166, 187] isotopes showed that extending the valence space
beyond one major shell provides additional binding and can lead to improvements for neutron-rich systems. Ho-
wever, since our main interest is to perform a comprehensive study of sd-shell nuclei, estimating the theoretical
uncertainty associated with the initial Hamiltonians, we limit our valence space to the sd shell (d5/2, d3/2, and
s1/2 proton and neutron single-particle orbitals on top of a 16O core). We work in a harmonic-oscillator basis with
ħhΩ = 13.53 MeV, appropriate for the sd shell, and scale all matrix elements of Veff and bound SPEs by A−1/3 to
correct for the increase in nuclear size. For all λNN considered, the calculations are converged in a basis consisting
of 13 major shells (eMax = 12) for NN forces [187]. For 3N forces, we allow a total energy of the three single-
particle states up to 12ħhΩ (E3Max = 12) in a basis of 13 major shells. The SPEs for the five NN+3N interactions are
summarized in Tab. 7.1 for second and in Tab. 7.2 for third order.

Orbital 1.8/2.0 (EM) 2.0/2.0 (EM) 2.0/2.5 (EM) 2.2/2.0 (EM) 2.0/2.0 (EM+PWA)
p n p n p n p n p n

d5/2 −1.413 −4.315 −1.121 −4.041 −0.901 −3.728 −0.802 −3.651 −0.473 −3.276
s1/2 0.561 −2.454 1.068 −1.976 1.346 −1.583 1.568 −1.375 2.883 0.038
d3/2 4.191 1.658 4.436 1.928 5.103 2.298 5.216 2.385 6.380 3.491

Table 7.1: Calculated proton (p) and neutron (n) sd-shell SPEs in MeV for the five input Hamiltonians at second
order in MBPT.

Figure 7.1 shows the ground-state energies of magnesium and chlorine isotopes compared to the Atomic Mass
Evaluation (AME 2012) [190]. The second- and third-order MBPT results are represented by the blue, darker
and the cyan, lighter bands, respectively, where the width of each band is spanned by the five different NN+3N
interactions considered.

The experimental ground-state energies for magnesium isotopes are generally within our uncertainty band, with
neutron-rich isotopes at the lower side. Only the most neutron-rich isotopes are underbound in our calculations.
On the other hand, the ground-state energies of all chlorine isotopes are in good agreement with our uncertainty
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Orbital 1.8/2.0 (EM) 2.0/2.0 (EM) 2.0/2.5 (EM) 2.2/2.0 (EM) 2.0/2.0 (EM+PWA)
p n p n p n p n p n

d5/2 −1.188 −3.834 −0.873 −3.617 −0.541 −3.072 −0.501 −3.098 −0.221 −2.723
s1/2 0.652 −2.254 1.189 −1.787 1.551 −1.214 1.769 −1.025 2.864 0.207
d3/2 4.370 1.949 4.799 2.326 5.343 2.990 5.490 3.022 6.760 3.839

Table 7.2: Calculated proton (p) and neutron (n) sd-shell SPEs in MeV for the five input Hamiltonians at third order
in MBPT.
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Figure 7.1: Ground-state energies of the magnesium (top) and chlorine isotopes (bottom panel) relative to 16O at
second (blue, darker band) and third order (cyan, lighter band) in MBPT and compared to the Atomic
Mass Evaluation (AME 2012) [190]. The uncertainty bands are spanned by the five different NN+3N
interactions (see text for details). The ordering in the legend is with decreasing ground-state energies.

band, and they are typically within the lower side of the third-order MBPT band, defined by the λNN/Λ3N =
1.8/2.0, 2.0/2.0, 2.2/2.0, 2.0/2.5 fm−1 interactions. In general we find better agreement between our results and
experiment for the isotopic chains of heavier elements, which suggests a somewhat too weak neutron-neutron
interaction in our sd-shell calculations. This was also observed in Refs. [188, 189] for the oxygen isotopes.

The estimated uncertainties in calculated ground-state energies are dominated by the different input Hamilto-
nians. Specifically, the resolution-scale dependence by varying λNN from 1.8 − 2.2 fm−1 with Λ3N = 2.0 fm−1 is
somewhat larger than the Λ3N dependence from 2.0 − 2.5 fm−1 for λNN = 2.0 fm−1. This results in a combined
resolution-scale dependence of approximately 1.0 MeV per valence particle in 32Mg and 37Cl. When also including
the PWA ci values in 3N forces, the uncertainty roughly doubles to about 2.0 MeV per valence particle. For both
second- and third-order MBPT bands, the 2.0/2.0 fm−1 (EM+PWA) interactions generally define the least bound
calculations (for ground-state energies, the upper end of the bands).

The difference between second- and third-order MBPT results is relatively small compared to the width of each
band, indicating a reasonable, but still incomplete convergence of the MBPT approach in this region. For magnesium
and chlorine, third-order results are more bound because of more attractive proton-neutron interactions, whereas
for oxygen (not shown), second-order results are more bound than at third order mainly due to the neutron single-
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Figure 7.2: Uncertainty estimates for the two-neutron separation energies S2n of sd-shell isotopic chains at second
(blue, darker band) and third order (cyan, lighter band) in MBPT and compared to the Atomic Mass
Evaluation (AME 2012) [190].

particle energies, cf. Tabs. 7.1 and 7.2. When the uncertainty associated to the MBPT is also included, the total
uncertainty increases to 2.1 MeV and 2.8 MeV per valence particle in 32Mg and 37Cl, respectively.

Figure 7.2 compares theoretical and experimental two-neutron separation energies S2n for all isotopic chains
from oxygen to calcium (Z = 8 − 20). The theoretical calculations describe the overall experimental trends rea-
sonably well, but in general our uncertainty bands underestimate the empirical values. This is especially the case
in lighter elements and for the most neutron-rich nuclei for all isotopic chains. This is probably related to the un-
derbinding of the sd-shell calculations when valence neutron-neutron interactions are dominant. We also note that
around N = 20, the ground states of 29,30Ne [191, 192], 30,31Na [193, 194], and 31,32Mg [195, 196] are domina-
ted by deformed configurations not captured in our sd-shell calculations (this is the so-called island of inversion).
Consequently, our bands do not reproduce the change in slope of S2n around N = 20 for Ne, Na, or Mg.

Similar to the ground-state energies, the dominant uncertainties arise from the different Hamiltonians, with
smaller differences between second- and third-order MBPT results. Typically the uncertainty range for S2n is ∼
5 MeV. The exceptions are N < Z isotopes, more visible in heavier elements, where the difference between second-
and third-order results is comparable to the uncertainty between input Hamiltonians, due to too weak proton-
neutron interactions at second-order MBPT, adding up to a total uncertainty of ∼ 10 MeV.

In Fig. 7.3 we show the two-proton separation energy S2p for all isotonic chains from N = 8 to N = 20. Our
results agree very well with experiment in all cases, and remarkably most experimental values fall within the
third-order MBPT band. Only in few proton-deficient and very proton-rich nuclei do experimental S2p lie within
the second-order band. Since there are fewer proton-rich nuclei known experimentally than neutron-rich nuclei,
S2p are in general informative about proton-neutron interactions. The much better agreement in S2p than for S2n
compared to experiment suggests that the different Hamiltonians considered capture better (mostly isoscalar)
proton-neutron interactions than neutron-neutron interactions. Again, the sensitivity to the input Hamiltonians
dominates the theoretical S2p uncertainties (with a similar range of ∼ 5 MeV), except for proton-deficient nuclei
where the MBPT uncertainty is comparable (with a total uncertainty of ∼ 10 MeV).

Finally in Fig. 7.4, the calculated first excited 2+1 energies are compared to experimental data for all even-
even sd-shell isotopes. The spread of the uncertainty band is typically smaller than ∼ 500 keV, with generally
reasonable agreement to experiment. However, in the cases with high-lying 2+1 states, indicative of shell closures
(22O, 24O, 22Si, 34Si, 34Ca), the uncertainty can be as large as ∼ 1 MeV. This means that, while our bands in general
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Figure 7.3: Uncertainty estimates for two-proton separation energies S2p of sd-shell isotonic chains at second (blue,
darker band) and third order (cyan, lighter band) in MBPT and compared to the Atomic Mass Evaluation
(AME 2012) [190].

predict shell closures consistently, the actual excitation of the 2+1 state is very sensitive to the details of the input
Hamiltonian. The width of the uncertainty band is mostly due to the 2.0/2.0 fm−1 (EM+PWA) interaction, which
is also responsible for the unusually large uncertainty band in 36Ar. In general, the second- and third-order MBPT
bands mostly overlap, except for N ∼ Z argon and calcium isotopes, where only third-order MBPT results are in
agreement to experiment. Similar to the case of S2n, we also note that the 2+1 states within the island of inversion,
the N = 20 isotopes 30Ne [192] and 32Mg [196], are deformed, and their relatively low excitation energies cannot
be well described in our sd-shell calculations.

As a first application of the different Hamiltonians with realistic saturation properties, we have explored ground-
state energies, S2n, S2p, and first excited 2+1 energies for all sd-shell nuclei: isotopic chains from oxygen to calcium
and isotonic chains from N = 8 to N = 20. This is based on NN+3N Hamiltonians that have been fitted only
to A= 3,4 nuclei that predict realistic saturation properties of nuclear matter, without additional adjustments. We
have focused on estimating the theoretical uncertainties due to the different input Hamiltonians and associated with
the many-body calculations. We find reasonable agreement to experimental data, especially in nuclei dominated by
valence proton-neutron interactions. For neutron-rich systems, calculations in extended valence spaces are needed,
due to too weak neutron-neutron interactions in the sd shell.
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8 Calcium isotopic chain

In this section we want to focus on the calcium isotopes that have gained an increased interest in the last years both
from experiment and theory. The calcium isotopic chain (Z = 20) is a unique nuclear system to study how protons
and neutrons interact inside the atomic nucleus. Two of its stable isotopes are magic in both their proton and
neutron number (40Ca and 48Ca), and experimental evidence of doubly magic features in two short-lived calcium
isotopes have been reported recently, based on precision measurements of nuclear masses for 52Ca (N = 32) [35]
and 2+ excitation energies for 54Ca (N = 34) [36].

Having investigated sd-shell nuclei in Sec. 7 based on the NN+3N Hamiltonians introduced in Sec. 4, we used the
same set of Hamiltonians as well as the N2LOsat potential [103], discussed in Sec. 2.4, to perform coupled-cluster
calculations of neutron-rich calcium isotopes within a larger theory collaboration.

While the electric charge distributions in atomic nuclei were measured accurately already half a century ago, the
knowledge of the distribution of neutrons is still deficient. Therefore, we performed coupled-cluster calculations
of the neutron distribution of the neutron-rich nucleus 48Ca, showing that the neutron skin (difference between
the radii of the neutron and proton distributions) is significantly smaller than previously thought. In addition, we
made predictions for the electric dipole polarizability and the weak form factor, quantities that, in the meantime,
have [198] or will be targeted [199] by precision measurements. These results have been published in Ref. [12].
Moreover, the first measurements of the charge radii of 49,51,52Ca by collinear laser spectroscopy experiments at
ISOLDE, CERN revealed a large and unexpected increase of the size of the neutron-rich calcium isotopes beyond
N = 28, challenging the doubly magic nature of 52Ca. This measurement provided a benchmark for our ab initio
calculations, opening new intriguing questions on the evolution of nuclear sizes away from stability. The results
have been published jointly with experimentalist’s in Ref. [37].

8.1 Coupled-cluster calculations of energies, radii and charge densities

Before discussing results we want to specify the coupled-cluster truncations employed in the calculation of ener-
gies, radii and charge densities. A HF calculation in a single-particle basis consisting of 15 major harmonic os-
cillator shells (eMax = 14) with an oscillator frequency of ħhΩ = 22 MeV, and 3N matrix elements truncated to
the three-particle energy E3Max ≤ 18 for N2LOsat and E3Max ≤ 16 for the chiral Hamiltonians presented in Sec. 4,
yields the reference state for the coupled-cluster computation. The Hamiltonian is normal ordered with respect
to the HF reference state, employing the normal-ordered two-body approximation for the 3N force introduced in
Sec. 6.1. Coupled-cluster theory performs, as outlined in Sec. 6.5.1, the similarity transform H = e−T HN eT of the
normal-ordered Hamiltonian HN using the cluster operator T that consists of a linear expansion in particle-hole
excitation operators. Approximations are introduced by truncating the operator T to a lower particle-hole rank,
and the most commonly used approximation is coupled-cluster with single and double excitations (CCSD). For
the computation of the binding energy of 48Ca we include the perturbative triples correction Λ-CCSD(T), given in
Eq. (6.300). The neutron separation energies Sn of 48Ca and 49Ca are computed with the particle-removed/attached
equation-of-motion coupled-cluster method truncated at the one-particle-two-hole/two-particle-one-hole excitati-
on, cf. Eq. (6.335) and (6.334) in Sec. 6.5.2. The three-point mass difference, ∆= (Sn (48Ca)-Sn (49Ca))/2, is com-
puted as the difference between two separation energies. The similarity transformed Hamiltonian is non-Hermitian
and we compute its right RA

0 |Φ〉 and left 〈Φ|LA
0 ground states. Expectation values of one- and two-body opera-

tors 〈O(1)〉, 〈O(2)〉 are then obtained from expectation values of the reduced density matrices (γN )sp, (γN )stpq, cf.

Eq. (6.348) and (6.349). Here, we truncate RA, (CCSD)
0 |Φ〉 and 〈Φ|LA, (CCSD)

0 at the CCSD level.
For the computation of the root mean square (r.m.s.) point-neutron radius (that is, the radius of the neutron

distribution) Rn and the r.m.s. point-proton radius Rp we start from the intrinsic operators (see, e.g., Ref. [200])

R2
n =

1
N

A
∑

i

(r i −R)2
1−τ3

2
, (8.1)

and

R2
p =

1
Z

A
∑

i

(r i −R)2
1+τ3

2
, (8.2)

with the number of nucleons A, the number of neutrons N , the number of protons Z , the nucleon coordinates r i ,
the center-of-mass coordinate R, and the third component of the isospin τ3 of the ith nucleon, respectively. As R2

n,p
is a two-body operator, we compute its expectation value by employing the two-body density matrix in the CCSD
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approximation. While the radii of closed-(sub-)shell isotopes 40,48,52,54Ca are accessible in single-reference coupled-
cluster calculations, the radii of neighboring isotopes 39,47,51,53Ca and 41,49,53Ca have to be computed by the particle-
removed/attached equation-of-motion coupled-cluster method truncated at the one-particle-two-hole/two-particle-
one-hole excitation, see Sec. 6.5.2. For the intrinsic r.m.s. point-neutron and r.m.s. point-proton densities we first
compute the corresponding one-body densities in the laboratory system at the CCSD level. The coupled-cluster
wave function factorizes approximately into an intrinsic part times a Gaussian center-of-mass wave function [201].
A deconvolution with respect to the Gaussian center-of-mass wave function [202] yields the intrinsic one-body
density. The intrinsic r.m.s. point-neutron and r.m.s. point-proton form factors are obtained from Fourier transforms
of the one-body densities; folding these with the nucleon form factors given in Ref. [203] yields the intrinsic (weak-
) charge form factors. The Fourier transform of the (weak-) charge form factor yields the corresponding intrinsic
(weak-) charge density.

In our ab initio calculations we compute Rp, which is related to the charge radius Rch by

R2
ch = R2

p +
¬

r2
p

¶

+
N
Z




r2
n

�

+
3

4m2
pc4
+



r2
�

so . (8.3)

Here
¬

r2
p

¶

= 0.769 fm2 is the mean squared charge radius of a single proton,



r2
n

�

= −0.116 fm2 is that of a single

neutron, 3
4m2

pc4 = 0.033 fm2 is the relativistic Darwin-Foldy correction, and



r2
�

so is the spin-orbit correction. The

spin-orbit correction [204] is calculated from

〈r2〉so =
1
Z

A
∑

i=1

〈r2
i 〉so = −

1
Z

∑

i

µi

M2
(κi + 1) , (8.4)

with the magnetic moments of the proton, µp = 2.793µN , and the neutron, µn = −1.913µN , and the definition

κ=

¨

l , j = l − 1
2

−(l + 1) , j = l + 1
2 .

(8.5)

For 48Ca we obtain



r2
�

so = −0.090(1) fm2, which is slightly smaller in magnitude than the relativistic mean-field
estimates [57] due to configuration mixing. Similarly the weak-charge radius RW is computed from [57]

R2
W =

Z
QW

�

Qp
W

�

R2
p +

¬

r̃2
p

¶��

+
N

QW

�

Qn
W

�

R2
n +




r̃2
n

���

+



r̃2
�

so . (8.6)

Here QW = NQn
W + ZQp

W is the total weak charge of the nucleus; Qn
W = −0.9878 and Qp

W = 0.0721 are the neutron
and proton weak charges (the uncertainty of the weak charge of the neutron and proton are discussed in Ref. [57]),
respectively; R2

p,n is the mean square point-proton/neutron radius;
¬

r̃2
p

¶

= 2.358 fm2 and



r̃2
n

�

= 0.777 fm2 are

the weak mean squared radii of the proton and neutron; and



r̃2
�

so is the spin-orbit correction to the weak-
charge radius. We compute




r̃2
�

so using the coupled-cluster method in the CCSD approximation and we obtain



r̃2
�

so = 0.069(1) fm2. The spin-orbit corrections to the charge and weak-charge radii are taken as the mean value
resulting from all the interactions considered in this work, and we estimate an uncertainty of 0.001 fm2 from the
dependence of




r̃2
�

so on the employed interaction. This is comparable to the relativistic mean-field (RMF) estimate



r̃2
�

so ≈ 0.077 fm2 of Ref. [205].

8.2 Neutron and weak-charge distributions of the 48Ca nucleus

Owing to their electric charge, the distribution of protons in a nucleus can be accurately measured and is well
known for many atomic nuclei [206]. In contrast, neutron densities are poorly known. An accurate knowledge of
neutron distributions in atomic nuclei is crucial for understanding neutron-rich systems, which determine the limits
of the nuclear landscape [31] and give rise to exotic structures and novel phenomena in rare isotopes [35, 36, 207].
Because of its fundamental importance, experimental efforts worldwide have embarked on an ambitious program-
me of measurements of neutron distributions in nuclei using different probes, including hadronic scattering [208],
pion photoproduction [209], and parity-violating electron scattering [210]. As neutrons have no electric charge,
elastic electron scattering primarily probes the proton distribution, whereas parity-violating electron scattering can
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occur only via the weak interaction and is sensitive to the distribution of weak charge. As the weak charge of the
neutron, Qn

W ≈ −0.99, is much larger than that of the proton, Qp
W ≈ 0.07, a measurement of the parity-violating

asymmetry Apv [211] offers an opportunity to probe the neutron distribution.
Regardless of the probe used, direct measurements of neutron distributions in nuclei are extremely difficult.

For this reason, experiments have also focused on other observables related to neutron distributions, such as the
electric dipole polarizability αD. Recently, αD was accurately determined in 208Pb [212], 120Sn [213] and 68Ni [214],
and, very recently, after publication of our prediction, in 48Ca [198]. For this medium-mass nucleus, the calcium
radius experiment (CREX) at Jefferson Lab [199] also aims at a measurement of the radius of the weak-charge
distribution.

So far, much of the theoretical understanding of proton and neutron distributions in atomic nuclei like 208Pb,
120Sn and 68Ni came from nuclear density functional theory (DFT) [215]. This method employs energy density
functionals that are primarily constrained by global nuclear properties such as binding energies and radii, and it
provides us with a coarse-grained description of nuclei across the nuclear chart. Calculations within nuclear DFT
generally describe charge radii, and suggest that αD is strongly correlated with the neutron skin [203, 216, 217],
thereby relating this quantity to the neutron radius. The medium-mass nucleus 48Ca is of particular interest because
it can be accessed by both DFT and ab initio methods, providing results that are well converged in terms of model-
space truncations (see Sec. 9.1 for a convergence analysis of IM-SRG calculations). Thus, it provides an exciting
opportunity to bridge both approaches. In the process, surprises are expected. For instance, as discussed in the
following, ab initio calculations show that the neutron skin of 48Ca is significantly smaller than estimated by
nuclear DFT models. This result not only gives us an important insight into the nuclear size, but also provides an
opportunity to inform global DFT models by more refined ab initio theories.
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Figure 8.1: Charge densities of 40Ca (black line) and 48Ca (red line), obtained from coupled-cluster calculations using
the N2LOsat Hamiltonian, compared to experiment [218] (shaded area). Inset: r2 multiplied by the dif-
ference between the computed charge densities of 40Ca and 48Ca (blue line) compared to experiment
(shaded area). Taken from [12].

The N2LOsat predictions for the electric charge densities ρch in 40Ca and 48Ca from coupled-cluster calculations
are shown in Fig. 8.1. The agreement of theoretical charge densities with experiment [218], especially in the
surface region, is most encouraging. The difference between the charge densities of 40Ca and 48Ca, shown in
the inset of Fig. 8.1, is even better reproduced by theory, as systematic errors at short distances cancel out. The
striking similarity of the measured charge radii of 40Ca and 48Ca, 3.478(2) fm and 3.477(2) fm, respectively, has
been a long-standing challenge for microscopic nuclear structure models. The N2LOsat results for the charge radii
are 3.49(3) fm for 40Ca and 3.48(3) fm for 48Ca; these are the first ab initio calculations to successfully reproduce
this observable in both nuclei. The distribution of the electric charge in a nucleus profoundly impacts the electric
dipole polarizability αD. For the computation of this property we used the Lorentz integral transform combined
with the coupled-cluster method to properly take the continuum into account [219]. Moreover, it was necessary
to extend the formalism of Ref. [220] to accommodate 3N forces. To validate our model, we computed the dipole
polarizabilities of 16O and 40Ca, for which experimental data exist [221]. We find an excellent agreement with
experiment for 16O, αD = 0.57(1) fm3 compared to αD,exp = 0.58(1) fm3. Our result for 40Ca, αD = 2.11(4) fm3, is
only slightly below the experimental value αD,exp = 2.23(3) fm3.
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We now turn to our main objective and present our predictions for the r.m.s. point-neutron radius Rn, r.m.s.
point-proton radius Rp, neutron skin Rskin = Rn − Rp, and electric dipole polarizability in 48Ca. To estimate sys-
tematic uncertainties on computed observables, in addition to N2LOsat, we consider five different chiral NN+3N
Hamiltonians, which are denoted as 1.8/2.0 (EM), 2.0/2.0 (EM), 2.2/2.0 (EM), 2.8/2.0 (EM), 2.0/2.0 fm−1 (PWA),
where the labeling indicates λNN/Λ3N and the ci couplings used. Similar to N2LOsat, these interactions consist of
soft nucleon-nucleon and non-local 3N forces. Their 3N forces were adjusted to the binding energy of 3H and the
charge radius of 4He only, and - within EFT uncertainties - yield a realistic saturation point of nuclear matter. A
main difference between these interactions and N2LOsat is that they have not been constrained by experimental
data on heavier nuclei, and they include N3LO nucleon-nucleon contributions.

0.15 0.18 0.21
Rskin (fm)

3.2

3.3

3.4

3.5

R p (
fm

)

3.4 3.5 3.6

Rn (fm)

2.0 2.4 2.8

D (fm3)α

Figure 8.2: Predictions for the neutron skin Rskin (left), r.m.s. point-neutron radius Rn (middle) and electric dipole
polarizability αD (right) of 48Ca plotted against its r.m.s. point-proton radius Rp. The coupled-cluster re-
sults for N2LOsat (red circles) and the five chiral NN+3N Hamiltonians (squares) are compared to the DFT
results with the energy density functionals SkM*, SkP, SLy4, SV-min, UNEDF0 and UNEDF1 [217] (dia-
monds). This is a representative subset of DFT results; for other DFT predictions, we refer to Ref. [217].
The theoretical error bars estimate uncertainties from truncations of the employed method and mo-
del space. The blue line represents a linear fit to the data. The blue band encompasses all error bars
and estimates systematic uncertainties. The horizontal green line marks the experimental value of Rp.
Its intersection with the blue line and the blue band yields the vertical orange line and orange band,
respectively, giving the predicted range for the ordinate. Taken from [12].

Figure 8.2 shows the predicted values of Rskin, Rn and αD as functions of Rp. In all three panels of Fig. 8.2, the
blue line represents a linear fit to our ab initio results obtained with the set of chiral forces considered. The blue
bands provide an estimate of systematic uncertainties. They encompass the error bars on the computed data points
and are symmetric around the linear fit (blue line). The charge radius of 48Ca is known precisely, and the horizontal
green line marks the corresponding Rp. The intersection between this line and the blue band provides a range for
these observables (shown as vertical orange bands) consistent with our set of interactions. Our prediction for the
neutron skin in 48Ca is 0.12 ® Rskin ® 0.15 fm. The left panel of Fig. 8.2 shows two remarkable features. First, the
ab initio calculations yield neutron skins that are almost independent of the employed interaction. This is due to
the strong correlation between the Rn and Rp in this nucleus (middle panel of Fig. 8.2). In contrast, DFT models
exhibit practically no correlation between Rskin and Rp. Second, the ab initio calculations predict a significantly
smaller neutron skin than the DFT models. The predicted range is also appreciably lower than the combined DFT
estimate of 0.176(18) fm [217] and is well below the relativistic DFT value of Rskin = 0.22(2) fm [217]. To shed
light on the lower values of Rskin predicted by ab initio theory, we computed the neutron separation energy Sn and
the three-point binding energy difference ∆ in 48Ca (both being indicators of the N = 28 shell gap). Our results,
summarized in Tab. 8.1, are consistent with experiment and indicate the pronounced magicity of 48Ca, whereas
DFT results usually significantly underestimate the N = 28 shell gap [222]. The shortcoming of DFT for 48Ca is also
reflected in Rp. Although many nuclear energy density functionals are constrained to the Rp of 48Ca [215, 222],
the results of DFT models shown in the left panel of Fig. 8.2 overestimate this quantity.

For Rn, shown in the middle panel of Fig. 8.2, we find 3.47 ® Rn ® 3.60 fm. Most of the DFT results for Rn are
outside this range, but fall within the blue band. Comparing the left and middle panel of Fig. 8.2 suggests that
a measurement of a small neutron skin in 48Ca would provide a critical test for ab initio models. For the electric
dipole polarizability, shown in the right panel of Fig. 8.2, our prediction 2.19 ® αD ® 2.60 fm3 is consistent with
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Interaction BE Sn ∆ Rch RW

N2LOsat 404(3) 9.5 2.69 3.48 3.65
1.8/2.0 (EM) 420(1) 10.1 2.69 3.30 3.47
2.0/2.0 (EM) 396(2) 9.3 2.66 3.34 3.52
2.2/2.0 (EM) 379(2) 8.8 2.61 3.37 3.55
2.8/2.0 (EM) 351(3) 8.0 2.41 3.44 3.62

2.0/2.0 (PWA) 346(4) 7.8 2.82 3.55 3.72
Experiment 415.99 9.995 2.399 3.477

Table 8.1: Coupled-cluster results for the binding energy BE, the neutron separation energy Sn, the three-point-mass
difference ∆, the electric-charge radius Rch, and the weak-charge radius RW of 48Ca in comparison with
experiment. Energies are given in MeV and radii in fm. See text for details on the different truncations in
coupled-cluster theory used to obtain these results. The error in the calculated BEs are estimated from
the change in BE from E3Max ≤ 16 to E3Max ≤ 18 for N2LOsat and E3Max ≤ 14 to E3Max ≤ 16 for the chiral
Hamiltonians presented in Sec. 4. For the computed radii we estimate an error of 1%.

the DFT value of 2.306(89) fm3 [217]. Again, most of the DFT results fall within the ab initio uncertainty band. The
experimental result for αD,exp has been determined very recently from an inelastic proton-scattering experiment at
RCNP, Osaka (Japan) to 2.07(22) fm3 [198], slightly below our prediction. The excellent correlation between Rp,
Rn and αD seen in the middle and right panel of Fig. 8.2 demonstrates the usefulness of Rn and αD as probes of the
neutron density.
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Figure 8.3: In the left panel we show the r.m.s. point-neutron radius Rn in 48Ca plotted against the weak-charge form
factor FW(qc) at the CREX momentum qc = 0.778 fm−1 obtained in coupled-cluster calculations with
N2LOsat (red circle) and the five chiral NN+3N Hamiltonians introduced in Sec. 4 (squares). The theoretical
error bars estimate uncertainties from truncations of the employed method and model space. The width
of the horizontal orange band shows the predicted range for Rn and is taken from the middle panel of
Fig. 8.2. The width of the vertical orange band is taken from the right panel of Fig. 8.4 and shows the
predicted range for FW(qc). The weak-charge form factor FW(q) as a function of momentum transfer q
with N2LOsat (red line) and DFT with the energy density functional SV-min [203] (diamonds) is shown
in the middle panel. The orange horizontal band shows FW(qc). The right panel includes the charge
density ρch (blue line) and the (negative of) the weak-charge density ρW (red line). The weak-charge
density extends well beyond ρch as it is strongly weighted by the neutron distribution. The weak charge
of 48Ca, obtained by integrating the weak-charge density is QW = −26.22. Taken from [12].

The weak-charge radius RW is another quantity that characterizes the size of the nucleus. The CREX experiment
will measure the parity-violating asymmetry Apv in electron scattering on 48Ca at the momentum transfer qc =
0.778 fm−1. This observable is proportional to the ratio of the weak-charge and electromagnetic charge form factors
FW(qc)/Fch(qc) [211]. Making some assumptions about the weak-charge form factor, one can deduce RW and Rn
from the single CREX data point [199]. The left panel of Fig. 8.3 shows that a strong correlation exists between Rn
and FW(qc), and this allows us to estimate 0.195 ® FW(qc) ® 0.222 (cf. right panel of Fig. 8.4), which is consistent
with the DFT expectation [203]. The momentum dependence of the weak-charge form factor, shown in the middle
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Figure 8.4: Correlation between the weak charge radius RW (left) and the weak charge form-factor FW(qc) at the
CREX momentum transfer qc = 0.778 fm−1 (right) and the r.m.s. point-proton radius Rp for 48Ca from
the different chiral interactions. The symbols and lines are as in Fig. 8.2. Taken from [12].

panel of Fig. 8.3, is also close to the DFT result. This good agreement again emphasizes the role of 48Ca as a key
isotope for bridging nuclear ab initio and DFT approaches. Exploiting the strong correlation between RW and Rp,
shown in the left panel of Fig. 8.4, we find 3.59 ® RW ® 3.71 fm. The weak-charge density ρW(r) is the Fourier
transform of the weak-charge form factor FW(q). As seen in the right panel of Fig. 8.3, the spatial extent of ρW
in 48Ca is appreciably greater than that of the electric charge density ρch, essentially because the former depends
mainly on the neutron distribution and there is an excess of eight neutrons over protons in 48Ca.

8.3 Unexpectedly large charge radii of neutron-rich calcium isotopes

Having investigated the properties of the stable calcium isotopes 40,48Ca, that are magic in both their proton and
neutron number, we now want to turn to short-lived, neutron-rich calcium isotopes for which experimental evidence
of doubly magic features has been reported recently, based on precision measurements of nuclear masses [35]
and 2+ excitation energies [36]. As a local change in the behavior of the charge radius is expected in doubly
magic nuclei [223], it is important to pin down the charge radius in these exotic isotopes to understand how shell
structure evolves and impacts the limits of stability.

Although the average distance between the electrons and the nucleus in an atom is about 5,000 times larger
than the nuclear radius, the size of the nuclear charge distribution is manifested as a perturbation of the atomic
energy levels. A change in size between two isotopes gives rise to a shift of the atomic hyperfine structure levels.
This shift between two isotopes, commonly known as the isotope shift, δνA,A′ , includes a part that is proportional

to the change in the nuclear mean-square charge radii, δ
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Here, F denotes the electronic field factor and KMS the mass shift. It is given by the sum of the normal mass shift,
KNMS, and the specific mass shift, KSMS. Isotope shifts of stable Ca isotopes have been extensively studied in the
literature [224], revealing the unusual evolution of their charge radii. Despite an excess of eight neutrons, 48Ca
exhibits the striking feature that it has essentially the same charge radius as 40Ca, reproduced for the first time in
ab initio calculations presented in Sec. 8.2.

A first estimate for the charge radius of the radioactive 49Ca isotope was based on a failure to observe its
resonance in a dedicated measurement of its isotope shift. The resulting conclusion that δν48,49 ≤ 50 MHz sug-
gested an enormous increase of the charge radius δ




r2
ch

�48,49 ≥ 0.5 fm2 [225], reflecting the strong magicity of
48Ca. So far, the only charge radius measured beyond 48Ca has been for 50Ca, resulting in a large increase of
δ



r2
ch

�48,50
= 0.293(37) fm2 [226]. These results raised even more exciting questions on the charge radii evoluti-

on of Ca isotopes. It suggested that the prominent odd-even staggering of their charge radii could be even more
pronounced beyond 48Ca because a reduction of the nuclear charge radius for 52Ca would be expected as a con-
sequence of a suggested doubly magic nature of this isotope. Thus, the experimental determination of the charge
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radii of 49,51,52Ca not only addresses fundamental questions regarding the size of atomic nuclei, but are also im-
portant for understanding the possible doubly magic character of 52Ca. By using high-resolution bunched-beam
collinear laser spectroscopy at ISOLDE, CERN, changes in the charge radii for 43−52Ca isotopes were obtained from
the measured optical isotope shifts.
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Figure 8.5: Experimental charge radii Rch of Ca isotopes compared to coupled-cluster calculations with chiral EFT
interactions N2LOsat, SRG1 (2.8/2.0 (EM)), SRG2 (2.0/2.0 (PWA)), as well as DFT calculations with the
UNEDF0 functional (left). Experimental error bars are smaller than the symbols. The absolute values were
obtained from the reference radius of 40Ca [227] (Rch = 3.478(2) fm). The values of 39Ca and 41,42Ca
are taken from Refs. [228, 229], respectively. A systematic theoretical uncertainty of 1% is estimated
for the absolute values due to the truncation level of the coupled-cluster method and the finite basis
space employed in the computation. In the right panel we show the experimental r.m.s. charge radius in
52Ca relative to that in 48Ca compared to the ab initio results as well as those of representative density
functional theory (DFT) and configuration interaction (CI) calculations. The systematic uncertainties in
the theoretical predictions are largely canceled when the differences between r.m.s. charge radii are
calculated (dotted horizontal blue lines). Experimental uncertainties are represented by the horizontal
red lines (statistical) and the gray shaded band (systematic). Taken from [37].

The experimental results for the root-mean-square (r.m.s.) charge radii, shown in the left panel of Fig. 8.5, yield
a considerable increase for the charge radius of 49Ca with respect to 48Ca, δ




r2
ch

�48,49
= 0.097(4) fm2, but much

smaller than previously suggested [225]. The increase continues towards N = 32, resulting in a very large charge
radius for 52Ca, with an increase relative to 48Ca of δ




r2
ch

�48,52
= 0.530(5) fm2.

This increase observed beyond a neutron number N = 28 is as large as the values observed for open-shell nuclei
like Fe [227], where there is no sizeable shell gap at N = 32. Thus, the charge radius of 52Ca is found to be much
larger than expected for a doubly magic nucleus.

In addition to the experimental results we show the charge radii obtained by our ab initio calculations and by
other theoretical predictions in the left panel of Fig. 8.5. The coupled-cluster calculations correctly yield similar
charge radii for 40Ca and 48Ca for the chiral EFT interactions employed. As explained in Sec. 8.1 single-reference
coupled-cluster calculations can be extended by equation-of-motion techniques to at most one or two nucleons
outside a closed (sub-) shell. Thus, we do not give theoretical results for the mid-shell isotopes 42−46Ca and 50Ca.
We note that absolute values of charge radii are very well reproduced by N2LOsat. The interactions SRG1 (2.8/2.0
(EM)) and SRG2 (2.0/2.0 (PWA)) also reproduce well the overall trend, but as they were not optimized for sa-
turation properties they can give either slightly too low or too high saturation densities, corresponding to larger
or smaller charge radii. Also shown are nuclear DFT results obtained with the Skyrme energy density functional
UNEDF0 [230], which fails to describe the fine details of the experimental trend.

In the right panel of Fig. 8.5 we show the difference in r.m.s. charge radii between 52Ca and 48Ca predicted
with different methods and models; all being representative of modern approaches to charge radii. In gene-
ral, for neutron-rich isotopes beyond 48Ca, our ab initio calculations consistently predict an increase in charge
radii for 50,52Ca, but fall short of describing the data. Similarly, DFT predictions with various models [31, 231–
235]; configuration interaction (CI) calculations [235] obtained from large-scale shell-model calculations with the
ZBM2 interaction [236, 237] using Skyrme-Hartree-Fock (ZBM2+HF) and harmonic-oscillator (ZBM2+HO) wa-
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ve functions, all considerably underestimate the large charge radius of 52Ca. The standard explanation involving
quadrupolar correlations [235, 236] does not seem to improve this, as can be seen by comparing the D1S and
D1S plus quadrupolar correlations (D1S+corr) results [232] in the right panel of Fig. 8.5. Thus, our experimen-
tal results are truly unexpected. Speculating about the reason for these theoretical shortcomings we note that all
theoretical approaches are lacking in the description of deformed intruder states associated with complex configu-
rations. In addition to the Fayans functional DF3-a, shown in the right panel of Fig. 8.5, another Fayans functional
FaNDF0 [238] is used to interpret the very recent charge-radii measurement for the neutron deficient iron isoto-
pes 52,53Fe [239]. While DFT calculations with the FaNDF0 functional predict a larger increase in the charge radii
towards 52Ca compared to results from DF3-a, the experimental value is still underestimated.

While we focus here on the unexpectedly large charge radius of 52Ca, the situation is indeed different for the
lighter isotopes 39−48Ca. Here our ab initio calculations with N2LOsat capture the mass dependence around 40Ca
and only slightly overestimate the absolute charge radii of these isotopes. Some of the models shown in the right
panel of Fig. 8.5 perform better for lighter Ca isotopes. For instance, shell-model calculations (ZBM2) [235, 236]
and DFT results (DF3-a) [231, 240], FaNDF0 [238] (not shown) and D1S [232] describe experiments in the lighter
calcium isotopes, but cannot reproduce the large increase in Rch for 52Ca.

To assess the impact of core breaking effects, which turned out to be important for the description of electroma-
gnetic moments in this region [241], we studied the proton occupancies of natural orbitals above the naively filled
Z = 20 shell. Our ab initio calculations show a weak, but gradual erosion of the proton core as neutrons are added.
Although this defies the simple pattern of a rigid proton core expected for the magic Ca isotopes, the estimated
magnitude of core breaking effects, including coupling to the neutrons, is not sufficient to explain the large charge
radius of 52Ca.

These results open intriguing questions on the evolution of charge radii away from stability and constitute a
major challenge in the search of a unified description of the atomic nucleus. It will be interesting to compare to
future experiments, aiming at an extension of the current studies to isotopes even further away from stability,
especially for the possibly doubly magic nucleus 54Ca [36].
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9 In-medium similarity renormalization group calculations of nuclei

In this section we explore the impact of nuclear matter saturation on the properties and systematics of finite
nuclei across the nuclear chart. Using the ab initio IM-SRG, introduced in Sec. 6.4, we study ground-state energies
and charge radii of closed-shell nuclei from 4He to 78Ni in Sec. 9.1, based on the set of low-resolution two- and
three-nucleon interactions introduced in Sec. 4, that predict realistic saturation properties. We first investigate in
detail the convergence properties of these Hamiltonians with respect to model-space truncations for both two-
and three-body interactions. We find one particular interaction that reproduces well the ground-state energies
of all closed-shell nuclei studied. As expected from their saturation points relative to this interaction, the other
Hamiltonians underbind nuclei, but lead to a remarkably similar systematics of ground-state energies. In Sec. 9.2
we explore the convergence properties of these Hamiltonians for ground-state energies in the vicinity of A∼ 100,
which currently constitutes the frontier of our calculations due to the impact of the model-space truncations for
both two- and three-body interactions. In Sec. 9.3 we extend our calculations to complete isotopic chains in the
sd and p f shells with the valence-space IM-SRG, showing that the one particular interaction reproduces not only
experimental ground states but two-neutron-separation energies and first excited 2+ states. We also calculate radii
with the valence-space IM-SRG for the first time. Since this particular interaction saturates at too high density,
charge radii are still too small compared with experiment. Except for this underprediction, the radii systematics is,
however, well reproduced. The results discussed here have been published in Ref. [52], except for the convergence
studies of the heaviest nuclei for A∼ 100.

We employ four different chiral NN+3N Hamiltonians, which are denoted as 1.8/2.0 (EM), 2.0/2.0 (EM),
2.2/2.0 (EM), 2.0/2.0 fm−1 (PWA), where the labeling indicates λNN/Λ3N and the ci couplings used. These chiral
NN+3N Hamiltonians were first employed to study symmetric [28] and, more recently, also asymmetric nucle-
ar matter [29, 242]. The first application to finite nuclei was in a valence-space study of sd-shell isotopes [51],
discussed in Sec. 7, and in coupled-cluster calculations of calcium isotopes [12, 37], discussed in Sec. 8, as well
as Ni isotopes [243]. Of particular importance to this work is that in symmetric nuclear matter the 1.8/2.0 (EM)
interaction yields an energy per particle in good agreement with the empirical value (at saturation density with a
Hartree-Fock spectrum slightly too bound [29]), although at a somewhat too high density. The other interactions
2.0/2.0 (EM), 2.2/2.0 (EM), 2.0/2.0 (PWA) saturate at decreasingly smaller energy and density [29]. Note that
the nuclear-matter calculations of Ref. [29] are performed at an incomplete third order in many-body perturbati-
on theory omitting third-order particle-hole contributions. Due to this inconsistency and the unknown many-body
convergence beyond third order, we restrict our comparison of infinite nuclear matter and finite-nuclei results to a
qualitative level.

In this study we use the Magnus formulation, presented in Sec. 6.4.3, to generate explicitly a unitary transfor-
mation that decouples the reference state from particle-hole excitations. This transformation can subsequently be
applied to any operator, in particular the radius operator discussed below. For calculations of open-shell nuclei, we
use the valence-space formulation of the IM-SRG (VS-IM-SRG) [168, 169, 244] based on the ensemble normal-
ordering discussed in Ref. [145], which captures the bulk effects of residual 3N forces among valence nucleons. A
valence-space Hamiltonian is then produced specifically for each nucleus, which is diagonalized with the NuShellX
shell-model code [245] to obtain ground- and excited-state energies in the valence space. In both, ground-state
and VS-IM-SRG calculations we employ the arctan variant of the White generator, see Eq. (6.233).

9.1 Closed-shell nuclei from 4He to 78Ni

In this section, we analyze the model-space convergence of closed-shell nuclei based on the four chiral NN+3N
interactions mentioned above. In the calculations we employ an angular-momentum-coupled basis built from
single-particle spherical harmonic-oscillator (HO) states with quantum numbers e = 2n + l ¶ eMax. We employ
partial-wave decomposed 3N matrix elements in a Jacobi-momentum basis and include partial waves up to the
total three-body angular momentum J ¶ 9/2. Furthermore in order to manage computational storage require-
ments, we introduce an additional cut e1 + e2 + e3 ¶ E3Max < 3eMax for 3N matrix elements. For the analysis of the
convergence behavior presented below, we study eMax/E3Max = 10/14, 12/14, 14/14,14/16, and 14/18.

In addition to ground-state energies, we also investigate the convergence behavior of charge radii. These results
are obtained by normal-ordering and evolving the intrinsic proton mean-square radius operator R2

p, defined in
Eq. (8.2). Note that the proton mean-square radius operator is not free-space SRG evolved, consistent with the
determination of the 3N couplings to the charge radius of 4He. We obtain charge radii by applying the corrections
arising from the mean-square charge radii of the proton
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as well as the relativistic Darwin-

Foldy and spin-orbit corrections, see Eq. (8.3). The spin-orbit correction
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so is calculated as given in Eq. (8.4),
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Figure 9.1: Convergence of ground-state energies for 40Ca (top panels) and 54Ca (bottom panels) calculated with
the closed-shell IM-SRG. The column heading specifies the input Hamiltonian: λNN/Λ3N = 1.8/2.0 (EM)
(left), 2.0/2.0 (EM) (middle-left), 2.2/2.0 (EM) (middle-right), and 2.0/2.0 (PWA) (right). In each panel,
we show results obtained for harmonic-oscillator frequencies ħhΩ = (12− 28)MeV and different trunca-
tions of the single-particle basis eMax/E3Max = 10/14 (filled circles), 12/14 (filled squares), 14/14 (filled
triangles), 14/16 (empty circles), and 14/18 (empty squares). The experimental ground-state energies
from the atomic mass evaluation (AME) 2012 [190] are given by the dashed lines.

54Ca 78Ni
Hamiltonian (10→12)/14 (12→14)/14 14/(14→16) 14/(16→18) (10→12)/14 (12→14)/14 14/(14→16) 14/(16→18)

1.8/2.0 (EM) 1.8 0.6 1.4 0.4 3.3 0.9 4.4 2.0

2.0/2.0 (EM) 3.5 1.1 1.9 0.6 7.4 2.1 5.7 2.8

2.2/2.0 (EM) 7.0 2.2 2.3 0.7 14.7 5.0 6.6 3.4

2.0/2.0 (PWA) 4.4 1.5 3.1 1.1 9.2 3.0 9.6 5.0

Table 9.1: Convergence of ground-state energies of 54Ca and 78Ni for the four Hamiltonians considered. The table
lists the change in the ground-state energy when increasing eMax→ eMax+2 (E3Max→ E3Max+2) at fixed
E3Max (eMax) for harmonic-oscillator frequency ħhΩ= 16 MeV.

while values of
¬

r2
p

¶

and



r2
n

�

are taken from Ref. [246]. Additionally, two-body currents, due to the coupling of
the photon to pions and to two nucleons, contribute to the charge radius, but this correction is neglected here.

In Fig. 9.1, we show the model-space convergence for ground-state energies of 40Ca and 54Ca. The energy
minima are almost independent of the four different NN+3N interactions, typically located near ħhΩ = 16 MeV.
While the ground-state energy of 40Ca is well converged for the different Hamiltonians, in 54Ca convergence from
eMax/E3Max = 10/14 to 14/14 is only obtained for the interactions with lower resolution scales λNN = 1.8 and
2.0 fm−1. In Table 9.1, we list the change in the ground-state energy with increasing eMax/E3Max. We clearly see the
1.8/2.0 (EM) interaction is better converged from eMax/E3Max = 12/14 to 14/14, where the energy decreases by
only 0.6 MeV total, compared with the 2.2/2.0 (EM) interaction, where this decrease is 2.2 MeV.

In addition, we investigate the impact of increasing the 3N cut E3Max = 14→ 18 for eMax = 14 both in Fig. 9.1
and Table 9.1. In the case of the 1.8/2.0 (EM) interaction, the ground-state energy of 54Ca decreases by 0.4 MeV for
E3Max = 16→ 18, while this decrease of 0.7 MeV is only slightly larger for the 2.2/2.0 (EM) interaction, indicating
both are relatively well converged in terms of E3Max. The largest impact is seen with the 2.0/2.0 (PWA) interacti-
on, where the difference amounts to 1.1 MeV. While the ground-state energies calculated with the 1.8/2.0 (EM)
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Figure 9.2: Convergence of charge radii for 40Ca (top panels) and 54Ca (bottom panels) calculated with the closed-
shell IM-SRG. The legend is as in Fig. 9.1. The experimental charge radius for 40Ca [206] is given by the
dashed line.

interaction agree with experiment to ≈ 1%, the other three Hamiltonians predict energies that are significantly
underbound.

In Fig. 9.2, we show the model-space convergence of the charge radii for 40Ca and 54Ca. Although the ground-
state energy of 40Ca calculated from the 1.8/2.0 (EM) interaction is in remarkable agreement with experiment,
the corresponding charge radius, shown in the left column of Fig. 9.2, is significantly smaller than experiment.
With increasing SRG resolution scale λNN, the charge radii increase but are still too small compared to experiment,
while for the 2.0/2.0 (PWA) Hamiltonian, the calculated charge radius is instead somewhat too large. It will be
very interesting to compare the charge-radii calculations for 54Ca, shown in the lower panels of Fig. 9.2 with future
experimental results. Even the recent measurement of the charge radius of 52Ca [37], manifesting a strong increase
from 48Ca onward, could not be explained fully by ab initio coupled-cluster calculations, see Sec. 8.3.

In Fig. 9.3, we show the model-space convergence for ground-state energies of 56Ni and 78Ni. Similar to the
calcium isotopes (see Fig. 9.1) the minima in the ground-state energies are near ħhΩ = 16 MeV. The energies
obtained from the 1.8/2.0 (EM) Hamiltonian are again in very good agreement with experiment, while the other
three Hamiltonians give results that are underbound to different degrees. The increase in particle number from
calcium to nickel clearly results in slower model-space convergence. As seen in Table 9.1, enlarging the single-
particle basis from eMax = 12 → 14 changes the ground-state energy of 78Ni by 0.9 MeV for the 1.8/2.0 (EM)
interaction at ħhΩ = 16 MeV, compared to 5.0 MeV for the 2.2/2.0 (EM) interaction. The change in energy when
increasing the cut in the 3N matrix elements from E3Max = 16 → 18 is 2.0 MeV for 1.8/2.0 (EM), already not
completely converged. This effect is even larger for 2.0/2.0 (EM) and 2.2/2.0 (EM) and maximal for 2.0/2.0
(PWA), where the change is 5.0 MeV. Again, for the 1.8/2.0 (EM) interaction, the agreement with experiment is
good in both cases, but it is clear that the model space must be increased beyond eMax/E3Max = 14/18 to claim fully
converged results in this region, and likely for any nucleus with N , Z ¦ 50. We also note the unusual behavior of
the 78Ni results for eMax/E3Max = 14/14 at ħhΩ = 28 MeV in Fig. 9.3 is probably caused by truncation artifacts due
to the E3Max cut.

In Fig. 9.4, we show the model-space convergence of the charge radii for 56Ni and 78Ni. Similar to the calcium
isotopes discussed above, we see a gradual increase with increasing SRG resolution scale and a larger value for
the 2.0/2.0 (PWA) interaction. While the results for 56Ni appear well converged for all starting Hamiltonians, this
is less the case for 78Ni either with respect to eMax or E3Max, and especially for the larger cutoffs and the 2.0/2.0
(PWA) interaction.

Before studying the systematics of the ground-state energies and charge radii of closed shell nuclei, we compare
our results to the coupled-cluster calculations of Hagen et al. [243] for the 1.8/2.0 (EM) interaction. Considering
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Figure 9.4: Convergence of charge radii for 56Ni (top panels) and 78Ni (bottom panels) calculated with the closed-
shell IM-SRG. The legend is as in Fig. 9.1.

the same model-space truncation eMax/E3Max = 14/16 and harmonic-oscillator frequency ħhΩ = 16 MeV, we find
good agreement within≈ 1% for 16O: −127.2 MeV (IM-SRG(2)) vs. −128 MeV (Λ-CCSD(T)); for 40Ca: −344.5 MeV
vs. −348 MeV; for 48Ca: −416.1 MeV vs. −419 MeV; and for 78Ni: −633.6 MeV vs. −637 MeV, while there is a
difference of more than 3% for 4He (−29.2 MeV vs. −28.2 MeV).

Finally, in Figs. 9.5 and 9.6 we show ground-state energies and charge radii, respectively, for selected closed-shell
nuclei from 4He to 78Ni. Except for the neutron-rich oxygen isotopes 22,24O all calculated ground-state energies from
the 1.8/2.0 (EM) interaction are in very good agreement with experiment. Interestingly the other three interactions
follow the same pattern but are shifted by as much as 1.5 MeV/A in the case of the 2.0/2.0 (PWA) interaction. The
experimental charge radii are enclosed by the 2.2/2.0 (EM) and 2.0/2.0 (PWA) results, but the trend observed
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for the closed-shell nuclei studied in detail already above appears to hold at least up to 78Ni. That is, radii with
1.8-2.2/2.0 are too small, but 2.0/2.0 (PWA) gives slightly too large radii. As in the case of ground-state energies,
the radii systematics is similar for all Hamiltonians, with mainly only a constant shift for the different interactions.
This behavior for the ground-state energy and charge radii is reminiscent of the Coester-like line for the saturation
points of the four Hamiltonians considered [29].
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Figure 9.6: Systematics of charge radii of closed-shell nuclei from 4He to 78Ni calculated with the IM-SRG for the
four Hamiltonians considered. The results are compared against experimental charge radii [206] where
available.
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9.2 Closed-shell nuclei in the vicinity of A∼ 100

The analysis of the model-space convergence of 78Ni in the last section already revealed that the model space
must be increased beyond eMax/E3Max = 14/18 to claim fully converged results. Nevertheless, we briefly want
to investigate the model-space convergence of 100,120Sn, shown in Fig. 9.7. We limit the discussion to harmonic-
oscillator frequencies ħhΩ = (12− 20)MeV close to the minimum. For the 1.8/2.0 (EM) interaction, the agreement
with experiment is good in both N , Z ¦ 50 isotopes, but it is obvious that the model space must be increased well
beyond eMax/E3Max = 14/18 to check for convergence in E3Max. The results based on Hamiltonians with larger
resolution scales are clearly not converged in eMax or E3Max. The truncation artifacts due to the E3Max cut are visible
in the eMax/E3Max = 14/14 results for 120Sn. At eMax = 14 the additional cut in 3N matrix elements E3Max = 14
removes important contributions from the calculation. By increasing it to 16 or 18 the convergence pattern recurs
to a more regular behavior. This highlights the inevitability of careful convergence checks.

The range of HO frequencies used here is in the regime of ultraviolet extrapolations. However, recent studies have
focused on the two-body system [247], necessitating an extension to the many-body sector. Infrared extrapolations,
using larger values for the HO frequency, have been recently performed for coupled-cluster calculations [248]. It
would be interesting to extend this formalism to the E3Max cut to study possible extrapolations to quasi-exact results.
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Figure 9.7: Convergence of ground-state energies for 100Sn (top panels) and 120Sn (bottom panels) calculated with
the closed-shell IM-SRG. The legend is as in Fig. 9.1.

9.3 Open-shell isotopic chains

In this section, we move beyond closed-shell systems to explore ground- and excited-state systematics throughout
a selection of isotopic chains in the sd and p f shells, namely sodium, sulfur, calcium, manganese, and nickel. The
valence-space (VS) IM-SRG method used here was shown to agree with large-space methods to better than 1% for
ground-state energies [145].

We also calculate charge radii, less studied within the context of ab initio approaches [12, 37, 103, 136, 249],
with the VS-IM-SRG for the first time, where the proton mean-square radius operator of Eq. (8.2) is transformed
via the same unitary transformation as the Hamiltonian. This gives a valence-space radius operator to be used with
valence-space wave functions, after which the core point-proton radius and corrections of Eq. (8.3) are applied to
obtain the absolute charge radius. We note that induced two-body corrections to the radius operator are included
naturally in the VS-IM-SRG formalism.
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9.3.1 Ground-state energies and radii

Given the remarkable agreement with experimental ground-state energies for closed-shell systems from the 1.8/2.0
(EM) interaction discussed in Sec. 9.1, we compare the systematics of ground-state energies calculated with this
interaction to experimental data where they exist in the isotopic chains mentioned above. For sodium, sulfur, and
calcium we take eMax/E3Max = 12/16, while for manganese and nickel we use eMax/E3Max = 14/16. In all cases
ħhΩ = 16 MeV is taken for the harmonic-oscillator frequency. In addition, we directly compare single-reference
IM-SRG and valence-space results in calcium and nickel for the closed-shell cases. The valence space is defined
to be one major harmonic-oscillator shell for protons and neutrons. For example, for the sulfur chain we take a
proton and neutron sd valence space above an 16O core for N < 20, a proton sd valence space above a 28O core
for N = 20, and a proton sd neutron p f valence space above a 28O core for N > 20. It should be noted that at
oscillator shell closures for neutrons, no explicit neutron excitations are allowed in the valence space. In particular
for systems near the transition from one valence space to another, contributions from cross-shell excitations will
be important. These excitations are incorporated approximately by the IM-SRG decoupling, and our truncation to
two-body operators is insufficient for these isotopes. We mark these oscillator closures as a vertical dotted line in
all figures. Preliminary efforts indicate that the VS-IM-SRG approach is capable of decoupling the relevant mixed
valence spaces [250], and thus treating these excitations explicitly.
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Figure 9.8: Ground-state energies (top) and two-neutron separation energies (bottom) of sodium (left) and sul-
fur (right) isotopes for the 1.8/2.0 (EM) Hamiltonian (circles) compared to experiment (AME 2012,
bars) [190]. See text for details on the valence spaces used. The vertical dotted line marks the end
of the sd shell at N = 20.

Beginning in the sd region, we show in Fig. 9.8, ground-state energies and two-neutron separation energies S2n
for sodium and sulfur isotopes, respectively. In both cases we find good agreement with absolute experimental
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ground-state energies, outside of 31,32Na, which are somewhat underbound. The ground states of 30−32Na are
dominated by deformed configurations [193, 194], not captured in neutron sd or p f valence-space calculations.
These island-of-inversion isotopes will be investigated further in the context of decoupling neutron sd − p f cross-
shell valence spaces. Likewise, the S2n results are in remarkable agreement with data, except in the region near
N = 20. In Ref. [145], sodium isotopes were also investigated with the VS-IM-SRG approach, but instead using the
EM 500 MeV potential with local N2LO 3N forces [251] consistently SRG evolved to λ = 1.88 fm−1. For this choice
of Hamiltonian the isotopes 22Na up to 32Na are overbound, while the rest of the chain is in good agreement with
experiment. With three protons above the closed Z = 8 proton shell, no other ab initio method is currently able
to calculate sodium isotopes. Except for the single-reference and VS-IM-SRG calculations of 32,36S with the SRG-
evolved NN+3N forces mentioned above [145], which display significant overbinding not seen with the 1.8/2.0
(EM) interaction used here, there are no other ab initio calculations available for these open-shell sulfur isotopes.
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Figure 9.9: Ground-state energies (top) and two-neutron separation energies (bottom) of calcium (left) and man-
ganese (right) isotopes for the 1.8/2.0 (EM) Hamiltonian (circles) compared to experiment (AME 2012,
bars) [190]. See text for details on the valence spaces used. For closed-subshell calcium isotopes we also
show the results of the single-reference IM-SRG (diamonds) for comparison.

In the p f shell, the agreement with experimental data remains good as well, as shown in Figs. 9.9 and 9.10
for calcium, manganese, and nickel isotopic chains, respectively. In calcium, we also compare with the correspon-
ding single-reference results for 40,48,52,54Ca, where, as noted in Ref. [145], the VS-IM-SRG results agree with the
single-reference calculations to better than 1%. We also reproduce well the sharp decreases in S2n values after
N = 28 and N = 32, in good agreement with recent precision experiments [35, 166], indicating that the shell
closures at N = 28 and N = 32 are well reproduced with the 1.8/2.0 (EM) interaction. We therefore also expect
predictions of S2n values past N = 34 to be reliable, at least qualitatively, when the data become available. Simi-
lar good agreement is seen for all trends in the manganese isotopes, which, with five protons above the Z = 20
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Figure 9.10: Ground-state energies (top) and two-neutron separation energies (bottom) of nickel isotopes compa-
red to experiment, with the same legend and details as in Fig. 9.9. The vertical dotted line marks the
end of the p f shell at N = 40.

proton shell closure, are currently inaccessible to all other ab initio methods. Finally, we see that throughout the
nickel chain, absolute ground-state energies become modestly overbound in the mid-shell region on the order of
up to 10 MeV. All other experimental trends (aside from the artificial kink in the vicinity of N = 40) are well
reproduced, including the sharp drop past N = 28. We also note that the somewhat larger discrepancy between
single-reference and VS-IM-SRG results for 56Ni is likely due to the ground-state configuration obtained in the
valence-space diagonalization being only 30% pure filled proton and neutron f7/2. While experimental energies are
known past A = 72, this represents our current limitation of diagonalizing the valence-space Hamiltonian exactly
with modest computational resources. Using standard extensions and/or controlled truncations, isotopes as heavy
as 80Ni may be reached, though as seen in Sec. 9.1, such results may not be completely converged in terms of E3Max.
The results for the calcium and nickel isotopes using the consistently SRG-evolved EM 500 MeV potential with local
N2LO 3N forces [251] are significantly overbound up to 100MeV [145], highlighting the importance of considering
saturation for whether chiral interactions can describe bulk properties of nuclei across the nuclear chart.

We illustrate the versatility of the VS-IM-SRG approach in Fig. 9.11 by comparing our calculations of charge
radii for the complete p f -shell manganese chain to experimental data obtained by collinear-laser spectroscopy at
ISOLDE, CERN [252]. From Fig. 9.6, we expect charge radii predicted with the 1.8/2.0 (EM) and 2.0/2.0 (PWA)
interactions to be systematically too small and too large, respectively. While this is indeed seen, an interesting
trend in charge radii is predicted in both cases, with a roughly parabolic shape to N = 28, followed by a sharp
increase for N > 28. Experimental data show this trend, albeit with more pronounced structures, as also seen in
recent experimental measurements of charge radii in calcium isotopes [37]. While neither interaction perfectly
reproduces experiment, 2.0/2.0 (PWA) only moderately overpredicts charge radii and should provide a reasonably
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reliable guide to trends across isotopic chains. The general absence of systematic data highlights the importance of
continued systematic experimental investigations of charge radii.
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Figure 9.12: First excited 2+ energies of even sulfur isotopes for the 1.8/2.0 (EM) Hamiltonian (circles) compared to
experiment [197]. See text for details on the valence spaces used. The vertical dotted line marks the
end of the sd shell at N = 20.

9.3.2 Excited states

Given the remarkable description of experimental ground-state properties from the 1.8/2.0 (EM) interaction, it is
also of interest to investigate to what extent the structure of excited states is captured. In the VS-IM-SRG approach,
all excited states allowed within a given valence space are obtained directly via diagonalization. Here we focus on
first excited 2+ states and associated shell closures in the subset of even-even sulfur, calcium, and nickel isotopes.

Beginning with sulfur, shown in Fig. 9.12, we see an overall good reproduction of the experimental trends in 2+

energies. When neutrons occupy the sd valence space, however, these energies are systematically several hundred
keV too high. Beyond N = 20, when the neutron valence space changes to the p f shell, agreement with data
improves, including the modest peak at N = 28 in 44S. Given the absence of allowed neutron excitations at N = 20,
the 2+ energy here is artificially too high and is expected to decrease when such degrees of freedom are included
in the valence space.
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Figure 9.13: First excited 2+ energies of even calcium (left) and nickel (right) isotopes for the 1.8/2.0 (EM) Hamiltoni-
an (circles) compared to experiment [197]. See text for details on the valence spaces used. The vertical
dotted line marks the end of the p f shell at N = 40.

For the calcium isotopes, shown on the left Fig. 9.13, the calculated results agree well with data for open-shell
cases. While relative peaks are seen at the N = 28,32 shell closures as well as the recently measured N = 34
closure in 54Ca [36], they are systematically too high, particularly in 48Ca. While we might initially attribute this
to neglected proton excitations due to the choice of valence space, similar features are also seen in the nickel
isotopes, which allow both proton and neutron excitations except at N = 40. For the nickel isotopes, a similar
picture to sulfur is seen on the right of Fig. 9.13. Where when neutrons fill the p f shell, the 2+ energies reproduce
the experimental trend, but are systematically several hundred keV too high. When neutrons begin filling the sd g
orbits past 68Ni, the results agree very well with data, making predictions out to 80Ni possible to investigate the
closed-shell nature of 78Ni. The very high 2+ state in 68Ni is clearly due to a lack of allowed neutron excitations,
and should again be regarded as an artifact of the many-body approximation.

The pattern of too-high 2+ energies in closed-shell systems is a common feature of our calculations. The origin
of this behavior is unclear, but some direction might be provided by coupled-cluster calculations of 48Ca and
78Ni [243]. In this work, it was found that using the same 1.8/2.0 (EM) interaction, when particle-hole excitations
were limited to the coupled-cluster singles and doubles (CCSD) approximation, the first excited 2+ state in 48Ca was
approximately 1 MeV too high, very close to our result. When perturbative triples excitations were then included,
this energy was lowered to close to the experimental value, and a similar decrease was seen in the first 2+ energy
in 78Ni. Because the IM-SRG(2) approximation in this work is analogous to the CCSD truncation [14], we might
expect a similar improvement in extensions of IM-SRG(2) analogous to the perturbative triples of coupled cluster.
Due to the final step of diagonalizing in the valence space, however, the expectation would be that much of this
physics should already be captured, as long as excitations near the Fermi surface were of dominant importance. As
the development of a controlled approximation to IM-SRG(3) is currently in progress, we so far have no means to
check whether such an improvement will remedy the too-high 2+ states at closed shells. Nevertheless, this appears
to be a deficiency in the many-body method, not the interaction.
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10 Summary and outlook

In this thesis we have presented calculations of ground- and excited-state properties of closed- and open-shell
nuclei based on a set of chiral NN+3N interactions. These interactions are based on the EM 500 MeV N3LO NN
potential [27] evolved to low-resolution scales and non-local N2LO 3N interactions with 3N low-energy couplings
(LEC) adjusted at each resolution scale to the 3H binding energy and 4He charge radius. Employing these NN+3N
interactions in perturbative calculations of symmetric nuclear matter leads to results consistent with the empirical
saturation point within theoretical uncertainties. This agreement for symmetric nuclear matter, representing an
idealized system that probes densities also found in medium-mass or heavy nuclei, motivated the investigation
of finite nuclei using these Hamiltonians. The low-momentum scale of the Hamiltonians also makes them more
amenable to a perturbative calculation for nuclei.

Until a few years ago many-body perturbation theory (MBPT) for deriving valence-space interactions from
NN+3N Hamiltonians was the only many-body method to access doubly-open shell nuclei in the medium-mass
regime, e.g., along sd-shell isotopic chains between oxygen and calcium. Our study of sd-shell isotopes pointed out
that the change from second to third order in MBPT is indeed smaller than the uncertainty in the input Hamilto-
nian, stemming from the resolution-scale dependence and different sets of LECs. Most experimental two-neutron
and and two-proton separation energies and 2+ excitation energies are consistent with our theoretical results and
lie within our uncertainty estimates.

Following the extensive interest in the masses of neutron-rich calcium isotopes, both experimentally [35, 166]
and theoretically [141, 147, 253, 254], we investigated the stable, neutron-rich isotope 48Ca in detail within a
larger theory collaboration. We calculated energies, radii, and charge densities from coupled-cluster theory. Our
result for the neutron skin, the difference between the root mean square point-neutron and point-proton radius,
is significantly smaller than results from energy density functionals (EDF). Moreover, we made predictions for
the dipole polarizability and the weak form factor. Recently, the dipole polarizability of 48Ca was determined
experimentally and agrees with our prediction [198]. A special opportunity to further benchmark our calculations
with experimental results was a recent collinear laser spectroscopy measurement by the COLLAPS collaboration,
determining the charge radii up to 52Ca for the first time. Coupled-cluster calculations predict charge radii of the
same size for 40Ca and 48Ca for all NN+3N Hamiltonians, while EDFs that do not include these charge radii in their
parameter optimization lead to charge radii of different size. However, the very steep increase in the charge radii
towards 52Ca can currently not be explained by our coupled-cluster calculations. This is also a very interesting open
puzzle regarding the neutron shell closure at N = 32, which is seen in the two-neutron separation energies [35].

Another many-body method increasing the reach of ab initio calculations to the medium-mass regime is the in-
medium similarity renormalization group (IM-SRG), developed in the last decade [14]. We used the formulation
of the IM-SRG to calculate ground-state properties of closed-shell nuclei and its extension for the decoupling of
valence-space interactions to access open-shell nuclei. In a systematic study of closed-shell nuclei we investigated
the convergence properties of the different NN+3N Hamiltonians. For the lower NN resolution scales 1.8−2.0 fm−1

we have observed a fast convergence of ground-state energies in the number of major oscillator shells eMax up to
mass number A∼ 80. The additional E3Max cut on the 3N matrix elements prevents, however, complete convergence
of absolute ground-state energies in this mass regime. Nevertheless, both truncations allow a relative convergence
of the ground-state energy of 78Ni to about ≤ 1% at the optimal harmonic-oscillator (HO) frequency. The binding-
energy systematics of closed-shell nuclei from 4He to 78Ni is reproduced with the 1.8/2.0 NN+3N interaction,
while the other Hamiltonians show a similar pattern but give results that are successively underbound. While
all Hamiltonians predict also similar charge radii systematics, experimental radii are enclosed by results for the
2.2/2.0 and 2.0/2.0 (PWA) NN+3N Hamiltonians. The decoupling of valence-space interactions starting from the
1.8/2.0 NN+3N Hamiltonian leads to ground- and excited-state results with a similar level of agreement with
experiment found for the ground-state energies of closed-shell nuclei. These results allow intriguing predictions
for future experiments and point out the importance of realistic saturation properties for the correct description of
finite nuclei.

Having summarized the main points of this thesis, we want to give an outlook on future research projects.
Since there has been a lot of development on chiral interactions in recent years, e.g., the new set of non-local
NN interactions introduced in Ref. [90], it will be important to perform more comprehensive studies, since the
chiral NN+3N Hamiltonians introduced in Sec. 4 all started from the EM 500 MeV N3LO NN potential [27].
The new set of NN interactions is provided for all orders in the chiral expansion from LO to N4LO, enabling
studies of the order-by-order convergence. However, consistent NN+3N calculations at N2LO and N3LO require the
determination of the N2LO 3N couplings. For this one may use the properties of few-nucleon systems, similar to the
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NN+3N Hamiltonians employed in this work, or, alternatively one could require the reproduction of the empirical
saturation point in calculations of symmetric nuclear matter.

For an improved convergence the initial NN+3N Hamiltonian can be evolved consistently, e.g., in momentum-
space [119], taking into account induced 3N interactions arising from the evolution of the initial NN interaction.
Nevertheless, since this transformation is only unitary at the 3N level, induced 4N contributions may arise as seen in
the SRG evolution of local N2LO 3N forces [255] in the HO basis. The consistent NN+3N evolution in momentum
space provides an ideal framework for developing new generators, which may result in a smaller amount of induced
4N contributions.

While we have used both perturbative and non-perturbative methods to obtain valence-space interactions a
comprehensive comparison of both approaches is still lacking due to the different starting points. While the MBPT
calculation of valence-space interactions is utilizing a HO basis, the valence space IM-SRG decoupling is employing
a Hartree-Fock basis. The comparison of both methods in the HF basis using the new framework of Ref. [186] with
a possible improvement of the order-by-order convergence in MBPT calculations is an interesting topic for a future
work.
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A Isobaric multiplet mass equation applied in the sd -shell

In this section we study the Isobaric Multiplet Mass Equation (IMME) for the A = 20 and A = 21 multiplets. We
document this in the Appendix, because it was a spin-off project of the interactions developed and the methods used
in this thesis. Before going into this we briefly recap the concept of isospin and derive the IMME in perturbation
theory. Exploring the impact of isospin-symmetry breaking on nuclear structure is a challenge for nuclear theory,
as it relates to the symmetries of QCD and their breaking. The valence-space calculations for the A = 20 and
A= 21 multiplets use either the phenomenological isospin-symmetric USD Hamiltonians [162] supplemented with
an isospin-non-conserving (INC) part [256] or isospin-non-conserving interactions derived from chiral NN and 3N
forces at third order in MBPT, as outlined in Sec. 6.2. The first direct mass measurements of the most proton-
rich members of these isospin multiplets, 20,21Mg, using the Penning trap mass spectrometer TITAN at TRIUMF,
Vancouver (Canada), reduced the uncertainties in their masses by 15 and 22 times, respectively. This results in a
significant departure from the expected behavior of the IMME in both the A= 20 and A= 21 multiplets. The results
have been published jointly with experimentalist’s in Ref. [53]. In addition, we discuss the recent measurement
of the excitation energy of the T = 2 state in 20Na [257], which represented the most uncertain member of the
A= 20 quintet. The inclusion of this measurement resulted in a revalidation of the quadratic form of the IMME in
the A= 20 multiplet.

The discovery of the neutron in 1932 by Chadwick [1] clarified that the strong force acts similarly on protons
and neutrons. This motivated the concept of isospin, introduced by Heisenberg [258], characterizing them as the
projections of a two-state system, i.e., the nucleon, in isospin space. This is in analogy to the spin quantum number,
however, while the spin of a particle is determined by its projection on the quantization axis in spin space the
isospin state of the nucleon is determined by its projection in the abstract isospin space.

The total isospin T of a nucleus, composed of N neutrons and Z protons, is determined by the vector sum
of single-nucleon isospins. Thus, the total isospin projection is Tz = (N − Z)/2 and therefore |N − Z |/2 ≤ T ≤
(N+Z)/2. Omitting the Coulomb interaction among protons, charge-symmetry and charge-independence of strong
interactions can lead to identical properties of nuclei with the same mass number, but with different neutron and
proton numbers. An interaction is charge symmetric when the interaction between two protons is identical to that
between neutrons (Vpp = Vnn), while it is charge independent if Vnn = Vpp = Vpn for the T = 1 channels. In addition,
the Pauli principle constrains the number of possible configurations and thereby the range for which symmetries can
be observed. In summary, the total isospin quantum number T connects charge symmetry/independence and the
Pauli principle and, hence, is a good quantum number to characterize analogue states in isobaric multiplets [259].
These states are called isobaric analogue states (IAS).

However, isospin is not an exact symmetry in nature, broken by electromagnetic interactions and the up and
down quark mass difference in QCD. Isospin-symmetry breaking operators lift the (2T + 1)-fold degeneracy, resul-
ting in isospin multiplets labeled by Tz . It was first demonstrated by Wigner [260] and later derived by Weinberg
and Treiman [261] that the mass excess M E of an IAS can be parametrized as a function of the isospin projection
Tz by

M E(α, T, Tz) = a(α, T ) + b(α, T )Tz + c(α, T )T 2
z , (A.1)

where α represents all other relevant quantum numbers of the state including the mass number A, while a, b and
c are the expansion coefficients of the isobaric multiplet mass equation. The mass excess M E for a state of a given
isotope is defined as the difference between its actual mass and its mass number. For the derivation of the IMME we
follow Ref. [262], starting with the eigenstates |α, T, Tz〉 of the charge-independent Hamiltonian HC I . Since HC I ,
by definition, conserves the isospin T , the eigenvalues are independent of Tz , i.e., the isobaric analogue states are
degenerate. A charge-violating Hamiltonian HCV will lift this degeneracy and can be treated as a perturbation in
case the induced energy splitting is small compared to the contribution from the charge-independent interaction.
The total binding energy is determined by

BE(α, T, Tz) = 〈α, T, Tz |HC I +HCV |α, T, Tz〉 . (A.2)

If only two-body forces are contributing to the charge-violating Hamiltonian, it can be decomposed

HCV =
2
∑

k=0

H(k)CV , (A.3)
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where k = 0,1, 2 correspond to isoscalar, isovector, and isotensor components of this interaction, respectively. The
total energy splitting for the members of the isobaric multiplet in lowest order of perturbation theory is then given
by

∆E(α, T, Tz) = 〈α, T, Tz |
2
∑

k=0

H(k)CV |α, T, Tz〉 . (A.4)

By applying the Wigner-Eckart theorem the Tz dependence can be explicitly extracted to

∆E(α, T, Tz) =
2
∑

k=0
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where the last factor is the reduced matrix element of the set of tensor operators H(k)CV . Inserting the analytical
expressions for the Wigner 3 j symbols leads to
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By reordering the terms in Eq. (A.6) according to their power in the isospin projection Tz we obtain the following
contributions to the coefficients a, b and c in Eq. (A.1)
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, (A.7)

with the neutron M En and the hydrogen mass excesses M EH. Thus, the a coefficient contains contributions from
the isoscalar and isotensor parts, while the b and c coefficients are purely isovector and isostensor, respectively.
Since Eq. (A.1) describes the mass excess the coefficient a in Eq. (A.7) contains the contribution from the charge-
independent Hamiltonian and A times the averaged neutron-hydrogen mass excess, while the coefficient b contains
the neutron-hydrogen mass excess difference M En −M EH = 782.3 keV [263].

While the Coulomb interaction is expected to be dominant, the quadratic form of the IMME is even valid in the
presence of any charge-asymmetric and charge-dependent NN component. Those additional terms just lead to a
change in the coefficients. Deviations from the quadratic form, e.g., a non-vanishing cubic d(α, T )T 3

z or quartic
e(α, T )T 4

z term, can arise from higher-order perturbations, 3N forces and isospin mixing of energetically close lying
states with different isospin. Such deviations have been found in the A= 9 Jπ = 3/2− [264] and A= 31 [265, 266],
33 [263] and 35 [267] Jπ = 3/2+, T = 3/2 quartets. Moreover, the A= 8 [268] and 32 [269, 270] T = 2 quintets
also require an extension of the quadratic IMME.

Many experimental tests of the IMME on proton-rich systems were hindered by excessive in-beam contamination.
Substantial isobaric background often prevented ground-state measurements of exotic nuclei, especially for nuclei
produced at low rates. The development of a novel technology for on-line laser ion sources that suppresses any
background contamination, allowed the first direct mass measurements of the most proton-rich members of the A=
20 and 21 isospin multiplets, i.e., 20,21Mg, using the Penning trap mass spectrometer TITAN at TRIUMF, Vancouver
(Canada) [53]. Being the lightest isospin multiplets where all members are stable against particle emission, and
the lightest isospin multiplets which can be described within the d5/2, s1/2, and d3/2 orbitals (sd shell), the A= 20
and 21 multiplets provide an excellent test of the IMME.
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Figure A.1: Level scheme of the members of the A= 21 multiplet. Taken from [262].

The high-precision Penning-trap measurement determined a mass excess of 10903.85(74)keV for 21Mg, which
agrees well with the tabulated value 10914(16)keV from AME2012 [190]. The mass excess of 17477.7(18)keV for
20Mg deviates by 81 keV as compared to 17559(27)keV from the AME2012, which is a shift of 3σ. In both cases the
precision was increased by more than one order of magnitude, reducing the uncertainties in the masses of 20,21Mg
by 15 and 22 times, respectively

Determining the energy level of an isospin multiplet member relies on knowing both the ground-state and
excited-state energies accurately. For different experimental techniques, the measured excitation energy depends on
separation energies, which can change with improved mass measurements. New mass measurements of the ground
states of 20Na [271] and 19Ne [272] led to an improved proton separation energy value for 20Na of 2190.1(11)keV.
This value is required to derive the excitation energy of the Jπ = 0+, T = 2 state in 20Na. Combining a new
measurement of the excitation energy [273] with the value compiled in [271], an averaged value of 6524.0(98)keV
is obtained, a result that is shifted by 10 keV relative to the tabulated value [197]. In 21Mg, with the level scheme
shown in the left column of Fig. A.1, a new measurement of the Jπ = 1/2+ state was completed [274], which,
when averaged with the National Nuclear Data Center (NNDC) [275] value, yields 200.5(28)keV. Both of these
new values are included in the following analysis.

Table A.1 summarizes the fit results of the quadratic, and higher order forms of the IMME for the A = 20 and
21 multiplets. For each multiplet the χ2 of the fit greatly increased, as compared to the tabulated values [263].
The most uncertain member of the A = 20 multiplet is now 20Na, with nearly all of the uncertainty originating
from the excitation energy of the T = 2 state. The best fit is obtained when a cubic term is included, resulting
in d = 2.8(1.1)keV, and χ2 = 3.7, a result that is an order of magnitude larger than the literature χ2 value of
0.2 [263]. For the T = 3/2, A = 21 multiplets, the χ2 for a quadratic fit have increased to 28 and 9.7 for the
Jπ = 5/2+ and 1/2+, respectively, as compared to the literature χ2 values of 3.0 and 3.5 [263]. The IMME clearly
fails in both of the A= 21 multiplets. Large cubic terms are required for both multiplets, with d = 6.7(13)keV for
the Jπ = 5/2+ multiplet and d = −4.4(14)keV for the Jπ = 1/2+ multiplet.

The sd shell is particularly interesting because it can be accessed by phenomenological and ab initio methods.
The phenomenological isospin-symmetric USD Hamiltonians [162] generally reproduce data very well throughout
the sd shell, but ultimately need to be supplemented with an isospin-non-conserving (INC) part [256]. In addition,
there are valence-space calculations based on chiral NN and 3N forces, without phenomenological adjustments.
The resulting sd shell Hamiltonians are inherently isospin asymmetric and have successfully described proton- and
neutron-rich systems [164, 188], but it was still an open question how well they work in systems with both proton
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Table A.1: Extracted IMME parameters for the A = 20 and 21 multiplets. Mass excesses are taken from [190] and
excitation energies Ex from [197] and [275], except where noted. Also shown are the d and e coefficients
for cubic and quartic fits and the χ2 values of the fit. Shell model calculation results using the USDA and
USDB plus INC interactions are presented.

Nuclide Tz M E(g.s.) (keV) Ex (keV)
A = 20, Jπ = 0+, T = 2
20O +2 3796.17 (89) 0.0
20F +1 -17.45 (3) 6519.0 (30)
20Ne 0 -7041.9306 (16) 16732.9 (27)
20Na -1 6850.6 (11) 6524.0 (97) a

20Mg -2 17477.7 (18) b 0.0
Ref. a (keV) b (keV) c (keV) χ2

This Work 9689.79 (22) -3420.57 (50) 236.83 (61) 10.2
Ref. [263] 9693 (2) -3438 (4) 245 (2) 1.1

Fit d (keV) e (keV) χ2

Cubic 2.8 (11) - 3.7
Quartic Only - 0.89 (12) 9.9
Quartic 5.4 (17) −3.5 (18) -
USDA −0.1 -
USDA - −1.7
USDB −0.1 -

A = 21, Jπ = 5/2+, T = 3/2
21F +3/2 -47.6 (18) 0.0
21Ne +1/2 -5731.78 (4) 8859.2 (14)
21Na -1/2 -2184.6 (3) 8976.0 (20)
21Mg -3/2 10903.85 (74) b 0.0

Ref. a (keV) b (keV) c (keV) χ2

This Work 4898.4 (13) -3651.36 (63) 235.00 (77) 28.0
Ref. [263] 4894 (1) -3662 (2) 243 (2) 3.0

Fit d (keV) χ2

Cubic 6.7 (13) -
USDA −0.3
USDB 0.3

A = 21, Jπ = 1/2+, T = 3/2
21F +3/2 -47.6 (18) 279.93 (6)
21Ne +1/2 -5731.78 (4) 9148.9 (16)
21Na -1/2 -2184.6 (3) 9217.0 (20)
21Mg -3/2 10903.85 (74) b 200.5 (28) c

Ref. a (keV) b (keV) c (keV) χ2

This Work 5170.4 (14) -3633.6 (10) 220.9 (10) 9.7
Ref. [263] 5171 (10) -3617 (2) 217 (2) 3.5

Fit d (keV) χ2

Cubic −4.4 (14) -
USDA −1.2
USDB 1.9

a Average of Refs. [271, 273]
b Present work
c Average of Refs. [274, 275]

and neutron valence degrees of freedom. Therefore the current measurements provided valuable new tests of these
methods.
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We first calculated the IMME in the sd shell with the USDA and USDB isospin-conserving Hamiltonians [162],
supplemented with the INC Hamiltonian of Ref. [256]. The results for the A= 20 and 21 d and e coefficients are
presented in Table A.1. For A= 20, the USDA value for e, which comes from mixing of states with similar energy but
different isospin in 20F, 20Ne, and 20Na, agrees with experiment only when e is also included in the IMME fit. Here,
the largest mixing comes from a pair of close-lying Jπ = 0+, T = 0, 2 states in 20Ne. With the USDB Hamiltonian,
these two states are nearly degenerate resulting in an uncertainty of the energy of the good isospin states that is
too large to give a meaningful result. The calculated d term, on the other hand, comes from mixing in 20F and
20Na. With the USDB, the Jπ = 0+, T = 1 levels in these nuclei are well separated from the T = 2 isobaric analog
state (IAS), leading to a small energy-mixing shift and hence a too small d value.

For the A= 21 systems, the USD values of d also do not agree with experiment. The non-zero values come from
mixing of the T = 3/2 states with close-lying T = 1/2 states in 21Ne and 21Na. For instance, the largest shift in
the Jπ = 5/2+ multiplet is due to a T = 1/2 state in 21Ne, which for the USDA lies 372 keV below the IAS, instead
of the 50 keV necessary to reproduce d = 6.7 keV. Experimentally, several T = 1/2 states with unidentified spin
lie around the IAS [197] as indicated by the shaded area in the middle columns of Fig. A.1. This illustrates the
challenge in obtaining accurate calculations capable of describing the new experimental findings.

In addition we calculated the properties of the A = 20 and 21 multiplets from valence-space Hamiltonians
constructed within the framework of many-body perturbation theory [161], based on low-momentum [115] NN
and 3N forces derived from chiral effective field theory [5], without empirical adjustments.

All contributions to chiral NN forces, discussed in Sec. 2.2.2, were isospin-symmetric. Since isospin symmetry is
violated by strong and electromagnetic interactions those effects also need to be included in chiral EFT. The N3LO
NN potential EM 500 MeV, used in this study of the A= 20 and A= 21 multiplets, follows the counting scheme for
isospin-symmetry breaking contributions of Ref. [276] and includes the pion-mass difference (mπ± 6= mπ0) in the
one-pion exchange and the Coulomb potential (static 1γ exchange) in pp scattering. Those leading order isospin-
symmetry breaking terms are denoted LO/. Entem and Machleidt also include NLO/ isospin-symmetry breaking
effects, which arise from the pion-mass difference in the NLO two-pion exchange, πγ exchange and two charge-
dependent contact interactions of order q0. The charge-dependent LECs allow an accurate fit of the 1S0 scattering
lengths app, anp and ann. In Ref. [6] Machleidt and Entem rendered more precisely their procedure for the pion-
mass splitting in the NLO two-pion exchange, used in the EM 500 MeV potential. Since the effect of the pion-mass
splitting in the NLO two-pion exchange is only non-negligible in the 1S0 state, it was absorbed in the 1S0 charge-
dependent contact. Note that a slightly different counting of the isospin-breaking effects as compared to Ref. [276]
was introduced in [87]. See also [6].

The construction of the chiral NN+3N Hamiltonian, employed in this study of the IMME, followed the same
strategy as described in Sec. 4. Actually, it was constructed even before those specified in Sec. 4. Nevertheless
we briefly recap the basic idea. The charge dependent EM 500 MeV potential was evolved to a low-momentum
interaction Vlow k with Λlow k = 2.0 fm−1. This low-momentum interaction was supplemented with the N2LO 3N
interaction, using the non-local regulator specified in Eq. (2.26) with n3N = 2 and Λ3N = 2.0 fm−1. The low-energy
couplings cD, cE have been fit to the 3H binding energy and 4He charge radius using Faddeev- and Faddeev-
Yakubovsky calculations.

Since we want to derive interactions for the sd and the extended sd f 7p3 valence space, 3N interactions are
normal ordered with respect to a 16O harmonic-oscillator Slater determinant. The normal-ordered one- and two-
body contributions of the 3N interactions are added to the low-momentum NN interactions before performing the
third-order MBPT calculation.

These isospin-asymmetric Hamiltonians describe ground- and excited-state properties in neutron-rich oxygen
isotopes [153, 188, 189] and proton-rich N = 8 isotones [164]. Here we use the valence-space Hamiltonians of
Refs. [188] and Ref. [164] for the neutron-neutron and proton-proton parts, respectively, and include for the first
time valence-space proton-neutron interactions. The ground-state energies of 20,21Mg are shown in Table A.2. The
calculated ground-state energy of 20Mg is in very good agreement with experiment, while 21Mg, with one neutron
above the closed N = 8 shell, is overbound by 1.6 MeV. For the A = 20 multiplet, the d coefficient is found to be
−18 keV, i.e., giving isospin-symmetry breaking larger than in experiment. As Tz increases, other members of the
A= 21, T = 3/2 multiplet become less overbound than 21Mg (21F is only 0.8 MeV overbound). This, however, also
results in larger cubic terms for the A = 21 multiplets (d = −38 keV for A = 21, Jπ = 5/2+). Therefore, the new
experimental findings cannot be described with these Hamiltonians, but they nonetheless provide a promising first
step towards understanding isospin-symmetry breaking based on electromagnetic and strong interactions.

As already mentioned the T = 2 excited state in 20Na is the most uncertain member of the A = 20 quintet. A
recent measurement used the super-allowed 0+ → 0+ beta decay of 20Mg to access it and measured the state’s
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Table A.2: Experimental and calculated ground-state energies (in MeV) of 20,21Mg with respect to 16O. USDA and
USDB results include the INC Hamiltonian discussed in the text.

Nuclide Exp. USDA USDB NN + 3N
20Mg −6.94 −6.71 −6.83 −6.89
21Mg −21.59 −21.79 −21.81 −23.18

subsequent γ decay to deduce the excitation energy to 6498.4±0.5 keV [257]. The difference from the recommen-
ded value of 6525± 14 keV [277] is 27 keV (1.9 standard deviations), while the precision has been increased by a
factor of 28. A summary of experimental results for the A = 20 quintet is given in Table A.3. Glassman et al. also
applied a standard quadratic IMME as well as a cubic, a quartic, and a quartic fit with the cubic coefficient set to
zero to check the necessity of extra terms in the IMME. The results for the coefficients and the χ2 values of the fits
are reported in Table A.4. The quadratic IMME fit to the data yields χ2 = 4.8, while the inclusion of a cubic term
leads to a d coefficient of 0.8±0.5 keV. This value is consistent with zero, and consistent with the USDA and USDB
results of −0.1 keV (cf. Table A.1) within two standard deviations. In addition, the quartic only fit results in an e
coefficient consistent with zero within one standard deviation, while the d, e coefficients for the quartic fit are also
consistent with zero in two and one standard deviations, respectively. Thus, the quadratic IMME for the A = 20,
T = 2 quintet is revalidated when including the new measurement of the excitation energy for the T = 2 state in
20Na.

Table A.3: IMME input mass excesses, M E(T = 2), for the lowest A= 20, T = 2 quintet, including the constituent
ground-state mass excesses M E(g.s.) and excitation energies Ex . The values for the Tz = +2,+1,0 states
and the value of M E(g.s.) for the Tz = −1 state are from Ref. [277]. The value for the Tz = −2 state is
from Ref. [53]. The value of Ex for the Tz = −1 state is from Ref. [257].

Nuclide Tz M E(g.s.) ( keV) Ex (keV) M E(T = 2) (keV)
20O +2 3796.2(9) 3796.2(9)
20F +1 −17.463(30) 6521(3) 6503(3)

20Ne 0 −7041.9306(16) 16732.8(28) 9690.9(28)
20Na −1 6850.6(11) 6498.4(5) 13349.0(12)
20Mg −2 17477.7(18) 17477.7(18)

Table A.4: IMME coefficients (kev) and χ2 values of the fits for the lowest A= 20, T = 2 quintet from Ref. [257].

coefficient quadratic cubic quartic only quartic
a 9691.1(14) 9689.7(17) 9690.9(28) 9690.9(28)
b −3420.6(5) −3423.4(20) −3420.6(5) −3423.7(21)
c 236.5(5) 236.8(5) 236.9(38) 234.4(41)
d - 0.8(5) - 0.8(6)
e - - −0.1(8) 0.5(9)
χ2 4.8 0.28 2.4 -
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