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Abstract

This thesis is about cooperation of multiple robots that have a common
task they should fulfill, i.e., how multi-robot systems behave in coopera-
tive scenarios. Cooperation is a very important aspect in robotics, because
multiple robots can solve a task more quickly or efficiently in many situa-
tions. Specific points of interest are, how the effectiveness of the group of
robots completing a task can be improved and how the amount of commu-
nication and computational requirements can be reduced. The importance
of this topic lies in applications like search and rescue scenarios, where
time can be a critical factor and a certain robustness and reliability are
required. Further the communication can be limited by various factors
and operating (multiple) robots can be a highly complicated task.
A typical search and rescue mission as considered in this thesis begins

with the deployment of the robot team in an unknown or partly known
environment. The team can be heterogeneous in the sense that it consists
of pairs of air and ground robots that assist each other. The air vehicle –
abbreviated as UAV – stays within vision range of the ground vehicle or
UGV. Therefrom, it provides sensing information with a camera or similar
sensor that might not be available to the UGV due to distance, perspective
or occlusion. A new approach to fully use the available movement range
is presented and analyzed theoretically and in simulations. The UAV
moves according to a dynamic coverage algorithm which is combined with
a tracking controller to guarantee the visibility limitation is kept.
Since the environment is at least partly unknown, an exploration method

is necessary to gather information about the situation and possible targets
or areas of interest. Exploring the unknown regions in a short amount
of time is solved by approaching points on the frontier between known
and unknown territory. To this end, a basic approach for single robot
exploration that uses the traveling salesman problem is extended to multi-
robot exploration. The coordination, which is a central aspect of the
cooperative exploration process, is realized with a pairwise optimization
procedure. This new algorithm uses minimum spanning trees for cost
estimation and is inspired by one of the many multi-robot coordination
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methods from the related literature. Again, theoretical and simulated as
well as statistical analysis are used as methods to evaluate the approach.
After the exploration is complete, a map of the environment with pos-

sible regions of higher importance is known by the robot team. To stay
useful and ready for any further events, the robots now switch to a moni-
toring state where they spread out to cover the area in an optimal manner.
The optimality is measured with a criterion that can be derived into a dis-
tributed control law. This leads to splitting of the robots into areas of
Voronoi cells where each robot has a maximum distance to other robots
and can sense any events within its assigned cell. A new variant of these
Voronoi cells is introduced. They are limited by visibility and depend on
a delta-contraction of the environment, which leads to automatic colli-
sion avoidance. The combination of these two aspects leads to a coverage
control algorithm that works in nonconvex environments and has advan-
tageous properties compared to related work.
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Kurzfassung
Das Thema dieser Dissertation ist die Kooperation in Multi-Roboter Sys-
temen, also wie mehrere Roboter eine gemeinsame Aufgabe lösen können.
Kooperation ist ein wichtiger Aspekt in der Robotik, da mehrere Roboter
das Potential haben, viele Aufgaben wesentlich schneller oder effektiver zu
lösen, als es einem einzelnen, vielleicht komplexeren Roboter möglich wäre.
Speziell von Interesse ist im Rahmen dieser Arbeit, inwiefern die Effektivi-
tät eines Roboterteams verbessert werden kann und ob eine Reduzierung
von Kommunikations- und Rechenaufwand möglich ist. Ein wichtiges An-
wendungsgebiet ist durch Such- und Rettungsmissionen gegeben, bei denen
Zeit eine kritische Rolle spielen kann und Robustheit sowie Zuverlässigkeit
verlangt werden. Des Weiteren kann die Kommunikation in solchen Sze-
narien durch verschiedene Faktoren eingeschränkt sein und das manuelle
Steuern mehrerer mobiler Roboter stellt aufgrund der Komplexität hohe
Anforderungen an die Operatoren.
Eine typische Such- und Rettungsmission, wie sie in dieser Arbeit be-

trachtet wird, beginnt mit dem Einsatz des Roboterteams in unbekann-
tem oder teilweise bekanntem Gebiet. Das Team kann eine Heterogenität
in Form von Luft- und Bodenrobotern aufweisen, die sich gegenseitig un-
terstützen. Das Luftfahrzeug – kurz UAV – bleibt innerhalb des Sichtbe-
reiches zum Bodenfahrzeug oder UGV. Von dort liefert es Sensorinforma-
tionen mit einer Kamera oder einem ähnlichen Sensor. Diese Information
ist dem UGV aufgrund von Abstand, Perspektive oder Sichtverdeckungen
möglicherweise nicht direkt zugänglich. Um den verfügbaren Bewegungs-
spielraum maximal auszunutzen, wird ein neuer Ansatz vorgestellt und
theoretisch sowie in Simulationen analysiert. Das UAV bewegt sich nach
einem dynamischen Coverage–Verfahren in Kombination mit einem Folge-
regler, um den Sichtkontakt aufrecht zu erhalten.
Da die Umgebung zumindest teilweise unbekannt ist, wird eine Erfor-

schungsmethode benötigt, um Informationen über die Situation und mög-
liche Ziele oder Bereiche von Interesse zu identifizieren. Dazu wird ein
bestehender Ansatz für die Exploration mit einem Roboter, der auf dem
Traveling Salesman Problem aufbaut, auf Multi-Roboter Explorationen
erweitert. Die Koordination als zentraler Bestandteil des kooperativen Er-
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forschungsprozesses wird mit einer paarweisen Optimierung umgesetzt, bei
der minimale Spannbäume als Kostenschätzer verwendet werden. Dieser
neue Ansatz wird ebenfalls theoretisch analysiert und in simulierten Ex-
perimenten mit relevanten Ansätzen aus der Literatur verglichen.
Nachdem die Exploration beendet ist, liegt eine Karte der Umgebung

gegebenenfalls mit Regionen von höherem Interesse vor. Um auf weite-
re Ereignisse vorbereitet zu sein und die Umgebung sensorisch abzude-
cken, schaltet das Roboterteam in einen Beobachtungsmodus. In diesem
Zustand geht es darum, dass die Roboter sich möglichst optimal vertei-
len. Die Optimalität wird über eine Gütefunktion definiert, die zu einem
verteilten Regelgesetz entwickelt werden kann. Die Roboter teilen sich in
Voronoi–Zellen auf, in denen sie für die dort auftretenden Ereignisse zu-
ständig sind. Um einen Einsatz in nichtkonvexen Gebieten zu ermöglichen,
wird eine Variation der Voronoi–Zellen eingeführt und mit der Kontrakti-
on der Umgebungsgrenzen verbunden. Dadurch entsteht ein automatisches
Hindernisvermeidungsverhalten. Die vorteilhaften Eigenschaften des neu-
en Algorithmus werden dargelegt und diskutiert.
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1 Introduction

This thesis is about mobile robot systems. What is a robot? Why are we
developing and building these systems? Why do we want multiple robots
to cooperate? What are the specific research goals addressed here? These
questions will be answered in this introductory chapter.
As cited many times, the word ’robot’ originates from Czech ’robota’

introduced by Karel Čapek in his play Rossum’s Universal Robots in 1921
[124]. It literally means serf labor, figuratively drudgery or hard work and
more general work or labor. This gives a first clue as to what a robot
might be although chances are high that the understanding of the term
has changed since its first introduction. According to this etymology, a
robot is a (slave) worker, taking on repetitive or (mechanically) difficult
tasks.
The general idea of a self-operating machine is of course much older, by

then termed automaton or plural automata. This terminology is closer to
automatic control, which is the modern discipline devoted to realization
of these original and nowadays much more advanced ideas. But more of
that later.
Dating back to Greek mythology humans have been dreaming of ma-

chines or control mechanisms that follow a predetermined sequence of op-
erations or respond to instructions. In the Iliad [55], ancient poet Homer
describes miraculous inventions by Hephaestus, the Greek god of black-
smiths, craftsmen, artisans, sculptors, metals, metallurgy, fire and volca-
noes:

...for he was fashioning tripods, twenty in all, to stand around
the wall of his well-builded hall, and golden wheels had he set
beneath the base of each that of themselves they might enter
the gathering of the gods at his wish and again return to his
house, a wonder to behold.

While the main purpose of these tripods appears to be aesthetic or for
entertainment, a new aspect is introduced in Book I of Aristotle’s (384–
322 BC) philosophical work Politics [5]:
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...for if every tool could perform its own work when ordered, or
by seeing what to do in advance, like the statues of Daedalus
in the story, or the tripods of Hephaestus which the poet says
’enter self-moved the company divine,’ –if thus shuttles wove
and quills played harps of themselves, master-craftsmen would
have no need of assistants and masters no need of slaves.

Similar to the robot terminology, Aristotle hints toward use of automata
or self-operating tools as slave workers or assistants. And thinking even
further, he suggests they would allow abandoning the use of humans as
slaves.
A powerful ideal or utopia where every person on this planet has the

freedom and support to reach the peak of Maslow’s hierarchy of needs
[92], i.e., self-actualization, creative expression, realization of ones full po-
tential, may be possible through means of automation. Machines do all
the “unattractive“ work and take care of the basic needs and supplies for
all humans, enabling a more liberated and joyful existence on this planet.
Many other societal, cultural and economical factors would of course play
an important role for such a development, but these considerations extend
the scope of this thesis and shall be left to the experts in this field for now.

1.1 Motivation
Moving from a historical perspective and a general motivation, we will
look at more specific aspects as to why robotic systems are a huge and
still growing research area. One of the earliest and most obvious moti-
vations to develop an automatism is to overcome physical limitations or
alleviate physical labor, i.e., using wind mills for grinding, pumping water
or in modern times industrial robots to move heavy parts. Other phys-
ical aspects, where humans can be outperformed by specialized robots
are speed, precision, perception and mobility. Application examples are
numerous and from many different fields like industrial production [154],
cleaning [115], security [3] and surveillance or military use [100, 104]. Us-
ing robots for production can further be motivated by economical reasons
(efficiency, rationalizing), objectivity, safety and reliability (quality man-
agement). Robots are also used to protect humans from working with
dangerous sources like chemicals or radioactivity [88].
Social contexts like elder care [10], household environments [31], educa-

tion or entertainment [96] provide many possibilities for robot usage.
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Lastly, robots are also being employed in mankind’s strive for higher
goals like exploring space and other planets [117].
The primary motivating application considered here is the use of mobile

robots in search and rescue scenarios or emergency response situations,
which will be elaborated in Section 1.3. The aspects most important for
this area are mobility, working in dangerous areas, gathering information
and taking over repetitive tasks. Beforehand, an in-depth look into the
current state of the art in multi-robot systems literature is provided.

1.2 Cooperative Robotics and Multi-Agent
Systems

Since this thesis is about multi-robot systems, the multi-agent and cooper-
ative aspects are considered in more detail in this section. The terms multi-
agent system (MAS) and multi-robot system will be used interchangeably
throughout this thesis as in most other literature, although the focus here
is on robotic systems and a MAS can be used for more general types of
systems as well. Furthermore, only mobile robots will be considered in
the rest of the thesis, i.e., robots that have the ability to move to different
locations, since stationary robots do not provide as many interesting or
challenging applications for coordination. The following topics are out of
the scope:

• coordination of multiple manipulators, articulated arms, or multi-
fingered hands, etc.

• human-robot cooperative systems, and user-interface issues that
arise with multiple-robot systems.

There are a few distinct definitions of cooperation in the robotics
literature. Barnes and Gray [7] describe cooperation as

...joint collaborative behavior that is directed toward some goal
in which there is a common interest or reward.

whereas Cao et al. [16] are a bit more restrictive:

Given some task specified by a designer, a multiple-robot sys-
tem displays cooperative behavior if, due to some underlying
mechanism, there is an increase in the total utility of the sys-
tem.
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The second quote puts a condition on the behavior of the robots that
is related to the performance of the system while the first quote only
considers a common interest or reward.
A performance benefit is also one of the most named motivations for

use of multiple robots. In these cases, the idea is to split a task like ex-
ploring an environment or patrolling a given area to do it more efficiently
or quickly. There are however several other reasons to use multiple robots
instead of a single robot as well. The decision and actual benefits depend
on the type of task and task specific requirements. Trying to coordinate a
group of autonomous vehicles on the one hand complicates things signifi-
cantly, but it also offers a remarkable amount of possibilities to tackle new
problems or improve already existing solutions. The following list gives an
overview of the most common reasons to use multiple robots [8, 16, 151]:

• Tasks may be inherently too complex (or impossible) for a single
robot to accomplish.

• Performance benefits can be gained from using multiple robots.

• Building and using several simple robots can be easier, cheaper and
more flexible than having a single powerful robot for each separate
task.

• Robustness can be increased through data fusion, information shar-
ing and compensating failures of individual units.

• A multi-robot system has a (better) spatial distribution.

• There is the possibility to distribute the computation for computa-
tionally complex missions.

To get an impression of the variety and range of possibilities, an overview
on previous work in the areas of multi-agent systems and cooperative
robotics is given in the following paragraphs. The topics air-ground coop-
eration, multi-robot exploration and coverage control will be addressed in
more detail in the respective Chapters 3, 4 and 5.
One of the early surveys on cooperative mobile robotics was done by

Cao et al. in 1997 [16], providing an overview over the early formative
stages of cooperative robotics and issues such as group architecture, re-
source conflict, origin of cooperation, learning and geometric problems.
Ten years later, Gazi and Fidan [41] as well as Murray [100] reviewed the
state of the art of coordination and cooperative behavior of Multi-Agent
Systems from a system dynamics and control perspective.
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In 2008, Lynne E. Parker, at this time known for her own research in
fault tolerant multi robot cooperation [109], published a comprehensive
survey on multiple mobile robot systems including the categories archi-
tecture, communication, swarm robots, heterogeneity and task allocation
among others [110]. One of the most recent surveys on multi-robot coor-
dination can be found in [151].
A perspective with focus on distributed control and obtaining global

behavior from local interaction was taken by Martínez et al. [91] and later
Antonelli [4], covering topics like consensus, formation and coverage.
The multitude of publications in this huge field of research covers more

articles than would be possible here, so for any further references the reader
is referred to the surveys mentioned above.
Simulations are an important tool for most robotics researchers, since

the hardware can be expensive and time-consuming to set up. A previ-
ous stage of simulation studies is therefore highly useful in many cases.
For this purpose, several simulation tools have been developed. The most
widespread tools are Gazebo [70], with close support and integration of
ROS [118], V-REP [125] and the Player-Stage project [43]. These tools
have different advantages and disadvantages and the choice ultimately de-
pends on the users requirements and abilities. Since simulation studies in
this thesis are done in a specifically programmed environment, the publicly
available tools are not as important hereafter.
When it comes to methods and mathematical tools applied to MAS

and Cooperative Robotics there is a large variety present in the literature,
reflecting the different disciplines and backgrounds involved. Examples in-
clude Control Lyapunov functions [103], game theory [80, 133], information
theoretic approaches [17, 62], linear temporal logic [68], integer program-
ming [93], gradient-based optimization [24] and genetic algorithms [143].
A popular basic problem in the multi-agent literature is the consensus

or rendezvous. In it’s simplest case, the states of a number of homogeneous
agents are supposed to converge to the same value [107, 121]. Stability
can be proven depending on the structure of the communication network
between the agents. Possible extensions include switching topology and
time delays [108], event-based communication [134] or restriction to rela-
tive measurements [50]. A more generalized problem formulation requires
synchronization of the trajectories of multiple agents’ states instead of
convergence to a fixed value [64, 82].
Inspired by flocks of birds and school of fish, Reynolds developed a

simulation model for flocking [123] – a swarm behavior that is based on
three rules:
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1. Flock Centering: attempt to stay close to nearby flockmates;

2. Collision Avoidance: avoid collisions with nearby flockmates;

3. Velocity Matching: attempt to match velocity with nearby flock-
mates.

These local rules lead to a collective, global behavior of the whole sys-
tem which has drawn interest of other authors [60, 106], leading to more
theoretical understanding.
Formation control is another field of research that has led to further

research and insights into multi-robot coordination. Tanner et al. [142]
investigate the stability properties of mobile agent formations based on
leader-follower structures. In [61], the issue of connectedness is of the main
concern and the authors are able to guarantee that the graph representing
the communication stays connected. A sketch of the consensus, flocking
and formation behaviors is shown in Figure 1.1.
When it comes to cleaning, lawn mowing, snow removal or demining,

robots will play more and more important roles in the future. The al-
gorithms and theory behind these applications, i.e., finding a path for a
robot to pass over all points in a given environment, is called coverage
path planning. In an early survey [22], Choset characterizes existing
approaches into heuristic and provably complete algorithms. They often
use cellular decompositions to break down the problem into smaller tasks.
A more recent survey [38] provides a good summary on many publications
in the field up to 2013. Variations of the basic problem include coverage
of unknown environments [42], minimization of repeated coverage when

(a) Consensus (b) Flocking (c) Formations

Figure 1.1: Different examples for multi-agent control - part 1
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using multiple robots [119] or finding the optimal number of robots for
a given time limit. A way to look at MR coverage path planning is the
multiple watchmen routes problem, where a fixed set of locations to cover
all area is computed in a previous step and the second step is to find paths
for a number of watchmen (or robots) to visit all locations. This prob-
lem has been approached by Faigl [32] with a self-organizing map based
adaptation procedure. Focusing on aerial robots and surveillance, the
authors in [140] and [1] developed cooperative path planning techniques,
taking into account limited sensor range and communication and even
heterogeneity in sensing and motion capabilities in the second case.
Closely related is the task of patrolling, as in [111], the authors try to

design optimal multi-agent trajectories to minimize the time gap between
any two visits of the same region.
Searching and capturing a single or multiple evaders in minimum time is

the challenge tackled in pursuit evasion games [104]. Moors et al. [97]
specialized in searching an indoor environment for an intruder, taking into
account limitations and uncertainties of the robots sensors. Improving the
efficiency of a coordinated search is the main focus in [54], using graphical
representations of the physical environment to find potentially adversarial
targets.
A general way to describe many robotic information gathering tasks

is the feedback loop of active sensing. Every new bit of information
received by a robots sensor is a measurement that can be used to update
the current model of the environment which in turn serves as an input for
decisions about where to move next, as shown in Figure 1.2. If a camera
is used as a sensor, this procedure is also referred to as active perception
in the computer vision community [6] and defined as the

...problem of controlling strategies applied to the data acquisi-
tion process which will depend on the current state of the data
interpretation and the goal or the task of the process.

It is therefore an application of control theory but may include more com-
plex data processing, reasoning and decision making as in typical control
applications.
Closely related is the process of spatial estimation: To learn a field

of interest, without further specifying the type of data, a swarm of self-
organized autonomous sensing agents is used in [21]. A recursive esti-
mation procedure with radial basis functions provides the model for the
unknown environmental data.
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Spatial Field

Obstacle Map

Target Locations

...

Modeling

Sensing Estimation

Coverage

Search

...

Motion Planning

Figure 1.2: Feedback loop for active sensing tasks

With a strong information theoretic background, the authors of the
following works provide algorithms and solutions for various active sensing
applications: The authors of [136] use nonmyopic planning by taking into
account possible observations that can be made in the future for search
and rescue and scientific monitoring problems. Choi et al. [20] use mutual
information as a metric to reduce uncertainties in the future and apply
their ideas to weather forecasting. In a hazardous environment, be it due
to radiation, fire or caustic chemicals, collecting informative measurements
is even more of a challenge, but with recursive Bayesian filters and again
using the gradient of mutual information promising results are possible
according to [131]. A distributed information theoretic approach to infer
the state of an environment with similar methods as in the previous publi-
cation is described in [62]. The authors use a consensus-based algorithm to
circumvent the lack of central coordination and to approximate the joint
measurement probabilities.
The aforementioned coverage path planning and the process of field

estimation are illustrated in Figures 1.3a and 1.3b.
Before these types of algorithms can be applied in a real scenario, some

form of localization is usually required. If GPS is not available or not
accurate enough, as in most indoor locations, another way to localize the
mobile platforms is needed. Localization can be achieved through external
camera systems like the Vicon1) system used by the GRASP Laboratory
at the University of Pennsylvania, NASA and ETH Zurich among others.
Another possibility is a more low cost camera system as described in [71].
External measurement systems can however be very expensive or time-

1)Vicon Motion Systems Ltd. - http://www.vicon.com
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(a) Coverage path planning (b) Field estimation (c) Box pushing

Figure 1.3: Different examples for multi-agent control - part 2

consuming to set up and make all experiments depend on the laboratory
environment and conditions. A more flexible way to get a relative local-
ization is visual odometry [101], often combined with other sensor data
like inertia, gyroscope and wheel encoders.
In a cooperative scenario, there is an additional possibility to use mu-

tual localization and calibration. The authors in [120] describe a way for
a group of robots to mutually estimate one another’s position and uncer-
tainty and they discuss the tradeoffs between sensing and motion control
strategies in the context of terrain mapping with multiple robots. Also
considering mutual localization, Franchi et al. [37] approach the problem
with anonymous relative position measures. A simultaneous calibration
method is presented in [145] that not only calculates the relationships be-
tween robots but also to the cameras and tools equipped on the mobile
agents.
Noteworthy and interesting application experiments are published

in [19] and [69]. The authors of the first reference demonstrate a swarm
of miniature mobile robots that are cooperatively pushing a box to a goal
location in a distributed way (cf. Figure 1.3c), even without use of com-
munication. In the second mention, the ’Ikeabots’ form a team of hetero-
geneous robots to complete an assembly task together. With a focus on
decentralized cooperative control, Cruz et al. [25] present several applica-
tion examples and experiments with a real hardware system of multiple
ground robots. The tasks include formation control, flocking, goal seeking
and target-assessment. For the automatic detection of forest fires, the au-
thors of [94] employ multiple heterogeneous UAVs with infrared and visual
cameras as well as fire detectors and use data fusion for cooperative per-
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ception. To monitor marine environments, a heterogeneous multi-robot
team is presented in [135], assisting scientists to gather information about
marine ecosystems and coral reefs in field trials.

1.3 Goals and Contributions
After gaining a broad overview on the field of multi-agent systems and
coordinated multi-robot systems, this section gives more specific insights
into what the concrete goals and contributions of this thesis are.
The theme of this thesis is to investigate and further develop several

aspects of a complex search and rescue mission. Imagine the following
scenario: After a catastrophe, e.g., a nuclear accident or an earthquake,
a team of possibly heterogeneous robots is deployed in the unknown or
only partly known environment. There may be victims or other targets
of interest still in the area. The team of robots has the task to gather
information in the region, find points or areas of importance and then
come to a state where they can react to any further events.
The three stages of the mission are shown in Figure 1.4.

Complex Search and Rescue Mission

Stage 1 - Chapter 3

Coordinating Basic Motion UAV-UGV Cooperation

Stage 2 - Chapter 4

Gathering Information Multi-Robot Exploration

Stage 3 - Chapter 5

Monitoring Coverage Control

Figure 1.4: Stages of a search and rescue mission as outlined in this thesis



1.3 Goals and Contributions 11

Stage 1 If the team consists of air and ground vehicles, the basic motion
control between the UAVs and UGVs is considered, such that the aerial
vehicles (e.g., a quadcopter) support the ground vehicles in navigating in
difficult areas and provide additional sensory information.

Stage 2 Each respective air-ground team is modeled as a single agent
and the area is explored. To this end, a new coordination algorithm is
developed and tested.

Stage 3 After the area is explored and all necessary information is gath-
ered, the robots or robot teams switch to a monitoring phase. This phase
is characterized by a coverage control algorithm, that positions the robots
in an optimal way to react to any new information that might come up.

All three stages require coordination and cooperation between two or
more robots. Communication, sensing, path planning and obstacle avoid-
ance and computational complexity have to be considered. The fact that
most of the mission takes place in an unknown environment makes a reac-
tive approach necessary, i.e., new information has to be integrated quickly
and future actions should incorporate the newly gained knowledge (cf.
Figure 1.2). Another important aspect in such situations is that the robot
systems have a certain degree of autonomy, especially when multiple pos-
sibly heterogeneous vehicles interact or cooperate. Despite the amount of
research already done, autonomy is still one of the most unsettled topics.
The main goals are to relieve operators from difficult control tasks and
make systems more independent when the communication is restricted.
These facets make the development and implementation of such a system
a highly challenging task.
The contributions presented in this thesis are as follows:

• A new approach for motion coordination of air-ground teams is devel-
oped and tested in a simulation environment. Exploiting the higher
mobility of the UAV and making use of the available visibility region
allows for a dynamic and effective way to gather information and
support the UGV.

• A new coordination method for Multi-Robot Exploration is pre-
sented. The approach is simple, robust and flexible through use of
pairwise communication and extensive simulation studies show lower
exploration times than other state of the art algorithms.
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• A coverage control algorithm for deployment and monitoring with
mobile sensors is extended to application in nonconvex environments.
The presented method offers low computational effort and commu-
nication load compared to other similar approaches.

In addition, the overall system architecture is modular and flexible.
The stages can be applied individually, depending on the available re-
sources and mission requirements. E.g., if the robot team is homogeneous
(consists of only ground or air robots), stage 2 can be initiated directly.
If the area is already known beforehand, the robots can move on to stage
3 and monitor the environment for any new occurrences. It is important
to note that the stages as illustrated in Figure 1.4 are seen from a devel-
opment point of view. Stage 1 can also be regarded as a building block
for stages 2 and 3. Temporally, the information gathering and monitoring
happen one after the other while the basic motion (i.e., stage 1) may be
active continuously.
The methodology applied to develop the algorithms is always based

on an objective function and an optimization, i.e., minimization or maxi-
mization of that objective, providing a solid mathematical foundation for
the algorithms. The solutions are based on function gradients or heuris-
tics, since the complexity of the problems makes other methods unrealistic
on mobile robots with limited processing power and time.

1.4 Thesis Outline
The remainder of the dissertation is structured as follows: The next chap-
ter introduces the most relevant mathematical foundations, including ba-
sics in graph theory, computational geometry and dynamical systems.
Chapters 3, 4 and 5 correspond to the three stages of the search and

rescue mission outlined in the previous section (cf. Figure 1.4).
The last chapter is a summary and review of the achieved results and

gives an outlook on further research or possible future developments.
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2 Mathematical Foundations

In this chapter, concepts from several mathematical fields are provided
that serve as a basis for the following chapters. The topics of interest are:
graph theory, computational geometry (i.e., set theory, Voronoi partitions
and the concept of visibility) and dynamical systems. In these areas, that
are quite large by themselves, only the aspects relevant for the understand-
ing of this thesis are selected and summarized.

2.1 Graph Theory
Graphs are a convenient and widespread tool to describe the relationship
between multiple vehicles in a multi agent system. A more extensive in-
troduction to the topic can be found in [147] among others.
A graph G(V, E) consists of a set of vertices V = {v1, ..., vn} and

edges E = {e1, ..., em} ⊆ V × V where each edge represents a connection
between two distinct vertices. The number of vertices or edges is given
by the cardinality of the set, i.e., n = |V| and m = |E|, respectively. In a
multi-robot system, a vertex is usually interpreted as one vehicle and an
edge indicates a communication link between two units.
The graph is weighted, if there is a weight wij ∈ R+

0 associated with
each edge. The set of all weights is referred to as W. If the connection
between two vertices depends on the direction, i.e., the weight of edge
(vi, vj) 6= (vj , vi), the graph is called directed. Since it is not necessary
for this thesis otherwise, we only consider undirected graphs where edges
are identical in both directions. This concept corresponds to a bidirectional
communication in a multi-agent system.
A graph is complete or fully connected if every pair of distinct ver-

tices vi, vj ∈ V is connected by an edge.
A spanning tree of a weighted graph G is a subgraph S(VS , ES ,WS) ⊆
G(V, E ,W) that connects all vertices and has no cycles (cf. Figure 2.1b).
The weight or cost of a spanning tree, as of now denoted with ‖S‖, is the
sum of all edge weights in the set of weights WS : ‖S‖ =

∑
WS

wij .
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(c) Minimum spanning tree

Figure 2.1: A graph and two spanning trees

Further, a minimum spanning tree (MST) is the spanning tree of
a graph that has the lowest cost. An example is shown in Figure 2.1c.
A MST does not have to be unique for a given graph, i.e., there may be
several spanning trees with the same cost. There are various algorithms
to find a minimum spanning tree. Popular examples are Prim’s algorithm
[116] or Kruskal’s algorithm [72]. Prim’s algorithm proceeds as follows:
starting from an arbitrary vertex, the edge with the smallest weight is
found and the connected vertex is added to the spanning tree until all
vertices are part of the spanning tree. This procedure guarantees that a
minimum spanning tree is found and can be completed with a number of
operations proportional to |V|2 or less, depending on implementation.

2.2 Computational Geometry
Sets and set operations are used in this thesis to mathematically describe
regions or areas. They provide a notational basis for theoretical concepts
and simulations throughout the upcoming chapters of this dissertation.
Notations and definitions follow [11].

2.2.1 Sets and Environments
For simplicity and as it is adequate for the considerations in this thesis,
the following definitions are given for 2-dimensional real spaces.
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A set Q ⊆ R2 is called convex if and only if the closed line segment
[a, b] = {a + λ(b − a) | λ ∈ [0, 1]} is contained in Q for all a, b ∈ Q.
Otherwise, it is called nonconvex.
The boundary and the interior of a set Q are written as ∂Q and int(Q),

respectively.

Polygons A polygon is a geometric figure that can be described by a
finite set of points called vertices. The boundary of the polygon is formed
by a closed chain of straight line segments connecting these vertices. Sets
referred to as a polygons are composed of the boundary and its interior.
Using this definition, a polygon always represents a compact set, i.e., the
set is closed and bounded. If the boundary does not cross itself the polygon
is simple.

Environments For further considerations an environment consists of
a simple boundary polygon B ⊂ R2 and a set of simple polygonal obstacles
O1, . . . ,Om ⊂ B. The environment is then defined as Q = B \ ∪mi=1Oi.
This is a flexible way of describing arbitrary regions with desired accuracy,
regulated by the number of vertices. The polygonal obstacles act as holes
or areas where, for example, a robot is not allowed. A vertex of Q is
convex, if its interior angle is less than or equal to π radians, otherwise
the vertex is concave (cf. Figure 2.2a).

Q

O1

dg

a

b

convex
concave

(a) Environment and geodesic distance

a

Q

O1

S?(a)

S?
r (a)

(b) Visibility sets

Figure 2.2: Environments and visibility
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2.2.2 Distance Metrics
The Euclidean distance between two points a = (a1, a2)T and b =
(b1, b2)T in R2 is given by d(a, b) = ‖b− a‖ =

√
(b1 − a1)2 + (b2 − a2)2.

Another useful metric in the context of robotics and path planning is
the geodesic distance dg(a, b), defined as the shortest path between two
points a, b ∈ Q that is completely contained in the environment Q. An
example is illustrated in Figure 2.2a.

2.2.3 Visibility
Since vision-based sensors play an important role for the applications con-
sidered in this thesis, the notion of visibility is elaborated here.
Given a set Q ⊂ R2 and a point a ∈ Q. A point b ∈ Q is visible from

a if the closed line segment [a, b] = {a+λ(b−a) | λ ∈ [0, 1]} is contained
in Q, i.e., [a, b] ⊂ Q. The set of all points b ∈ Q visible from a is the
visibility set with respect to a, denoted as S?(a). The visibility set is a
star-shaped domain and represents exactly the parts of the environment
that are visible from the location of interest.
When modeling a sensor, limited visibility range is often of interest. For

circular shapes, this can be described as follows: the r-limited visibility
set S?r (a) is defined by the intersection of the visibility set S?(a) and the
closed ball with radius r around a, i.e., S?r (a) = {b ∈ S?(a)|‖b−a‖ ≤ r}.
Both types of sets are depicted in Figure 2.2b in a nonconvex environment
for an exemplary location.

2.3 Dynamical Systems
Modeling and regulation of dynamical behavior is one of the central build-
ing blocks for autonomous robotic systems. The following concepts are
covered more extensively in [2, 63].

2.3.1 Nonlinear Systems
A dynamical system can generally be described by a state vector x ∈
Rn that contains all variables needed to characterize the system, the input
vector u ∈ Rm and the vector differential equation

ẋ = f(x,u). (2.1)
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When dealing with dynamical systems, states that do not change over
time when the input is zero or constant are of particular interest. Such a
state is called equilibrium point and defined as a state xe where ẋ =
f(xe,0) = 0. Solving the equation f(xe,0) = 0 to compute equilibrium
points can be difficult since it is implicit. A single solution, several isolated
solutions, a continuum or no solutions are possible.
An equilibrium can have different characteristics:

Definition 2.1. (Attractivity) The attractivity is a way to describe the
behavior of trajectories in the vicinity of equilibrium points. An equilib-
rium xe is locally attractive if there exists a neighborhood U(xe) such that
any initial value x0 ∈ U(xe) leads to a trajectory x(t) that converges to
xe for t→∞.

As indicated in Figure 2.3a, this notion of attractivity does not restrict
the trajectory of the state to diverge arbitrarily far away from the equilib-
rium before finally converging, unlike the following definition.

Definition 2.2. (Lyapunov stability) An equilibrium xe is stable in the
sense of Lyapunov if for each ε > 0 there exists a δ > 0 such that ‖x(t0)−
xe‖ < δ implies ‖x(t) − xe‖ < ε for all t ≥ t0 (cf. Figure 2.3b). If an
equilibrium point is not stable, it is unstable. Further, if an equilibrium
point xe is stable and locally attractive, it is asymptotically stable.

xe

U(xe)

x0

(a) Attractivity of an equilibrium
point xe

xe

‖x − xe‖ = ε ‖x − xe‖ = δ

x0

(b) Stability in the sense of Lya-
punov

Figure 2.3: Attractivity and Lyapunov stability, resembling [2]
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To analyze the stability of dynamical systems given in the form of (2.1),
Aleksandr M. Lyapunov developed a method based on the idea of energy
available in a system [86]. The energy level is formulated as a function
and if the energy decreases over time, the system will reach a minimum
point.

Theorem 2.1. (Lyapunov’s direct method) Assume the differential equa-
tion ẋ = f(x,0) has an equilibrium xe = 01) and a continuous and unique
solution for any initial value in the neighborhood U(0) ∈ Rn. If a con-
tinuously differentiable function V : D → R+

0 defined on D ⊆ U(0) exists
that satisfies

i) V (0) = 0,

ii) V (x) > 0 for all x ∈ D \ {0},
iii) V̇ (x) ≤ 0 for all x ∈ D,

the equilibrium xe = 0 is stable in the sense of Lyapunov. The function
V (x) is called Lyapunov function. If in addition V̇ (x) < 0 for all
x ∈ D \ {0}, the equilibrium point is asymptotically stable.

The negative derivative of the Lyapunov function characterizes the en-
ergy dissipation in the system. Building upon Lyapunov’s method, a more
extensive and generalized principle has been developed by LaSalle [76]. It
allows convergence analysis of several equilibria or more general regions
defined as follows.

Definition 2.3. (Invariant sets) A setM is said to be invariant (posi-
tively invariant), if all initial values x(t0) ∈ M imply x(t) ∈ M for all
t (for all t ≥ t0).
Intuitively, this means that once a trajectory enters a positively invariant

setM it will never leave it again. Using the concept of invariant sets the
next theorem is introduced.

Theorem 2.2. (LaSalle’s invariance principle [63]) Let D ⊂ Rn be a
compact set that is positively invariant with respect to the system dynamics
(2.1) with u = 0. Let V : Rn → R be a continuously differentiable function
such that V̇ (x) ≤ 0 for all x ∈ D. Let M0 be the set of all points in D
where V̇ (x) = 0. Let M be the largest invariant set in M0. Then, every
solution starting in D approachesM as t→∞.

1)This assumption can be made without loss of generality, because any equilibrium
can be transformed to the origin of the coordinate system.
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The advantage of LaSalle’s invariance principle are the reduced require-
ments on the function V (x). A negative gradient suffices to prove con-
vergence to the largest invariant set M without V (x) being a Lyapunov
function.

2.3.2 Linear Time Invariant Systems
A special type of systems are linear time invariant or LTI systems that
can be described by the matrix equations

ẋ = Ax + Bu (2.2)
y = Cx + Du. (2.3)

The linearity makes analysis and regulation of these systems much easier
and research in this field is further advanced. Several isolated equilibria
as they occur in nonlinear systems are no longer possible. LTI systems or
any other ordinary linear differential equation can also be transformed to
the Laplace domain. In that case, they no longer depend on the time t but
on the Laplace variable s. The relation between a linear multiple input
output system and the transfer matrix in the Laplace domain is given
by

G(s) = C(sIn −A)−1B + D (2.4)

with In being the n-dimensional identity matrix.
A helpful tool for stability analysis of linear systems or differential equa-

tions is the following criterion.

Lemma 2.1. (Routh-Hurwitz criterion [57, 127]) Given a second order
polynomial of the form P (s) = s2 + a1s+ a0 = 0, if the coefficients satisfy
a1, a0 > 0, the roots of the polynomial are in the left half plane.

This means that any linear system with a characteristic polynomial P (s)
as defined above is stable if it satisfies the Routh-Hurwitz criterion. The
criterion can also be formulated for higher order systems or in a more
general form, as shown in the given references.
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3 UAV-UGV Cooperation
As outlined in Section 1.3, the first stage of the considered search and res-
cue scenario is the motion coordination between aerial and ground vehicles.
This chapter gives a more in-depth introduction to the topic with a thor-
ough motivation and literature review. Then, the problem is formulated
mathematically, beginning with the robot and sensor models that will be
used for this stage. Sections 3.3 and 3.4 introduce the two components
of the coordination, namely dynamic coverage and a tracking controller,
followed by the description of the complete motion control law. Conclud-
ing this chapter, simulation results for the cooperative UAV-UGV motion
coordination are shown and discussed.1)

3.1 Introduction and Literature Review
A team of heterogeneous robots can be much more flexible and versatile,
especially in challenging environments like the ones faced in catastrophe
or emergency scenarios. The main idea in this chapter is to use the mo-
bility and sensing capabilities of an aerial vehicle like a quadcopter to
assist a ground vehicle. Basically, the UAV acts like an extended (mobile)
sensor device that provides additional information through complemen-
tary sensors on-board the UAV and the different field of view (cf. Figure
3.1). The motion of the ground vehicle is controlled independently, ei-
ther by performing a task autonomously or via teleoperation, and a priori
unknown for now. By not assuming any knowledge about the ground ve-
hicles intentions, the approach is modular and flexible as to be used in
different applications. The UAV can provide information that might not
be available to the UGV at all, e.g., detecting negative obstacles, surface
irregularities, type of terrain etc., or provides information earlier than the
UGV would be able to detect with its own sensors. Similar types of sys-
tems have been introduced in [95], [18], [40], [26].
For this to be possible, a relative localization between the vehicles is

required. Since GPS is only available in outdoor scenarios (cf. [46], [75])
1)The main results presented in this chapter are also published in Klodt et al. [66].
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Figure 3.1: Example of an air and ground vehicle constellation

and point cloud alignment [35] requires an overlap between the sensor data,
we focus on relative localization through direct visibility.
Visibility-based relative localization can be realized in different ways,

e.g., by detecting the UAV hovering above the UGV with a camera
mounted on the ground robot. Cooperative scenarios with this approach
have been proposed in [15], [52]. The reverse detection direction is also
possible, as demonstrated in [81] among others. In [130], a visibility-
constrained formation approach for a group of ground and aerial vehicles
is introduced and solved with a model-predictive control approach. A dif-
ferent vision-based approach is described in [99], where the UAV maps an
area of interest based on given waypoints and then guides a UGV through
obstacles with the gathered camera data. Another popular method in this
area is the use of potential forces, as in [141], where a group of fixed wing
UAVs circles the centroid of a ground vehicle formation.
In contrast to existing approaches, we deliberately use the region of

visibility and the higher mobility of the UAV to gather additional infor-
mation. To the best of our knowledge, this idea has not been investigated
specifically for UAV-UGV systems. We propose and compare two different
control laws for motion of the UAV:
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1. An extension of a dynamic coverage approach presented in [58, 59]
to double integrator systems with a time-varying region of interest.

2. A virtual point tracking method, demonstrated with a circular mo-
tion around the ground vehicle’s position.

For both cases, we can guarantee that the visibility constraint is satisfied
at all times. To this end, we use a tracking controller introduced in Section
3.4 that can be easily parametrized with well-known methods from control
theory. The new combined control law is presented in a general form and
different weighting functions to combine the tracking with the coverage
strategy are evaluated in Section 3.5.

3.2 Problem Formulation
We consider two types of vehicles, namely UGVs and UAVs. Variables
associated with a specific type of vehicle are denoted with the indices g
and a for ground or aerial, respectively.

For rotorcraft aerial vehicles the following simplifications are made: As-
suming small angles, the attitude control for the roll, pitch and yaw angles
can be decoupled from the position control, as it runs an order of magni-
tude faster [114]. In a system of nested feedback loops, we consider the
outer loop, which is the position control. It is important to note that this
simplification is only valid during low velocity and acceleration flight.2)
Even though the UAV moves in 3-dimensional space, the flight altitude
can be considered decoupled from the planar position given our assump-
tions. Specifying a constant altitude, both ground and aerial vehicles are
moving in a convex and bounded environment Q ⊂ R2 on different height
levels. Similar assumptions are common in the multi-robot literature, e.g.,
[146].
Considering the explanations above, quadrotors and omnidirectional

ground vehicles can both be modeled by double integrator dynamics

p̈(t) = u(t), ‖u(t)‖ ≤ umax, ‖ṗ(t)‖ ≤ vmax (3.1)

with p,u ∈ R2 denoting robot position and control input and umax, vmax ∈
R+ denoting input and velocity constraints. To allow for higher mobility

2)More complex models including the full 6-dimensional pose and aerodynamic effects
like blade flapping and vehicle body interference are investigated in [53] among
others.
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of the UAV compared to the UGV we always assume va,max > vg,max
and ua,max > ug,max. If the context is clear, time dependencies of most
variables are omitted hereafter.
Moving to a target location p ∈ Q with the UGV can be realized by

a stabilizing controller ug = f(pg,p). The goal location p is constant
until ‖pg − p‖ < ε, for a small ε > 0, and then the next goal location is
approached. Therefore, the trajectory of the UGV consists of straight line
segments.
The sensor model of the UAV is defined by a hill-shaped coverage

function Sa : Q×Q → R+ for vision-based aerial mapping as proposed in
[59]:

Sa(pa, q) =

{
Ma

r4 (‖pa − q‖2 − r2)2, if ‖pa − q‖ ≤ r
0, if ‖pa − q‖ > r.

(3.2)

This function describes how accurate the UAV senses a point q ∈ Q given
its current position pa, where the sensing quality will be highest at q = pa
(directly below the UAV) with a peak value of Ma. The accuracy Sa de-
clines with increasing distance between the sensed point q and the UAV
at position pa and is zero outside of the sensory range r. An illustration
of this function is shown in Figure 3.2. Note that (3.2) is only an exam-
ple of a possible sensor formulation that could be replaced by any other
differentiable function that models the characteristics of a given sensor.

r 0 r

Ma

‖pa − q‖

S
a

Figure 3.2: Values of the UAV sensory function Sa(pa, q) for different distances
of an observed point q
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The effective coverage accumulated at a point q can now be defined
by

C(q, t) =

t∫

0

Sa(pa(τ), q)dτ (3.3)

and can be interpreted as a confidence level about the sensory information
attained at that point until time t. To evaluate the current coverage with
respect to a desired coverage C∗ the following error function is used:

e(t) =

∫

Q

h(C∗ − C(q, t))φ(q,pg)dq. (3.4)

The scalar function h(x) penalizes lack of coverage and can be set to h(x) =
(max(0, x))2 to satisfy the conditions presented in [59]. An additional
weighting is achieved by using a density function φ : Q×R2 → R≥0 that
is specified more precisely in Section 3.3. As long as the coverage at any
point in Q is below C∗ the error e(t) is positive. Otherwise, if C(q, t) ≥ C∗
for all q ∈ Q, e(t) is zero since higher coverage values are not penalized.
Finally, the visibility constraint to guarantee relative localization is

given by
‖pa − pg‖ < rv (3.5)

with rv ∈ R+, rv < r such that the UGV can always be reliably detected
by the UAV.
With these preliminaries, the problem statement can be formulated.

Problem 3.1. (Visibility-based UAV control) Find a stabilizing control
law ua for the UAV with dynamics as in (3.1) that minimizes (3.4) while
maintaining the constraint in (3.5) for all t.

3.3 Dynamic Coverage
In the upcoming section a control law for dynamic coverage is revisited
and our adaptations and extensions for the current problem are explained.
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3.3.1 Original Approach
In [59], a local gradient-type control law for single integrator vehicles ṗ =
usi is proposed, given by

ucov = k
4Ma

r4

∫

Qr

h′(C∗ − C(q, t))

· (r2 − ‖pa − q‖2)(q − pa)φ(q,pg)dq (3.6)

with Qr = {q ∈ Q|‖pa − q‖ ≤ r}, h′(x) = dh(x)
dx and k > 0.

To understand how the control law works, the individual factors under
the integral are analyzed:

• h′(C∗−C(q, t)) is a scalar value greater or equal to zero and can be
seen as a weighting that increases with higher confidence deficit.

• (r2 − ‖pa − q‖2) is a scalar value greater or equal to zero and can
be seen as a weighting that emphasizes points that are closer to the
vehicle position.

• (q − pa) is a vector that points from the vehicle position to a point
in Qr.

• φ(q,pg) is another weighting factor greater or equal to zero to in-
corporate additional knowledge about the environment.

Overall, the integral leads to a summation of the weighted vectors pointing
from the vehicle position to all other positions q ∈ Qr, as illustrated in
Figure 3.3. For usi = ucov, the single integrator will converge to a state
where ucov = 0. However, it is not guaranteed that the error (3.4) will be
zero, due to symmetry or cases where the sensory domain Qr is completely
covered, i.e., C(q, t) ≥ C∗ for all q ∈ Qr.
To this end, a second control law is introduced. Define a point q̃ that

satisfies the following three conditions:

1. q̃ ∈ Qe with Qe = {q ∈ Q|C(q, t) < C∗};

2. φ(q̃,pg) 6= 0;

3. q̃ = argminq̃∈Qe‖pa − q̃‖.
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Q

r

pa

Qr

Figure 3.3: Weighted vectors pointing to uncovered areas illustrating the me-
chanics of (3.6)

These conditions define the closest point to the vehicle position pa that is
not covered and has nonzero density weighting. Approaching q̃ – which is
fixed for some time interval – can be realized with a simple linear feedback
controller

ũcov = k(q̃ − pa). (3.7)

If there are multiple points that fulfill all three criteria one can be picked
randomly. We can now restate a variant of Theorem III.1 from [58], [59].

Lemma 3.1. Assuming φ(q,pg) is static, a single integrator agent with
ṗ = usi and a sensor model similar to (3.2) and (3.3) using the control
law

usi =

{
ucov, if ucov 6= 0

ũcov, if ucov = 0
(3.8)

drives the error e(t)→ 0 as t→∞.

A proof and stability discussion for this switching control strategy can
be found in the references above.

3.3.2 Extensions
The first adaptation that we make is motivated by our visibility constraint.
The maximum region the UAV can cover while still respecting (3.5) is a
circle with radius ro = rv + r centered at pg. Giving higher priority to
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Q

φ(q,pg)

ro

pa
r

rv

pg

Figure 3.4: The density function as in (3.9)

points closer to the UGV, we define

φ(q,pg) =

{
cos(

‖pg−q‖
ro

π) + 1, if ‖pg − q‖ ≤ ro
0, if ‖pg − q‖ > ro.

(3.9)

As opposed to [59], this definition provides a time-varying density that
characterizes the region of importance and limits the area to cover relative
to the UGV position. This newly defined density and the circular regions
around pa and pg are shown in Figure 3.4. The idea of a time-varying
density function has also been considered in an adversarial multi-agent
scenario in [112].
The second adaptation becomes necessary due to the vehicle dynamics

(3.1). We first consider the unconstrained system (i.e., va,max and ua,max
are infinite) and then discuss the case of limited input and velocity. Be-
cause (3.6) is a gradient-type control law, it specifies a direction where
the error is high and can be reduced by moving in this direction. In a
single integrator system, the velocity while following (3.8) will always be
ṗ = usi, i.e., usi can be seen as a desired velocity vector. Specifying a
nominal value for the magnitude of the velocity vref ∈ R+, consider the
following control error:

evel =

{
usi
‖usi‖vref − ṗa, if e(t) 6= 0

−ṗa, if e(t) = 0
(3.10)
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with e(t) from (3.4). The normalization of the desired velocity provides the
advantage that the gain k in (3.6) and (3.7) does not have to be determined
and the vehicle moves at a higher velocity even when ucov is very small
(a problem that we encountered during simulations). In cases where the
error becomes zero, a direction of motion is not defined and the vehicle
simply decelerates.
From (3.9), it is obvious that e(t) can never converge to zero permanently

as long as the UGV is moving into uncovered regions.

Proposition 3.1. If ṗg(t) = 0 for all t > ts and any ts ≥ 0, a vehicle
with dynamics as in (3.1) and a sensor model given by (3.2) and (3.3)
using the control law

ua,cov = kvevel, (3.11)

with evel from (3.10), drives e(t)→ 0 as t→∞ for any kv > 0.

Proof. As long as the set Q∗r = {q ∈ Qr|C(q, t) < C∗, φ(q,pg) 6= 0} is
nonempty, one has ucov 6= 0 and ė(t) < 0, i.e., the error decreases. If for
any reason Q∗r = ∅, one has ė(t) = 0, switching occurs to usi = ũcov. In
this case, inserting (3.10), (3.8), and (3.7) into (3.11) yields

ua,cov =
kvvref
‖q̃ − pa‖

(q̃ − pa)− kvṗa. (3.12)

Without loss of generality, q̃ can be considered a constant reference input
and (3.12) provides an asymptotically stable system for any initial state
and kv, vref > 0. This can be shown by formulating the position error
ep = q̃ − pa and deriving the error dynamics ëp = −p̈a = −ua,cov =

kvṗa − kvvref
‖q̃−pa‖ep. The differential equation ëp + kvėp +

kvvref
‖q̃−pa‖ep = 0 de-

scribes a stable system for any point in time due to the positive coefficients
according to Lemma 2.1 from Section 2.3.2. Hence, the vehicle position pa
approaches q̃ and will be inside a ball of radius εq < r around q̃ at some
time t̃. At this point Q∗r is nonempty again, usi = ucov and ė(t) < 0 for
some time interval. This process repeats until e(t) = 0 and convergence is
guaranteed since Q is bounded.

Note that Proposition 3.1 is also valid for the constrained system with
va,max, ua,max < ∞. The maximum velocity can be ignored by choosing
vref ≤ va,max. The main difference is caused by the limited control input.
In case of unlimited ua the velocity controller can track the desired velocity
with arbitrarily high accuracy by using a high value for kv. Otherwise the
error norm ‖evel‖ may be high, depending on the quotient vref

ua,max
, which
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UGV

UAV

Visibility region (rv)

Coverage region (ro)

Trajectories Eff. Coverage

Figure 3.5: Trajectories and covered area for coverage behavior without track-
ing

can cause the vehicle to leave the areaQ. A safety distance to the boundary
becomes necessary depending on the choice of the parameters. This safety
distance can be calculated just as the result presented in Proposition 3.2
later in Section 3.5.

3.3.3 Simulation Example
To get a first impression of the coverage behavior, Figure 3.5 shows an
example where the UGV is moving along a straight line and the UAV
applies the control law given in (3.11). Systems parameters and further
details are described in Section 3.6.
Figure 3.6a shows the corresponding velocity error for two different val-

ues of kv. It is obviously much lower for higher kv and only has a few
remaining peaks if the gain is high enough. This supports the assumption
that ucov changes slowly and is consistent most of the time with regards to
the position of the vehicle, i.e., a slight change in position will change ucov
only slightly. The peaks in Figure 3.6a correspond to situations where the
direction of usi changes significantly, which happens mostly when switch-
ing to the symmetry breaking controller (3.7).
How the coverage error e(t) converges to zero for different kv is depicted

in Figure 3.6b. Again, the higher value of kv leads to lower error values
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(a) Norm of velocity error (3.10)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

·104

Time (s)

e(
t)

kv = 0.1

kv = 10.0

kv = 10.0 (con.)

(b) Coverage error (3.4)

Figure 3.6: Velocity and coverage error for different control gains corresponding
to the trajectories in Figure 3.5

as one would expect. The blue plot shows the error progression for the
constrained system (kv = 10.0 (con.)), i.e., when using limited input and
velocity for the vehicles. Note that the error can increase as long as the
UGV is moving because of the definition of φ(q,pg).

As one can see in Figure 3.5, the UAV has left the circle with radius
rv around pg. Therefore, we need an additional motion component that
guarantees that the visibility condition is satisfied.

3.4 Tracking Control
In the following, we present a tracking control strategy for the UAV. Note
that the visibility constraint (3.5) not only depends on the motion of the
UAV, but also on the motion of the UGV. Thus, the UAV needs to follow
the UGV to ensure that the visibility condition is satisfied. This problem
can be understood as a trajectory tracking problem for the UAV. In this
section, we first describe a control law which ensures that the UAV exactly
tracks the UGV in case that the coverage task is ignored. Then, in the
next section, a combined control law is presented for simultaneous tracking
and coverage.

If the UGV is not in motion, the trajectory tracking task is nothing
but a regulation of the UAV to a constant point in space. However, if
the UGV is in motion, the trajectory is time varying and the solution is
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more sophisticated. Note that the exact tracking problem is solved if the
position error ‖p∆‖ = ‖pa − pg‖ = 0. Considering the dynamics of the
position error, it follows that

p̈∆ = p̈a − p̈g = ua − ug. (3.13)

Therefore, the tracking problem is solved if the error dynamics (3.13) is
controlled such that it is stable, since then limt→∞ p∆(t) = 0. While
ug is determined for the motion of the UGV, the goal is to design ua
for tracking. A straightforward way is to choose ua = ug + ua,tr, where
ua,tr is designed such that p̈∆ = ua,tr is stable. For example, this can be
achieved by a state feedback controller

ua,tr = −k0p∆ − k1ṗ∆, (3.14)

where k0 and k1 are chosen such that p̈∆ + k1ṗ∆ + k0p∆ = 0 is stable.
However, the controller (3.14) is not only a function of the relative positions
p∆, but also of the relative velocities ṗ∆. This implies that the UAV
needs information about the velocity of the UGV which is undesirable. To
overcome this problem, we use a dynamic control law

ẋc = Acxc + Bcp∆ (3.15a)
ua,tr = Ccxc + Dcp∆ (3.15b)

which needs only the relative position information p∆ to stabilize the track-
ing error dynamics.
The dynamic controller can be converted to an equivalent transfer ma-

trix, which simplifies the design, i.e., determining the controller param-
eters. In the Laplace domain, several standard techniques from control
theory, e.g., the root locus method can be applied. To this end, using
(2.4) yields

Gc(s) = Cc(sI2 −Ac)
−1Bc + Dc. (3.16)

The structure of the UAV control with the converted dynamic controller is
shown in Figure 3.7. Since the two directions in the plane are decoupled,
the individual coordinates can be treated like single input output channels
making the controller design even more straightforward. For this special
case we get the transfer characteristic

Gc(s) =
Dcs−AcDc +BcCc

s−Ac
, (3.17)

assuming Ac = diag(Ac),Bc = diag(Bc) and so on.
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Gc(s)

[
1
s2 0
0 1

s2

]−
pg

p∆

ua,tr pa

pa

Figure 3.7: Block diagram with the converted dynamic controller for the UAV

Remark 3.1. Relative localization or the information p∆ is available for
the UAV, as long as the visibility condition (3.5) holds. Once the UAV
leaves the visibility radius, the tracking controller (3.15) is useless. Thus,
it is necessary to guarantee that the UAV never leaves the visibility radius.
In case of failure, an additional backup strategy could still be implemented
to reestablish the visual contact.

For the above solution, we have assumed that ua = ug +ua,tr, meaning
that the control input of the UGV is available for the UAV. In general, this
is not the case unless this information will be communicated. However, we
are interested in solutions which rely solely on the relative position error
p∆.
For this purpose, it should be noted that the input and velocity of the

UGV are bounded by their maximum values ug,max and vg,max. Hence,
if the UGV is in saturation, it moves with a constant maximum velocity
towards its target point. In this case, the UGV can be described by an
autonomous vehicle with dynamics p̈g = 0 which implies that p̈∆ = ua and
the information ug is not needed. Only if the UGV is near its target point,
where the system is not in saturation and the velocity is not constant, the
information ug is needed for an exact tracking. However, note that the
UAV is more flexible and faster than the UGV such that the tracking error
close to a target point is negligible. Moreover, it should be considered
that the primary goal is to keep the UAV in a region around the UGV (cf.
(3.5)) which does not need an exact tracking and can be ensured without
the information ug in a simple way. We will discuss this issue in the next
section.3)

3)More complex scenarios, e.g., with uneven or difficult terrain, where ṗg changes
frequently are not considered here. Communication of ug would again be necessary
for exact tracking. Approximate tracking will still be possible without ug available,
depending on the ratio of the acceleration and velocity parameters of both vehicles.
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Summing up, the motion of the UGV can be described sufficiently accu-
rate by piecewise straight lines with dynamics p̈g = 0, and the dynamics
of the tracking error reduce to

p̈∆ = ua. (3.18)

Therefore, the controller ua = ua,tr, where ua,tr is given as in (3.15),
solves the tracking problem.

3.5 Complete Motion Control
After considering the individual solutions for the tracking problem and
dynamic coverage, we can combine the two components to get a complete
motion control law that solves the problem posed in Section 3.2.

3.5.1 Combined Coverage and Tracking
While there are different ways to combine the above control laws, we can
state the most important aspect of the combined control law in general as
follows:

Proposition 3.2. For a system with dynamics as in (3.1) and ua,tr,
ua,cov as in (3.15) and (3.11), the control law

ua = α(‖p∆‖)ua,tr + β(‖p∆‖)ua,cov (3.19)

guarantees ‖pa(t)−pg(t)‖ < rv for all t ≥ 0 given the following conditions:

1. The initial states satisfy ‖pa(0)− pg(0)‖ < rv, ṗg(0) = ṗa(0) = 0.

2. α, β : R≥0 → R≥0 satisfy α = 1, β = 0 for all ‖pa(t)− pg(t)‖ ≥ rs.

3. The threshold value rs is given by

rs = rv −
1

ua,max
(vg,max(va,max + vg,max)

+
1

2
(v2
a,max − v2

g,max)). (3.20)

Proof. There is an inner radius rs < rv around pg that determines a
distance threshold where only the tracking controller will be active. By
considering a worst case scenario for a time ts when ‖p∆(ts)‖ = rs, we can
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calculate the switching distance rs such that Proposition 3.2 holds. The
worst case scenario is as follows: The UAV moves at va,max in an arbi-
trary direction while the UGV moves at vg,max in the opposite direction
and ‖p∆(ts)‖ = rs occurs. Now, ua = ua,tr and the parameters of the
tracking controller can be chosen such that the UAV will accelerate with
ua,max towards the UGV. The time interval during which ‖p∆‖ increases
can be split into two parts, deceleration to ‖ṗa‖ = 0 and acceleration to
‖ṗa‖ = vg,max. Summing up the distances traveled (assuming the UGV
still moves away from the UAV) provides (3.20). As soon as ‖ṗa‖ ≥ vg,max
pointing towards the UGV, the distance will not increase any further which
completes the proof.

The choice of α(‖p∆‖) and β(‖p∆‖) can have a significant influence on
how the error (3.4) evolves. Note that a higher weighting should be given
to ua,cov when ‖p∆‖ is small, meaning that the position tracking is less
important when the UAV is closer to the UGV. Several examples of how
β(‖p∆‖) can be chosen are depicted in Figure 3.8. They correspond to the
following function pairs:

α1(‖p∆‖) =

{‖p∆‖
rs

, if ‖p∆‖ < rs

1, if ‖p∆‖ ≥ rs
β1(‖p∆‖) = 1− α1(‖p∆‖)

(3.21)

α2(‖p∆‖) =

{
0, if ‖p∆‖ < rs

1, if ‖p∆‖ ≥ rs
β2(‖p∆‖) = 1− α2(‖p∆‖).

(3.22)

The third option shown is

α3(‖p∆‖) = 1 β3(‖p∆‖) =

{
−kβ log(‖p∆‖

rs
), if ‖p∆‖ < rs

0, if ‖p∆‖ ≥ rs
(3.23)

with kβ > 0.4)
In Figure 3.9, the distance norm ‖p∆‖ for the three different combi-

nations is plotted, considering the same scenario as in Figure 3.5. Ob-
viously, the visibility condition is always satisfied. Note that α1(‖p∆‖)
and β1(‖p∆‖) represent a linear interpolation strategy between ua,tr and
ua,cov. Although the linear strategy ensures that the UAV stays within

4)To avoid numerical issues, β3(‖p∆‖) can be limited to a maximum value.
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Figure 3.8: Different weighting functions for the combined coverage and track-
ing control law

the visibility radius rv, the solution is somewhat conservative since the
allowed distance is not fully utilized. From this point of view, a better
result is achieved in case of the switching strategy α2(‖p∆‖), β2(‖p∆‖).
However, the controller causes a sliding mode behavior on the threshold rs
which might be undesirable. The choice α3(‖p∆‖) and β3(‖p∆‖) describes
a logarithmic interpolation, which provides a tradeoff between the linear
interpolation and the switching function. From Figure 3.9, it can be seen
that the UAV moves closer to the visibility boundary compared to the
linear interpolation case, but there is no sliding mode as in the switching
strategy.

Remark 3.2. Under consideration of Proposition 3.2, other functions for
α(‖p∆‖) and β(‖p∆‖) are possible. In our simulations, the best results
have been achieved with the logarithmic strategy.

3.5.2 Virtual Point Tracking
As an alternative to the combined control strategy presented above, we can
also omit the coverage part and simply move the UAV along a specified
path around the UGV. For instance, the control law can be modified such
that the UAV circles with a certain radius around the UGV while tracking
its position.
For this purpose, let us define a virtual point pv(t) such that

pd(t) = pg(t) + pv(t) and pd(t) ∈ Q. (3.24)
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Figure 3.9: UAV-UGV distance for the different weighting functions shown in
Figure 3.8

With the help of the virtual point pv(t), a desired location for the UAV
relative to the position of the UGV can be described, where ‖pv(t)‖ < rv
must hold to satisfy the visibility constraint (3.5). The vector components
of (3.24) are illustrated in Figure 3.10.
The variable pd(t) can also be interpreted as a trajectory that should

be tracked by the UAV, meaning that ‖pa(t) − pd(t)‖ → 0. Thus, as in
Section 3.4, we define the tracking error p∆,d = pa−pd such that the error

0

‖pg‖

‖pv‖

pd

pg

Figure 3.10: Vector components illustrating the virtual point tracking
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dynamics are determined by

p̈∆,d = ua − p̈d. (3.25)

Since we can assume that the dynamics of the UGV are sufficiently accu-
rate described by p̈g = 0, it follows that p̈d = p̈v. Therefore, (3.25) results
in

p̈∆,d = ua − p̈v, (3.26)

and defining ua = p̈v + ua,tr, we get eventually

p̈∆,d = ua,tr. (3.27)

Obviously, the tracking error (3.27) is described by simple double integra-
tor dynamics which, as before, can be stabilized using the controller (3.15)
where it is just necessary to replace p̈∆ by p̈∆,d. Thus, provided that
the dynamics of the virtual point pv is twice differentiable with respect to
time, a trajectory tracking controller is given by

ua = p̈v + ua,tr. (3.28)

As an example, assume that the UAV moves in a circle around the UGV,
then the virtual point pv(t) can be specified as

pv(t) =

(
rp cos(ωpt)
rp sin(ωpt)

)
, (3.29)

where rp and ωp are the radius and the frequency of the circular motion,
respectively. Applying the same consideration as in Proposition 3.2, choos-
ing rp ≤ rs guarantees that the visibility condition will be maintained. To
satisfy pd(t) ∈ Q, i.e., the condition that the virtual point is always inside
the bounded environment, pd is simply projected to the closest position
in Q if pd /∈ Q.
Remark 3.3. In case of a constrained system, the parameters of the virtual
point motion should be chosen such that the trajectory can be followed by
the vehicle without significant tracking error.

3.6 Simulation Results
In the following, the combined control law and the virtual point track-
ing method are both illustrated by examples. We implemented the dy-
namics and controllers in C++ and used the following vehicle parame-
ters: va,max = 0.6m

s , ua,max = 0.3 m
s2 , vg,max = 0.2m

s and ug,max = 0.1 m
s2 .
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The sensor characteristics of the UAV are given by Ma = 1.0, r = 5m,
rv = 4.75m and a desired coverage of C∗ = 2.0. With these values the
threshold for the weighting controller is rs ≈ 3.683m. We chose a rela-
tively low velocity and acceleration for the UAV to satisfy the assumption
of double integrator dynamics.
The controller parameters for ua,tr in (3.15) are chosen as Ac =

diag(−3), Bc = diag(−3), Cc = diag(− 8
3 ), and Dc = diag(−3) such

that all closed-loop poles are at −1 in an unconstrained system. Accord-
ing to Remark 3.2, we use the logarithmic weighting function (3.23) for
the final experiments with kβ = 20. Finally, a circular motion is specified
by the virtual point as in (3.29) with rp = rs and ωp = 1 rad

s .
Two different experiments are displayed in Figure 3.11 and Figure 3.12,

respectively. The environment is a 40m×40m square region in both cases.
In the first scenario, the UGV travels through completely uncovered space
for all t. Therefore, the error (Figure 3.11c) is relatively high, but can be
kept lower by the dynamic coverage combined with tracking most of the
time compared to the circular motion.

This difference is even more significant if the UGV travels through re-
gions that are partly covered, which is clearly recognizable in the second
scenario. Especially in the beginning, when the UGV moves close to al-
ready covered areas (between t = 0 and t = 40 s), the error e(t) is much
lower and more consistent when using the coverage strategy (cf. Figure
3.12c). This result is not unexpected, because the dynamic coverage ap-
proach takes the already covered area and density function into account,
but it is also the more complex control strategy.

3.7 Discussion
The goal of the work presented in this chapter was motion coordination
between aerial and ground vehicles for challenging scenarios. An approach
centered on the motion control of the UAV was chosen to exploit the
higher mobility and not make too many assumptions about the higher
level task performed by the UGV. The cooperation between both vehicles
allows for more information to be gathered compared to using a single
robot, effectively increasing the sensor range and accuracy during the data
collection.
Two strategies were presented that bring along different advantages and

disadvantages:
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(a) Dynamic coverage trajectories (b) Circular motion trajectories
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Figure 3.11: Simulation results for scenario 1



40 3 UAV-UGV Cooperation

(a) Dynamic coverage trajectories (b) Circular motion trajectories
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Figure 3.12: Simulation results for scenario 2
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• The circular motion approach is simpler to implement and not as
demanding computationally, because it does not require the UAV
to keep a map of the environment and evaluation of the gradient or
finding the next point to cover as in (3.6) and (3.7), respectively.
Therefore, this strategy should be chosen if the processing power of
the UAV is an issue or the processing can not be outsourced to an
external computer or the UGV via communication.

• The dynamic coverage strategy combined with the tracking should
be used if possible as it offers the better coverage (as far as our ex-
periments showed) and provides opportunities for even more sophis-
ticated assistance, e.g., by taking additional information given by
the UGV about it’s goals into account.

• The required visibility contact is guaranteed at all times in both
cases.

One UAV-UGV team can be treated as a single entity, since they stay
within a defined range of each other and share their sensory information.
This is an important aspect that is utilized in the upcoming chapter.
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4 Coordination in Multi-Robot
Exploration

In this chapter, a specific higher level task mentioned previously is con-
sidered in detail. When looking back at the complex search and rescue
scenario introduced in Chapter 1, one of the most important steps is the
exploration of the unknown environment, i.e., finding out more about the
current situation or finding victims to be rescued as quickly as possible.
Doing so with multiple robots in a coordinated way poses challenges that
are investigated and addressed here.
First, the topic of multi-robot exploration (MRE) is introduced, followed

by a literature review and a summary of the contributions presented here.
The problem statement starts with a simplification of the robot and sensor
models used in the previous chapter to accommodate to the complexity
in this new stage. Then the cost function for the exploration problem
is presented. A new optimization procedure is proposed and analyzed
theoretically in Section 4.3. Simulated evaluation and comparison in an
exploration framework complete the analysis that is again followed by a
discussion.1)

4.1 Introduction
The elementary strategy in exploration is the frontier-based approach
[150], i.e., determining the boundary between known and unknown space
and moving towards it until the entire environment is explored. This
process is illustrated in Figure 4.1.
There are many different strategies on how to move the robot towards

the unexplored regions. The selection of a suitable target location in [150]
is solely based on the distance to the closest point on the frontier. This
measure can be augmented with different utility functions like expected
information gain and localization quality [89]. In 2011, Kulich et al. pre-
sented a new strategy for goal selection for a single robot that is based on

1)The main results presented in this chapter are also published in Klodt et al. [67].
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frontier

sensor area

explored
unexplored

Figure 4.1: Frontier-based exploration with a single robot

repeatedly solving the Traveling Salesman Problem (TSP) and approach-
ing the first target in the open TSP tour [73]. The open TSP tour is
defined as the shortest path visiting all available locations without return-
ing to the starting position. It can be seen as a more predictive method
and significantly outperforms a greedy goal selection strategy in several
scenarios. The advantage is explained through consideration of all future
target locations as depicted in Figure 4.2.
In recent years, the focus in robotics research shifted more and more to-

wards multi-robot systems and multi-robot exploration. As already men-
tioned in the first chapter, employing multiple robots bears the potential
to reduce the overall exploration time, increase accuracy and robustness
to failures. The reduction in exploration time is strongly dependent on
effective coordination of the group, whereas additional robustness emerges
from a decentralized system structure where failures of an individual unit
can be compensated. Further, centralized coordination can be inefficient in
terms of communication and computation requirements when the central
controller becomes the bottleneck of the system [8]. These arguments pro-
vide a good motivation to focus on a decentralized or even fully distributed
approach.
Aside from minimizing the exploration time, which is our focus here,

there are also other types of team objectives that can be considered in
the multi-robot exploration context. Depending on the type of applica-
tion, many aspects can be imagined, e.g., minimizing usage of resources
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greedy goal

TSP goal explored
unexplored

Figure 4.2: Comparison of greedy and TSP-based goal selection

like energy, computation or communication or having a system with high
robustness.

4.1.1 Literature Review
There is a large amount of literature on coordination and task allocation
methods in multi-robot systems that cannot be fully covered here. We
focus on the most relevant and representative approaches from our point
of view. For a more complete survey see [151] for example.
As stated in [12], the key problem regarding effective coordination is

the allocation of target points such that individual robots explore differ-
ent regions of the environment. A simplified variant of this problem is the
assignment of a single task to each robot, which has been widely stud-
ied in other fields like operations research. It can be solved optimally
in polynomial time with the Hungarian method which has been applied
to multi-robot exploration by the authors of [149]. Assuming structured
room environments, the authors first segment the explored area based on
a Voronoi graph. The resulting segments are then assigned to different
robots.
Assigning multiple targets to each robot is sometimes approached as a

partitioning problem in the multi-robot exploration literature. Examples
include the use of k-means clustering [138], [33] or Voronoi cells [148], [48],
[49]. The partitioning is used as a heuristic to distribute the robots to
different regions of the environment. A common problem to these parti-
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tioning methods is an uneven assignment of work, as they do not consider
the actual path the robot will have to travel. Therefore the Voronoi par-
tition and even k-means clustering can lead to clearly suboptimal decom-
positions, including the possibility of empty cells or clusters. In [33], the
issue is subsequently addressed by applying a second assignment step that
sets goal locations for all unemployed robots.
A different means to assign sets of tasks to multiple robots are market-

based approaches. A lot of research has been focused on coordination with
market-based mechanisms and the results up to 2006 are summarized in
[27]. In this context the multi-robot task allocation (MRTA) is usually
formulated as an optimal assignment problem, which is typically NP-hard
as it contains difficult subproblems from combinatorial optimization [44].
Therefore most approaches focus on finding a (presumably suboptimal)
solution that reliably produces good solutions.
One of the important paradigms for decentralized task allocation was

introduced as the contract net protocol (CNP) in [137] and many articles
present algorithms as variants or extensions of the CNP. The basic idea
is that agents can announce tasks similar to an auction and other agents
can formulate bids on these tasks. Examples are [45], [129] and [155].
Common to these approaches is that they consider individually rational
agents that calculate bids based on their own utilities (i.e., what is my
gain for adding or removing a certain task to/from my task set). While
[45] only allows task swaps, the authors of [129] present theoretical results
on four different types of contracts (i.e., the ways to exchange tasks) with
the interesting conclusion that none of the four contract types alone is
sufficient to reach the optimal allocation. An application example is the
work of Zlot et al. [155], where each robot has a tour of goals and tries
to sell or buy target points by evaluating expected profit in adding that
goal to its current tour. The main disadvantage of using self-interested
agents with marginal cost based contracting is that it corresponds to the
MinSum objective from an optimization point of view and such a system
is not suitable to minimize exploration time or facilitate balanced use of
all robots (cf. [98]). Realizing this issue, the approach in [79], another
extension to CNP, uses an equity coefficient in the robots utility functions
to balance the workload between them. Agents with higher workload also
gain communication priority when it comes to giving away tasks.
A more profound perspective is provided by Lagoudakis et al. in [74].

They present three different team objectives for the multi-robot routing
(MRR) problem and derive bidding rules for the agents directly from there.
Since computation of path costs for the individual robots is already NP-
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hard, they propose use of minimum spanning trees (MST) or a polynomial
time TSP heuristic as cost approximations. Even with the approximations
they can prove upper bounds on the performance ratio of the algorithms.
Since the way auctions are designed can severely limit the algorithms ca-

pabilities of reaching a good allocation, several approaches have been made
to find more complex or sophisticated ways to exchange tasks. The authors
from [8] employ combinatorial auctions for exploration in partially un-
known terrain, taking synergies into account that arise from points closer
together. In [152] a new type of contract to exchange multiple targets is de-
fined and shown to improve the initial allocation given by other algorithms,
based on the MinSum objective. Combining the ideas of clustering and
auctions (cluster first, then allocate), a comparison of two cluster forma-
tion techniques is presented in [51] with the conclusion that single-linkage
clustering can provide minor improvements over k-means.

4.1.2 Contribution
Originally inspired by issues that are present in MRE when using partition-
ing methods (uneven allocation, centralization) we found that allocation
techniques exist in the MRR literature to overcome these problems, espe-
cially the solutions presented in [74]. However, in our experiments they
have shown to be lacking for highly dynamic applications with frequent
replanning2) like the exploration scenarios we are considering. It is im-
portant to note, that most of the algorithms from MRTA or MRR have
only been applied and tested in static scenarios with the intention to find
the best allocation for a given (and a priori known) situation. Additional
factors come into play when it comes to dynamic exploration. We presume
that a certain consistency between solutions of consecutive assignment it-
erations is advantageous, and therefore sticking to a solution closer to the
previous one can prove beneficial. Reallocation of targets based on the
previous solution has already been applied in [155] among others but with
a different optimization objective and communication scheme.

With these arguments in mind, we designed a new allocation algorithm
that combines the advantages of above mentioned approaches while posing
fewer requirements on the communication structure. Specifically, we are
using the MinMax criterion to minimize the overall exploration time and,
similar to [74], use minimum spanning trees to approximate the robot path

2)The necessity of frequent replanning has already been investigated in [33] and their
results also match with our own experience.
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costs. Always starting from the previous allocation, the robots execute a
pairwise optimization procedure, minimizing the global objective through
local interactions. Compared to many popular auction strategies this is a
reduction in communication requirements since it is only necessary to have
a stable connection with one agent for an optimization step to proceed,
instead of waiting for the bids from all other robots (usually with a timeout
to increase robustness towards failed robots or robots not within range).
Our contributions summarized in short:

• We combine insights from MRE and MRR/MRTA to design a new
assignment algorithm...

• ...that is adapted for highly dynamic scenarios like exploration...

• ...and has reduced requirements on the communication structure of
the system.

• We provide a theoretical analysis of convergence properties.

• We provide a statistical evaluation that compares the proposed al-
gorithm with state of the art approaches.

4.2 Problem Statement
This section introduces the general set-up and the cost function for opti-
mization.

4.2.1 Setting and Assumptions
To accommodate to the increased complexity and focus on the task of
exploration, the models used in Chapter 3 are simplified as follows:

1. The multi-robot team is no longer assumed to be heterogeneous.
Instead, each UAV-UGV pair is merged into a single exploration
unit with an increased sensor range re (compared to a single robot)
to account for the additional information gathered.

2. Within sensor range re, an exploration unit can determine if there
is free space unless the sensing is blocked by an obstacle.

3. The movement of an exploration unit is modeled by a single integra-
tor.
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For simplicity, exploration units are also called robots hereafter. Assuming
a group of n <∞ robots, they also carry the following idealized capabili-
ties:

1. A robot can communicate with other robots within a communication
range rc. Those available for direct communication are also called
neighbors.

2. The robots can localize in a common coordinate frame, which allows
them to exchange map or target information with their neighbors.

A practical realization of the localization assumed here can be found in
[36].
The environment considered for exploration consists of a polygonal

boundary and a set of polygonal obstacles as defined in Section 2.2.1
and is denoted with Q. Note that the environment is now allowed to be
nonconvex in contrast to the previous chapter, which is more fitting for
real exploration scenarios. Define the maneuverable domain D ⊂ Q as
the union of explored and unexplored areas excluding explored parts of
obstacles and boundaries. As a reminder, the geodesic distance as defined
in Section 2.2.2 between any two points a, b ∈ D is denoted with dg(a, b).

Remark 4.1. We include the unexplored regions in the maneuverable do-
main, i.e., we assume that the space is obstacle free unless proven oth-
erwise. This requires consistent updating of the motion planning as new
obstacles are discovered but also leads to a more offensive exploration.

4.2.2 Cost Function
One of the main challenges in assigning equal amounts of work for explo-
ration is to estimate the actual workload for each individual robot. The
difficulty of the problem lies in the high uncertainty inherent to the explo-
ration problem, namely the region beyond the exploration frontier. There
could be a wall directly behind the frontier or maybe most of the unex-
plored area awaits to be discovered. Without any additional knowledge or
assumptions about the environment, one is usually forced to rely on the
length of the frontier (or number of suitable target locations close to the
frontier) as an indicator.
Having Mi target points tki ∈ D, ki ∈ {1, . . . ,Mi}, assigned to a robot

with index i at position pi, i ∈ {1, . . . , n}, the robots path cost or workload
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amounts to

wi = dg(pi, t1i) +

Mi−1∑

ki=1

dg(tki , tki+1), (4.1)

where the target points are ordered such that wi is minimal (i.e., the open
TSP tour). This distance measure can be seen as an approximation of the
distance a robot will have to travel. Either there is only a small area left to
be explored (all within a distance re of the target points), then the robots
only have to visit the remaining targets (or move close to them) and the
exploration is complete. Otherwise the travel distance will be higher as
additional target points arise on the updated frontier.

4.2.3 Approximating the Cost Function
To allow for frequent re-computation of workloads, we use an MST approx-
imation (cf. [74]) described in the following. First, define the complete,
undirected graph Gi(Vi) of robot i with vertices Vi = {pi, t1i , ..., tMi

}.
The weight of an edge between two vertices u,v is given by their distance
dg(u,v).

Proposition 4.1 (MST Approximation). Let Si be a minimum spanning
tree of the complete, undirected graph Gi(Vi), vertices and edge weights
defined as above and the workload wi of a robot as in (4.1). Then, the
following observation holds:

‖Si‖ ≤ wi < 2‖Si‖. (4.2)

Both inequalities are basic results from TSP research transferred to our
problem, a proof can be found in the related literature, e.g., [126]. The
MST cost provides a lower and upper bound and therefore a meaningful
approximation of wi. This observation is useful because the MST can be
computed deterministically with time complexity O(|Vi|2). Other polyno-
mial time TSP heuristics would also be possible, but do not provide any
advantages. Therefore, for further considerations we use the MST weight
‖Si‖ as an estimation of the workload of robot i. An example of two MSTs
in an exploration scenario is shown in Figure 4.3.
Assuming the robots move consistently and at a constant velocity, the

overall exploration time directly corresponds to the longest traveled dis-
tance by any one robot. This consideration immediately suggests the per-
formance measure

L = max(‖S1‖, ‖S2‖, . . . , ‖Sn‖), (4.3)
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Figure 4.3: Minimum spanning trees between the robot positions and all as-
signed target points

using the estimated workload as described above. We can now formulate
the problem statement.

Problem 4.1. (MRE Coordination) Find a distributed algorithm for par-
titioning and assignment of target points tki , that implements the objective

min
P

max(‖S1‖, ‖S2‖, . . . , ‖Sn‖) (4.4)

with P = {P1,P2, . . . ,Pn} being a partition of the set of targets and the
elements in Pi are allocated to robot i.

This MinMax objective automatically leads to an equitable partitioning
with respect to estimated travel distances. Solving (4.4) combined with
an appropriate motion control to visit the assigned targets should yield
an exploration strategy with reduced overall exploration time compared
to less optimal partitioning or target assignment algorithms.

4.3 Pairwise Optimization
Partly inspired by [30], we propose a pairwise optimization procedure on
a discrete set of locations. Following some preliminary considerations, the
algorithm is presented and analyzed in the upcoming subsections. The re-
sulting combinatorial optimization problem is basically independent from
the discretization, i.e., the generation of target locations, which is intro-
duced in Section 4.4.1. For now, assume that a set of target positions
exists.
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4.3.1 Searching the Solution Space
The basic idea of the pairwise optimization is to reduce the overall problem
from (4.4) into a sequence of subproblems by optimizing the workload in
pairs of robots. This reduces communication requirements as only two
robots have to communicate at a time and also significantly reduces the
complexity.
The subproblem

min
Pij
Lij = min

Pij
max(‖Si‖, ‖Sj‖) (4.5)

is a set partitioning problem where the union of target points belonging
to i and j (i.e., Pi ∪Pj) is partitioned into two new subsets. Assigning m
targets to robot i is equal to the process of choosingm from a set containing
Mi+Mj elements. Including the cases that one robot has all or no targets,
the feasible set of solutions F contains |F| =

∑Mi+Mj

m=0

(
Mi+Mj

m

)
possible

partitionings. Using the well-known binomial theorem this result can be
reformulated to

|F| =
Mi+Mj∑

m=0

(
Mi +Mj

m

)
= 2Mi+Mj , (4.6)

meaning the cardinality of the solution set rises exponentially with an
increasing number of target points. This is in accordance with the re-
sult from [129], where the number of possible assignments for a general
system with n agents and M targets is given by nM . The following exam-
ple demonstrates how the division into smaller subproblems simplifies the
partitioning procedure:

Example 4.1. Consider a team of n = 4 robots and a total of M = 20
targets, with M1 = M2 = M3 = M4 = 5 targets assigned to each robot
initially. The number of possible assignments is 420 ≈ 1.1 · 1012, while
each pairwise subproblem only has 210 = 1024 combinations. In the case
of uneven initial allocation, the complexity of a pairwise step increases to
220 ≈ 1.05 · 106 at most.

Since each iteration of a pairwise optimization requires an evaluation of
the involved agents cost functions, an exhaustive search can still be very
costly and would not scale to higher numbers of targets. Therefore the
procedure denoted as Algorithm 1 is presented: Starting with an initial
allocation and then always based on the previous solution, the workload
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balancing algorithm performs a local hill descent on the possible par-
titionings reachable by moving one target to or from the corresponding
partner. The robot with the higher cost gives one point to the other by

Algorithm 1: Workload Balancing
Data: Two point sets V1 = {p1, t11 , ..., tM1} and

V2 = {p2, t12 , ..., tM2}
Result: Optimized sets V∗1 ,V∗2
Compute ‖S1‖, ‖S2‖ from V1,V2

L∗12 = max(‖S1‖, ‖S2‖)
while L∗12 has improved do

if ‖S1‖ > ‖S2‖ then
for i = 1 to M1 do

move ti1 from V1 to V2

if max(‖S1‖, ‖S2‖) < L∗12 then
L∗12 = max(‖S1‖, ‖S2‖)
Store improved solution V∗1 ,V∗2

move ti1 back to V1

else
for i = 1 to M2 do

// case ‖S2‖ > ‖S1‖ proceeds analogously

evaluating all possibilities and choosing the one that gives the greatest re-
duction in pair cost Lij . This step is continued iteratively until no further
improvement can be achieved. This simple but effective procedure guar-
antees convergence to the closest local minimum reachable with the give
one target away move. Other strategies could be evaluated for cases where
there are multiple possibilities to reduce the cost by moving one target,
e.g., by taking the sum of costs into account as a secondary objective.
Compared to the similar O-contracts introduced in [129], the allocation

presented here is not individually rational (one agent’s cost might increase)
but pairwise rational, i.e., we favor the improvement of the pairs min max
criterion.



4.3 Pairwise Optimization 53

4.3.2 Analysis of the Assignment Procedure
Optimizing the overall objective in (4.4) can be realized by performing
the pairwise optimization between all neighbors, either with a predefined
deterministic scheme or with a randomized gossip protocol as described in
[30]. In both cases, communication steps can be executed in parallel (for
teams of n ≥ 4) as long as the signals do not interfere with each other.
To verify the task allocation process we show that it will always reach

a stable state (or equilibrium) in a finite number of steps, first for two
robots and then in the general case of n robots.
For the following analysis we focus on a deterministic communication

and make some basic assumptions:

• For simplicity we initially assume that all robots are within each
others communication range rc.

• We assume a static scenario during the assignment where the robot
and target positions are fixed and no two targets or robots coincide.

• If the assignment procedure is called, the total number of targets
will be 0 < M =

∑n
i=1Mi <∞.

As a consequence, a state in the assignment process is uniquely defined
by the current partition P, i.e., the targets assigned to each robot.

Definition 4.1. We define one communication round as a complete
sequence of pairwise optimization steps until each robot has communicated
with every other, i.e., one communication round contains n− 1 + n− 2 +

· · ·+ 1 = n2−n
2 calls of Algorithm 1.

Definition 4.2. An equilibrium partition Pε of the system is defined
by a state where no further improvement can be obtained by application
of Algorithm 1 between any two robots. Or in other words, if the state
of the assignment is identical before and after one communication round,
the system is in a stable state.

We can now formulate the following

Proposition 4.2 (Termination of Algorithm 1). In a subsystem of two
robots i and j, given the assumptions described above and any initial par-
titioning P0

ij, the application of Algorithm 1 will always lead to an equi-
librium partition Pεij and termination of the algorithm in a finite number
of iterations. An upper bound for the total number of iterations (including
the inner loop) is given by (Mi +Mj) · 2Mi+Mj .
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Proof. To exclude the trivial case, we assume that the number of targets
Mi + Mj > 0. The algorithm will only continue if the cost L∗ij can be
strictly decreased by moving one target. This makes it impossible to reach
any particular assignment state twice, since returning to a previous state
would require the cost to increase. The total number of possible states is
limited as given in (4.6) and the number of cost evaluations performed in
each invocation of the inner loop is limited by max(Mi,Mj). Combining
the two statements yields the conclusion above.

This leads to the main result:

Theorem 4.1 (Convergence of the Overall Assignment). In a system of
n robots, given the assumptions above and any initial partitioning P0,
the assignment process will always reach an equilibrium partition Pε in a
finite number of communication rounds, which is limited by the number of
possible assignments nM .

Proof. Similar to the previous proof, we show that it is impossible to reach
a previous state. For a transition to a new state to occur, one agent’s cost
(call it i) will decrease while the other agents cost (call it j) will increase
or stay the same by applying Algorithm 1. Now there are two possible
situations: 1) Agent i was the one with the overall highest cost, making
it impossible to reach the previous state because the max of all costs can
never increase or 2) agent i was not the one with the overall highest cost.
Continuing with case 2), to reach the previous state, agent i would have
to get back to a higher cost, which is only possible by communicating
with a different agent that has higher cost (call it z). Now either z is the
agent with the highest cost, making it impossible to reach the previous
state if it moves a target to i, or case 2) is repeated until the agent with
the highest cost is reached. At least one state transition will occur by
calling Algorithm 1 during one communication round (except for the last
communication round where Pε is reached), possibly more, so in a worst
case scenario, the number of communication rounds is upper bounded
by the number of possible assignments. Considering this limitation and
incorporating Proposition 4.2 completes the proof.

Remark 4.2. The convergence result will hold for any order of communi-
cation in one communication round and also for cases with more restricted
communication, but the assignment may lead to different equilibrium par-
titions.

In practice the number of communication rounds is much lower than the
upper bound. We present empirical results about this in Section 4.5.1.
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4.4 Exploration Framework
To evaluate the proposed optimization, we implemented an exploration
framework in C++ that allows for comparison with other related ap-
proaches. In this section, we describe how the target points are gener-
ated and the process of robot motion and individual target selection is
explained thereafter.

4.4.1 Frontier Segmentation
Since we consider a polygonal environment instead of a grid map, there is
no predefined discretization of the frontier that would provide straightfor-
ward target candidates. Therefore we apply the following segmentation:
a connected frontier component with length lf is separated uniformly into
line segments of length lseg determined by

lseg =
lf
nseg

with nseg =

⌈
lf
kfre

⌉
, (4.7)

where nseg denotes the number of segments.
Target points are simply set to the center of each segment. Free parame-

ter kf ∈ R allows adaptation of the segment length and its choice depends
on several factors. A low number of longer segments (bigger values of kf )
ensures that target points are not too close to each other and reduces the
complexity of the assignment. On the other hand, segments should not
be too long to make sure that each frontier component will be explored
by visiting its target point. Further, choosing too few segments compared
to the number of robots eliminates the variability for optimization. Intu-
itively, values between kf = 1 and kf = 2 corresponding to lseg ≤ re and
lseg ≤ 2re make sense, as the segments will always be contained in the
circle of radius re, and have proven to be suitable in our evaluations. An
example of a segmentation with kf = 1.5 is shown in Figure 4.4.

4.4.2 Robot Motion and Target Selection
As stated in Section 4.2, the robot motion is modeled by a single integra-
tor, a commonly used approximation for holonomic robots. Investigations
with more complex robot models are open for future work. A robot is
allowed to move up to 0.1m at constant speed in between (re-)assignment
steps and the amount of assignment steps is counted as iterations. The
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Figure 4.4: Frontier segments in different colors, segmented according to (4.7)

overall number of iterations until the exploration is complete is therefore
proportional to the expected exploration time.

For path planning and obstacle avoidance we use the well-known visi-
bility graph method combined with a contraction of the environment [84].
This approach guarantees optimal shortest path calculations and a safety
distance to all obstacles. Since it is a combinatorial method (as charac-
terized in [77]), the computational complexity increases quickly for more
complex environments with many obstacles. But this is also true for most
other methods and we did not have any issues with computation times in
the selected scenarios.
If a robot has more than one target assigned without a specific order-

ing, a target selection procedure for the individual robots is required to
determine which target will be approached first. For this purpose we use
the same TSP solver that has been demonstrated for use in exploration in
[73]. It provides shorter and more consistent exploration trajectories than
a greedy approach as explained in Section 4.1.

4.4.3 Distributed Implementation
For a distributed implementation, a common set of target points is required
between the two robots that are communicating. This can be realized by
either sharing the currently explored area, so that each robot can deter-
mine the target points on a common frontier, or calculating the targets
only for the individual maps and then exchanging the target information
directly. In the second case, the robots have to inform each other about
targets that are in the already explored area and delete those (similar to
[155]), but only exchanging this point information is usually less expensive
than sharing a complete map. The first approach will allow more informed
decisions, so the choice depends on the available bandwidth.
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4.5 Results
The evaluation and comparison has been conducted in three different ex-
ploration scenarios, representing different types of regions, shown in Figure
4.5. Scenario A is an open space with arbitrarily placed smaller obstacles.
Scenario B is a structured space with a long corridor and scenario C is
a replica of a building on the basis of a real floor plan. The sizes of the
bounding rectangles are 6m×4m, 9m×6m, and 10m×10m for scenarios
A, B, and C, respectively. The exploration time is measured according
to the description in Section 4.4.2. Multiple runs for statistical evalua-
tion have been initialized with uniformly random starting locations, but
robots start as a group within a distance of 2re of each other to simulate
deployment as a team. We use box plots for the visualization of data with
the boxes showing median, lower and upper quartiles and the whiskers
depicting minimum and maximum values.

4.5.1 Evaluation of Communication Requirements
An important practical aspect is the actual number of communication
rounds required to reach an equilibrium partition as defined in Section
4.3.2. The initial target assignment is determined by shortest distances
between the robot positions and targets, while targets in all further it-
erations are initially assigned based on the distance to a robot and its
previously assigned targets. Since this approach provides a good start-
ing solution for subsequent optimizations, a change of assignment is not
always necessary.
This is reflected in the simulation results presented in Table 4.1. It shows

the average and maximum number of communication rounds required to
converge to an equilibrium partition for 50 repetitions of a complete ex-

(a) Scenario A (b) Scenario B (c) Scenario C

Figure 4.5: Different scenarios for evaluation. Color explanation: free space
safety distance obstacle
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Table 4.1: Communication rounds and improvement percentage for two differ-
ent scenarios

Scenario A Scenario B

Number of robots 3 4 5 3 4 5

Avg. rounds 1.28 1.42 1.58 1.24 1.48 1.63

Max. rounds 4 6 5 5 4 5

Improved alloc. 25.2% 36.8% 48.4% 22.8% 44.3% 56.11%

ploration process in two different scenarios. One communication round
is always necessary to verify convergence, and in quite a few iterations
the current allocation is already an equilibrium partition. The last row of
Table 4.1 quantifies this statement, showing the percentage of assignment
steps where an improvement to the current allocation was made. For ex-
ample, in scenario A with 3 robots, in 25.2% of all assignment steps, an
improvement to the allocation (which is always based on the target allo-
cation in the previous step, as described above) was found by using the
presented algorithm. With an increasing number of robots, this percent-
age increases significantly, which is reasonable since the complexity and
therefore the possibilities to optimize the target distribution also increase.

The results suggest the conclusion that one communication round will
be sufficient in most cases and this is in fact confirmed by the results
in Figure 4.6. The figure shows exploration times for scenarios A and
B with increasing amount of communication, more precisely: only using
the initial allocation, one round of communication or until converging to
the equilibrium partition. While not using any additional communication
produces significantly worse results, using one communication round is
always close to the case of full convergence.
Since computation time for additional communication rounds is not an

issue, we use the communication until convergence for all further consider-
ations. But if the bandwidth is limited in a real system, the variant with
one communication round poses a promising alternative.

4.5.2 Comparison with Related Work
To investigate the performance of the algorithm we implemented several
approaches from the literature for comparison:
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Figure 4.6: Exploration times with increasing amount of communication

• Hungarian: The Hungarian method assigns one target to each
robot and has been used for exploration in [149].

• K-Means: Based on [33], targets are assigned by a centralized k-
means clustering algorithm. The clusters are initialized with the
robots as cluster centers, i.e., there is one cluster for each robot and
the final clusters determine the points that will be associated with
the respective robot. A similar idea has been proposed earlier in
[138], where the authors propose a clustering of the unknown space.

• Zlot: Amarket-based approach using marginal cost contracting with
self-interested agents [155].

• Lago: Auction-based approach from a multi-robot routing context
with performance guarantees [74].

• Pairwise: Our proposed pairwise optimization strategy from Sec-
tion 4.3.

On top of the strategies described above, we use a method to assign
target locations to idle robots from [33] (if there are any after the original
assignment). It is centralized in its original form, but can be modified to
be applicable in distributed settings.
Since two of the listed approaches require centralized coordination, i.e.,

a global knowledge about all target locations, we set rc of the robots
to a value that enables communication at all times to maintain a fair
comparison.



60 4 Coordination in Multi-Robot Exploration

3 4 5

80

100

120

140

160

Number of Robots

E
x
p
lo
ra
ti
o
n
T
im

e
(I
te
ra
ti
o
n
s)

Hungarian K-Means Zlot

Lago Pairwise

(a) re = 0.5m
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(b) re = 0.7m

Figure 4.7: Exploration times compared for scenario A

The results of the comparison for all three scenarios, with two differ-
ent sensing ranges in each case, can be found in Figures 4.7 to 4.9. We
simulated 100 runs with different starting positions for each combination
(method, scenario, sensing range, number of robots), summing up to a
total of 9000 runs for this evaluation. Especially in scenario A the K-
Means and Pairwise strategies show consistently better results than the
other three. This tendency is also present in the other two scenarios, even
though not as significant. Noteworthy, the Hungarian strategy performs
increasingly better with a higher number of robots and even outperforms
K-Means in scenario B for n = 5. In comparison with the other two ap-
proaches that allow for a distributed implementation (Zlot and Lago), the
median of our Pairwise method is always lower. In between Zlot and Lago,
the latter has a better overall consistency, especially for higher numbers of
robots, where using Zlot can lead to much higher worst case exploration
times.
In Zlot’s market-based approach, robots that already have a long tour

have a higher chance of receiving more targets, because estimated costs
are only calculated for insertion or removal of a target to the current tour.
The overall length of the tour is not considered at all, which can lead to
heavily uneven distribution of target points. This type of allocation tends
to minimize the sum of travel distances, but leads to inefficient use of
multiple robots and higher overall exploration times.
Computation times of the assignment algorithms have not been an issue

for any of the methods used and the time difference between the strategies
was not significant enough to motivate further investigation. As already
mentioned earlier, the shortest path calculations become increasingly ex-
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Figure 4.8: Exploration times compared for scenario B
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Figure 4.9: Exploration times compared for scenario C

pensive for complex or bigger maps, but limiting the number of target
points to reduce effort was not necessary in the tested scenarios. To give
an example, the average time for an assignment update including path
calculations during a typical run of scenario C was 297ms with a peak
value of 712ms on a 2.5GHz CPU. Parallelization has not been used, i.e.,
all computations for the individual robots were executed sequentially.

4.6 Discussion
With the objective to improve coordination in multi-robot exploration, the
minimum spanning tree length is used as a cost criterion and optimized in a
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pairwise manner. The implemented algorithm facilitates a balanced parti-
tioning of workload in highly dynamic scenarios and the simulation results
show that this leads to favorable exploration times. The algorithm runs
in hundreds of milliseconds on a standard PC, allowing a quasi-continuous
replanning, i.e., quick adaptation to changes. Further, the proposed algo-
rithm has lower requirements on communication than similar investigated
approaches, promising robustness and scalability.
These aspects offer a solid foundation for application in Stage 2 of the

complex search and rescue mission. The robots or exploration units, e.g.,
teams of UAVs and UGVs, are now able to gather information in unknown
environments in a coordinated way and do so efficiently as shown by the
evaluations.
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5 Coverage Control in
Nonconvex Environments

Once the environment is explored, a map is created and possible regions of
higher interest or priority have been discovered, the next step for the multi-
robot team is to move to favorable locations and monitor the environment
for new events that might occur. This task, also referred to as optimal
sensor deployment or coverage control, corresponds to Stage 3 in the
complex search and rescue mission.
This chapter is structured as follows: The basic idea of coverage control

is introduced and illustrated by an example. In the following literature re-
view in Section 5.1.1, problems and drawbacks of current approaches are
identified leading to the contribution given in later sections. The problem
statement builds on a mathematical description of the underlying concepts
and the coverage control algorithm for convex environments is formulated
in Section 5.2. Subsequently, a new way to extend the original approach
to nonconvex environments is presented and analyzed, including a formu-
lation for systems with limited sensing range, which is important for the
applications targeted by this thesis. To verify the solution, simulation
results are given for several scenarios. The properties of the presented
approach are assessed and compared with close literature, followed by a
concluding discussion in Section 5.5.1)

5.1 Introduction
Imagine a situation where multiple mobile robots or sensors - the type of
sensor may vary, depending on the task - are placed at possibly random
locations in an area of interest, e.g., at the end of an exploration as in
the previous chapter. Now the goal is to move the sensors such that they
cover the area in an optimal manner. The optimality can be characterized
by an objective function that is presented in Section 5.2.3.

1)The main results presented in this chapter are also published in Klodt et al. [65].
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(a) Sensor placement with-
out additional information

(b) Shift towards more in-
teresting regions

Figure 5.1: Simple example of a coverage task

Figure 5.1 shows a simple example with a single sensor to illustrate the
basic idea: Given a limited region with a fixed boundary, an omnidirec-
tional sensor shall be positioned. The sensor has degrading sensor perfor-
mance with increasing distance, e.g., a microphone. One would intuitively
place the sensor in the center of the region (Figure 5.1a). There might be
some a priori knowledge about the region that makes certain parts more
interesting than others, e.g., a table with chairs. Given this additional
knowledge, the sensor placement could be adjusted such that the region of
higher interest is covered more thoroughly (as in Figure 5.1b). This basic
idea can be extended to multiple sensors, where each sensor has its own
share of an environment that should be covered. But first, the important
literature specific to the field is discussed.

5.1.1 Literature Review
A popular solution to this problem was presented in [24] and in addition
to coverage control it is also referred to as Voronoi coverage. The reason
will become clear in the next section. The authors formulate the deploy-
ment task as a geometric optimization problem. This kind of resource
allocation task was already investigated in the context of information the-
ory and vector quantization [83] and for facility location problems [105]
(e.g., where to place radio stations to cover an area as good as possible).
The resulting solution is a continuous-time version of the Lloyd algorithm
[83], which is introduced in Section 5.2.2. The solution is formulated as a
feedback control law that allows distributed, adaptive and asynchronous
minimization of the optimization function. A lot of extensions to this ap-
proach have been developed including: range limitations [23], utilization
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(a) The goal location is
outside of the allowed en-
vironment

(b) The trajectory would
cross through an obstacle
on the way to the goal

Figure 5.2: Two cases where the original algorithm fails in nonconvex environ-
ments

of anisotropic sensors [78] and estimation of importance of different areas
[132]. The coverage framework has also been modified to fulfill different
tasks like target tracking [112] and multi-robot exploration [49].
The main drawback of Voronoi coverage is that it only works in convex

environments, which is a strong limitation since real world environments
are usually nonconvex. The arising complications are already discussed
in [9] with several examples and can be summarized in two cases: the
sensors goal lies inside the environment but the trajectory crosses through
impassable regions, or the goal location lies outside the environment (cf.
Figure 5.2). In both cases the robots would collide with the environment
and the final configuration is not clearly defined in the second case. These
issues have been addressed in several different ways in the literature. The
existing approaches are summarized in the following.
In [113], among other extensions, Voronoi coverage is applied to sim-

ple polygons without holes using the generalized gradient of the geodesic
distance. The authors of [14] propose a transformation for a class of non-
convex environments that allows the application of the coverage algorithm.
Mapping back to the original domain gives the solution to the problem.
The geometry and a suitable diffeomorphism are assumed to be known
beforehand. For a convex set with obstacles the approach converges to
the solution of the original problem if it belongs to the interior [13], but
in other cases the solution can be suboptimal. Breitenmoser et al. [9]
show that for general nonconvex environments a path planning procedure
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or obstacle avoidance is necessary. They combine the Lloyd algorithm
for target point calculation with a local path planner and prove the con-
vergence of the proposed control strategy. The path planner constrains
outlying target points to the environment using a projection procedure. A
combination of Voronoi coverage and a potential field method is presented
in [122]. The approach is a direct extension to the potential field method
from [56], adding an additional attractive potential towards the centroid of
each robots Voronoi cell. The authors show that their approach yields bet-
ter final configurations than [56] in selected examples, but do not specify
the case where a centroid lies inside an obstacle and provide no theoretical
results towards convergence. In [30], Durham et al. propose a coverage
strategy on a discretized environment represented by a graph. They de-
fine the generalized centroid as the point inside a connected subset that
minimizes the sum of weighted distances to all other points. Due to the
discretization this point can be found with an exhaustive search or an
appropriate heuristic. The authors provide convergence proofs under re-
duced communication requirements, i.e., only pairwise communication is
necessary.
The usage and maximization of visibility sets has been studied exten-

sively in the context of the art gallery problem. Solutions to a dis-
tributed version of the art gallery problem with mobile sensors have been
developed and proven in [39], [102]. The optimization goal is different
compared to Voronoi coverage even though it overlaps in some cases.
Also related to our work is the problem presented in [153]. The authors

consider a modified coverage framework where overlapping sensor areas
increase the quality of coverage and the environment with polygonal ob-
stacles is no longer partitioned into Voronoi cells. The common ground
lies in the approach that obstacles attenuate or block the sensing abilities
of the robots, leading to a closer analysis of the gradient of the optimiza-
tion function. The authors show that the use of a generalized gradient
is necessary due to a new term that arises from the frontiers to invisible
regions.
The combination of Voronoi coverage and limited visibility has only been

considered recently by [85] and [90]. In [85] a visibility-based Voronoi dia-
gram is introduced and the authors propose a projection of the centroid to
the closest point inside the visible Voronoi cell. A second algorithm con-
siders frontiers to invisible regions, towards which the robots are directed
to uncover new areas. The authors provide simulations but no theoretical
guarantees that the robots stay inside the environment and converge to
a stable configuration. Marier et al. [90] also use the notion of a vis-
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ible Voronoi diagram similar to [85] with the difference that they allow
disconnected cells. The gradient of the optimization function is analyzed
leading to similar results as in [153]. A proof of convergence is given for
environments without holes. The problem that agents might leave the
environment is again handled by a projection procedure.

5.1.2 Contribution
One of the main drawbacks of existing approaches is that they have to
rely on separate path planning or projection procedures to ensure collision
avoidance with the boundary of the environment and obstacles. Addition-
ally, in some cases, they only work for certain types of environments.
We present a new approach based on [24] that utilizes a virtual deforma-

tion of the environment and visibility sets. The resulting coverage strat-
egy has inherent collision avoidance properties without the use of explicit
path planning, obstacle avoidance behavior or projections into the allow-
able area and works in arbitrary nonconvex environments. Additionally,
our method has lower requirements on communication and computation
capabilities compared to similar solutions. The advantageous properties
of Voronoi coverage are retained, i.e., the solution is distributed and the
agents can adapt to failing or new sensor nodes or changing density func-
tions. Furthermore, while we assume vehicles with single integrator dy-
namics, the method can be extended to other system dynamics following
[11].

5.2 Problem Formulation
This section begins with an introduction to underlying concepts, i.e.,
Voronoi partitions and the Lloyd algorithm, continues with the descrip-
tion of the coverage approach for convex environments followed by a formal
problem statement.

5.2.1 Voronoi Partitions
According to [47], the Voronoi partition was first observed by G. Lejeune
Dirichlet in 1850 [28] and systematically analyzed by Georgy F. Voronoi
in 1907 [144]. It is a convenient way to divide a region into cells based on
the location of central points.
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p1

p2

p3

C1

C2

C3

Figure 5.3: Example of a Voronoi partition with three generators and the
Delaunay graph in blue

More precisely, a Voronoi partition P = {C1, ..., Cn} of environment
Q ⊂ R2 can be defined by a set of n generator points p1, ...,pn ∈ Q.
One Voronoi cell Ci is the set of all points closer to pi than to all other
generators, i.e., Ci = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖,∀j 6= i}. According
to this definition, the union of all cells is Q and the interiors of any two
distinct cells share no common points.
A structure dual to the Voronoi partition is the Delaunay graph. It is

formed by connecting all generator points that have common cell bound-
aries as shown in Figure 5.3.
In the upcoming paragraphs, it is shown that the Voronoi partition pro-

vides an optimal way to separate a given environment into sections for
mobile sensors to cover. Furthermore, the Delaunay graph characterizes
the communication necessary between the individual agents. This is ex-
plained in detail in Section 5.2.3.

5.2.2 Lloyd Algorithm
To understand the movement patterns that are used in Coverage Control
it is helpful to look at the Lloyd algorithm, a tool for vector quantization
originally developed in the context of information theory [83]. Today, it is
mostly used and well-known for cluster analysis and often referred to as
k-means clustering [87, 139]. It has also been applied to other resource al-
location tasks like facility location problems in operational research [105],
e.g., where to place radio stations to cover an area as good as possible.
In the latter case it can be visualized as a geometric optimization prob-
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Figure 5.4: A configuration with five sensors and the locations of the centroids
where the generator points will be moved to in the next iteration when applying
the Lloyd algorithm

lem, which is much closer to the sensor placement task. However, the
mathematical foundations stay the same in all cases.

Definition 5.1. (Centroid) A centroid or center of mass of a region
C ⊂ R2 weighted by a density function φ : C → R+

0 is given by

c =
1

Mc

∫

C

qφ(q)dq with Mc =

∫

C

φ(q)dq, (5.1)

where Mc is the φ-weighted area of C.
Note that a weighting of the region is optional and φ can assumed to be

constant if not further specified.
Using the above definition, the Lloyd algorithm is stated as follows.

• Given n generator points with positions p1, ...,pn ∈ Q, compute the
Voronoi partition P of Q.

• Move the positions of the generators to the centroids of their respec-
tive Voronoi cells Ci.

• Repeat these two steps until convergence.

The process is illustrated in Figure 5.4.
In case of discrete data, e.g., for data clustering, the cluster centers have

to be initialized as generators at the beginning. Then, the data points
are assigned to its closest cluster center and finally the new centroids are
computed by averaging all data points within one cluster.
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5.2.3 Coverage in Convex Environments
Transferring this idea to a sensor placement task, Cortes, Bullo and Mar-
tinez developed a continuous-time version of the Lloyd algorithm where
the mobile sensors positions are used as generators for the Voronoi par-
tition [24]. The idea is to minimize the distance to all locations in the
environment or in other words that each location in the region of interest
is covered by at least one robot. To formulate this as an optimization
problem, some preliminary definitions are required.
Assume a convex region Q ⊂ R2, also referred to as an area or environ-

ment, that has to be covered. In this environment, a density function can
be defined as φ : Q → R≥0 that assigns each location a scalar value. This
value is a measure of (a priori) information about the importance of the
location or the probability that an event takes place.
The collection of all sensor positions pi ∈ Q is called configuration

and aggregated in the 2n-dimensional vector p = [pT
1 , . . . ,p

T
n]T. Note that

as in the previous chapter, homogeneous robot teams are assumed and the
same considerations apply when it comes to modeling of exploration units
and their sensors (cf. Section 4.2.1).
A nondecreasing performance function f : R≥0 → R≥0 is used to char-

acterize sensing performance. The argument is a distance value and the
function usually increases, i.e., it penalizes higher distances.
The task of optimal sensor placement can now be formulated as a min-

imization of the objective

H(p) =

∫

Q

min
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq. (5.2)

The density function φ acts as a weighting that is multiplied to all per-
formance values. As already mentioned above, it can simply be set to a
constant if there is no a priori knowledge about the environment.
The minimum operator inside the integral chooses the sensor position

pi that is closest to the current location q. Using the definition of the
Voronoi partition, (5.2) can be rewritten to

H(p) =

n∑

i=1

∫

Ci

f(‖q − pi‖)φ(q)dq. (5.3)

and, as stated in [24], the Voronoi partition is the optimal partition of Q
with respect to the objective. Considering the following statement from
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[24] - ...since the Voronoi partition P depends at least continuously on
p, H(p) is at least continuously differentiable - provides the smoothness
properties for the next steps.
A necessary condition for (5.3) to be at a minimum is, that the partial

derivatives with respect to the sensor positions are zero, i.e., ∂H(p)
∂pi

= 0.
As shown in [29], the derivatives only depend on the ith sensor position
and the position of it’s neighbors in the Delaunay graph to compute the
Voronoi cell Ci, yielding

∂H(p)

∂pi
=

∫

Ci

∂

∂pi
f(‖q − pi‖)φ(q)dq = 0. (5.4)

As mentioned earlier, the performance function f(x) is used to penalize
higher distances, i.e., locations that are farther away result in a higher
cost value under the integral. Obviously, different functions will also lead
to different optimization results. Possible choices are to simply use the
Euclidean or some other application specific distance metric. A suitable
approximation for many real sensors that have a signal-to-noise ratio in-
versely proportional to distance is f(x) = x2 [24].
Equation (5.4) can now be rearranged to give an interesting result:

∂H(p)

∂pi
=

∫

Ci

∂

∂pi
f(‖q − pi‖)φ(q)dq (5.5)

=

∫

Ci

∂

∂pi
‖q − pi‖2φ(q)dq (5.6)

=

∫

Ci

−2(q − pi)φ(q)dq (5.7)

= −2



∫

Ci

qφ(q)dq − pi

∫

Ci

φ(q)dq


 (5.8)

= −2Mc,i(ci − pi) (5.9)

The definitions of centroid and weighted area from (5.1) allow for a neat
and geometrically interpretable result. It essentially means that the lo-
cal minimum points for the optimization function (5.3) are those config-
urations, where the sensor positions coincide with the centroids of their
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respective Voronoi cells. The resulting partition is called the centroidal
Voronoi configuration.
A helpful property is that in a convex environment all Voronoi cells are

convex, and therefore, the centroid ci always lies inside the corresponding
cell Ci. Assuming first order dynamical behavior

ṗi = ui, (5.10)

a gradient-based control law to minimize (5.3) can be formulated:

ui = k(ci − pi) ∝ −
∂H(p)

∂pi
, k > 0. (5.11)

Proposition 5.1. (Continuous-time Lloyd descent [24]) For the closed-
loop system induced by equation (5.11) and the performance function
f(x) = x2, the sensors location converges asymptotically to the set of
critical points of H(p) (5.3), i.e., the set of centroidal Voronoi configura-
tions on Q. Assuming this set is finite, the sensors location converges to
a centroidal Voronoi configuration.

Proof. Differentiating (5.3) with respect to time and inserting (5.11) yields

Ḣ(p(t)) =
dH(p)

dt

dp

dt
=

n∑

i=1

∂H

∂pi
ṗi (5.12)

=

n∑

i=1

−2Mc,i(ci − pi)k(ci − pi) (5.13)

=− 2k

n∑

i=1

Mc,i‖ci − pi‖2. (5.14)

Since Ḣ(p) ≤ 0 for all p ∈ Q, LaSalle’s invariance principle (cf. Theorem
2.2) is applicable and the configuration of sensor locations converges to
the largest invariant set Ḣ(p) = 0, which is precisely the set of centroidal
Voronoi configurations.

Note that, depending on Q and φ there are generally multiple centroidal
Voronoi configurations and the control law (5.11) does not guarantee con-
vergence to a global minimum.
As suggested in the introduction the problem is now that we want to

transfer Voronoi coverage to nonconvex environments.

Problem 5.1. (Nonconvex Coverage) Find a control law based on dis-
tributed optimization similar to (5.11) and (5.3) such that all pi stay inside
a nonconvex environmentQ for all t and converge to a stable configuration.
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5.3 Extension to Nonconvex Environments
For all further considerations, the environment is defined by a simple poly-
gon B and the set of simple polygonal obstacles O1, . . . ,Om ⊂ B as intro-
duced in Section 2.2.1. The maneuverable domain for the mobile sensors
is consequently Q = B \ ∪mi=1Oi.
The main aspect of our contribution consists of a combination of two

modifications to the original problem in (5.3). In conjunction with an
approximation of the gradient, the proposed approach leads to the desired
behavior. The two modifications are 1) the use of visibility sets and 2) the
application of a δ-contraction to the environment.

5.3.1 Visibility
First, let us consider the notion of visibility. For a mathematical introduc-
tion, refer to Section 2.2.3. There are several reasons to use visibility sets
in this context. The first one is the realistic consideration that sensing
capability may be attenuated or completely blocked by obstacles. Using
solely the Euclidean distance to characterize sensing performance is no
longer viable in the presence of obstacles. Second, the use of visibility al-
lows coverage to be performed in unknown environments, assuming there
are no regions with higher priority. Otherwise, knowledge of the density
function is still necessary. The third reason is that the limited visibil-
ity actually helps to provide a guarantee that the robot stays inside the
environment.
Following these thoughts, it makes sense to define a new Voronoi par-

tition tailored to our visibility-limited setting. One option is the usage of
the geodesic distance as in [113] and limiting the geodesic Voronoi cells
to the visibility set. Another option is the definition proposed in [85] and
[90], allowing points closer to one robot to be assigned to another if they
are invisible to the former.
Instead, we propose the use of a simpler, visibility-limited Voronoi cell

(VLVC)

C?i = {q ∈ S?(pi) | ‖q − pi‖ ≤ ‖q − pj‖,∀j 6= i}. (5.15)

This definition describes an intersection between the Voronoi cell and
the visibility set of each robot as shown in Figure 5.5. Accordingly, the
visibility-limited Voronoi diagram is the set P? = {C?1 , . . . , C?n}. Some re-
gions that might be visible are disregarded and treated as invisible, but the
computation and communication requirements are reduced compared to
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pj

pi

C?
i

C?
j

Figure 5.5: Visibility-limited Voronoi cells in a nonconvex environment

other definitions (cf. Section 5.4.2). Range requirements for the commu-
nication remain the same as in convex environments, i.e., communication
is necessary between neighbors in P.
Note that P? is no longer always a partition of Q since ∪ni=1C?i ⊆ Q.

The set of invisible points is Q0 = Q \ ∪ni=1C?i .

5.3.2 Delta-contraction
The second modification, as mentioned above, is the application of a δ-
contraction, also known as growing of obstacles in robotics for collision-free
path planning [84]. For an environment Q, the δ-contraction is defined as

Qδ = {q ∈ Q | inf
q′∈∂Q

‖q − q′‖ ≥ δ}, (5.16)

i.e., the set of all points in Q with a distance to the boundary of Q greater
than or equal to δ (see Figure 5.6).
A remarkable property of the δ-contraction is the following: for arbi-

trary small δ > 0, the boundary ∂Qδ of the δ-contraction is continuously
differentiable in all q ∈ ∂Qδ except in the convex vertices. All concave
vertices grow by δ, yielding a differentiable circular segment.
Depending on the environment and the value of δ, a connected set Q can

have a disconnected Qδ. However, considering the previous remark, if Q
is connected, δ can always be selected in a way that Qδ is also connected.

5.3.3 Derivation of the Objective Function
Given a nonconvex environment Q as defined earlier, we propose to ap-
ply Voronoi coverage to the δ-contraction of the environment in a limited
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Qδ

O1

∂Qδ

Figure 5.6: Environment Q and the corresponding δ-contraction

visibility setting. For this purpose, we define the performance function

fvis(‖q − pi‖) =

{
‖q − pi‖2, if q ∈ ∪nj=1C?j ,
D2, if q ∈ Q0,

(5.17)

with D being a parameter that penalizes invisible areas and controls the
uncovering of such regions. Note that fvis is completely defined on Q since
(∪nj=1C?j )∪Q0 = Q, with discontinuities at the frontiers to invisible regions
that will be specified in the upcoming paragraphs.
Now, applying the δ-contraction to Q, the resulting objective function

on the domain Qδ is

Hvis(p) =

n∑

i=1

∫

C?δ,i

‖q − pi‖2φ(q)dq +

∫

Qδ,0

D2φ(q)dq (5.18)

with C?δ,i = {q ∈ C?i | [pi, q] ⊂ Qδ} denoting the VLVC and Qδ,0 =
Qδ \ ∪ni=1C?δ,i denoting the invisible area, both in the new shrunken envi-
ronment Qδ. Unfortunately, the partial derivative of Hvis is more compli-
cated compared to (5.4). For a better understanding of the derivations,
we consider the coordinates of pi = [xi, yi]

T separately.
Using an extended form of the Leibniz integral rule for differentiation

under the integral sign [34], as the domain of integration is a function of
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p, gives

∂Hvis(p)

∂xi
=

n∑

j=1

∫

C?δ,j

∂

∂xi
‖q − pj‖2φ(q)dq (5.19a)

+

n∑

j=1

∫

∂C?δ,j

‖q − pj‖2φ(q)vT
j njds (5.19b)

+

∫

Qδ,0

∂

∂xi
D2φ(q)dq (5.19c)

+

∫

∂Qδ,0

D2φ(q)vT
0 n0ds, (5.19d)

where vj =
∂q(∂C?δ,j)

∂xi
and v0 =

∂q(∂Qδ,0)
∂xi

are the derivatives of boundary
points q ∈ ∂C?δ,j and q ∈ ∂Qδ,0 with respect to xi, interpreted as velocities
of the moving boundaries. Further, nj and n0 are the outward facing unit
normals on the respective boundaries and ds is the element of arc length.
Clearly, all elements of the sum in (5.19a) for j 6= i and the term (5.19c)
are zero, leaving only the integral over the i-th VLVC and the boundary
terms (5.19b), (5.19d).
Taking a closer look at the boundary of a cell C?δ,j , there are four different

parts to distinguish (see also Figure 5.7):

Qδ,0

Qδ,0

C?δ,i

C?δ,j

pj

pi

∆i

∆ij

∆j0

∆i0j

Figure 5.7: Different types of frontiers
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1. Boundary points on intersections with ∂Qδ, denoted with ∆j =

∂C?δ,j ∩ ∂Qδ, have a vanishing derivative ∂q(∆j)
∂xi

= 0 for all j in
static environments.

2. Boundary points on intersections with neighboring VLVC, denoted
with ∆ij = ∆ji = ∂C?δ,i ∩ ∂C?δ,j , have nonzero derivatives with re-
spect to xi in two cases, either j = i or j ∈ Ni, where Ni = {j ∈
{1, . . . , n} | ∆ij 6= ∅, j 6= i} is the neighborhood of pi. The inte-
grand of (5.19b) is identical in both cases, due to the definition of
the VLVCs, with the exception that the outward normals point in
opposite directions. This leads to

∫

∂C?δ,i\∂Qδ,0

‖q − pi‖2φ(q)vT
i nids

= −
∑

j∈Ni

∫

∆ij

‖q − pj‖2φ(q)vT
j njds

and elimination of the corresponding parts of the sum of integrals in
(5.19b).

3. The third and remaining part on the boundary of a VLVC is the
intersection with the boundary of the invisible area ∂Qδ,0, denoted
with ∆j0 = ∂C?δ,j ∩ ∂Qδ,0. Those parts result in nonzero terms out
of (5.19b) and (5.19d) for j = i, and in the case explained in 4).

4. In some cases, the boundary of the Euclidean Voronoi cell Ci in-
tersects with the boundary between the invisible area and another
VLVC, e.g., the part that is labeled with ∆i0j = ∂Ci ∩ ∂Qδ,0 ∩ C?δ,j
in Figure 5.7. This boundary will move with the position of pi, even
though it is not part of the VLVC of robot i.
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Concluding the above considerations, the remainder of (5.19) is reduced
to

∂Hvis(p)

∂xi
=

∫

C?δ,i

∂

∂xi
‖q − pi‖2φ(q)dq (5.20a)

+

∫

∆i0

(‖q − pi‖2 −D2)φ(q)vT
i nids (5.20b)

+
∑

j∈Mi

∫

∆i0j

(‖q − pj‖2 −D2)φ(q)vT
j njds (5.20c)

withMi = {j ∈ {1, . . . , n} | ∆i0j 6= ∅, j 6= i}. Similar considerations hold
true for ∂Hvis(p)

∂yi
and are omitted.

Without the moving boundaries to invisible areas ∆i0 and ∆i0j , the re-
sult in (5.20) would be equal to (5.4), i.e., the well-known move to centroid
behavior. The additional terms can be interpreted as movement vectors
that lead to revelation of invisible areas, depending on the choice of D.
Higher values of D result in a higher weighting of the additional terms
compared to the movement towards the center of mass of the VLVC. Low
values of D or disregarding the invisible area, i.e., D = 0, would actu-
ally lead to robots actively reducing visible area to minimize Hvis. This
can be explained with the sign of the integrand changing dependent on
‖q − pi‖2 > D2 or ‖q − pi‖2 < D2, turning the direction of the normal
vectors ni.

Unfortunately, (5.20b) and (5.20c) require a high effort to compute, lead
to unwanted movements towards the boundary of Q in several cases and
have negligible effect in many other situations. Therefore we propose the
following

Assumption 5.1. (Approximation of the gradient) The integral terms
arising from the boundaries to invisible regions in ∂Hvis(p)

∂pi
have negligible

effect on the desired coverage behavior and the gradient can be approxi-
mated by

∂Hvis(p)

∂pi
≈ ∂Happrox,i =

∫

C?δ,i

∂

∂pi
‖q − pi‖2φ(q)dq. (5.21)

Depending on the situation this assumption can be quite strong or very
reasonable. We deliberately accept the fact that there will be no active
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movement towards (uncovering of) invisible areas. Further effects are dis-
cussed in the later sections.
Using (5.21), the resulting control law of our approximated coverage

strategy is
ṗi = ui = k(c?i − pi) (5.22)

with the centroid of the VLVC

c?i =

∫
C?δ,i

qφ(q)dq
∫
C?δ,i

φ(q)dq
. (5.23)

Hvis(p) is no longer minimized exactly but approximately, meaning that
∂Hvis(p)
∂pi

≈ 0 in equilibrium points where pi = c?i .
In contrast to the results in [153] and [90], our approximated gradient

∂Happrox,i exists for all pi ∈ Qδ. Hence, we do not have to rely on the
computation of a generalized gradient, as was done in the related work.

5.3.4 Trajectories
In this subsection, we provide a statement about the trajectories of the
proposed system and some comments on convergence.

Theorem 5.1 (Trajectories in nonconvex environments). For a nonconvex
polygonal environment Q and an arbitrary small δ > 0, continuous appli-
cation of (5.22) results in trajectories of the configuration p that never
leave the invariant set Qδ.

Proof. First, pointing out the fact that in convex locations the centroid
of C?δ,i always lies in int(C?δ,i) yields the conclusion that collisions with Qδ
can only occur in concave locations. Second, applying the δ-contraction
to Q turns all concave vertices in ∂Q into continuously differentiable con-
cave circular segments in ∂Qδ. Approaching concave locations q on the
boundary ∂Qδ, the boundary of the visibility-limited Voronoi cell C?δ,i fac-
ing q approaches the tangent in q and the centroid inevitably approaches
int(C?δ,i) ⊂ Qδ. Hence, no trajectory exists that leaves Qδ.

The process of approaching a concave location is illustrated in Figure 5.8
in a scene with constant density. The circle symbolizes the robot position
and the red dot indicates the centroid of the VLVC. After reaching an
unstable equilibrium in Figure 5.8b, i.e., a point where the gradient is
theoretically zero, the robot moves to a stable location on either side of
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(a) The initial configura-
tion

(b) An unstable equilib-
rium

(c) Moving to final loca-
tion

Figure 5.8: Approaching a concave location: the robot positions is shown as a
black circle and the red dot indicates the centroid of the VLVC.

the symmetrical scene, due to numerical inaccuracies. In this context,
another advantage of the δ-contraction becomes clear: it offers guaranteed
collision avoidance with the environment by setting δ to the physical radius
of the robots.
Even though convergence to a stable centroidal configuration seems ob-

vious, since all robots move towards the centroids of their respective cells,
a formal proof is still missing.

5.3.5 Limited Sensing Range
In a realistic setting, alongside the attenuation of sensing abilities through
obstacles, sensors usually have a limited sensing range r, i.e., measure-
ments beyond r are not accurate enough or yield no results at all. This
kind of approach is related to the mixed distortion-area problem in [11],
now combined with our modifications from Sections 5.3.1 and 5.3.2. The
objective function for range limited coverage on visibility sets is

Hvis,r(p) =

n∑

i=1

∫

C?rδ,i

‖q − pi‖2φ(q)dq +

∫

Qrδ,0

r2φ(q)dq, (5.24)

with the r-limited visibility sets C?rδ,i = {q ∈ C?δ,i | ‖q − pi‖2 ≤ r} and
the uncovered area Qrδ,0 = Qδ \ ∪ni=1C?rδ,i. This definition of Hvis,r has
the convenient property that all additional boundary terms that lie on
distance r to a robot position are canceled out in the gradient ∂Hvis,r(p)

∂pi
.
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Hence, the remaining gradient is similar to (5.20) and we can use the same
assumption as in Section 5.3.3 to obtain the control law

ṗi = ui = k(c?ri − pi). (5.25)

Similar to the unlimited case, (5.25) moves the robots to the centroids of
their respective visibility sets, herein limited by the radius r. Theorem 5.1
from Section 5.3.4 can be applied analogously.
An additional advantage of this range limited setting is a reduced re-

quirement on the communication range. If robots have distance ‖pi−pj‖ >
2r, the visibility sets do not intersect and there is no reason to communi-
cate. In a worst-case scenario with unlimited sensing range, the commu-
nication range necessary is the diameter of the complete environment.

5.4 Results

5.4.1 Simulations
In this section, we demonstrate the effectiveness of our approach in a
variety of simulated environments. The δ-contraction has been applied to
all scenarios with a value of δ = 0.15m. Figures of scene A, B, and C
always illustrate the final, converged sensor positions and the trajectories
leading to these positions. As the first example, Figure 5.9 and 5.10 show
the comparison of a similar convex and nonconvex environment of size
6m×4m with the same starting configuration of 5 sensors in the top left
corner, both cases with a uniform density φ(q) = 1. In addition, Figure
5.11 shows the progression of Hvis corresponding to the trajectories in
Figure 5.10. Apparently, Hvis is minimized despite our approximation.
Figure 5.12 shows a coverage scenario with several obstacles in a rect-

angular domain of 15m×10m. The same environment, modified with a
Gaussian density function shown in blue, is covered by agents with a lim-
ited sensing range of r = 3m in Figure 5.13. The Gaussian function has
a variance of σ2

x = σ2
y = 4 in both x- and y-direction with peak height 0.5

located in the bottom right part of the environment.
A corridor-like region with a constant density is considered in Figure

5.14, where sensors start in the far left part of the domain and spread out
all the way up to the right. The progression of Hvis in Figure 5.15 shows
that our approximated gradient ∂Happrox,i does not strictly minimize the
original objective. Nevertheless a good final configuration can be achieved.



82 5 Coverage Control in Nonconvex Environments

Figure 5.9: Convex scene A with five sensors

Figure 5.10: Nonconvex scene A with five sensors
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Figure 5.11: Progression of Hvis corresponding to Figure 5.10
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Figure 5.12: Nonconvex scene B with four sensors

Figure 5.13: Nonconvex scene B with limited sensing range and a nonuniform
density
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Figure 5.14: Nonconvex scene C with five sensors
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Figure 5.15: Progression of Hvis corresponding to Figure 5.14
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In all our simulations, there was no situation where positions did not
converge to a stable centroidal configuration.

5.4.2 Comparison
As a final assessment, the properties of our nonconvex Voronoi coverage
are discussed and compared with regard to optimality, computational effort
and communication load. Computational effort and communication load
are important factors in a distributed environment, as evaluation is done on
the individual sensors, where both computation as well as communication
capabilities are limited.
One important point is the choice of partition. The computation of the

VLVC proposed in Section 5.3.1 is a simple intersection operation, whereas
other authors have to rely on a discretization of the environment combined
with a flooding method (e.g., [85]) for cell computation. Marier et al. [90]
use the same partition as presented in [85]. Another additional effort is
the treatment of disconnected cells, which do not arise in our case. The
partition also has an influence on the required communication: Using the
VLVCs, the sensors only have to communicate their position to Voronoi
neighbors. Propagation of the visibility boundaries is not necessary in
our case, as opposed to the compared approaches. The gain in optimality
choosing the more complex partition remains uncertain. Using the simpli-
fied notion of the visibility-limited Voronoi diagram compared to [85] and
[90] does not mean agents do not see the area or cannot sense there, but
we only disregard it in the computation of the control law.
The computation of the control input (5.22) is as simple as in the original

approach from [24] in known environments. In unknown environments, the
δ-contraction has to be computed online, but this case is rarely considered
in coverage literature. In [85], an additional path planning and projection
procedure is necessary at all times. Calculating the control from [90] is
even more costly, due to integrals over the moving visibility frontiers and
use of a generalized gradient. Further, the parameter D has to be chosen
and adapted appropriately to the size of the environment.
Regarding optimality, reconsider the example in Figure 5.8. Optimizing

Hvis exactly would always lead to convergence to a minimum close to
the position shown in Figure 5.8b (provided an appropriate choice of D),
with trajectories possibly leaving Qδ temporarily. Using ∂Happrox,i leads
to an unstable equilibrium and two stable local minima, one of which is
shown in Figure 5.8c. This is a case where the approximated solution
can be relatively far away from the exact, in many other situations the
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Table 5.1: Comparison of visibility-based Voronoi coverage. The symbols char-
acterize equal (◦), inferior (−), or superior (+) performance in the respective
category.

Lu et al. [85] Marier et al. [90] This approach

Optimality ◦ + ◦
Computat. effort ◦ − +

Communic. load − − +

exact and approximated minimum locations are closer together. Generally
speaking, in scenes with high nonconvexity and a low number of robots,
the optimality is reduced. On the other hand, especially in the case of
limited sensing range, frontiers to invisible regions have a low impact and
the approximated solution is advantageous. Furthermore, the optimization
itself is nonconvex in all nontrivial cases, even for convex environments,
i.e., the configuration converges only to a local minimum with a gradient
method. Still, the exact method from [90] has the advantage with respect
to optimality. The results of the discussion are summarized in Table 5.1,
showing a comparison to the two closely related approaches.

5.5 Discussion
The positioning of mobile sensing units to optimal locations is the third
and final step in the initially presented search and rescue scenario. The
sensors are now able to observe and respond to any further events that
may occur. To this end, Voronoi coverage has been transferred to non-
convex environments successfully. The proposed approximate solution has
advantageous properties with regard to communication and computation
requirements and obstacle avoidance behavior as shown in the comparison
above.
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6 Summary and Outlook

In this final chapter, the results established in this thesis are reviewed and
evaluated and considerations on further developments are presented.

6.1 Overview
Thinking back to the introduction, we mused about the general motiva-
tion to develop robotic or automatic systems and found inspiration dating
back to ancient Greek mythology and philosophy. With an idealistic vision
about abolition of serf labor and liberation of mankind, we moved to more
concrete aspects and applications, where robots are being used in today’s
world.
Narrowing the focus further, an extensive literature review on multi-

agent systems and cooperative robotics was presented, providing insights
into the current state of the art. With this background about prevailing
research areas, the specific goals and contributions of the dissertation were
outlined in Section 1.3. A complex search and rescue mission consisting
of three stages was given as a motivating example, incorporating motion
coordination, information gathering and monitoring. These stages, corre-
sponding to chapters 3, 4 and 5, are shown in Figure 6.1 as a reminder.
Beforehand, the mathematical foundations in graph theory, compu-

tational geometry and dynamical systems were introduced as a basis to
understand the subsequent chapters. Important topics including spanning
trees, sets and visibility and stability criteria have been covered as well.
The common aspects that formed the central point in this thesis are

the coordination and cooperation between multiple robots. Starting with

Complex Search and Rescue Mission

Multi-Robot ExplorationUAV-UGV Cooperation Coverage Control

Figure 6.1: The three stages of the motivational example mission
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two robots in the simplest case, the ideas can be extended to an arbitrary
amount of mobile units in the scalable, distributed settings of exploration
and coverage.
Other challenges that had to be considered even if they are not part of

the main research questions include sensing, path planning, communica-
tion and obstacle avoidance. While sensing and path planning were more
prevalent in the first stage, communication and obstacle avoidance played
a more important role in the latter two stages.
The main method to learn more about scenarios presented in this thesis

are simulations. They are an extremely useful tool for several reasons: they
allow to investigate systems in a much larger scale, number of repetitions
and variety of situations then would ever be possible with real robots, and
in a much shorter amount of time. Disadvantages are the simplifications
and assumptions that have to be made, i.e., conclusions may not be directly
transferred to a real system.

6.2 UAV-UGV Cooperation
Although many different cooperative UAV-UGV applications and scenar-
ios have been investigated, the literature research in Chapter 3 revealed
an interesting fact. None of the existing approaches fully uses the region
of visibility in which the UAV can move while still being able to detect
the UGV. Applying this idea, two approaches have been developed and
verified. More specifically, the problem of finding a stabilizing control law
for the UAV that minimizes the coverage error function while maintaining
visibility to the UGV was solved.
One of the first simplifications necessary to explore this idea was choos-

ing a suitable model for the vehicles. Even though the double integrator
is a suitable model for quadcopters during low velocity and acceleration it
does cause deviations in the simulations that are hard to estimate. One
of the next steps for future developments would be to simulate the pre-
sented algorithms with a more accurate quadrotor model (e.g., [128]) and
evaluate the results compared to a simpler UAV model.
As a basis for the UAV movement, a dynamic coverage strategy from the

multi-agent literature has been adopted and extended in two aspects: a
density function that represents the coverable region around the UGV has
been introduced and the original approach has been extended to double
integrator systems. The extensions have first been developed and proven
theoretically and then verified in simulation. To fulfill the visibility part
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of the problem statement, a tracking controller, employing standard tech-
niques from control theory, has been introduced and adapted to the UAV-
UGV setting. The biggest challenge – combining the two control parts
in a useful way – has been approached with weighting functions to bal-
ance out the control inputs. A threshold value has been established that
guarantees compliance with the visibility constraint. Different types of
weighting functions have been evaluated to find the most useful one for
the posed application. Finally, simulations and comparison with a virtual
point tracking method as a more simple baseline approach are presented.
The results show that the more sophisticated method – combined dynamic
coverage and tracking – also promises better results with regards to cov-
erage error minimization.
For future work, more simulation experiments would also be interesting

with a specific higher level task for the UGV. In the simplest case, one
could add obstacles on the ground and the UGV has to find the shortest
path from a starting position to a goal location. To evaluate this ex-
periment, the UGV with and without additional information from a UAV
could be simulated to see the effects. More advanced higher level tasks like
exploring an unknown environment with obstacles or adding air obstacles
are possible for further steps towards more realistic scenarios.
Another idea is the addition of more UAVs that assist the UGV at the

same time. The area around the UGV could be covered faster and with
more reliability, if the challenges of fusing and communicating the data can
be solved adequately. Variations of this idea are, that one UAV follows the
other – again within a visibility range – or both UAVs follow the UGV.
To increase robustness, backup strategies in case of failure of air or

ground vehicle would pose a promising research task as well.

6.3 Multi-Robot Exploration
After investigating the cooperation between two individual, heterogeneous
robots, the next stage of the mission was concerned with coordinating
an arbitrary number of robots for exploration. Starting from the preva-
lent frontier-based approach and an extensive literature research, an idea
towards more dynamic and even distribution of goal locations has been
introduced. Based on the minimum spanning tree as an estimator for the
individual robots path lengths, a pairwise optimization procedure was pro-
posed, that simplifies the highly complex assignment task to an iterative
assignment between couples of robots. The contributions include proofs
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for the pairwise and overall assignment procedure as well as extensive sim-
ulations to evaluate and compare with related approaches.
Drawbacks of these comparative evaluations are that simulations can

only indicate the performance of a real system but do not allow for def-
inite statements. Additionally, parameter tuning always plays a role and
can change the outcome of simulation experiments significantly. Further
steps towards more conclusive results would be to conduct more realistic
simulations (e.g., with more detailed robot and environment models, prob-
abilities, realistic physics, different types of terrain etc.) and eventually
experiments with hardware. The influence of limited communication on
the performance of the proposed pairwise coordination algorithm is also
an interesting direction for additional experiments.

6.4 Coverage
In search of a suitable algorithm for monitoring an environment with mul-
tiple robots, literature research has revealed the coverage control approach
as a fitting option. The main drawback of the approach has been iden-
tified: it only works in convex environments. Even though extensions to
nonconvex environments already exist, they also had several disadvantages
that made them not suitable for application in the envisioned setting.
Therefore a new approach that is less demanding when it comes to

computation and communication has been developed. To this end, the
visibility-limited Voronoi cells have been introduced and combined with
the concept of contracting the environment or its boundaries. After a
mathematical analysis and simplification of the objective function’s gra-
dient, a proof that all robot trajectories will stay inside the allowed en-
vironment was presented. Again, simulations verified the applicability of
the presented approach and could be extended with more realistic models
in upcoming works.
Future work could further focus on the comparison of approximated

solutions with the exact solutions to the objective function to evaluate the
difference in optimality and gain more insights into the properties of the
presented method. Another possibility lies in the way the partitions are
defined on visibility sets, and a formal proof of convergence to centroidal
configurations is also open for future research.
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6.5 Complete System Architecture
One of the goals stated in the beginning is to relieve operators from difficult
control tasks and allow for operation in communication restricted settings
by implementing a high level of autonomy. This goal has been achieved
in several ways. Especially in the first stage, coordinating two robots
manually in the desired manner would be difficult for someone who is
not particularly trained. Coordinating multiple robots for exploration,
especially in higher numbers, is also a delicate task for a single operator or
even a team of operators. Additionally, the proposed pairwise optimization
procedure is ideally suited for communication restricted settings because
the communication only requires a minimum of two robots to start the
target exchange.
A critical point for the overall system architecture to function is the tran-

sition and interconnection between the stages. Strictly speaking, stage one
– even though it can be used stand-alone – should be active during the
other two stages, i.e., during exploration and coverage. So far, the sim-
plifying assumption to model one UAV-UGV pair as a single integrator
for the other mission aspects has been used. How valid this assumption is
can be further analyzed theoretically as well as experimentally. Another
aspect of the simplification concerns the sensed area, which is assumed to
be a fixed shape in stages two and three. When modeling the actual explo-
ration units this area is dynamically changing and depends on the UAVs
and UGVs movement. A more precise modeling will obviously influence
the performance of the exploration and coverage and therefore provide new
insights for further advancements.
Another interesting point for investigation is the transition between the

second and third stage, i.e., how do the final positions at the end of the
exploration influence the coverage performance? Is there a way to influence
or improve these results?
To examine the complete system architecture, it seems natural to design

an example mission and simulate all three aspects in one framework with
the models from the first stage or even more realistic ones. More extensions
that could be integrated include the actual victim detection, determination
of density (i.e., areas of higher interest) or other application examples,
depending on the type of task.
Real hardware experiments would require discrete control algorithms

and communication in discrete time, which might add some further chal-
lenges and lead to unexpected experimental results. Unreliable connections
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with interruptions and data loss may cause further problems that could
be addressed in future work.
As the conclusion shows, there are several practical aspects that still

have to be considered before the methods and algorithms developed and
presented in this thesis can be applied in a real search and rescue mission.
The purpose was to gain additional insight on new or already existing ideas
and bring them closer to a realization in a meaningful scenario. This goal
has been reached successfully. The theoretical results provide important
guarantees while still being relatively simple to implement in practical sce-
narios. Thus, the proposed approaches represent building blocks for future
exploration systems with a particular focus on search and rescue missions
with the prospect of a better performance compared to the previous tech-
niques.



93

Bibliography

[1] Acevedo, J. J., Arrue, B. C., Maza, I., and Ollero, A. (2014). A decen-
tralized algorithm for area surveillance missions using a team of aerial
robots with different sensing capabilities. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages 4735–4740. IEEE.

[2] Adamy, J. (2014). Nichtlineare Systeme und Regelungen. Springer-
Verlag.

[3] An, B. and Tambe, M. (2011). Game theory for security: an important
challenge for multiagent systems. In European Workshop on Multi-Agent
Systems, pages 17–30. Springer.

[4] Antonelli, G. (2013). Interconnected dynamic systems: An overview
on distributed control. IEEE Control Systems Magazine, 33(1):76–88.

[5] Aristotle (1932). Politics. Harvard University Press.

[6] Bajcsy, R. (1988). Active perception. Proceedings of the IEEE,
76(8):966–1005.

[7] Barnes, D. and Gray, J. (1991). Behaviour synthesis for co-operant
mobile robot control. In International Conference on Control, pages
1135–1140.

[8] Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W.,
Griffin, P., and Kleywegt, A. (2003). Robot exploration with combina-
torial auctions. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1957–1962. IEEE.

[9] Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., and Rus,
D. (2010). Voronoi coverage of non-convex environments with a group
of networked robots. In IEEE International Conference on Robotics and
Automation (ICRA), pages 4982–4989. IEEE.

[10] Broekens, J., Heerink, M., and Rosendal, H. (2009). Assistive social
robots in elderly care: a review. Gerontechnology, 8(2):94–103.



94 Bibliography

[11] Bullo, F., Cortés, J., and Martínez, S. (2009). Distributed Control of
Robotic Networks. Princeton University Press.

[12] Burgard, W., Moors, M., Stachniss, C., and Schneider, F. (2005).
Coordinated multi-robot exploration. IEEE Transactions on Robotics,
21(3):376–386.

[13] Caicedo-Núñez, C. and Žefran, M. (2008a). A coverage algorithm for
a class of non-convex regions. In 47th IEEE Conference on Decision
and Control (CDC), pages 4244–4249. IEEE.

[14] Caicedo-Núñez, C. and Žefran, M. (2008b). Performing coverage on
nonconvex domains. In IEEE International Conference on Control Ap-
plications (CCA), pages 1019–1024. IEEE.

[15] Cantelli, L., Mangiameli, M., Melita, C., and Muscato, G. (2013).
UAV/UGV cooperation for surveying operations in humanitarian demi-
ning. In IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), pages 1–6.

[16] Cao, Y. U., Fukunaga, A. S., and Kahng, A. (1997). Cooperative mo-
bile robotics: Antecedents and directions. Autonomous Robots, 4(1):7–
27.

[17] Capitan, J., Spaan, M. T., Merino, L., and Ollero, A. (2013). Decen-
tralized multi-robot cooperation with auctioned POMDPs. The Inter-
national Journal of Robotics Research, 32(6):650–671.

[18] Chaimowicz, L., Grocholsky, B., Keller, J. F., Kumar, V., and Taylor,
C. J. (2004). Experiments in multirobot air-ground coordination. In
IEEE International Conference on Robotics and Automation (ICRA),
pages 4053–4058. IEEE.

[19] Chen, J., Gauci, M., and Groß, R. (2013). A strategy for transporting
tall objects with a swarm of miniature mobile robots. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 863–869.
IEEE.

[20] Choi, H.-L. and How, J. P. (2010). Continuous trajectory planning
of mobile sensors for informative forecasting. Automatica, 46(8):1266–
1275.



Bibliography 95

[21] Choi, J., Oh, S., and Horowitz, R. (2007). Cooperatively learning
mobile agents for gradient climbing. In IEEE Conference on Decision
and Control (CDC), pages 3139–3144. IEEE.

[22] Choset, H. (2001). Coverage for robotics–a survey of recent results.
Annals of Mathematics and Artificial Intelligence, 31(1-4):113–126.

[23] Cortés, J., Martínez, S., and Bullo, F. (2005). Spatially-distributed
coverage optimization and control with limited-range interactions.
ESAIM: Control, Optimisation and Calculus of Variations, 11:691–719.

[24] Cortés, J., Martínez, S., Karatas, T., and Bullo, F. (2004). Coverage
control for mobile sensing networks. IEEE Transactions on Robotics
and Automation, 20(2):243–255.

[25] Cruz, D., McClintock, J., Perteet, B., Orqueda, O., Cao, Y., and
Fierro, R. (2007). Decentralized cooperative control-a multivehicle plat-
form for research in networked embedded systems. IEEE Control Sys-
tems Magazine, 3(27):58–78.

[26] Dewan, A., Mahendran, A., Soni, N., and Krishna, K. M. (2013).
Heterogeneous UGV-MAV exploration using integer programming. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5742–5749. IEEE.

[27] Dias, M. B., Zlot, R., Kalra, N., and Stentz, A. (2006). Market-
based multirobot coordination: A survey and analysis. Proceedings of
the IEEE, 94(7):1257–1270.

[28] Dirichlet, G. L. (1850). Über die Reduction der positiven quadratis-
chen Formen mit drei unbestimmten ganzen Zahlen. Journal für die
reine und angewandte Mathematik, 40:209–227.

[29] Du, Q., Faber, V., and Gunzburger, M. (1999). Centroidal voronoi
tessellations: applications and algorithms. SIAM Review, 41(4):637–
676.

[30] Durham, J. W., Carli, R., Frasca, P., and Bullo, F. (2012). Discrete
partitioning and coverage control for gossiping robots. IEEE Transac-
tions on Robotics, 28:364–378.

[31] Ehrenmann, M., Zollner, R., Rogalla, O., and Dillmann, R. (2002).
Programming service tasks in household environments by human



96 Bibliography

demonstration. In 11th IEEE International Workshop on Robot and
Human Interactive Communication, pages 460–467. IEEE.

[32] Faigl, J. (2010). Approximate solution of the multiple watchman
routes problem with restricted visibility range. IEEE Transactions on
Neural Networks, 21(10):1668–1679.

[33] Faigl, J., Kulich, M., and Přeučil, L. (2012). Goal assignment using
distance cost in multi-robot exploration. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3741–3746.
IEEE.

[34] Flanders, H. (1973). Differentiation under the integral sign. The
American Mathematical Monthly, 80(6):615–627.

[35] Forster, C., Pizzoli, M., and Scaramuzza, D. (2013). Air-ground local-
ization and map augmentation using monocular dense reconstruction. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3971–3978. IEEE.

[36] Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., and Stewart,
B. (2006). Distributed multirobot exploration and mapping. Proceedings
of the IEEE, 94(7):1325–1339.

[37] Franchi, A., Oriolo, G., and Stegagno, P. (2010). Probabilistic mutual
localization in multi-agent systems from anonymous position measures.
In 49th IEEE Conference on Decision and Control (CDC), pages 6534–
6540. IEEE.

[38] Galceran, E. and Carreras, M. (2013). A survey on coverage path
planning for robotics. Robotics and Autonomous Systems, 61(12):1258–
1276.

[39] Ganguli, A., Cortés, J., and Bullo, F. (2008). Distributed coverage of
nonconvex environments. In Networked Sensing Information and Con-
trol, pages 289–305. Springer US.

[40] Garzón, M., Valente, J., Zapata, D., and Barrientos, A. (2013). An
aerial-ground robotic system for navigation and obstacle mapping in
large outdoor areas. Sensors, 13(1):1247–1267.

[41] Gazi, V. and Fidan, B. (2006). Coordination and control of multi-
agent dynamic systems: Models and approaches. In International Work-
shop on Swarm Robotics, pages 71–102. Springer.



Bibliography 97

[42] Ge, S. S. and Fua, C.-H. (2005). Complete multi-robot coverage of
unknown environments with minimum repeated coverage. In IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 715–
720. IEEE.

[43] Gerkey, B., Vaughan, R. T., and Howard, A. (2003). The player/stage
project: Tools for multi-robot and distributed sensor systems. In Pro-
ceedings of the 11th International Conference on Advanced Robotics,
volume 1, pages 317–323.

[44] Gerkey, B. P. and Matarić, M. J. (2004). A formal analysis and
taxonomy of task allocation in multi-robot systems. The International
Journal of Robotics Research, 23(9):939–954.

[45] Golfarelli, M., Maio, D., and Rizzi, S. (1997). Multi-agent path plan-
ning based on task-swap negotiation. In Proc. 16th UK Planning and
Scheduling SIG Workshop, pages 69–82.

[46] Grocholsky, B., Keller, J., Kumar, V., and Pappas, G. (2006). Co-
operative air and ground surveillance. IEEE Robotics & Automation
Magazine, 13(3):16–25.

[47] Haumann, D. (2015). Distributed Multi-Robot Exploration. PhD the-
sis, TU Darmstadt, Darmstadt. Tag der mündlichen Prüfung: 02.07.
2014.

[48] Haumann, D., Breitenmoser, A., Willert, V., Listmann, K., and Sieg-
wart, R. (2011). DisCoverage for non-convex environments with ar-
bitrary obstacles. In IEEE International Conference on Robotics and
Automation (ICRA), pages 4486–4491. IEEE.

[49] Haumann, D., Willert, V., and Listmann, K. D. (2013). DisCoverage:
from coverage to distributed multi-robot exploration. IFAC Proceedings
Volumes, 46(27):328–335.

[50] Haumann, D., Willert, V., and Wahrburg, A. (2012). Kalman fil-
tering in mobile consensus networks. In International Symposium on
Intelligent Control, pages 944–950. IEEE.

[51] Heap, B. and Pagnucco, M. (2012). Analysis of cluster formation
techniques for multi-robot task allocation using sequential single-cluster
auctions. In Australasian Conference on Artificial Intelligence, pages
839–850. Springer.



98 Bibliography

[52] Heppner, G., Roennau, A., and Dillman, R. (2013). Enhancing sen-
sor capabilities of walking robots through cooperative exploration with
aerial robots. Journal of Automation, Mobile Robotics & Intelligent
Systems, 7(2):5–11.

[53] Hoffmann, G. M., Huang, H., Waslander, S. L., and Tomlin, C. J.
(2007). Quadrotor helicopter flight dynamics and control: Theory and
experiment. In Proc. of the AIAA Guidance, Navigation, and Control
Conference, volume 2, page 4.

[54] Hollinger, G., Singh, S., and Kehagias, A. (2010). Improving the
efficiency of clearing with multi-agent teams. The International Journal
of Robotics Research, 29(8):1088–1105.

[55] Homer (1924). The Iliad. Harvard University Press, 1st edition.

[56] Howard, A., Matarić, M. J., and Sukhatme, G. S. (2002). Mobile
sensor network deployment using potential fields: A distributed, scalable
solution to the area coverage problem. In Asama, H., Arai, T., Fukuda,
T., and Hasegawa, T., editors, Distributed Autonomous Robotic Systems
5, pages 299–308. Springer Japan.

[57] Hurwitz, A. (1895). Ueber die Bedingungen, unter welchen eine Gle-
ichung nur Wurzeln mit negativen reellen Theilen besitzt. Mathematis-
che Annalen, 46(2):273–284.

[58] Hussein, I. I. and Stipanović, D. M. (2006). Effective coverage control
using dynamic sensor networks. In 45th IEEE Conference on Decision
and Control (CDC), pages 2747–2752. IEEE.

[59] Hussein, I. I. and Stipanović, D. M. (2007). Effective coverage control
for mobile sensor networks with guaranteed collision avoidance. IEEE
Transactions on Control Systems Technology, 15(4):642–657.

[60] Jadbabaie, A., Lin, J., and Morse, A. S. (2003). Coordination of
groups of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48(6):988–1001.

[61] Ji, M. and Egerstedt, M. (2007). Distributed coordination control of
multiagent systems while preserving connectedness. IEEE Transactions
on Robotics, 23(4):693–703.



Bibliography 99

[62] Julian, B. J., Angermann, M., Schwager, M., and Rus, D. (2012). Dis-
tributed robotic sensor networks: An information-theoretic approach.
The International Journal of Robotics Research, 31(10):1134–1154.

[63] Khalil, H. K. (2001). Nonlinear Systems. Pearson, 3rd edition.

[64] Khodaverdian, S. and Adamy, J. (2014). Robust output synchro-
nization for heterogeneous multi-agent systems based on input-output
decoupling. In 11th IEEE International Conference on Control & Au-
tomation (ICCA), pages 607–613. IEEE.

[65] Klodt, L., Haumann, D., and Willert, V. (2014). Revisiting coverage
control in nonconvex environments using visibility sets. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 82–89.
IEEE.

[66] Klodt, L., Khodaverdian, S., and Willert, V. (2015). Motion control
for uav-ugv cooperation with visibility constraint. In IEEE Conference
on Control Applications (CCA), pages 1379–1385. IEEE.

[67] Klodt, L. and Willert, V. (2015). Equitable workload partitioning for
multi-robot exploration through pairwise optimization. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 2809–2816. IEEE.

[68] Kloetzer, M., Ding, X. C., and Belta, C. (2011). Multi-robot deploy-
ment from ltl specifications with reduced communication. In 50th IEEE
Conference on Decision and Control and European Control Conference
(CDC-ECC), pages 4867–4872. IEEE.

[69] Knepper, R. A., Layton, T., Romanishin, J., and Rus, D. (2013).
Ikeabot: An autonomous multi-robot coordinated furniture assembly
system. In IEEE International Conference on Robotics and Automation
(ICRA), pages 855–862. IEEE.

[70] Koenig, N. and Howard, A. (2004). Design and use paradigms for
gazebo, an open-source multi-robot simulator. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), volume 3,
pages 2149–2154. IEEE.

[71] Krajník, T., Nitsche, M., Faigl, J., Vaněk, P., Saska, M., Přeučil, L.,
Duckett, T., and Mejail, M. (2014). A practical multirobot localization
system. Journal of Intelligent & Robotic Systems, 76(3-4):539–562.



100 Bibliography

[72] Kruskal, J. B. (1956). On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the American Math-
ematical Society, 7(1):48–50.

[73] Kulich, M., Faigl, J., and Přeučil, L. (2011). On distance utility in
the exploration task. In IEEE International Conference on Robotics and
Automation (ICRA), pages 4455–4460. IEEE.

[74] Lagoudakis, M. G., Markakis, E., Kempe, D., Keskinocak, P., Kley-
wegt, A. J., Koenig, S., Tovey, C. A., Meyerson, A., and Jain, S. (2005).
Auction-based multi-robot routing. In Robotics: Science and Systems,
volume 5, pages 343–350.

[75] Langerwisch, M., Wittmann, T., Thamke, S., Remmersmann, T.,
Tiderko, A., and Wagner, B. (2013). Heterogeneous teams of unmanned
ground and aerial robots for reconnaissance and surveillance-a field ex-
periment. In IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), pages 1–6.

[76] LaSalle, J. P. (1960). Some extensions of Liapunov’s second method.
IRE Transactions on Circuit Theory, 7(4):520–527.

[77] LaValle, S. M. (2011). Motion planning part i: The essentials. IEEE
Robotics & Automation Magazine, 18(1):79–89.

[78] Laventall, K. and Cortés, J. (2009). Coverage control by multi-robot
networks with limited-range anisotropic sensory. International Journal
of Control, 82(6):1113–1121.

[79] Lemaire, T., Alami, R., and Lacroix, S. (2004). A distributed tasks
allocation scheme in multi-uav context. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3622–3627. IEEE.

[80] Leyton-Brown, K. and Shoham, Y. (2008). Essentials of game theory:
A concise multidisciplinary introduction. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 2(1):1–88.

[81] Li, W., Zhang, T., and Kuhnlenz, K. (2011). A vision-guided au-
tonomous quadrotor in an air-ground multi-robot system. In IEEE
International Conference on Robotics and Automation (ICRA), pages
2980–2985. IEEE.



Bibliography 101

[82] Listmann, K. D., Wahrburg, A., Strubel, J., Adamy, J., and Konig-
orski, U. (2011). Partial-state synchronization of linear heterogeneous
multi-agent systems. In 50th IEEE Conference on Decision and Con-
trol and European Control Conference (CDC-ECC), pages 3440–3445.
IEEE.

[83] Lloyd, S. (1982). Least squares quantization in pcm. IEEE Transac-
tions on Information Theory, 28(2):129–137.

[84] Lozano-Pérez, T. andWesley, M. A. (1979). An algorithm for planning
collision-free paths among polyhedral obstacles. Communications of the
ACM, 22(10):560–570.

[85] Lu, L., Choi, Y.-K., and Wang, W. (2011). Visibility-based cover-
age of mobile sensors in non-convex domains. In Eighth International
Symposium on Voronoi Diagrams in Science and Engineering (ISVD),
pages 105–111.

[86] Lyapunov, A. M. (1992). The general problem of the stability of
motion. International Journal of Control, 55(3):531–534.

[87] MacQueen, J. (1967). Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, volume 1, pages
281–297.

[88] Maimone, M., Matthies, L., Osborn, J., Rollins, E., Teza, J., and
Thayer, S. (1998). A photo-realistic 3-d mapping system for extreme
nuclear environments: Chernobyl. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 1521–1527. IEEE.

[89] Makarenko, A., Williams, S., Bourgault, F., and Durrant-Whyte, H.
(2002). An experiment in integrated exploration. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages
534–539. IEEE.

[90] Marier, J.-S., Rabbath, C.-A., and Léchevin, N. (2012). Visibility-
limited coverage control using nonsmooth optimization. In Proceedings
of the American Control Conference (ACC), pages 6029–6034.

[91] Martínez, S., Cortés, J., and Bullo, F. (2007). Motion coordination
with distributed information. IEEE Control Systems, 27(4):75–88.



102 Bibliography

[92] Maslow, A. H. (1943). A theory of human motivation. Psychological
Review, 50(4):370.

[93] Mellinger, D., Kushleyev, A., and Kumar, V. (2012). Mixed-integer
quadratic program trajectory generation for heterogeneous quadrotor
teams. In IEEE International Conference on Robotics and Automation
(ICRA), pages 477–483. IEEE.

[94] Merino, L., Caballero, F., Martínez-de Dios, J. R., Ferruz, J., and
Ollero, A. (2006). A cooperative perception system for multiple UAVs:
Application to automatic detection of forest fires. Journal of Field
Robotics, 23(3-4):165–184.

[95] Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Na-
gatani, K., Okada, Y., Kiribayashi, S., Otake, K., Yoshida, K., et al.
(2012). Collaborative mapping of an earthquake-damaged building via
ground and aerial robots. Journal of Field Robotics, 29(5):832–841.

[96] Miller, D. P., Nourbakhsh, I. R., and Siegwart, R. (2008). Robots
for education. In Springer Handbook of Robotics, pages 1283–1301.
Springer.

[97] Moors, M., Rohling, T., and Schulz, D. (2005). A probabilistic ap-
proach to coordinated multi-robot indoor surveillance. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
3447–3452. IEEE.

[98] Mosteo, A. R. and Montano, L. (2007). Comparative experiments on
optimization criteria and algorithms for auction based multi-robot task
allocation. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3345–3350. IEEE.

[99] Mueggler, E., Faessler, M., Fontana, F., and Scaramuzza, D. (2014).
Aerial-guided navigation of a ground robot among movable obstacles.
In IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), pages 1–8.

[100] Murray, R. M. (2007). Recent research in cooperative control of
multivehicle systems. Journal of Dynamic Systems, Measurement, and
Control, 129(5):571–583.

[101] Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry.
In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 652–659. IEEE.



Bibliography 103

[102] Obermeyer, K. J., Ganguli, A., and Bullo, F. (2011). Multi-agent
deployment for visibility coverage in polygonal environments with holes.
International Journal of Robust and Nonlinear Control, 21(12):1467–
1492.

[103] Ögren, P., Egerstedt, M., and Hu, X. (2001). A control lyapunov
function approach to multi-agent coordination. In 40th IEEE Confer-
ence on Decision and Control (CDC), pages 1150–1155. IEEE.

[104] Oh, S., Schenato, L., Chen, P., and Sastry, S. (2007). Tracking and
coordination of multiple agents using sensor networks: system design,
algorithms and experiments. Proceedings of the IEEE, 95(1):234–254.

[105] Okabe, A. and Suzuki, A. (1997). Locational optimization problems
solved through voronoi diagrams. European Journal of Operational Re-
search, 98(3):445–456.

[106] Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems:
Algorithms and theory. IEEE Transactions on Automatic Control,
51(3):401–420.

[107] Olfati-Saber, R., Fax, J. A., and Murray, R. M. (2007). Consensus
and cooperation in networked multi-agent systems. Proceedings of the
IEEE, 95(1):215–233.

[108] Olfati-Saber, R. and Murray, R. M. (2004). Consensus problems
in networks of agents with switching topology and time-delays. IEEE
Transactions on Automatic Control, 49(9):1520–1533.

[109] Parker, L. E. (1998). Alliance: An architecture for fault tolerant
multirobot cooperation. IEEE Transactions on Robotics and Automa-
tion, 14(2):220–240.

[110] Parker, L. E. (2008). Multiple mobile robot systems. In Springer
Handbook of Robotics, pages 921–941. Springer.

[111] Pasqualetti, F., Franchi, A., and Bullo, F. (2010). On optimal co-
operative patrolling. In 49th IEEE Conference on Decision and Control
(CDC), pages 7153–7158. IEEE.

[112] Pimenta, L. C., Schwager, M., Lindsey, Q., Kumar, V., Rus, D.,
Mesquita, R. C., and Pereira, G. A. (2009). Simultaneous coverage and
tracking (SCAT) of moving targets with robot networks. In Algorithmic
Foundation of Robotics VIII, pages 85–99. Springer.



104 Bibliography

[113] Pimenta, L. C. A., Kumar, V., Mesquita, R., and Pereira, G. A. S.
(2008). Sensing and coverage for a network of heterogeneous robots.
In 47th IEEE Conference on Decision and Control (CDC), pages 3947–
3952. IEEE.

[114] Powers, C., Mellinger, D., and Kumar, V. (2015). Quadrotor kine-
matics and dynamics. In Handbook of Unmanned Aerial Vehicles, pages
307–328. Springer.

[115] Prassler, E., Ritter, A., Schaeffer, C., and Fiorini, P. (2000). A short
history of cleaning robots. Autonomous Robots, 9(3):211–226.

[116] Prim, R. C. (1957). Shortest connection networks and some gener-
alizations. Bell System Technical Journal, 36(6):1389–1401.

[117] Putz, P. (1998). Space robotics in europe: A survey. Robotics and
Autonomous Systems, 23(1):3–16.

[118] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., and Ng, A. Y. (2009). ROS: an open-source robot operating
system. In ICRA Workshop on Open Source Software, volume 3. Kobe,
Japan.

[119] Rekleitis, I., New, A. P., Rankin, E. S., and Choset, H. (2008).
Efficient boustrophedon multi-robot coverage: an algorithmic approach.
Annals of Mathematics and Artificial Intelligence, 52(2-4):109–142.

[120] Rekleitis, I. M., Dudek, G., and Milios, E. E. (2002). Multi-robot
cooperative localization: a study of trade-offs between efficiency and
accuracy. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2690–2695. IEEE.

[121] Ren, W., Beard, R. W., and Atkins, E. M. (2007). Information
consensus in multivehicle cooperative control. IEEE Control Systems
Magazine, 27(2):71–82.

[122] Renzaglia, A. and Martinelli, A. (2009). Distributed coverage control
for a multi-robot team in a non-convex environment. In IEEE IROS09
3rd Workshop on Planning, Perception and Navigation for Intelligent
Vehicles. IEEE.

[123] Reynolds, C. W. (1987). Flocks, herds and schools: A distributed
behavioral model. ACM SIGGRAPH Computer Graphics, 21(4):25–34.



Bibliography 105

[124] Roberts, A. (2006). The History of Science Fiction. Palgrave Histo-
ries of Literature. Palgrave Macmillan UK, 1st edition.

[125] Rohmer, E., Singh, S. P., and Freese, M. (2013). V-REP: A versatile
and scalable robot simulation framework. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1321–1326.
IEEE.

[126] Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M. (1977). An
analysis of several heuristics for the traveling salesman problem. SIAM
Journal on Computing, 6:563–581.

[127] Routh, E. J. (1877). A treatise on the stability of a given state of
motion: particularly steady motion. Macmillan and Company.

[128] Salih, A. L., Moghavvemi, M., Mohamed, H. A., and Gaeid, K. S.
(2010). Modelling and pid controller design for a quadrotor unmanned
air vehicle. In IEEE International Conference on Automation Quality
and Testing Robotics (AQTR), pages 1–5. IEEE.

[129] Sandholm, T. (1998). Contract types for satisficing task allocation.
In Proceedings of the AAAI spring symposium: Satisficing models, pages
23–25.

[130] Saska, M., Vonásek, V., Krajník, T., and Přeučil, L. (2014). Coordi-
nation and navigation of heterogeneous MAV–UGV formations localized
by a hawk-eye-like approach under a model predictive control scheme.
The International Journal of Robotics Research, 33(10):1393–1412.

[131] Schwager, M., Dames, P., Rus, D., and Kumar, V. (2017). A multi-
robot control policy for information gathering in the presence of un-
known hazards. In Robotics Research, pages 455–472. Springer.

[132] Schwager, M., Mclurkin, J., and Rus, D. (2006). Distributed cov-
erage control with sensory feedback for networked robots. In Robotics:
Science and Systems.

[133] Semsar-Kazerooni, E. and Khorasani, K. (2009). Multi-agent team
cooperation: A game theory approach. Automatica, 45(10):2205–2213.

[134] Seyboth, G. S., Dimarogonas, D. V., and Johansson, K. H. (2013).
Event-based broadcasting for multi-agent average consensus. Automat-
ica, 49(1):245–252.



106 Bibliography

[135] Shkurti, F., Xu, A., Meghjani, M., Higuera, J. C. G., Girdhar,
Y., Giguere, P., Dey, B. B., Li, J., Kalmbach, A., Prahacs, C., et al.
(2012). Multi-domain monitoring of marine environments using a het-
erogeneous robot team. In IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 1747–1753. IEEE.

[136] Singh, A., Krause, A., and Kaiser, W. J. (2009). Nonmyopic adaptive
informative path planning for multiple robots. In Proceedings of the 21st
International Joint Conference on Artifical Intelligence, pages 1843–
1850. Morgan Kaufmann Publishers Inc.

[137] Smith, R. (1980). The contract net protocol: High-level communi-
cation and control in a distributed problem solver. IEEE Transactions
on Computers, 29(12):1104–1113.

[138] Solanas, A. and Garcia, M. (2004). Coordinated multi-robot explo-
ration through unsupervised clustering of unknown space. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 717–721. IEEE.

[139] Steinhaus, H. (1956). Sur la division des corp materiels en parties.
Bull. Acad. Polon. Sci, 1:801–804.

[140] Sujit, P. and Beard, R. (2007). Cooperative path planning for multi-
ple uavs exploring an unknown region. In American Control Conference
(ACC), pages 347–352. IEEE.

[141] Tanner, H. and Christodoulakis, D. (2006). Cooperation between
aerial and ground vehicle groups for reconnaissance missions. In IEEE
Conference on Decision and Control (CDC), pages 5918–5923. IEEE.

[142] Tanner, H. G., Pappas, G. J., and Kumar, V. (2004). Leader-to-
formation stability. IEEE Transactions on Robotics and Automation,
20(3):443–455.

[143] Valero-Gomez, A., Valero-Gomez, J., Castro-Gonzalez, A., and
Moreno, L. (2011). Use of genetic algorithms for target distribution
and sequencing in multiple robot operations. In IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages 2718–2724.
IEEE.

[144] Voronoi, G. F. (1907). Nouvelles applications des parametres con-
tinus a la théorie des formes quadratiques. Journal für die reine und
angewandte Mathematik, 133:97–178.



Bibliography 107

[145] Wang, J., Wu, L., Meng, M. Q.-H., and Ren, H. (2014). Towards
simultaneous coordinate calibrations for cooperative multiple robots. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 410–415. IEEE.

[146] Wang, X., Yadav, V., and Balakrishnan, S. (2007). Cooperative uav
formation flying with obstacle/collision avoidance. IEEE Transactions
on Control Systems Technology, 15(4):672–679.

[147] West, D. B. et al. (2001). Introduction to graph theory, volume 2.
Prentice Hall.

[148] Wu, L., García, M. A., Puig, D., and Sole, A. (2007). Voronoi-based
space partitioning for coordinated multi-robot exploration. Journal of
Physical Agents, 1(1):37–44.

[149] Wurm, K. M., Stachniss, C., and Burgard, W. (2008). Coordinated
multi-robot exploration using a segmentation of the environment. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1160–1165. IEEE.

[150] Yamauchi, B. (1997). A frontier-based approach for autonomous
exploration. In Proceedings of the IEEE International Symposium on
Computational Intelligence in Robotics and Automation, pages 146–151.

[151] Yan, Z., Jouandeau, N., and Cherif, A. A. (2013). A survey and
analysis of multi-robot coordination. International Journal of Advanced
Robotic Systems, 10:399–416.

[152] Zheng, X. and Koenig, S. (2009). K-swaps: cooperative negotiation
for solving task-allocation problems. In Proceedings of the 21st Interna-
tional Joint Conference on Artifical intelligence, pages 373–378.

[153] Zhong, M. and Cassandras, C. G. (2008). Distributed coverage con-
trol in sensor network environments with polygonal obstacles. IFAC
Proceedings Volumes, 41(2):4162–4167.

[154] Zimmermann, J. (2008). Adaptive Multi-Agenten-Systeme zur
Steuerung komplexer Produktionssysteme. PhD thesis, Fernuniversität
Hagen.

[155] Zlot, R., Stentz, A., Dias, M. B., and Thayer, S. (2002). Multi-
robot exploration controlled by a market economy. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3016–
3023. IEEE.





Publications and Supervised
Theses

Publications [65–67] have been developed in the course of the dissertation.
Further, the following student projects have been supervised during the
time at the institute (in chronological order):

Type Topic

Projektseminar Pitchregelung einer Windturbine
Projektseminar Bestimmung des nächsten Zielpunktes für Roboter-

Exploration
Bachelorthesis Strategies for obstacle avoidance in a non-convex en-

vironment
Bachelorthesis Funktionsschätzer für Gebietsabdeckung mit mobilen

Sensornetzwerken
Bachelorthesis Lokalisierung und 3D-Kartierung mittels RGB-D

Kamera für mobile Roboter
Masterthesis Ein heuristischer Ansatz zur sensorbasierten Multi-

Robot Exploration mittels spiralförmiger, flächen-
deckender Laufbahnplanung

Bachelorthesis Koordinierte Multi-Roboter Exploration mittels Con-
sensus

Projektseminar Implementierung und Analyse verschiedener Bewe-
gungsdynamiken für Roboter-Simulationen

Masterthesis Kartierung mittels Kinect in einem Multi-Roboter-
System

Masterthesis Coordination of Heterogeneous Multi-Robot Teams
Bachelorthesis Realistische Simulation einer Roboter-Erkundung



Type Topic

Studienarbeit Bewegungsplanung für das aktive Messen räumlich
verteilter Felder

Bachelorthesis Kartierung mit einem Multiagentensystem
Studienarbeit Kinematic calibration of a lightweight robot arm us-

ing narrow-band ultrasonic sensors
Projektseminar Koordinierte Roboter-Exploration mit eingeschränk-

ter Kommunikationsreichweite
Studienarbeit Bewegungsregelungen und kürzeste Pfadplanung für

ein UAV-UGV-System mit Erkundungsauftrag
Bachelorthesis Sampling-basierte Roboter Exploration
Projektseminar Entwurf und Simulation eines Robotischen Rüs-

seltiers in V-REP



Index

active sensing, 7
attractivity, 17
automaton, automata, 1

center of mass, 68
centralized coordination, 42
centroid, 68
centroidal Voronoi config., 70
characteristic polynomial, 19
circular motion, 36, 37
communication range, 52
communication round, 52
configuration, 69
consensus, 5
contract net protocol, 44
convex, 15
cooperation, 3
coverage and tracking, 32
coverage control, 62
coverage path planning, 6

decentralized system, 42
Delaunay graph, 67
delta-contraction, 73
density function, 24, 69
dynamic control law, 30
dynamic coverage, 24, 40
dynamical system, 16

edges, 13
effective coverage, 23
environment, 15

equilibrium partition, 52
equilibrium point, 17
error dynamics, 30
error function, 23
exploration framework, 54
exploration unit, 46

flocking, 5
formation, 6
frontier-based exploration, 41

generator points, 67
geodesic distance, 16, 47
goal selection, 41
graph theory, 13

invariant set, 18

k-means clustering, 43, 58

LaSalle’s invariance principle, 18
linear time invariant system, 19
Lloyd algorithm, 67
localization, 8
Lyapunov function, 18
Lyapunov’s direct method, 18

maneuverable domain, 47, 72
minimum spanning tree, 14, 48
minimum spanning trees, 45
multi-agent system, 3
multi-robot exploration, 41
multi-robot routing, 44

111



112 Index

multi-robot task allocation, 44

nonconvex, 15

pairwise optimization, 49
partitioning, 43
patrolling, 7
performance function, 69
polygon, 15
position error, 30

relative localization, 20
robot, robota, 1
Routh-Hurwitz criterion, 19

search and rescue, 3, 10
sensor model, 22
set partitioning problem, 50
simulations, 5
spanning tree, 13
spatial estimation, 7
stability, 17
state feedback controller, 30
surveillance, 7
switching strategy, 34

task allocation, 43
time-varying density, 26
tracking control, 29
tracking error, 30, 36
transfer matrix, 19, 31
traveling salesman, 41

vertices, 13
virtual point tracking, 34
visibility, 16
visibility constraint, 24
visibility graph, 55
visibility-limited Voronoi cell, 72
Voronoi coverage, 63
Voronoi partition, 44, 66

workload, 48
workload balancing, 51



Lebenslauf

Persönliche Daten

Name Lukas Klodt
Anschrift Steinackerstr. 96

64372 Ober-Ramstadt
Geburtsdatum 20. 09. 1986
Geburtsort Rotenburg an der Fulda, Hessen

Werdegang

1993 – 2006 Grundschule, Gesamtschule, Oberstufe und
Abitur in Rotenburg an der Fulda

07/2006 – 03/2007 Zivildienst, Jugendherberge, Rotenburg an der
Fulda

09/2007 – 03/2011 Bachelorstudium Elektrotechnik und Informa-
tionstechnik, Darmstadt

08/2011 – 04/2013 Masterstudium Elektrotechnik und Informa-
tionstechnik, Darmstadt

05/2013 – 05/2016 DFG Promotionsstipendium im Graduierten-
kolleg 1362, TU Darmstadt

05/2016 – 11/2016 Promotionsstipendium der TU Darmstadt


	List of Figures
	Abstract
	Introduction
	Motivation
	Cooperative Robotics and Multi-Agent Systems
	Goals and Contributions
	Thesis Outline

	Mathematical Foundations
	Graph Theory
	Computational Geometry
	Sets and Environments
	Distance Metrics
	Visibility

	Dynamical Systems
	Nonlinear Systems
	Linear Time Invariant Systems


	UAV-UGV Cooperation
	Introduction and Literature Review
	Problem Formulation
	Dynamic Coverage
	Original Approach
	Extensions
	Simulation Example

	Tracking Control
	Complete Motion Control
	Combined Coverage and Tracking
	Virtual Point Tracking

	Simulation Results
	Discussion

	Coordination in Multi-Robot Exploration
	Introduction
	Literature Review
	Contribution

	Problem Statement
	Setting and Assumptions
	Cost Function
	Approximating the Cost Function

	Pairwise Optimization
	Searching the Solution Space
	Analysis of the Assignment Procedure

	Exploration Framework
	Frontier Segmentation
	Robot Motion and Target Selection
	Distributed Implementation

	Results
	Evaluation of Communication Requirements
	Comparison with Related Work

	Discussion

	Coverage Control in Nonconvex Environments
	Introduction
	Literature Review
	Contribution

	Problem Formulation
	Voronoi Partitions
	Lloyd Algorithm
	Coverage in Convex Environments

	Extension to Nonconvex Environments
	Visibility
	Delta-contraction
	Derivation of the Objective Function
	Trajectories
	Limited Sensing Range

	Results
	Simulations
	Comparison

	Discussion

	Summary and Outlook
	Overview
	UAV-UGV Cooperation
	Multi-Robot Exploration
	Coverage
	Complete System Architecture

	Bibliography

