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ABSTRACT

In this paper we review the NTCIR-13 NAILS (Neurally
Augmented Image Labelling Strategies) pilot task at NTCIR-
13. We describe a first-of-its-kind RSVP (Rapid Serial Vi-
sual Presentation) - EEG (Electroencephalography) dataset
released as part of the NTCIR-13 participation conference
and the results of the participating organisations who bench-
marked machine-learning strategies against each other using
the provided unlabelled test data.
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1. INTRODUCTION

EEG (Electroencephalography) has recently become an
accessible method for researchers and users to build and op-
erate BCI (Brain-Computer Interface) applications. While
the initial use of such techniques began in clinical / reha-
bilitative settings for the purposes of augmenting commu-
nication and control, a recent trend has been to use such
signals and methods in new domains, such as image an-
notation, which relies on the identification of target brain
events to trigger labeling [1][3][5][7]. This trend is particu-
larly relevant to the multimedia IR (Information Retrieval)
and HII (Human-information Interaction) communities be-
cause in recent years EEG has demonstrated its potential
for several applications including annotation of multimedia
content, identification of when a user’s attention is drawn
to something in the real world, or as a source of wearable
sensor data to be indexed for later retrieval or analysis.

NTCIR (NII Testbeds and Community for Information
access Research) is a conference (18-month schedule) that
brings together researchers to develop evaluation methodolo-
gies and performance measures for IA (Information Access)
technologies. This results in an active research community
in which findings based on comparable experimental results
are shared and exchanged in an open manner. One topical
focus of this is mining knowledge from a large amount of
human generated data. NAILS is an affiliated task to sup-
port the collaborative evaluation of best-practice strategies
for RSVP-EEG image search applications, where researchers
benchmark their machine-learning strategies.

In this work, we describe the experimental protocol used
to capture the dataset for this task, discuss the motivation

behind its construction and outline the results of participat-
ing teams at the NAILS pilot task at NTCIR-13.

2. MOTIVATION

Using EEG signals it is possible to detect attention-related
events that are understood to be indicative of user interest
— or more specifically the allocation of their attention to one
particular stimulus as opposed to some other. One charac-
teristic pattern of activity, commonly known as the P300
signal [8], has been a focus of investigation as it can be used
as an index of attentional resource allocation to a stimulus
such as an attentionally captivating image (due to its in-
frequency) presented on a screen. This finding has enabled
BCI systems to leverage the ability of a user to be able to
guide their attention in such a manner so as to be able to
provide relevance judgments/ratings on visual stimuli. For
example, a user can actively ‘look out’ for a particular type
of image so that when relevant images appear in a high-
speed visual presentation sequence known as RSVP (Rapid
Serial Visual Presentation)[12], they will subsequently elicit
a P300 response that can be detected using signal processing
and machine-learning methods. Ultimately this allows the
image to be ‘neurally’ labeled by the participant.

While systems like these have been explored in a proof-of-
concept manner in BCI research using a multitude of image-
search tasks, the datasets used usually remain unshared be-
tween studies, making it difficult to meaningfully compare
the machine-learning and feature-processing strategies used,
to find those that offer best generalisability both across tasks
and participants. EEG responses are rife with variability for
numerous reasons, such as differences between experimental
participants, between task parameters, or changes that can
even occur over the course of an experiment. Such sources of
variability impede systematic identification of best-practice
methods and strategies in signal processing and machine
learning for using neural responses from image presentations
to label them. This is what the NAILS dataset seeks to
redress, that is to provide a well-constructed test dataset
collection to allow researchers to comparatively investigate
best-practice strategies for RSVP-EEG image search appli-
cations utilizing a range of image-search tasks (in a repeated-
measures design).

3. NAILS DATA SET & COLLECTION

3.1 Experimental Task Description



Figure 1: Examples of four target images used in the
experiment. In the top left, an example of a wind
farm target image like that used in tasks WIND1
and WIND2. In the top right, an example of a key-
board target image used in task INSTR. In the bot-
tom left, an example of a bird (macaw) target used
in task BIRD. In the bottom right, an example of an
airplane target like that used in UAV1 and UAV2.

The NAILS dataset collection contains EEG responses to
97,200 images, in total, from 10 experimental participants.
Data collection was carried out with approval from Dublin
City University’s Research Ethics Committee (DCUREC /
2016 / 099). Each participant completed 6 different search
tasks (for a particular type of target — see Table 1), where
each search task was divided into 9 (approximately 35 sec-
ond) blocks which were completed in a self-paced manner so
as to alleviate strain on participants. In each search task,
a participant searched for a known type of target (e.g. an
airplane), and was instructed to covertly count occurrences
of target images in the RSVP sequence so as to maintain
their attention on the task. In Figure 1 we show examples
of the target search images used. In each RSVP block, im-
ages were presented successively at a rate of 6 Hz with target
(search-relevant) images randomly interspersed among stan-
dard (non-search relevant) images with a percentage of 5%
across all blocks. In each block, 180 images (9 targets/171
standards) were presented in rapid succession on screen. Per
participant, there were 486,/9234 target/standard examples
available. As contaminant eye-movement related activity on
the EEG can often contain useful information, epochs (from
-1000ms, 2000ms) containing such activity were excluded as
they might encourage developed strategies to utilize these
non-neural sources of discriminative information. Epochs
were filtered to exclude those with a peak-to-peak amplitude
greater than 70 pV on EOG and frontal EEG channels. ICA
(Independent Component Analysis) was used alongside a
wavelet based analysis to confirm that the remaining epochs
did not contain non-neural sources of discriminative infor-
mation. A breakdown of the remaining training data after
this process is presented in Table 2. For the NAILS task, this
dataset was split into a training/testing set, where 15/285
target/standard trials from each search task (for each par-
ticipant) were selected to act as a withheld test set in the

Table 1: NAILS Tasks. *standard images were ex-
tracted in a balanced manner from the remaining
visual categories in the dataset. For the Places365
dataset there were 364 categories remaining and for
the VEDAI dataset there were 8 remaining cate-
gories.

TaskID Dataset Target Standards
1- WIND1 Places365 Wind Farm Field Road
2 - WIND2 Places365 Wind Farm *All Categories
3 -INSTR  ImageNet Keyboard Instruments
4 - BIRD ImageNet Macaw Birds
5- UAV1 VEDAI Plane Pickup
6 - UAV2 VEDAI Plane *

Table 2: Counts of training samples per experimen-
tal participant (for targets and standards) following
trial rejection (not including test set data).

Dataset  Targets  Standards
101 326 6253
102 140 2316
103 93 2057
104 188 3372
105 356 6748
106 353 6766
107 327 6217
108 193 3691
109 206 4043
110 332 6454

evaluation.

3.2 Collaborative Evaluation Task Description

Competing teams in the collaborative evaluation using the
supplied training data (remaining epochs from blocks not
used to extract test set data) were asked to build machine-
learning models that maximised the BA (balanced accuracy)
score on the withheld testing set (withheld by the NAILS or-
ganizers). That means for an evaluation run, a team needed
to submit binary predictions for the 18,000 examples given
in the test set (900/17100 targets/standards respectively).
There were more than 2500/47000 target/standard training
examples available across all participants for model training
(see Table 2).

3.3 Provided Features / Pre-processing

Three types of preprocessed data were made available
to participating organisations: time-series features (time),
wavelet magnitude features (w-mean) and wavelet magni-
tude ratio (w-ratio) features. It was at the discretion of
each participating team which combination of these features
to use.

Time-series features were extracted from -.5 s to 1.5 s
relative to stimulus onset. Each training/testing feature
vector contained 3400 numerical values corresponding to 34
channels (incl. HEOG/VEOH) X 100 time-points. Prior
to epoch extraction, a band-pass filter (.5Hz to 25Hz) was
applied to the raw signal. Time-frequency features were ex-
tracted via Morlet wavelets using mne-python [4]. 2 Hz steps
between 1 Hz and 11 Hz were used, meaning each wavelet
corresponded to one of 6 frequencies (1 Hz, 3 Hz, 5 Hz, 7
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Figure 2: Butterfly plot (ERP averages) of tar-

get epochs across all blocks minus average standard
epochs across all blocks. Plots are generated us-
ing CAR (common average reference). Characteris-
tic P3b activity can be seen at posterior scalp sites
approximately between 300ms and 600ms following
target detection (peaking at 426ms). The colors on
time-series plots indicate electrode location on scalp
(upper left).

Hz, 9 Hz and 11 Hz). The number of cycles on each wavelet
was set to its respective frequency. To calculate the w-mean
feature set, each time-channel-frequency representation was
divided into 20 equally spaced time segments over the 2 sec-
ond period (-.5 s to 1.5 s) for a particular frequency and
then the mean magnitude of each of these was calculated.
The average magnitude of the 500 ms period pre-stimulus
was used to baseline (via subtraction) each epoch. W-ratio
features were calculated using the same method as the w-
mean features except magnitudes are expressed as a ratio of
the average of the baseline period.

3.4 Dataset Validation

In order to validate that the captured data contained use-
ful information for classification prior to sharing the dataset,
we applied a basic machine learning analysis using a RBF
(Radial Basis Function) kernel SVM (Support Vector Ma-
chine) [6]. Each model was trained on a participant-by-
participant basis where hyper-parameters (C and gamma)
were learned using a randomized grid-search approach. Each
model was then applied to the unseen test set data where
accuracy measures were calculated (presented in Table 3 and
Table 4). A range (and combination) of feature sources (used
in baseline approaches) are presented so as to support a
better interpretation of the results of participating teams.
These baseline results are broken down in both tables un-
der columns ’Time’ (which uses the time-series features),
"W-m’ (which uses the wavelet mean features), "W-r’ (which
uses the wavelet ratio features) and "T+W’ (which uses the
time series features and both wavelet feature types). Fea-
tures derived during the baseline corresponded to the first 1
second of data directly following image presentation (across
all channels). In Figure 2, we show a characteristic P3b
response acquired from one experimental participant.

These measures, in part verify that the chosen tasks are
eliciting the expected characteristic oddball P300 response
i.e. it was possible for a participant to do the search tasks as
intended. Images tasks were constructed using freely avail-

Table 3: Balanced accuracy scores for on each par-
ticipating team’s best performing method (ARL17
4+ QUT) broken down by experimental partici-
pant. Baseline results are presented under columns
’Time’, "W-m’, "W-r’ and T + W’.

Dataset ARL17 QUT Time W-m W-r T+W
101 .8219 7670 .7503 .6006 .5523 .7357
102 8781 8512 .8211 .7494 .6465 .8269
103 .8646 8275 7664 .6354 .5553 .7213
104 8877 8743 .8322 .6845 .6216 .8222
105 .9304 8921 .8257 .7304 .6725 .8029
106 8781 8705 .8026 .6675 .6108 .7956
107 9170 8719  .8295 .7047 .6860 .8249
108 .8804 8658 .8041 .6865 .5933 .8383
109 .8763 8523 7930 .6140 .5687 .7518
110 .9041 8556  .8246 .6482 .6012 .7918
Average .8839 8528  .8049 .6721 .6108 .7911

able datasets [13, 10, 9]. These were selected as a good
choice given taht they are commonly used datasets with
well-researched characteristics that are representative of the
visual content typically encountered in multimedia-IR tasks
whilst remaining similar to content used in previous RSVP-
BCI studies.

4. PARTICIPATING TEAM’S RESULTS

Two teams submitted an overview paper along with valid
predictions to the NAILS Task although nine teams signed
up to participate. Team ARL17 was comprised of researchers
from DCS Corporation, Alexandria, VA USA and from the
U.S. Army Research Laboratory, Aberdeen Proving Ground,
MD USA. The QUT team was comprised of researchers from
the Queensland University of Technology, Brisbane, QLD,
Australia and Bielefeld University, Bielefeld, Germany. We
describe the results for the approach with the best accuracy
for each participating team and compare these to ’naive’
baseline approaches.

ARL17 [11] and QUT [2] both made successful submis-
sions whose respective balanced accuracies on the test set
are shown in Table 3 and Table 4. Both team’s best results
respectively achieved balanced accuracy scores on the test
set greater than any of the naive baseline approaches. This
indicates that both participating team’s approaches used a
suitably developed strategy i.e. they outperformed a classi-
cal off-the-shelf machine-learning strategy like a SVM.

The team ARL17 achieved the highest balanced accuracy
of .8839 on their final submission. The winning approach
from team ARL17 used within-subject training using a con-
volution neural network. Other model training strategies
such as cross-subject training were explored by the team and
found to achieve a lower balanced accuracy (e.g. their first
submission achieving a balanced accuracy of .7723). ARL17
submitted five sets of predictions achieving balanced accu-
racies of .7723, .8459, .8526, .8724 and .8839.

The team QUT submitted two set of predictions. The
best performing strategy from the team used a bagging en-
semble approach and achieved a balanced accuracy of .8528.
Their other approach used a stacked ensemble and achieved
a balanced accuracy of .8281.

In Table 3 and Table 4 we present a breakdown across
participants and tasks (respectively) of the balanced accu-



Table 4: Balanced accuracy scores for each partici-
pating team’s best performing method broken down
by experimental participant. Baseline results are
presented under columns ’Time’, "W-m’, "W-r’ and
T + W,
Task ID  ARL QUT Time W-m W-r T+W
WIND1 .8905 .8609 .8237 .7119 .6435 .8112
WIND2 .8846 .8356 .7746 .6656 .6047 .7821
INSTR  .8114 .7895 .7616 .6367 .5953 .7140
BIRD .8616 .8191 .7805 .6282 .5837 .7844
UAV1 9216 .9053 .8381 .6979 .6247 .8200
UAV2 19335 .9065 .8512 .6925 .6130 .8351
Average .8839 .8528 .8049 .6721 .6108 .7911

racies achieved by each team’s best performing method. In
addition, we present four naive classification strategies as a
comparison. Three of these used only a single pre-processed
data source type while the remaining classification method
used features from all three data sources types available (i.e.
time, w-mean,w-ratio).

5. CONCLUSIONS

Two teams submitted an overview paper and valid pre-
dictions for the NAILS task although nine teams signed up
to participate. In the collaborative evaluation, we note that
the approaches of both of the teams outperform the base-
line strategies that used a SVM classifier. The approach of
team ARL17 achieved the highest balanced accuracy overall
of .8839. Moreover, their approach also achieved the high-
est balanced accuracy both when considering the results on
a per participant basis and per image search task basis.

Although this was a collaborative evaluation where par-
ticipating team’s machine-learning strategies were ranked in
terms of balanced accuracy, it was expected that some sig-
nal processing/machine-learning solutions that may perform
suboptimally to others in terms of accuracy alone may offer
other advantages in terms of speed, model complexity, neu-
rophysiological interpretability and/or cross-task/user ap-
plicability. Both active teams achieved these aims, with
ARL17 testing a variety of machine-learning approaches us-
ing different training strategies and QUT via its exploration
and visual summarization of channel selection as part of the
model training process.

Very often, useful features for ERP-driven BCI interfaces
leverage time-domain information in the signals due to the
time-locked nature of the P300 response. One team (QUT)
directly used the provided wavelet features as part of their
approach while the ARL17 team used time-frequency re-
lated features via the involvement of temporal convolutions
as part of their solution.

In this paper we have described the creation of the NAILS
dataset, including the motivation behind the challenge and
an account of key details in its construction. We also de-
scribed important parameters of the dataset such as those
available from the prior validation tasks carried out. Finally
as a demonstration of the evaluation value of the NAILS
dataset, we summarize the results of participating teams in
the associated NTCIR-13 NAILS challenge.
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