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Abstract: A main puzzle of deep networks revolves around the absence of overfitting despite overparametrization and
despite the large capacity demonstrated by zero training error on randomly labeled data. In this note, we show that the
dynamical systems associated with gradient descent minimization of nonlinear networks behave near zero stable minima of
the empirical error as gradient system in a quadratic potential with degenerate Hessian. The proposition is supported by
theoretical and numerical results, under the assumption of stable minima of the gradient.

Our proposition provides the extension to deep networks of key properties of gradient descent methods for linear networks,
that as, suggested in (1), can be the key to understand generalization. Gradient descent enforces a form of implicit regular-
ization controlled by the number of iterations, and asymptotically converging to the minimum norm solution. This implies
that there is usually an optimum early stopping that avoids overfitting of the loss (this is relevant mainly for regression).
For classification, the asymptotic convergence to the minimum norm solution implies convergence to the maximum margin
solution which guarantees good classification error for “low noise” datasets.

The implied robustness to overparametrization has suggestive implications for the robustness of deep hierarchically local
networks to variations of the architecture with respect to the curse of dimensionality.

This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF
STC award CCF - 1231216.
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1 Introduction

In the last few years, deep learning has been tremendously successful in many important applications of machine learning.
However, our theoretical understanding of deep learning, and thus the ability of developing principled improvements, has
lagged behind. A satisfactory theoretical characterization of deep learning is finally emerging. It covers the following ques-
tions: 1) representation power — what types of functions can deep neural networks (DNNs) represent and under which
conditions can they be more powerful than shallow models; 2) optimization of the empirical loss — can we characterize the
minima obtained by stochastic gradient descent (SGD) on the non-convex empirical loss encountered in deep learning? 3)
generalization — why do the deep learning models, despite being highly over-parameterized, still predict well? Whereas
there are satisfactory answers to the the first two questions (see for reviews (2, 3) and references therein), the third question
is still triggering a number of papers (see among others (4–8)) with a disparate set of partial answers. In particular, a recent
paper titled “Understanding deep learning requires rethinking generalization” (9) claims that the predictive properties of deep
networks require a new approach to learning theory. This paper is motivated by observations and experiments by several
authors, in part described in (8) where a more complex set of arguments is used to reach similar conclusions to this paper. It
confirms the conclusions by (1) suggesting that generalization properties of deep networks can be understood through anal-
ogous properties of linear models. Indeed, we reinforce the results in (1) by providing further empirical evidences and steps
towards a rigorous proof.

Applying optimization and linear algebra results, as well as properties of ordinary differential equations, our approach replaces
a potentially fundamental puzzle about generalization in deep learning with elementary properties of gradient optimization
techniques. This seems to explain away the generalization puzzle of today’s deep networks and imply that there is no funda-
mental problem with classical learning theory. The paper is at the level of formal rigor of a physicist (not a mathematician:
this will come later).

Notice that in all computer simulations reported in this paper, we turn off all the “tricks” used to improve performance such
as data augmentation, weight decay etc. in order to study the basic properties of deep networks optimized with the SGD or
GD algorithm (we keep however batch normalization in the CIFAR experiments). As a consequence, performance is not state
of the art but optimal performance is not the goal here. In our experiments we used for training the cross entropy loss, which
is better suited for classification problems (such as for CIFAR), as well as the square loss for regression which also works for
regerssion (see SI 18). As a side result we show that a polynomial network obtained by replacing each ReLUs of a standard
deep convolutional network with its univariate polynomial approximation shows all the properties of deep learning networks.
This experiment, together with related theoretical considerations, shows that RELU activation functions can be replaced by
smooth activations (which are not positively homogeneous) without affecting the main properties of deep networks.

2 Overfitting Puzzle

Classical learning theory characterizes generalization behavior of a learning system as a function of the number of training
examples n. From this point of view deep learning networks behave as expected: the more training data, the smaller the test
error. Other aspects of their learning curves seem less intuitive but are also easy to explain. Often the test error decreases for
increasing n even when the training error is zero. However, as noted in (1), this is because the classification error is reported,
rather than the loss minimized for training, e.g. cross-entropy. It is also clear that deep networks do show generalization
technically defined as convergence for n→∞ of the training error to the expected error. The left and the right parts of Figure
10 indicates generalization for large n. This is expected from previous results such as Bartlett’s (10) and especially from the
stability results of Recht (11).

The property of generalization, though important, is however of academic importance only, since deep networks are typically
used in the overparametrized case, that is, in a regime in which several classical bounds are not valid. The real puzzle in
this regime– and the focus of this paper – is the apparent lack of overfitting, despite usually large overparametrization, that
is many more parameters than data. The same network which achieves zero training error for randomly labeled data, clearly
showing large capacity, does not have any significant overfitting in classifying normally labeled data 1. Notice that Figures
10 and 11 show the same behavior for a deep polynomial convolutional network, trained on CIFAR10.

An explanation for the lack of overfitting is proposed in (1), considering linear models. Two main points are suggested to be
important, the difference between classification error and loss, and the implicit regularization properties of gradient descent
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Figure 1: The figure (left) shows the behavior the classification error for a deep network with RELU activations trained on
subsets of the CIFAR database by minimizing the crossentropy loss. The figure on the right shows the same network trained on
subsets of the CIFAR database in which the labels have been randomly scrambled. The network is a 5-layer all convolutional
network (i.e., no pooling) with 16 channels per hidden layer , resulting in only W ≈ 10000 weights instead of the typical
300, 000. Neither data augmentation nor regularization is performed.

methods. Gradient descent iteratively controls the complexity of the model and the regularization parameter is the number of
iterations. As the number of iterations increases less regularization is enforced, and in the limit – if the loss is quadratic – the
minimum norm solution that fits the data is selected. The latter is the maximum margin solution ensuring good classification
error, in particular for separable problems.

To be able to use these results in the case of deep multilayer, nonlinear networks, we introduce in the next section a proposition
about the behavior of the loss function in a neighborhood of a zero-loss minimum.

3 Global minima of deep networks are locally quadratic and degenerate

Consider first the loss function corresponding to an overparametrized linear network trained to minimize the square loss. An
example in two dimensions is shown in Figure 3.

The gradient dynamical system corresponding to gradient descent with this loss function is

Ẇ = −∇WL(W ) = −F (W ). (1)

Suppose that GD converges to a solutionW ∗ and thatW ∗ is one of the degenerate zero minimizers (in the case of crossentropy
W ∗ is the asymptotic limit). The properties of the solution can be studied by considering the Hessian at W ∗ of the loss L(w)
that is

(DL)ij =
∂2L

∂wi∂wj
(2)
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Figure 2: The previous figures show dependence on n – number of training examples – for a fixed ReLU architecture with
W parameters. This figure shows dependence on W of the classification error for a fixed training set of n examples. The
network is again a 5-layer all convolutional network (i.e., no pooling) with ReLUs. All hidden layers have the same number
of channels. Neither data augmentation nor regularization is performed. SGD was used with batch size = 100 for 70 epochs
for each point.The classical theory explains the generalization behavior on the left; the challenge is to explain the lack of
overfitting for W > N . As expected from Theory II (3), there is zero error around W = n and for W ≥ n.

We conjecture that the qualitative behavior depicted above also describes the generic behavior of multilayer nonlinear net-
works locally, around a SGD solution.

The following two separate results imply that the Hessian of the loss function of deep networks is degenerate at minima with
zero loss (when they exist):

1. Polynomial deep networks can approximate arbitrarily well a standard Deep Network with ReLU activations, as shown
theoretically in section 6.4 of SI and empirically in Figures 10 and 11. Bezout theorem about the number of solutions of
sets of polynomial equations, suggests many degenerate zero-minimizers of the square loss for polynomial activations
(3). The energy function L determining the gradient dynamics is a polynomial.

2. Section 6.2 in SI proves theorem 3 of which an informal statement is:

Lemma 1. Assume that gradient descent of a multilayer overparametrized networks with nonlinear activation under
the square loss converges to a minimum with zero error (in the limit for crossentropy). Then the Hessian at the minimum
has one or more zero eigenvalues.

The fact that the Hessian is quite degenerate at minima (many zero eigenvalues) is in fact empirically well-established (for a
recent account see (12)).
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Figure 3: A quadratic loss function in two parameters w1 and w2. The minimum has a degenerate Hessian with a zero
eigenvalue. In the proposition described in the text, it represents the “generic” situation in a small neighborhood of zero
minimizers with many zero eigenvalues – and a few positive eigenvalues – of the Hessian of a nonlinear multilayer network.
In multilayer networks the loss function is likely to be a fractal-like surface with many degenerate global minima, each similar
to a multidimensional version of the degenerate minimum shown here. For the crossentropy loss, the degenerate valleys are
sloped towards infinity.

The following Proposition follows

Proposition 1. If

1. w∗ is a stable limit point of the gradient dynamics of a deep network under training with the square loss

2. w∗ is a zero minimizer

then the “potential function” L is locally quadratic and degenerate.

Proof sketch

• The first hypothesis corresponds to zero gradient at w∗, that is

(∇wL)(w∗) = 0; (3)

• Lemma 1 shows that if L(w∗) = 0 the Hessian has one or more zero eigenvalues, that is
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– let {v1, . . . , vd} be an orthonormal basis of eigenvectors of the Hessian at w∗, DL(w∗), and let λ1 ≥ · · · ≥ λd ≥
0 be the corresponding eigenvalues (the Hessian is a real symmetric and positive semidefinite matrix). Then, any
vector w ∈ Rd can be written as w =

∑d
k αkvk and

L(w) = w> (DL(w∗))w =

j∑
k

λ2
kα

2
k, (4)

which is convex in α1, · · · , αj and degenerate in the directions αj+1, · · · , αd, for which λj+1 = λd = 0.

Since L(w) is a polynomial in w (or can be approximated by a polynomial) the hypothesis implies that all linear terms
disappear at w∗ and that the quadratic terms have dimensionality de < d with de > 0. Notice that L, since it is a
polynomial, cannot have a flat minimum in a finite neighborhood around w∗ without being identically zero (thus the
term “isotropically flat” used in (8) is strictly wrong).

The informal statement of this proposition is

Each of the global minima found by SGD is locally well approximated by a quadratic degenerate minimum – the multidimen-
sional equivalent of the two-dimensional minimum of Figure 3.

Notice that gradient systems with zero eigenvalues of the Hessian are in general not structurally stable (structurally stable
systems such as Smale-Morse systems are not dense in high dimensions). Here the degeneracy is however required by the
symmetries intrinsic to the deep networks architecture and its overparametrization. In addition, theorems such as in (13) may
be used to justify the relevant observable dynamics.

3.1 Testing the local structure of global minima

For a test of our proposition or, more precisely, of its assumptions, especially in the case of the crossentropy loss (for which
the Proposition requires some changes) consider the dynamics of a perturbation δW of the solution

˙δW = −[F (W ∗ + δW )− F (W ∗)] = −(DL(W ∗))δW. (5)

where asymptotic stability is guaranteed if the sum of the eigenvalues of −DL – where DL is the Hessian of L – is negative.

Consider now the following experiment. After convergence apply a small random perturbation with unit norm to the parameter
vector, then run gradient descent until the training error is again zero; this sequence is repeated m times. Proposition 1 makes
then the following predictions:

• The training error will go back to zero after each sequence of GD.

• Any small perturbation of the optimum W ∗ will be corrected by the GD dynamics to push back the non-degenerate
weight directions to the original values. Since however the components of the weights in the degenerate directions are
in the null space of the gradient, running GD after each perturbation will not change the weights in those directions.
Overall, the weights will change in the experiment.

• Repeated perturbations of the parameters at convergence, each followed by gradient descent until convergence, will not
increase the training error but will change the parameters and increase some norm of the parameters and increase the
associated test error. In the linear case (see Figure 3) the L2 norm of the projections of the weights in the null space
undergoes a random walk: the increase in the norm of the degenerate components should then be proportional to≈

√
m

with a constant of proportionality that depends on ≈
√

1
N , where N is the dimensionality of the null space.

Previous experiments (3) showed changes in the parameters and in the test – but not in the training – loss, consistently with
our predictions above, which are further supported by the numerical experiments of Figures 14 and 4. Notice that the slight
increase of the test loss without perturbation in Figure 14 is due to the use of the crossentropy risk. In the case of crossentropy

6



Figure 4: We train a 5-layer convolutional neural networks on CIFAR-10 with Gradient Descent (GD) on crossentropy loss.
The top plot shows the crossentropy loss on CIFAR during perturbations (see text). The bottom left is the corresponding
square norm of the weights; the bottom right plot shows the classification error (see text). The network has 4 convolutional
layers (filter size 33, stride 2) and a fully-connected layer. The number of feature maps (i.e., channels) in hidden layers are 16,
32, 64 and 128 respectively. Neither data augmentation nor regularization is performed. Initially, the network was trained
with GD as normal. After it reaches 0 training classification error (after roughly 1800 epochs of GD), a perturbation is
applied to the weights of every layer of the network. This perturbation is a Gaussian noise with standard deviation being 1

4 of
that of the weights of the corresponding layer. From this point, random Gaussian noises with the such standard deviations are
added to every layer after every 100 training epochs. Training loss goes back to the original level after added perturbations,
but test loss grows increasingly higher. As expected, the L2-norm of the weights increases after each step of perturbation
followed by gradient descent which reset the taining rror to zero. Compare with Figure 14 and see text.

the almost zero error valleys of the empirical loss function are slightly sloped downwards towards infinity, becoming flat only
asymptotically (they also become “narrower and narrower multidimensional holes” in terms of sensitivity to perturbations).

The numerical experiments show, as predicted, that the behavior under small perturbations around a global minimum of the
empirical loss for a deep networks is similar to that of linear degenerate regression. Figure 5 shows for comparison the latter
case. Notice that in the case of linear degenerate regression (Figure 15) the test loss indicates a small overfitting, unlike
the nondegenerate case (Figure 16. In other words, the minimum of the test loss occurs at a finite number of iterations.
This corresponds to an equivalent optimum non-zero regularization parameter λ as discussed earlier. Thus a specific “early
stopping” is better than no stopping. The same phenomenon appears for the nonlinear, multilayer case (see Figure 14) with
crossentropy loss. Note that the corresponding classification loss, however, does not show overfitting here. The next sections
(see 4.1) explain why.
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Figure 5: Training and testing with the square loss for a linear network in the feature space (i.e. y = WΦ(X)) with a
degenerate Hessian of the type of Figure 3. The feature matrix φ(X) is wrt a polynomial with degree 30. The target function
is a sine function f(x) = sin(2πfx) with frequency f = 4 on the interval [−1, 1]. The number of training points are 9 while
the number of test points are 100. The training was done with full gradient descent with step size 0.2 for 250, 000 iterations.
Weights were perturbed every 4000 iterations and then gradient descent was allowed to converge to zero training error after
each perturbation. The weights were perturbed by addition of Gaussian noise with mean 0 and standard deviation 0.6. The
L2 norm of the weights is shown on the right. Note that training was repeated 30 times. The figure reports the average train
and test error as well as average norm of the weights over the 30 repetitions. Figure 15 shows the same situation without
perturbations.

4 Gradient descent methods yield implicit regularization

This section summarizes the conjecture by (1) that describes how a key property of linear models may explain the generaliza-
tion properties of deep learning. Our results support their conjecture since Proposition 1 shows that deep nonlinear networks
near global zero-loss minima behave similarly to linear models.

In linear models with square loss, it is known that, for appropriate initial conditions, GD provides implicit regularization
controlled by the number of iterations j (for a fixed gradient step) as λ ∝ 1

j (see (14) and section 6.1 of SI for a summary).
As the number of iterations increases, the equivalent, implicit λ decreases and a larger set of possible solutions is explored (in
analogy to Tikhonov regularization with a decreasing regularization parameter, see Figure 4). For overparametrized models
there may be overfitting in the loss: the asymptotic solution for t→∞ – which corresponds to λ→ 0 – converges in the limit
to the minimum norm solution (for square loss this is the pseudoinverse), which is not a regularized solution itself, but the
limit of a regularized solution (see for instance section 5 in (9)). Overfitting in the loss can be avoided, even without explicit
regularization, by appropriate early stopping.

For a linear network, unlike a nonlinear one, the dynamics of GD with square loss described above is global. In the nonlinear
case, we expect GD to overfit but not much, because the degenerate weight components will not change once a global
minimum is reached, under conditions in which the quadratic approximation of Equation 4 is locally valid. The weights will
be relatively small before convergence if the number of iterations up to convergence is small (consistently with the stability
results in (15)).

The validity of Proposition 1 implies that multilayer, deep networks should behave similarly to linear models for regression:
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the loss of the solution should overfit and converge for t → ∞ to the pseudoinverse. The figures in the main text and in the
SI sections support this scenario for linear as well as for deep networks.

4.1 Implicit regularization yields margin maximization

A direct consequence of the implicit regularization by gradient descent is that the solution obtained after sufficiently many
iterations is the minimum norm solution. The proof holds in the case of linear functions for a variety of loss functions ( (9)
and (16); see SI section 6.2.1 for a short summary).

This is suggested in (1) to be the main reason behind the lack of overfitting in classification. Indeed, the minimum norm
solution is known to maximize classification margin, which in turn ensures good classification error for “low noise” data sets,
which are in fact data sets where the classes are separated by a nicely behaving margin. The precise conditions on the data
that imply good classification accuracy are related to Tsybakov conditions (see for instance (17)). A better path to prove the
same result, connecting it directly to flat minima and assuming a classification setting with a loss such as the logistic loss, is
described in (8) and in Lemma 6 of the SI: SGD maximizes flatness of the minima, which is equivalent to robust optimization,
which maximizes margin.

Rosasco and Recht (1) conjectured that the properties of linear networks may explain the “puzzling” behavior of deep net-
works shown in Figures 2 and 6. Figure 2 shows the classification error in training and testing. This is not the actual loss
which is minimized during training. The loss which is minimized by SGD is the crossentropy loss; the classification error
itself is invisible to the optimizer. In the case of Figure 6 the crossentropy loss is clearly overfitting and increasing during the
transition from under- to over-parametrization, while the classification error does not change. This is the expected behavior
in the linear case.

In the case of the logistic and crossentropy loss, however, the explanation above, clearly valid for linear networks with the
square loss, should be qualified further, since proofs such as ( (9) need to be modified. Lemma 1 (18) shows that for several
loss functions such as cross-entropy, gradient descent on linear networks with separable data converges asymptotically to the
max-margin solution with any starting point w0, while the norm ||w|| diverges. Furthermore, (18) prove that the convergence
is very slow and only logarithmic in the convergence of the loss itself. This explains why optimization of the logistic loss
helps decrease the classification error in testing, even after the empirical classification error is zero and the empirical loss is
very small, as in Figures 2 and 6. In fact, this is expected also for deep networks, since a slight modification of Proposition 1
– to take into account the crossentropy loss – shows that Srebro result also applies to the case of deep networks.

5 Discussion

Our main contribution is showing that near a global, flat minimum, gradient descent for deep networks is qualitatively equiv-
alent to a linearized system with a gradient dynamics on a quadratic degenerate potential. Proposition 1 proves the conjecture
in (1) that many properties of linear models are inherited by deep networks. In particular, deep networks, similarly to linear
models, are predicted to overfit the loss while not overfitting the classification error (for nice data sets). Through our reduction
by Proposition 1, this follows from properties of gradient descent for linear network, namely implicit regularization of the
loss and margin maximization for classification. In practical use of deep networks, explicit regularization (such as weight
decay) together with other regularizing techniques (such as virtual examples) is usually added and it is often beneficial but
not strictly necessary.

Thus there is nothing magic in deep learning that requires a theory different from the classical linear one with respect to
generalization, intended as convergence of the empirical to the expected error, and especially with respect to the absence of
overfitting in the presence of overparametrization. In our framework, the fact that deep learning networks optimized with
gradient descent techniques do generalize follows from the implicit regularization by GD and from previous results such as
Bartlett’s (10) and Recht (11). More interestingly, our Proposition explains the puzzling property of deep networks, seen
in several situations such as CIFAR, of overfitting the loss while not overfitting the classification error by showing that the
properties of linear networks emphasized by (1) and (18) apply to deep networks under certain assumptions on the empirical
minimizers and the datasets.
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Figure 6: The figure shows the crossentropy loss under the same conditions of Figure 2. There is clear overfitting in the testing
loss.

Of course, the problem of establishing quantitative and useful bounds on the performance of deep network, as well as the
question of which type of norm is effectively optimized, remains an open and challenging problem (see (19)), as it is mostly
the case even for simpler one-hidden layer networks, such as SVMs. Our main claim is that the puzzling behavior of Figure
2 can be explained qualitatively in terms of the classical theory.

The overall theoretical picture of deep learning can be summarized as follows, taking into account (2), (3), (20), (1) and
proposition 1:

• unlike shallow networks deep networks can approximate the class of hierarchically local functions without incurring in
the curse of dimensionality (2, 21);

• overparametrized deep networks yield many global degenerate – and thus flat – minima (3) which are selected by SGD
with high probability (20);

• overparametrization, which yields overfit of the loss, can avoid overfitting the classification error for nice datasets
because of implicit regularization by gradient descent methods and the associated margin maximization.

In other words, the main difference between shallow and deep networks is in terms of size of the training set and approximation
power. Unlike shallow networks, deep local (for instance convolutional) networks can avoid the curse of dimensionality (2) in
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approximating the class of hierarchically local compositional functions. SGD in overparametrized networks selects with very
high probability degenerate minima which are often global. As shown in this note, overparametrization does not necessarily
lead to overfitting of the classification error.

We conclude with the following, possibly quite relevant observation. The robustness of the expected error with respect to
overparametrization suggests that, at least in some cases, the architecture of locally hierarchical networks may not need to be
matched precisely to the underlying function graph: a relatively large amount of overparametrization (see Figure 11) may not
significantly affect the predictive performance of the network, making it easier to design effective deep architectures.
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6 Supplementary Information

6.1 Implicit/Iterative Regularization by GD and SGD for linear dynamical systems

We recall some recent results regarding the regularization properties of SGD (22). Here regularization does not arise from
explicit penalizations or constraints. Rather it is implicit in the sense that it is induced by dynamic of the SGD iteration
and controlled by the choice of either the step-size, the number of iterations, or both. More precisely, we recall recent
results showing convergence and convergence rates to the minimum expected risk, but also convergence to the minimal norm
minimizer of the expected risk.

All the the results are for the least square loss and assume linearly parameterized functions. With these choices, the learning
problem is to solve

min
w∈RD

E(w) E(w) =

∫
(y − w>x)2dρ

given only (xi, yi)
n
i=1 – ρ fixed, but unknown. Among all the minimizers O of the expected risk the minimal norm solution

is w† solving
min
w∈O
‖w‖,

We add two remarks.

• The results we present next hold considering functions of the form

f(x) = 〈w,Φ(x)〉

for some nonlinear feature map Φ : RD → Rp.

• Further, all the results are dimension independent, hence allow to consider D (or p) to be infinite.

The SGD iteration is given by
ŵt+1 = ŵt − ηtxit(ŵ>t xit − yit), t = 0, . . . T

where

• (ηt)t specifies the step-size,

• T stopping time, (T > n multiple “passes/epochs”)

• (it)t specifies how the iteration visits the training points. Classically (it)t is chosen to be stochastic and induced by a
uniform distribution over the training points.

The following result considers the regularization and learning properties of SGD in terms of the corresponding excess risk.
Theorem
Assume ‖x‖ ≤ 1 and |y| ≤ 1 for all (ηt)t = η and T , with high probability

E(ŵT )− E(w†) .
1

ηT
+

1√
n

(
ηT√
n

)2

+ η

(
1 ∨ ηT√

n

)
In particular, if η = 1√

n
and T = n, then

lim
n→∞

E(ŵT ) = E(w†)

almost surely.
The next result establishes convergence to the minimal norm solution of the expected risk.
Theorem
Assume ‖x‖ ≤ 1 and |y| ≤ 1, if η = 1√

n
and T = n, then

lim
n→∞

‖wT − w†‖ = 0.

almost surely.
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6.2 Hessian of the loss for multilayer networks

6.2.1 No-hidden-layer linear systems

For a linear network without hidden layers with the training set (X,Y ), a set of weights A can be found by minimizing

min
A
‖Y −AX‖2F , (6)

where Y ∈ Rd′,n , A ∈ Rd′,d, X ∈ Rd,n and n is number of data points, yielding an equation for A that is degenerate when
d > n. The general solution is in the form of

A = Y X† +M,

where X† is the pseudoinverse of the matrix X , and M is any matrix in the left null space of X . The minimum norm solution
is

A = Y X†. (7)

Furthermore, as shown in the section before, the solution Equation 7 is found by GD and SGD and corresponds to iterative
regularization where the role of the inverse of the regularization parameter λ is played by the product of step size and number
of steps (14).

Let us look in more detail at the gradient descent solution (from (8)). Consider the following setup: X = (x1, . . . , xn)> ∈
Rn,d are the data points, with d > n. We further assume that the data matrix is of full row rank: rank(X) = n. Let y ∈ Rn
be the labels, and consider the following linear system:

Xw = y (8)

where w ∈ Rd is the weights to find. This linear system has infinite many solutions because X is of full row rank and we
have more parameters than the number of equations. Now suppose we solve the linear system via a least square formulation

L(w) =
1

2n
‖Xw − y‖2 (9)

by using gradient descent (GD) or stochastic gradient descent (SGD). In this section, we will show that both GD and SGD
converges to the minimum norm solution, for the `2 norm. A similar analysis (with fewer details) was presented in (23).

Lemma 2. The following formula defines a solution to (8)

w† , X>(XX>)−1y (10)

and it is the minimum norm solution.

Proof Note since X is of full row rank, so XX> is invertible. By definition,

Xw† = XX>(XX>)−1y = y

Therefore, w† is a solution. Now assume ŵ is another solution to (8), we show that ‖ŵ‖ ≥ ‖w†‖. Consider the inner product

〈w†, ŵ − w†〉 = 〈X>(XX>)−1y, ŵ − w†〉
= 〈(XX>)−1y,Xŵ −X†〉
= 〈(XX>)−1y, y − y〉
= 0

Therefore, w† is orthogonal to ŵ − w†. As a result, by Pythagorean theorem,

‖ŵ‖2 = ‖(ŵ − w†) + w†‖2 = ‖ŵ − w†‖2 + ‖w†‖2 ≥ ‖w†‖2
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Lemma 3. When initializing at zero, the solutions found by both GD and SGD for problem (9) live in the span of rows of X .
In other words, the solutions are of the following parametric form

w = X>α (11)

for some α ∈ Rn.

Proof

The gradient for (9) is

∇wL(w) =
1

n
X>(Xw − y) = X>e

where we define e = (1/n)(Xw − y) to be the error vector. GD use the following update rule:

wt+1 = wt − ηt∇wL(wt) = wt − ηtX>et

Expanding recursively, and assume w0 = 0. we get

wt =

t−1∑
τ=0

−ητX>eτ = X>

(
−
t−1∑
τ=0

ητeτ

)
The same conclusion holds for SGD, where the update rule could be explicitly written as

wt+1 = wt − ηt(x>itw − yit)xit
where (xit , yit) is the pair of sample chosen at the t-th iteration. The same conclusion follows with w0 = 0.

Q.E.D.

Theorem 1. Let wt be the solution of GD after t-th iteration, and wt be the (random) solution of SGD after t-th iteration.
Then ∀ε > 0, ∃T > 0 such that

L(wt) ≤ ε, EL(wt) ≤ ε
where the expectation is with respect to the randomness in SGD.

Corollary 1. When initialized with zero, both GD and SGD converges to the minimum-norm solution.

Proof Combining Lemma 3 and Theorem 1, GD is converging wt → w? = X>α? as t→∞ for some optimal α?. Since w?
is a solution to (8), we get

y = Xw? = XX>α?

Since XX> is invertible, we can solve for α? and get

w? = X>α? = X>(XX>)y = w†

Similar argument can be made for SGD with expectation with respect to the randomness of the algorithm.

In the degenerate linear case one near convergence but the null space is not guaranteed to remain unaffected by early steps
in GD. Norms will remain bounded (in fact the title of (11) Train faster, generalize better...” may apply here) and thus
generalization is guaranteed but the solution in this special case is not strictly guaranteed to be of minimum norm.

6.2.2 One-hidden layer linear networks

Consider linear network of the same type analyzed by (24, 25) in the full rank case and shown in Figure 7. This is a network
with an input layer, an output layer, a hidden layer of linear units and two sets of weights. Our results for the degenerate case
are new.

Suppose that gradient descent is used to minimize a quadratic loss on a set of n training examples. The activation function
of the hidden units is linear, that is h(z) = az. Notice that though the mapping between the input x and the output f(x) is
linear, the dependence of f on the set of weights W1,W2 is nonlinear. Such deep linear networks were studied in a series of
papers (24–26) in situations in which there are more data than parameters, n ≥ d. In this section we show how the network
will not overfit even in the overparametrized case, which corresponds to n < d.
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Figure 7: A one-hidden layer network with weights represented by the matrix W1 from the d inputs to the N hidden units and
the matrix W2 for the weights from the hidden units to the output.

Figure 8: In this figure we show how a linear network W2W1X = y converges to the test error in two different train-
ing protocols: in the first the number of iterations grows, in the second 1

λ grows large (with optimization run to cover-
gence for each λ. Optimization is performed in both case with SGD. The training on the right were done on by minimizing
1
n

∑n
i=1 V (f(x), y) + λ‖W2W1‖ with various values of the regularization parameters λ. Similarly, the experiments on the

right minimized the same cost function except that λ = 0. The number of data points were n = 30, the input dimension
d = 31 (including the bias). The target function was generated by a two layer linear network with 1 hidden unit and thus a
total of 32 weights. The approximating two linear network had 2 hidden units and thus 64 parameters. The test set had 32
data points. Note that there was no noise in the training or test set.

Model Description and notation Consider a network, d inputs, N hidden linear units and d′ outputs. We denote the loss
with L(w) = 1

2 ||W2W1X − Y ||2, where X ∈ Rd,n, Y ∈ Rd
′,n, W2 ∈ Rd

′,N and W1 ∈ RN,d. Let E = W2W1X − Y ∈
Rd

′,n. Let w = vec(W>1 ,W
>
2 ) ∈ RNd+d′N .

Gradient dynamics and Hessian We can write the dynamical system corresponding to its gradient as

Ẇ1 = −∇W1L(w) = −W>2 EX> = W>2 Y X
> −W>2 W2W1XX

> (12)

and similarly
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Ẇ2 = −Y X>W>1 +W2W1XX
>W>1 (13)

The linearization of this dynamical system (Equations 12 and 13) corresponds to the Hessian of the loss, which is

∇2L(w) =

[
W>2 W2 ⊗XX> C

C> Id′ ⊗XX>W1XX
>W1

]
∈ R(Nd+d′N),(Nd+d′N)

where
C = [W>2 ⊗XX>W>1 ] + [IN ⊗X(E>)•1, . . . , IN ⊗X(E>)•d′ ].

Here, (E>)•i denote the i-th column of E>.

Degeneracy of the dynamics Suppose that d′ < N (overparametrization). Then, W>2 W2 has zero eigenvalue, which
implies that W>2 W2 ⊗ XX> has zero eigenvalue. In turn, this implies that ∇2L(w) has zero eigenvalue. Indeed, we can
construct a degenerate direction as follows: consider a vector w = ([w1 ⊗ w2], 0)> such that w1 is in the null space of W2,
with which we have that w>∇2L(w)w = 0.

However, along this degenerate direction, the output model does not change at all, because this direction corresponds to
adding an element of null space ofW2 toW1 (i.e., the product W2W1 does not change in this direction) Also, (S)GD does not
add element corresponding to this direction from Equation 12, since Ẇ1 is in the column space of W>2 which is orthogonal
to the null space of W2.

Trivial and nontrivial degeneracy It is interesting that even in the overdetermined case n >> d, the solution is not
unique in terms of W1 and W2. This corresponds to the “trivial” degeneracy, which is a terminology defined as follows: Let
fw : X → Y be a model parameterized by the parameter w. For example, in the case of the linear one-hidden layer model,
fw(x) = W2W1x where w = vec(W>1 ,W

>
2 ) and x ∈ X . Then, we call degeneracy “trivial” if and only if there exists ε > 0

such that fw = fw+ε∆w where ∆w is in the degenerate space. Here, we write f1 = f2 if and only if their graphs are equal:
i.e., {(x, y) ∈ X × Y : x ∈ X , f1(x) = y} = {(x, y) ∈ X × Y : x ∈ X , f2(x) = y}. We call degeneracy “nontrivial” if and
only if it is not trivial.

As we will see, trivial degeneracy occurs in multilayer networks with unit activation which is linear (section 6.2.2) or ReLU
(section 6.2.4). The situation in terms of trivial and nontrivial degeneracy is quite different in the overdetermined case and
underdetermined case:

• The solution in the overdetermined case yields a network that is unique despite the degeneracy. In other words, every
possible degeneracy is trivial degeneracy. Furthermore, more data cannot change this situation.

• In the underdetermined case, we may have both types of degeneracy. More data would avoid nontrivial degeneracy
which yields different networks.

GD and SGD converge to the Minimum Norm Solution Assume that N, d ≥ n ≥ d′ (overparametrization). Let
A = W2W1. For any matrix M , let Col(M) and Null(M) be the column space and null space of M .

Due to the convexity of the loss L as a function of the entries of A, the global minimum A∗ in terms of the entries of A is
obtained as follows:

∂L

∂A∗
= (A∗X − Y )X> = 0

⇔ A∗ ∈ {A = Y X>(XX>)† +BX : BXX = 0}

The minimum norm solution A∗min is the global minimum A∗ with its rows not in Null(X>), which is

A∗min = Y X>(XX>)†.
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Due to the over-parameterization with w, for any entries of A, there exist entries of W1 and W2 such that A = W2W1. Thus,
the global minimum solutions in terms of A and w are the same.

Lemma 4. For gradient descent and stochastic gradient descent with any mini-batch size,

• any number of the iterations adds no element in Null(X>) to the rows of W1, and hence

• if the rows of W1 has no element in Null(X>) at anytime (including the initialization), the sequence converges to a
minimum norm solution if it converges to a solution.

Proof. From ∂L
∂vec(W1) = [X ⊗W>2 ]vec(E) = vec(W>2 EX

>), we obtain that

∂L

∂W1
= W>2 EX

>.

For SGD with any mini-batch size, let X̄t be the input matrix corresponding to a mini-batch used at t-th iteration of SGD. Let
L̄t and Ēt be the corresponding loss and the error matrix. Then, by the same token,

∂L̄t
∂W1

= W>2 ĒtX̄
>
t .

From these gradient formulas, the first statement follows by noticing that for any t, Col(X̄t) ⊆ Col(X) ⊥ Null(X>). The
second statement follows the fact that if the rows of W1 has no element in Null(X>) at anytime t, then for anytime after that
time t, Col(W>1 W

>
2 ) ⊆ Col(W>1 ) ⊆ Col(X) ⊥ Null(X>).

The above lemma shows that if (stochastic) gradient descent sequence converges to a solution, then we can easily ensure the
solution to be a minimum norm solution. However, we have not shown that (stochastic) gradient descent converges to a global
minimum solution. This result is provided by the following lemma.

Lemma 5. If W2 6= 0, every stationary point w.r.t. W1 is a global minimum.

Proof. For any global minimum solution A∗, the transpose of the model output is

(A∗X)> = X>(XX>)†XY >

which is the projection of Y > onto Col(X>). Let D = [W2 ⊗X>]. Then, with the transpose of the model output, the loss
can be rewritten as

L(w) =
1

2
‖X>W>1 W>2 − Y >‖2 =

1

2
‖Dvec(W>1 )− Y >‖2.

The condition for a stationary point yields

0 =
∂L

∂vec(W>1 )
= DT (Dvec(W>1 )− Y >)

⇒ Dvec(W>1 ) = D(DTD)†DTY > = Projection of Y > onto Col(D).

If W2 6= 0, we obtain Col(D) = Col(X>). Hence any stationary point w.r.t. W1 is a global minimum.

It follows from Lemmas 4 and 5 that, if we initialize the rows of W1 with no element in Null(X>), and if W2 6= 0, GD and
SGD find a minimum norm solution.

The summary is provided by
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Theorem 2. If

• the rows of W1 are initialized with no element in Null(X>),

• and if W2 6= 0,

then gradient descent (and stochastic gradient descent) converges to a minimum norm solution.

As a final remark, the analysis above holds for a broad range of loss function and not just the square loss. Asymptotically
Ẇ = −∇WL(W>X), in which we makes explicit the dependence of the loss L on the linear function W>X . Since
∇WL(W>X) = X>∇ZL(Z) the update to W is in the span of the data X , that is, it does not change the projection of W
in the null space of X . Thus if the norm of the components of W in the null space of X was small at the beginning of the
iterations, it will remain small at the end. This means that among all the solutions W with zero error, gradient descent selects
the minimum norm one.

6.2.3 One-hidden layer polynomial networks

Consider a polynomial activation for the hidden units. The case of interest here is n > d. Consider the loss L(w) =
1
2 ||Pm(X)− Y ||2F where

Pm(X) = W2(W1X)m. (14)

where the power m is elementwise.

We obtain, denoting E = Pm(X)− Y , with E ∈ Rd
′,n, W2 ∈ Rd

′,N , W1 ∈ RN,d, E′ ∈ Rd
′,d

∇W1
L(w) = m(W1X)m−1 ◦ (WT

2 E)]X> = E′X> (15)

where the symbol ◦ denotes Hadamard (or entry-wise) product. In a similar way, we have

∇W2L(w) = E(((W1X)m)>). (16)

6.2.4 Nonlinear deep networks

We now discuss an extension of the above arguments to the nonlinear activation case with activation function σ(z), such as
the ReLU activation.

Gradient dynamics of polynomial multilayer networks We remark that if σ(z) = az+bz2, the dynamical system induced
by GD and the square loss is

Ẇ1 = −(aW>2 E + 2b[(W1X) ◦ (WT
2 E)])X> (17)

and

Ẇ2 = −[aEX>W>1 + bE(((W1X)2)>)]. (18)
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Hessian and degeneracy of nonlinear one-hidden layer networks For a general activation function σ, some block of the
Hessian of the loss can be written as

∇2L(w) =

[
− −
− Id′ ⊗ σ(W1X)σ(W1X)>

]
.

We can derive other blocks of the Hessian as follows: ∇2L(w) = ∇Ŷ (w)∇Ŷ (w)> +
∑n
i=1∇2Ŷi(w)Ei, where Ŷ (w) =

vec(W2σ(W1X)) is the model output vector. If E = 0 at the limit point, then ∇2L(w) = ∇Ŷ (w)∇Ŷ (w)>. So, let us
consider the case where E = 0 at the limit point.

∇Ŷ (w)∇Ŷ (w)>

=

[
∇1Ŷ (w)∇1Ŷ (w)> ∇1Ŷ (w)∇2Ŷ (w)>

∇2Ŷ (w)∇1Ŷ (w)> ∇2Ŷ (w)∇2Ŷ (w)>

]
.

where
∇1Ŷ (w)> = [In ⊗W2]σ̇(vec[W1X])[X> ⊗ IN ],

and
∇2Ŷ (w)> = Id′ ⊗ σ(W1X)>

We now show that the first block of the Hessian,

∇1Ŷ (w)∇1Ŷ (w)> = [X ⊗ IN ]σ̇(vec[W1X])[In ⊗W>2 W2]σ̇(vec[W1X])[X> ⊗ IN ],

has the zero eigenvalues when the model is over-parameterized as dN > n·min(N, d′). This happens with over-parameterization.
Then, the rank of [In⊗W>2 W2] is at most n·min(N, d′), which implies that the first block in the Hessian ([X⊗IN ]σ̇(vec[W1X])[In⊗
W>2 W2]σ̇(vec[W1X])[X> ⊗ IN ]) of size dN by dN has zero eigenvalue (the rank of the product of matrices is at most the
minimum of the ranks of matrices), which implies that∇Ŷ (w)∇Ŷ (w)> has zero eigenvalue.

Hessian and degeneracy of nonlinear two-hidden layer networks For networks with two-hidden layers, we have that

∇Ŷ (w)∇Ŷ (w)> =

∇1Ŷ (w)∇1Ŷ (w)> ∇1Ŷ (w)∇2Ŷ (w)> ∇1Ŷ (w)∇3Ŷ (w)>

∇2Ŷ (w)∇1Ŷ (w)> ∇2Ŷ (w)∇2Ŷ (w)> ∇2Ŷ (w)∇3Ŷ (w)>

∇3Ŷ (w)∇1Ŷ (w)> ∇3Ŷ (w)∇2Ŷ (w)> ∇3Ŷ (w)∇3Ŷ (w)>

 ,
where,

∇1Ŷ (w)> = [In ⊗W3]σ̇(h2)[In ⊗W2]σ̇(h1)[X> ⊗ IN1
],

∇2Ŷ (w)> = [In ⊗W3]σ̇(h2)[σ(W1X)> ⊗ IN2
],

and
∇3Ŷ (w)> = [σ(W2σ(W1X))> ⊗ IN3

].

By the same token, we have zero eigenvalue in the block∇1Ŷ (w)∇1Ŷ (w)> with overparametrization.

Let D> = [In ⊗W3]σ̇(h2)[In ⊗W2]σ̇(h1)[X> ⊗ IN1 ]. If the nonlinear activation is ReLU, then we can write Ŷ (w) =
D>vec(W1) and ∇1Ŷ (w)∇1Ŷ (w)> = DD>. Thus, the zero eigenvalues of the Hessian block ∇1Ŷ (w)∇1Ŷ (w)> are the
exactly those defining the nulls space of D>. In other words, the zero eigenvalue directions do not change the loss values.
Furthermore, similarly to the no-null-element proof for deep linear case,

∇vec(W1)L̂(w) = D(Ŷ (w)− Y )

which implies that the gradient descent does not add any elements from the null space of D>. However, D is now a function
of w (and X), and D is changing during training when far from the critical point.
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Derivation of the Hessian We describe below the derivation of the Hessian for nonlinear two-hidden layer case. By the
same token, we derived the Hessian for one hidden layer with nonlinear and linear cases.

To avoid introducing different symbols for different domains of activation functions, let σ(M) be the elementwise application
of nonlinear activation for any size of matrix M . Accordingly, given a size t of vector v, let σ̇(v) be the diagonal matrix
of size t by t, with the diagonal elements being the derivative of the nonlinear activation function for each element vk for
k = 1 . . . , t.

Let L(w) = 1
2‖W3σ(W2σ(W1X)) − Y ‖2F . Let Ŷn(w) = W3σ(W2σ(W1X)) and E = Ŷn(w) − Y . Then, L(w) =

vec(E)>vec(E).

Then,

vec(Ŷn(w)) = vec(W3σ(W2σ(W1X)))

= [In ⊗W3]vec(σ(W2σ(W1X)))

= [In ⊗W3]σ(vec(W2σ(W1X)))

= [In ⊗W3]σ([In ⊗W2]vec(σ(W1X)))

= [In ⊗W3]σ([In ⊗W2]σ(vec(W1X)))

= [In ⊗W3]σ([In ⊗W2]σ([X> ⊗ IN1
]vec(W1)))

Similarly,

vec(Ŷn(w)) = [In ⊗W3]σ([σ(W1X)> ⊗ IN2
]vec(W2)),

and

vec(Ŷn(w)) = [σ(W2σ(W1X))> ⊗ IN3 ]vec(W3).

Let h2 = vec(W2σ(W1X)) and h1 = vec(W1X)). Let ∇kvec(Ŷn(w))> = ∇vec(Wk)vec(Ŷn(w))>.

Then,

∇1vec(Ŷn(w))> = [In ⊗W3]σ̇(h2)[In ⊗W2]σ̇(h1)[X> ⊗ IN1 ],

∇2vec(Ŷn(w))> = [In ⊗W3]σ̇(h2)[σ(W1X)> ⊗ IN2
],

and

∇3vec(Ŷn(w))> = [σ(W2σ(W1X))> ⊗ IN3 ].

Degeneracy for nonlinear k-layer networks The following statement generalizes the above results about degeneracy of
nonlinear two-hidden layer networks to those of nonlinear multilayer networks with an arbitrarily depth. We use the same
notation as above unless otherwise specified.

Theorem 3. Let H be a positive integer. Let hk = Wkσ(hk−1) ∈ RNk,n for k ∈ {2, . . . ,H + 1} and h1 = W1X ,
where NH+1 = d′. Consider a set of H-hidden layer models of the form, Ŷn(w) = hH+1, parameterized by w =
vec(W1, . . . ,WH+1) ∈ RdN1+N1N2+N2N3+···+NHNH+1 . Let L(w) = 1

2‖Ŷn(w) − Y ‖2F be the objective function. Let
w∗ be any twice differentiable point of L such that L(w∗) = 1

2‖Ŷn(w∗)−Y ‖2F = 0. Then, if there exists k ∈ {1, . . . ,H + 1}
such that NkNk−1 > n ·min(Nk, Nk+1, . . . , NH+1) where N0 = d and NH+1 = d′ (i.e., overparametrization), there exists
a zero eigenvalue of Hessian ∇2L(w∗).

Proof. SinceL(w) = 1
2‖Ŷn(w)−Y ‖2F = 1

2vec(Ŷn(w)−Y )>vec(Ŷn(w)−Y ), we have that∇2L(w) = ∇vec(Ŷn(w))∇vec(Ŷn(w))>+∑nd′

j=1∇2vec(Ŷn(w))j(vec(Ŷn(w))j − vec(Y )j). Therefore,

∇2L(w∗) = ∇vec(Ŷn(w∗))∇vec(Ŷn(w∗))>.

21



To obtain a formula of ∇vec(Ŷn(w)), we first write vec(Ŷn(w)) recursively in terms of vec(hk) as follows. For any k ∈
{2, . . . ,H + 1},

vec(hk) = Wkσ(hk−1) = [In ⊗Wk]vec(σ(hk−1)) = [In ⊗Wk]σ(vec(hk−1)),

where the last equality follows the fact that σ represents the elementwise application of nonlinear activation function (for an
input of any finite size). Thus,

vec(Ŷn(w)) = vec(hH+1) = [In ⊗WH+1]σ(vec(hH)),

and we can expand vec(hH) recursively by the above equation of vec(hk) for any k ∈ {2, . . . ,H + 1}.

Moreover, for any k ∈ {2, . . . ,H + 1},

vec(hk) = Wkσ(hk−1) = [σ(hk−1)> ⊗ INk
]vec(Wk),

and
vec(h1) = W1X = [X> ⊗ IN1 ]vec(W1).

From these, we obtain that

∇kvec(Ŷn(w))> = h̃k[σ(hk−1)> ⊗ INk
] for any k ∈ {2, . . . ,H + 1},

and
∇1vec(Ŷn(w))> = h̃1[X> ⊗ IN1

],

where
h̃k = h̃k+1[In ⊗Wk+1]σ̇(hk) for any k ∈ {1, . . . ,H},

and
h̃H+1 = InNH+1

.

Therefore, for any k ∈ {2, . . . ,H + 1},

∇kvec(Ŷn(w))∇kvec(Ŷn(w))> = [σ(hk−1)⊗ INk
]h̃>k h̃k[σ(hk−1)> ⊗ INk

],

which is a NkNk−1 by NkNk−1 matrix, and

∇1vec(Ŷn(w))∇1vec(Ŷn(w))> = [X ⊗ IN1 ]h̃>1 h̃1[X> ⊗ IN1 ],

which is a N1d by N1d matrix. Here, the rank of ∇kvec(Ŷn(w))∇kvec(Ŷn(w))>k is at most n ·min(Nk, Nk+1, . . . , NH+1)
for any k ∈ {1, . . . ,H + 1} where NH+1 = d′, because the rank of the product of matrices is at most the minimum of the
ranks of matrices. This implies that for any k ∈ {1, . . . ,H + 1}, ∇kvec(Ŷn(w))∇kvec(Ŷn(w))> has a zero eigenvalue
if NkNk−1 > n · min(Nk, Nk+1, . . . , NH+1) where N0 = d and NH+1 = d′. Therefore, the Hessian ∇2L(w∗) =
∇vec(Ŷn(w∗))∇vec(Ŷn(w∗))> � 0 has (at least) a zero eigenvalue if there exists k ∈ {1, . . . ,H + 1} such that NkNk−1 >
n ·min(Nk, Nk+1, . . . , NH+1) where N0 = d and NH+1 = d′.

If σ is additionally assumed to be ReLU, we can write that for any k ∈ {1, . . . ,H + 1},

vec(Ŷn(w∗)) = ∇kvec(Ŷn(w∗))>vec(W ∗k ).

The directions ∆kvec(w) = vec(0, . . . , 0,∆Wk, 0, . . . , 0) found in the proof of Theorem 3 such that

∆kvec(w)>∇2L(w∗)∆kvec(w) = 0

corresponds to
∇kvec(Ŷn(w∗))>∆Wk = 0.

Note that ∇kvec(Ŷn(w)) depends on Wk only because of the dependence of the ReLU activations on Wk. Thus, at a
differentiable point w∗, there exists a sufficiently small ε > 0 such that the model outputs on the training dataset Ŷn(w) does
not change in these directions ∆kvec(w) = vec(0, . . . , 0,∆Wk, 0, . . . , 0) as

vec(Ŷn(w∗ + ε∆kvec(w))) = ∇kvec(Ŷn(w∗))>(vec(W ∗k ) + ε∆Wk)

= ∇kvec(Ŷn(w∗))>vec(W ∗k )

= vec(Ŷn(w∗)).
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6.3 For linear networks SGD selects flat minima which imply robust optimization which provides
maximization of margin

In the next subsections we extend previous results (27) to relate minimizers that corresponds to flatness in the minimum
to robustness: thus SGD performs robust optimization of a certain type. In particular, we will show that robustness to
perturbations is related to regularization (see (27, 28)). We describe the separable and linear case.

The argument in (20) shows why SGDL (stochastic gradient descent Langevin) selects degenerate minimizers and, among
those, the ones corresponding to larger flat regions of the loss. In fact SDGL shows concentration in probability – because of
the high dimensionality – of its asymptotic distribution for minima that are the most robust to perturbations of the weights.
The above fact suggests the following

Conjecture 1. Under regularity assumptions on the landscape of the empirical minima, SGDL corresponds to the following
robust optimization

min
w

max
(δ1,··· ,δn)

1

n

n∑
i=1

V (yi, fw+δiw(xi)). (19)

It is especially important to note that SGDL – and approximately SGD – maximize volume and “flatness” of the loss in weight
space.

6.3.1 SGD converges to a large-margin classifier for linear functions

Assume that the conjecture 1 holds and consider a binary classification problem. In linear classification we try to separate
the two classes of a binary classification problem by a hyperplane H = {x : wᵀx + b = 0}, where w ∈ Rd. There is a
corresponding decision rule of the form y = sign(wᵀx+ b) Let us now assume a separability condition on the data set: the
decision rule makes no error on the data set. This corresponds to the following set of inequalities

yi(w
ᵀxi + b) > 0, i = 1, · · · , n (20)

The separability conditions implies that the inequalities are feasible. Then (changing slightly the notation for the classification
case) the robustness formulation of Equation 1 is equivalent to robustness of the classifier wrt perturbations δw in the weights
which we assume here to be such that ||δw||2 ≤ ρ||w||2 with ρ ≥ 0. In other words, we require that ∀δw such that
‖δw‖2 ≤ ρ‖w‖2:

yi((w + δw)ᵀxi + b) ≥ 0, i = 1, . . . , n (21)

Further assume that ‖xi‖2 ≈ 1, then for i = 1, . . . , n, if we let δw = −ρyixi‖w‖2/‖xi‖2,

yi(w
ᵀxi + b) ≥ −yiδwᵀxi = ρ‖w‖2‖xi‖2 ≈ ρ‖w‖2

We obtain a robust counterpart of Equation (20)

yi(w
ᵀxi + b) ≥ ρ||w||2, i = 1, · · · , n (22)

Maximizing ρ – the margin – subject to the constraints Equation (22) leads to minimizing w, because we can always enforce
ρ||w||2 = 1 and thus to

min
w,b
{||w||2 : yi(w

ᵀxi + b) ≥ 1 i = 1, · · · , n} (23)
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We have proven the following result (a variation of (27), page 302)

Lemma 6. Maximizing flatness (as SGD does (20)) is equivalent to maximizing robustness and thus classification margin in
binary classification of separable data.

Remarks

1. Notice that the classification problem is similar to using the loss function V (y, f(x)) = log(1 + e−yf(x)) which
penalizes errors but is otherwise very small in the zero classification error case. (20) implies that SGD maximizes
flatness at the minimum, that is SGD maximizes δw.

2. The same Equation 23 follows if the maximization is with respect to spherical perturbations of radius ρ around each
data point xi. In either case the resulting optimization problems is equivalent to hard margin SVMs.

3. If we start from the less natural assumption that ||δw||∞ ≤ ρ||w||2 with ρ ≥ 0 and assume that each of the d components
|(xi)j | ≈ 1, ∀i, then the robust counterpart of Equation 20 is, since (δw)ᵀx ≤ ||(δw)ᵀ||`∞ ||x||`1 ,

yi(w
ᵀxi + b) ≥ (δw)ᵀ sup δw = ρ||w||2, i = 1, · · · , n (24)

.

4. In the non-separable case, the hinge loss V (y, f(x)) = [1 − yf(x)]+, with y binary (used by (28)) – which is similar
to the cross-entropy loss V (y, f(x)) = log(1 + e−yf(x)) – leads to the following robust minimization problem

min
w,b

1

n

n∑
i=1

[1− yi(wᵀxi + b) + ρ||w||2]+. (25)

Note that the robust version of this worst-case loss minimization is not the same as in classical SVM because the
regularization term is inside the hinge loss. Note also that standard regularization is an upper bound for the robust
minimum since

min
w,b

1

n

n∑
i=1

[1− yi(wᵀxi + b) + ρ||w||2]+ ≤ min
w,b

1

n

n∑
i=1

[1− yi(wᵀxi + b)]+ + ρ||w||2]. (26)

In the case of the square loss, robust optimization gives with ||δw||2 ≤ ρ||w||2

min
w,b

1

n

n∑
i=1

[(yi − wᵀxi)
2 + ρ2||w||2]+. (27)

The summary here is that depending on the loss function and on the uncertainity set allowed for the perturbations
δw one obtains a variety of robust optimization problems. In general they are not identical to standard regularization
but usually they contain a regularization term. Notice that a variety of regularization norms (for instance `1 and `2)
guaranteeCVloo stability and therefore generalization. The conclusion is that in the case of linear networks and linearly
separable data, SGD provides a solution closely related to hinge-loss SVM.

6.3.2 Robustness wrt Weights and Robustness wrt Data

A natural intuition is that several forms of stability are closely related. In particular, perturbations of the weights follow from
perturbations of the data points in the training set because the function f(x) resulting from the training is parametrized by
the weights that depend on the data points Sn: f(x) = f(x;w(z1, · · · , zn)), with z = (x, y)1 . Thus flat regions in weight
space of the global minimum of the empirical loss indicate stability with respect to the weights; the latter in turn indicates
stability with respect to training examples.

1In a differentiable situation, one would write df = df
dw

dw
dS

dS and dw = dw
dS

dS. The latter equation would show that perturbations in the weights
depend on perturbations of the training set S.
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6.4 Polynomial Networks

There are various reasons why it is interesting to approximate nonlinear activation functions with univariate polynomials
thus leading to deep polynomial networks. For this paper polynomial approximations of deep networks justify the use of
Bezout theorem to characterize minima of the loss function. In addition, it is worthwhile to remark that the good empirical
approximation by polynomial networks of the main properties of ReLU networks implies that specific properties of the ReLU
activation function such as its discontinuous derivative, and the property of non-negative homogeneity, e.g. σ(αz) = ασ(z)
do not play any significant role. Furthermore, the characterization of certain properties of deep networks becomes easier by
thinking of them as polynomial and thus analytic functions.

A generic polynomial Pk(x) of degree k in d variables is in the linear space Pk = ∪ks=0Hs composed by the union of
homogeneous polynomialsHs, each of degree s. Hk is of dimensionality r = dimHk =

(
d−1+k
k

)
: the latter is the number of

monomials and thus the number of coefficients of the polynomials in Hk. A generic polynomial in Pk can always be written
(see Proposition 3.5 in (29)) as

Pk(x) =

r∑
i=1

pi(〈wi, x〉). (28)

where pi is a univariate polynomial of degree at most k and 〈wi, x〉) is a scalar product. In fact

P (x) =
∑
j

ajx
j =

N∑
k=1

ck((wk, x) + bk)n =

N∑
k=1

ck
∑
|j|=n

(
n

j

)
ujky

j (29)

with y = (x, 1) and uk = (wk, bk) so that aj =
(
n
j

)∑N
k=1 cku

j
k.

Notice that the representation of a polynomial in d variables with total degree ≤ k (so dimension N ) with monomial or any
other fixed basis involves exactly N parameters to optimize. In the representation that is produced by a singe hidden layer in
a network as

∑
k ak(wk · x+ bk)k, there are (d+ 2)N weights.

6.4.1 Polynomial approximation of deep networks

First, we discuss the univariate case. Let C∗ be the class of all continuous, univariate, 2π-periodic functions on R, equipped
with the supremum norm ‖ · ‖∗, and Hn be the class of all trigonometric polynomials of order < n. For f ∈ C∗, let

E∗n(f) = min
T∈Hn

‖f − T‖∗.

The following simple theorem was proved by Czipser and Freud (30, Theorem 1):

Theorem 4. Let r ≥ 1 be an integer, f ∈ C∗ be r times continuously differentiable. For integer n ≥ 1, and ε > 0, if T is a
trigonometric polynomial of order < n such that

‖f − T‖∗ ≤ ε,

then
‖f (r) − T (r)‖∗ ≤ 3 · 2rnrε+ 4E∗n(f (r)).

where the minimum is taken over all trigonometric polynomials P of order < n.

To discuss the aperiodic case, let C be the class of all continuous functions on [−1, 1], equipped with the supremum norm
‖ · ‖, and Πn be the class of all algebraic polynomials of degree < n. For f ∈ C, we define

En(f) = min
P∈Πn

‖f − P‖.

Writing φ(x) =
√

1− x2, it is easy to deduce the following corollary of Theorem 4 using the standard substitution x = cos θ:
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Corollary 2. Let f ∈ C be continuously differentiable, n ≥ 1 and P ∈ Πn. If

‖f − P‖ ≤ ε, (30)

then
‖(f ′ − P ′)φ‖ ≤ 3 · 2rnrε+ 4En−1(φf ′). (31)

Thus, if f is a smoothened version of the relu function, and P is an approximation to f satisfying (30), then∇w,bf(〈w,x〉+b)
can be approximated by∇w,bP (〈w,x〉+ b) in the weighted uniform norm as in (31).

The extension of Corollary 2 to higher derivatives is not so straightforward. For γ > 0, we define for f ∈ C,

‖f‖γ = ‖f‖+ sup
j≥0

2jγE2j (f),

and let Wγ be the space of all f ∈ C for which ‖f‖γ > 0. Thus, if r ≥ 1 is an integer, and f is r times continuously
differentiable, then f ∈Wr. However, Wr is the not the same as the space of all r times continuously differentiable functions
on [−1, 1]. A complete characterization of the spaces Wγ is given in (31, Chapter 8, Section 7). The following theorem can
be proved using the Bernstein inequality (31, Chapter 8, Theorem 7.6).

Theorem 5. Let r ≥ 1 be an integer, γ > r, f ∈Wγ . Let n ≥ 1 be an integer, P ∈ Πn, and (30) hold for some ε > 0. Then

‖(f (r) − P (r))φr‖ ≤ cnr{ε+ n−γ‖f‖γ}, (32)

where c > 0 is a constant depending only on r and γ.

Theorem 5 can be extended to the multi-variate setting using tensor products. Finally, we note that theorems analogous to
Theorem 5 are given in (32). However, these theorems merely assert the existence of neural networks evaluating a sigmoidal
tanh activation function so that the derivatives of these networks approximate the derivatives of the function.

6.4.2 Deep polynomial networks behave as deep networks

Nonlinear activations in a deep networks can be approximated up to an arbitrary accuracy over a bounded interval by a uni-
variate polynomial of appropriate degree (see (3)) which approximates well also the derivative of the function (see SI 6.4.1).
Since so much is known about polynomials, several interesting results follow from these approximation properties such as
a characterization of when deep convolutional networks can be exponential better than shallow networks in terms of repre-
sentational power ( (2)). We show here empirical evidence that the puzzling generalization properties of deep convolutional
networks hold for networks with the same architecture in which all the ReLU’s have been replaced by a univariate polynomial
approximation (of degree 10 in our simulations). The resulting 5-layers networks are obviously polynomial networks, that
compute a polynomial in the input x – and that are also polynomials in the weight parameters. Figure 9 demonstrates that
polynomial and ReLU networks with the same architecture have very similar performance in terms of training and testing
error. The same puzzling lack of overfitting in the overparametrized case can be seen in Figure 11. Together Figures 10,11
include all the puzzles discussed in the main text and described by (9).

As we discussed in the main text, Figure 2 shows that the increase in the number of parameters does not induce overfitting,
at least in terms of classification error. We show in Figure 11 that the same behavior is shown for polynomial networks. As
shown in Figure 12, the norm of the weights increases during training until an asymptotic value is reached,

The same very high degree polynomial represented by a 5-layers network with univariate polynomial activation of its hidden
units can be, in principle, parametrized in a standard way in terms of all the relevant monomials, with each parameter corre-
sponding to the coefficient of one of the monomials6.4. Such a parametrization corresponds to a one-hidden layer network
where the weights of the first layer are fixed (for instance equal to 1), each hidden unit computes one of the monomial from
the d inputs and the learnable weights are from the hidden units to the output.

It is well known that the coefficients of the polynomial in the standard parametrization can be learned by using gradient
descent or stochastic gradient descent. This corresponds to optimizing a linear network with square loss which is equivalent
to minimizing a possibly degenerate quadratic loss function.
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Figure 9: A standard convolutional deep network is converted into a polynomial function by replacing each of the REL
units with a univariate polynomial approximation of the ReLU function. As long as the nonlinearity approximates the ReLU
function well (especially near 0), the “polynomial network” performs quantitatively similarly to the corresponding ReLU net.
The polynomial shown in the inset on the left is of degree 10.

Figure 10: The figure (left) shows the behavior of a polynomial deep network trained on subsets of the CIFAR database. The
figure on the right shows the same network trained on subsets of the CIFAR database in which the labels have been randomly
scrambled. The network is a 5-layer all convolutional network (i.e., no pooling) with 16 channels per hidden layer , resulting
in only W ≈ 10000 weights instead of the typical 300, 000. Neither data augmentation nor regularization is performed.

6.5 Additional experiments

Figure 13 shows the testing error for an overparametrized linear network optimized under the square loss. The Figure is
related to Figure 6 in the main text.

Figure 14 shows the behavior of the loss in CIFAR in the absense of perturbations. This should be compared with Figure
15 which shows the case of an overparametrized linear network under quadratic loss corresponding to the multidimensional
equivalent of the degenerate situation of Figure 3. The nondegenerate, convex case is shown in Figure 16. Figure

As shown in Figure 17 and Figure 18, qualitative properties of deep learning networks under the crossentropy loss function
seem to hold, as expected, under the quadratic loss.
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Figure 11: The previous figures show dependence on N – number of training examples – for a fixed architecture with W
parameters. This figure shows dependence on W for a fixed training set with N examples. The network is again a 5-layer
all convolutional polynomial network. All hidden layers have the same number of channels. Neither data augmentation nor
regularization is performed. The classical theory explains the generalization behavior on the left; the challenge is to explain
the lack of overfitting for W > n. As shown here, there is zero error for W ≥ n.
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Figure 12: The norm of the weights increases with training epochs of SGD until a certain level after which it does not change
anymore. The behaviour shown here is typical for all layers for CIFAR-10.
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Figure 13: The figure shows the the square loss under the same conditions of Figure 15 for a linear network with increasingly
degenerate Hessian of the type of Figure 3. The feature matrix φ(X) is a polynomial with increasing degree, from 1 to 42.
The square loss is plotted vs the number of monomials, that is the number of parameters. The target function is a sine function
f(x) = sin(2πfx) with frequency f = 4 on the interval [−1, 1]. The number of training point are 9 while the number of test
points are 100. The training was done with full gradient descent with step size 0.2 for 250, 000 iterations. The figure shows
overfitting of the square loss (the increase on the right is probably exagerated by numerical problems.)
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Figure 14: Same as Figure 4 but without perturbations of weights. Notice that there is some overfitting in terms of the testing
loss. Classification however is robust to this overfitting (see text).
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Figure 15: Training and testing with the square loss for a linear network in the feature space (i.e. y = WΦ(X)) with a
degenerate Hessian of the type of Figure 3. The feature matrix φ(X) is a polynomial with degree 30. The target function is
a sine function f(x) = sin(2πfx) with frequency f = 4 on the interval [−1, 1]. The number of training point are 9 while
the number of test points are 100. The training was done with full gradient descent with step size 0.2 for 250, 000 iterations.
The weights were not perturbed in this experiment. The L2 norm of the weights is shown on the right. Note that training was
repeated 30 times and what is reported in the figure is the average train and test error as well as average norm of the weights
over the 30 repetitions.
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Figure 16: The graph on the left shows training and testing loss for a linear network in the feature space (i.e. y = WΦ(X))
in the nondegenerate quadratic convex case. The feature matrix φ(X) is a polynomial with degree 4. The target function is
a sine function f(x) = sin(2πfx) with frequency f = 4 on the interval [−1, 1]. The number of training point are 9 while
the number of test points are 100. The training was done with full gradient descent with step size 0.2 for 250, 000 iterations.
The inset zooms in on plot showing the absense of overfitting. In the plot on the right, weights were perturbed every 4000
iterations and then gradient descent was allowed to converge to zero training error after each perturbation. The weights were
perturbed by adding Gaussian noise with mean 0 and standard deviation 0.6. The plot on the left had no perturbation. The
L2 norm of the weights is shown on the right. Note that training was repeated 30 times and what is reported in the figure is
the average train and test error as well as average norm of the weights over the 30 repetitions.
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Figure 17: The figure shows the behavior of a deep polynomial network trained on the CIFAR database, using the square loss.
To be compared with Figure 2

.
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Figure 18: Classification error on CIFAR obtained with GD optimizing the square loss risk. The training set has 2000
examples and the network has 188810 parameters. Overfitting appears here for the classification error.
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